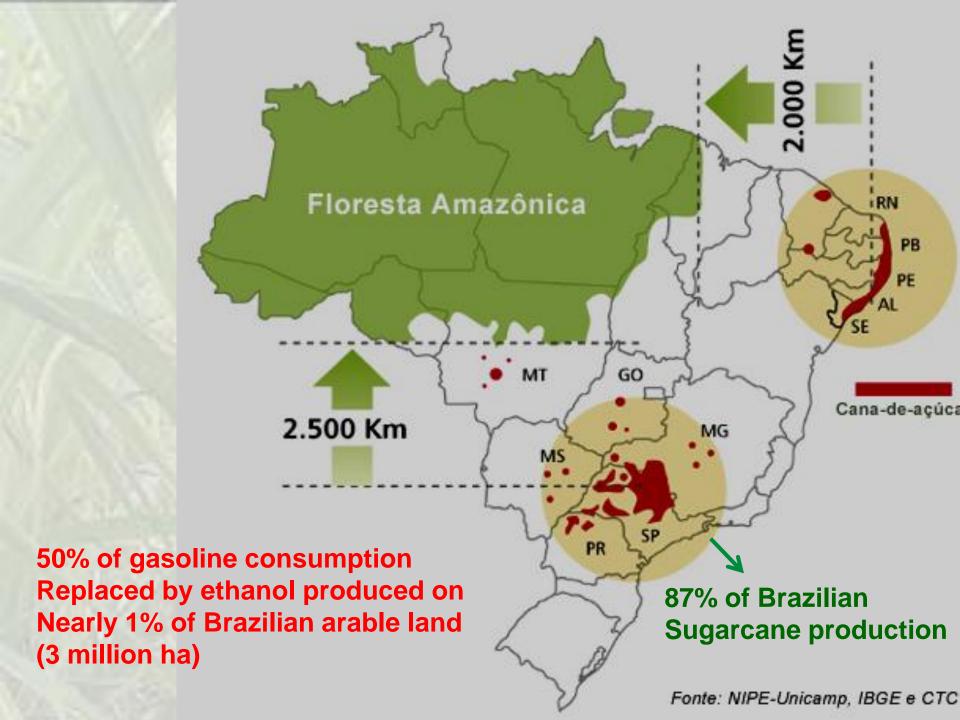
Biotechnology Applications of Sugar cane Genetic Transformation

Dr. Helaine Carrer Universidade de São Paulo-ESALQ

Sugarcane in Brazil

- Largest world Producer
- >Availability of land with good soil fertility
- Good clime conditions
- Generate almost 1 million direct jobs and supports 70,000
- independent farmers
- Sugar Production Plants well established
- Government resource incentive to ethanol production
- The use of Ethanol, greenhouse emissions were reduced by 43 million tons of CO2 (2004-2008), equivalent to plant 150 million


trees

Source: UNICA

Perspective of Expansion of Sugarcane Production in Brazil

	2007/08	2015/16	2020/21
Production of Sugarcane (millions ton)	469	829	1.038
Cultivated Area (millions ha)	7.8	11.4	13.9
Sugar (million ton)	31.0	41.3	45.0
Int. consumption and storage	12.4	11.4	12.1
Exportation	18.6	29.9	32.9
Ethanol (billions liters)	22.5	46.9	65.3
Int. consumption and storage	18.9	34.6	49.6
Exportation	3.6	12.3	15.7
Bioeletricity (MW average)	1.800	11.500	14.400
Participation in the electrical matrix	3%	15%	15%

Source: UNICA, nov 2008

PLANT TAXONOMY

Kingdom: Plantae **Phylum:** Magnoliophyta **Class:** Liliopsida **Order:** Cyperales Family: Poaceae **Genus: Saccharum**

IACSP93-6006

Foto: http://www.iac.sp.gov.br/centros/centrocana/Variedades/VariedadesIAC.htm

Species: S. officinarum, S. spontaneum, S. robustum, S. sinense, S. barberi, S. edule

CLASSICAL BREEDING

Results of genetic crossings:

- High level of sucrose
- Disease resistance cultivars
- improved ratooning ability

Limitations of the classical breeding:

- Complex polyploid-aneuploid genome
- Narrow genetic basis
- Poor fertility
- Long breeding program (12 15 years) (back-crossing to recover elite germoplasm with desired agronomic traits is time consuming)

Biotechnology offers excellent opportunities for sugarcane crop Improvements

Research Areas:

4.1. Genetic maps by molecular markers

4.2. Tissue and cell culture

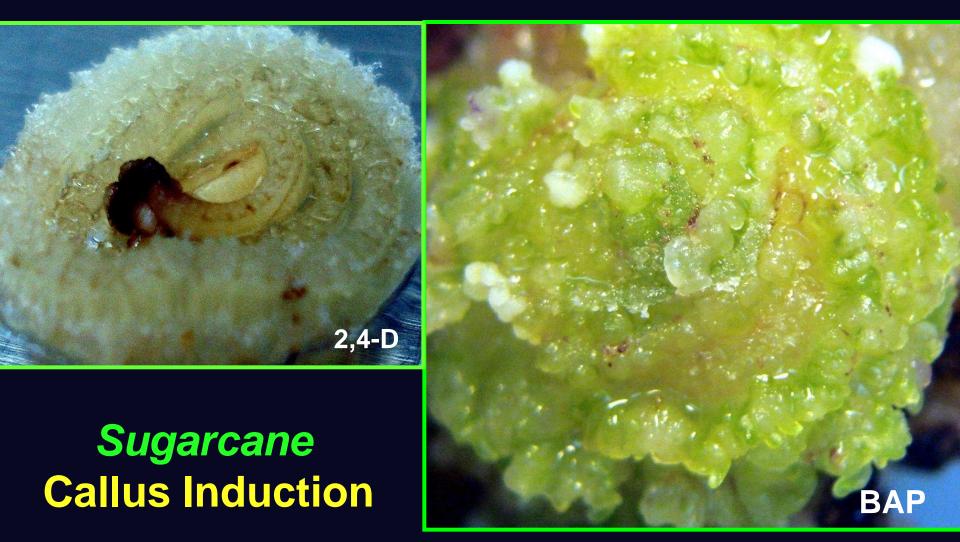
4.3. Incorporation of desired genes – Transgenics

Applications:

- Understanding commercial cultivar origins
- Identification of diversity and genetic variability
- Introgression and QTLs identification
- Diagnostics of disease resistance or tolerance
- Structural and functional genomics

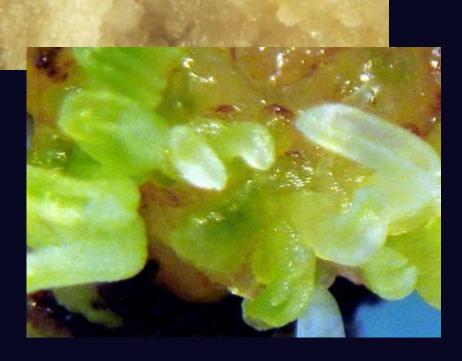
Research Areas:

- 4.1. Genetic maps by molecular markers
- 4.2. Tissue and cell culture

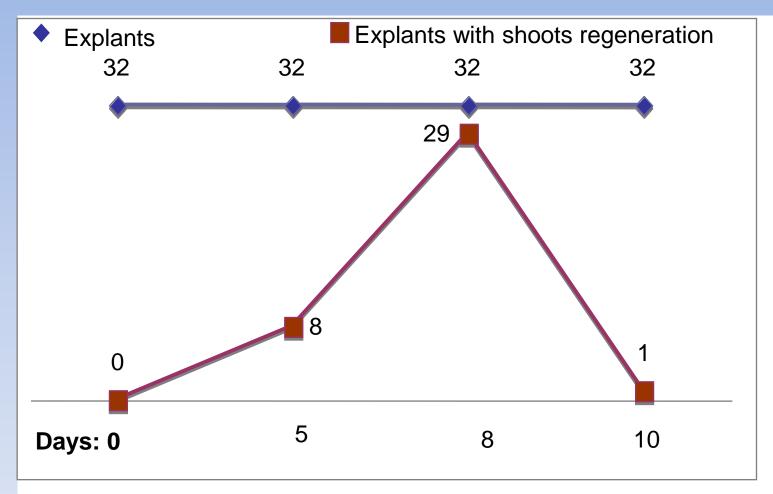

- Callus culture: Nickell, 1969
- Plant regeneration: Barba e Nickell, 1969 Heinz e Mee, 1969

Success on plant regeneration:

- Micropropagation
- Somaclonal variation
- Basis for Genetic transformation


Explants: Immature Leaves

Embryogenic Callus



Sugarcane Plant Regeneration from embryogenic callus

Shoots Regeneration

Shoot regeneration in MS medium with BA (0,1 mg/L), after callus induction on MS with 2,4-D (8,0 mg/L) in the dark

Research Areas:

4.1. Genetic maps by molecular markers

4.2. Tissue and cell culture

4.3. Introduction of desired genes – Transgenics

Sugarcane Transformation

- Protoplasts with PEG: Chen et al, 1987
 low efficiency and poor reproducibility
- Electroporation: Rathus and Birch, 1992
 no plant regeneration

First Transformed Commercial Cultivar:

 gene *npt-II*, in Australia: Bower e Birch, 1992 (microprojectile-mediated transformation)

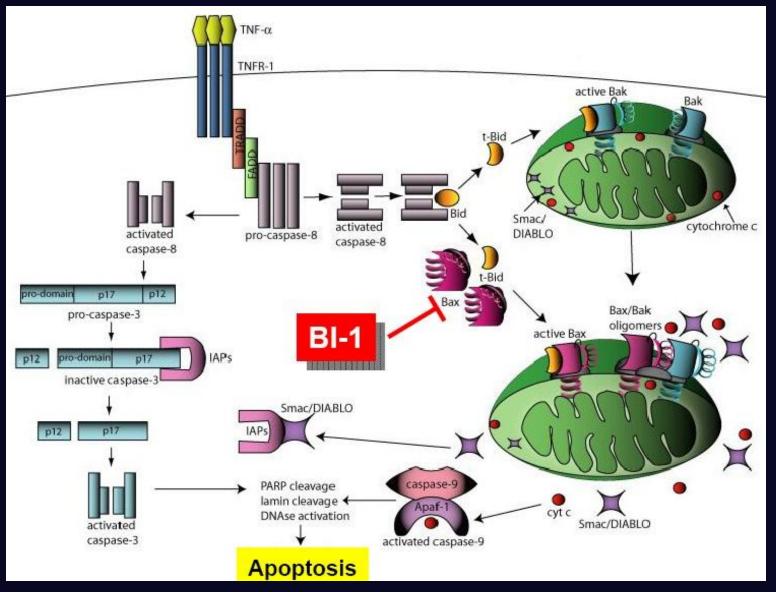
Explants: Immature Leaves

Callus Induction Embryogenic Callus

Direct Embryogeneis

Transformation: Bombardment and A. tumefaciens

Plant Regeneration Selective Medium

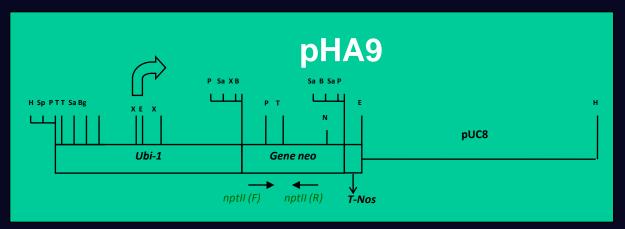


André Barbosa

Traits	Gene	Transformation method	Reference
Reporter and selection systems			
Neomycin phosphotransferase	npt-II	Microprojectile	Bower and Birch, 1992
β-Glucuronidase	uidA	Microprojectile Electroporation Agrobacterium	Bower and Birch, 1992 Arencibia et al., 1995 Arencibia et al., 1998
Hygromycin phosphotransferase	hpt	Agrobacterium	Arencibia et al., 1998
Green fluorescent protein	gfp	Agrobacterium	Elliott et al., 1998
Phosphinothricin acetyl transferase	bar	Agrobacterium	Elliott et al., 1998
Phosphinothricin acetyl transferase	bar	Agrobacterium	Manickavasagam et al., 2004
Herbicide resistance			
Bialaphos	bar	Microprojectile	Gallo-Meagher and Irvine, 1996
Phosphinothricine	bar	Agrobacterium	Enriquez-Obregon et al., 1998
Phosphinothricine	bar	Microprojectile	Falco et al., 2000
Glufosinate ammonium	pat	Microprojectile	Leibbrandt and Snyman, 2003
Disease resistance			
SCMV	SCMV-CP	Microprojectile	Joyce et al., 1998a, b
SrMV	SrMV-CP	Microprojectile	Ingelbrencht et al., 1999
Sugarcane yellow leaf virus	SCYLV-CP	Microprojectile	Rangel et al., 2003
Sugarcane yellow leaf virus	SCYLV-CP	Microprojectile	Gilbert et al., 2009
Fiji leaf gall	FDVS9 ORF 1	Microprojectile	McQualter et al., 2004a
Sugarcane leaf scald	albD	Microprojectile	Zhang et al., 1999

Traits	Gene	Transformation method	Reference
Pest resistance			
Sugarcane stem borer	cry1A	Electroporation	Arencibia et al., 1999
Sucargane stem borer	cry1Ab	Microprojectile	Braga et al., 2003
Sugarcane canegrub resistance	gna or pinII	Microprojectile	Nutt et al., 1999
Mexican rice borer	gna	Microprojectile	Legaspi and Mirkov, 2000
Sugarcane stem borer and Mexican rice borer	gna	Microprojectile	Setamou et al., 2002
Metabolic engineering and alternative products			
Sucrose accumulation	Antisense soluble acid invertase Soluble acid invertase	Microprojectile	Ma et al., 2000
Fructo oligosaccharide	lsdA	Agrobacterium	Enriquez et al., 2000
Polyphenol oxidase	ppo	Microprojectile	Vickers et al., 2005a
Polyhydroxybytyrate	phaA, phaB, and phaC	Microprojectile	Brumbley et al., 2003
ρ-Hydroxybenzoic acid	hchl and cpl	Microprojectile	McQualter et al., 2004b
Tripsin inhibitors	Kunitz and Bower-Birk	Microprojectile	Falco and Silva-Filho, 2003
Mannose	manA	Microprojectile	Jain et al., 2007
Store sugar level	SI	Microprojectile	Wu and Birch, 2007

Bax inhibitor-1: BI-1: PCD Regulatory inhibitor Protein

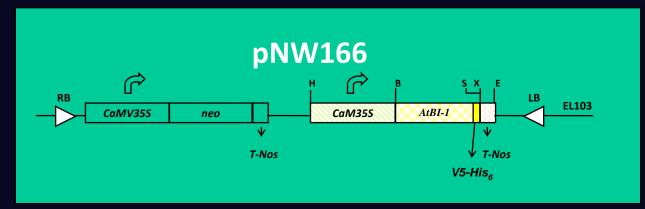


(source: homepage http://cabm.rutgers.edu/research.html

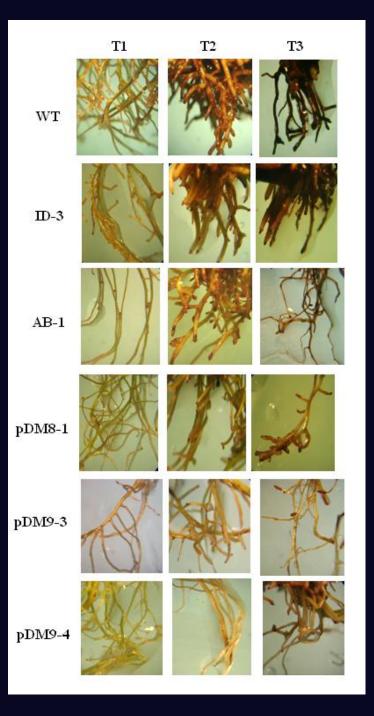
Co-transformation of variety RB835089 with plasmids: pHA9 (*Ubi-1 :: neo:: T-Nos*) and pDM8 (*CaMV35S:: AtBI-1-V5His6:: T-Nos*) pDM9 (*Ubi-1 :: AtBI-1-V5His6:: T-Nos*)

Experiments	N of bombarded plates	N of bombarded calli	N of shoots Resistants to Geneticin	Plants PCR (+) <i>n</i> eo	Plants PCR (+) <i>neo/AtBI-</i> 1	Co- transformation Efficiency (%) ^a
pHA9+pDM8	66	3,300	42	36	30	0.91
pHA9+pDM9	120	6,000	139	94	67	1.12

^aCo-transformation efficiency (%): total of plants with positive PCR for *neo* and *AtBI-1* divided by number of bombarded calli.



Christensen AH, Quail PH (1996) Transgenic Res 5:213-218

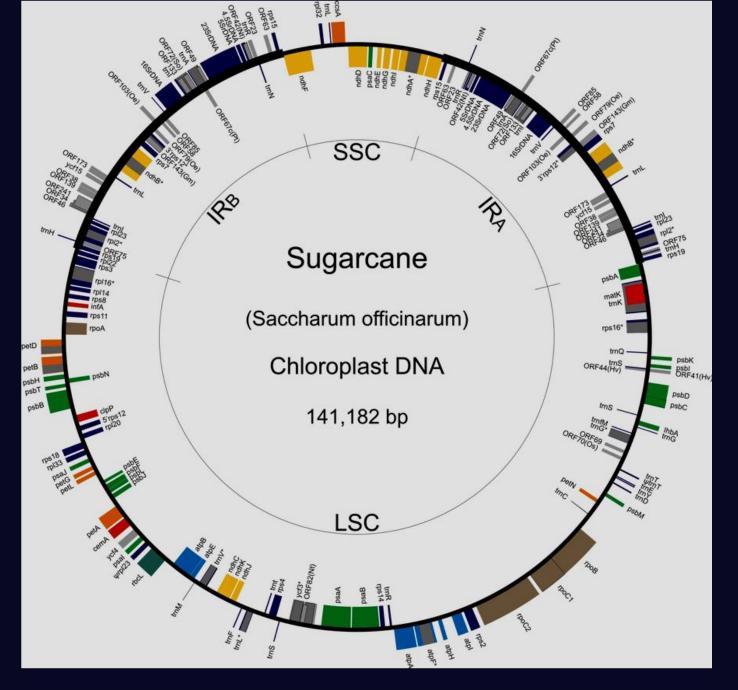

Genetic transformation of variety RB835089 mediated by *A. tumefaciens* EHA105 with pNW166

Experiment	N° of Plates	N° of inoculated calli	N° of shoots Resistants to Geneticin	Plants PCR (+) neo	Plants PCR (+) neo/AtBI-1	Transformation Efficiency (%) ^a
Agrobacterium	25	1,250	56	52	52	4.16
Agrolistic	25	1,250	86	78	78	6.24

^a Transformation efficiency (%):total of plants with positive PCR for *neo* and *AtBI-1* divided by number of calli inoculated into suspension of *A. tumefaciens*.

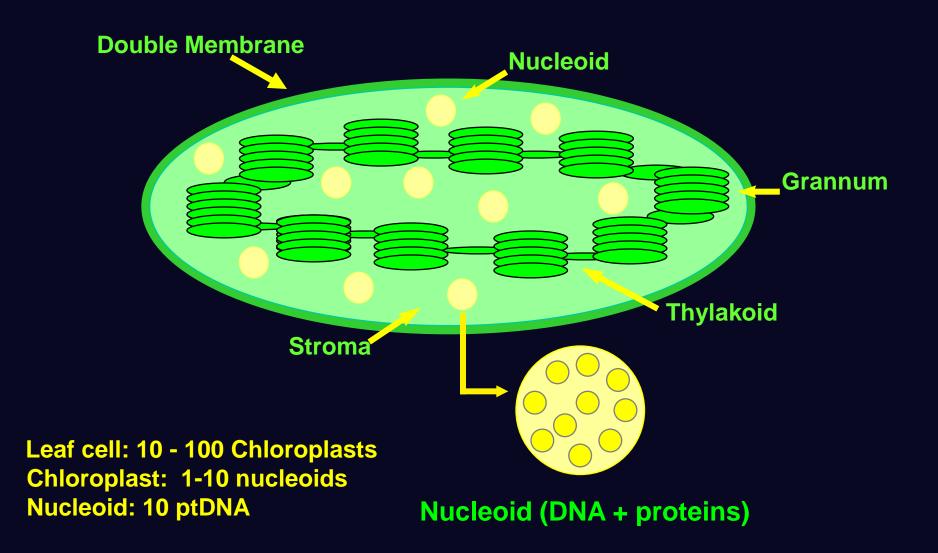
Watanabe & Lam, 2008

Phenotype of the root system of WT plants and transgenic plants incubated in liquid MS medium with:

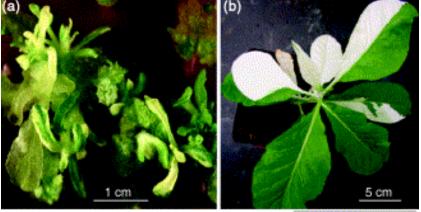

T1: 0.0 Tunicumacyn T2: 0.5 mg.L⁻¹ Tunicumacyn T3 : 1.0 mg.L⁻¹ Tunicumacyn

viewed on the microscope in the 10th day after incubation

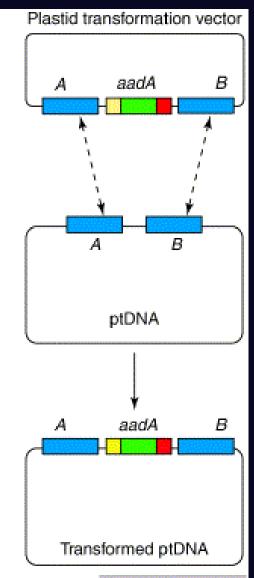
Plastid Genetic Transformation



Saccharum officinarum


Calsa-Junior et al., Current genetics, 2004

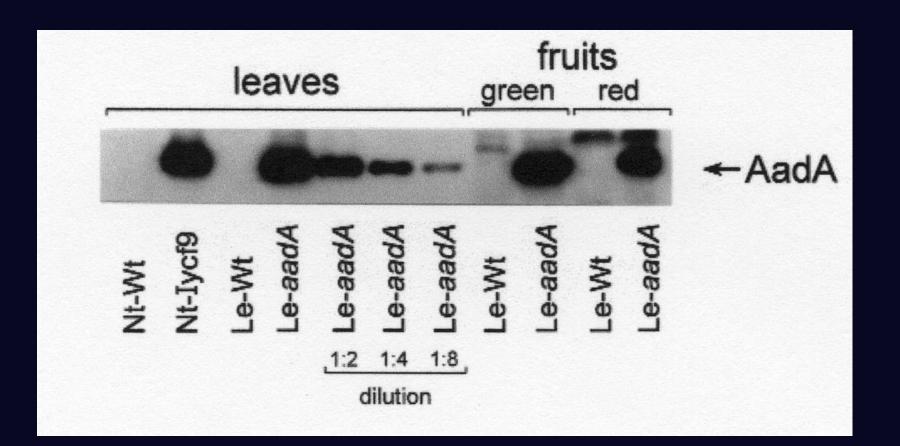
Chloroplast Organization


Chloroplast Transformation

Insertion of transgene by Homologous Recombination

TRENDS in Biotechnology

It is necessary to obtain homoplasmic plants



TRENDS in Biotechnology

Advantages of Plastid Transformation

- integration of transgene at specific local, in intergenic region;
- maternal inheritance;
- high protein accumulation in plastids;
- not occur genes silencing;
- it is possible to insert multiple genes in an unique transformation event;
- there are methods to eliminate the antibiotic resistance marker gene.

Accumulation of protein expressed in leaves and fruits of transplastomic tomato

Ruf et al., 2001. Nature Biotech.

Agronomical traits introduced in Plastid Genome

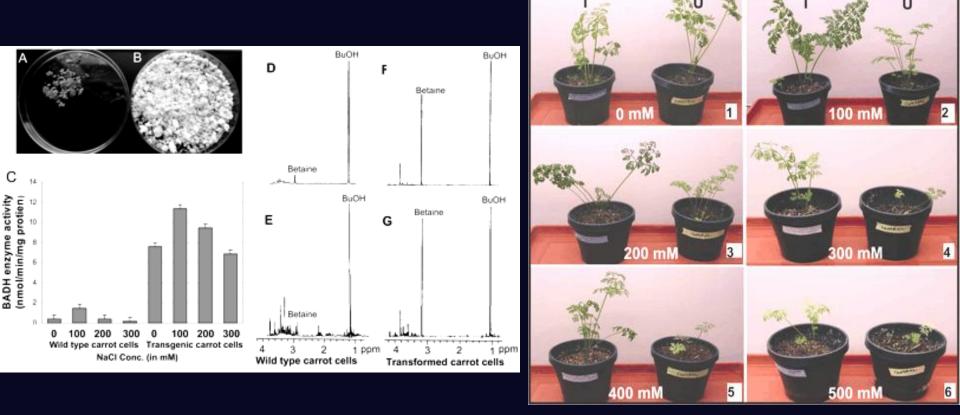
Trait	Transgene	Promoter	5'/3' UTRs	Homologous recombination site
Insect resistance	Cry1A (c)	Prrn	rbcL/Trps16	trnV/rps12/7
Herbicide resistance	AroA	Prrn	ggagg/T <i>psb</i> A	<i>rbc</i> L/accD
Insect resistance	Cry2Aa2	Prrn	ggagg (native)/T <i>psb</i> A	<i>rb</i> cL/accD
Herbicide resistance	bar	Prrn	<i>rbc</i> L/psbA	<i>rb</i> cL/accD
Insect resistance	Cry2Aa2 operon	Prrn	native 5′ UTRs/T <i>psb</i> A	trnl/trnA
Disease resistance	MSI-99	Prrn	ggagg/TpsbA	trnl/trnA
Drought tolerance	tps	Prrn	ggagg/T <i>psb</i> A	trnl/trnA
Phytoremediation	<i>mer</i> Aª/ <i>m</i> erB⊵	Prrn	ggagg <mark>a.b</mark> /T <i>psb</i> A	trnl/trnA
Salt tolerance	badh	Prrn-F	ggagg/ <i>rps</i> 16	trnl/trnA
Cytoplasmic male sterility	phaA	Prrn	PpsbA/TpsbA	trnl/trnA

a,b related to genes with their respective regulatory sequence

High level of Bt protein expression

(Insertion of cry1A gene)

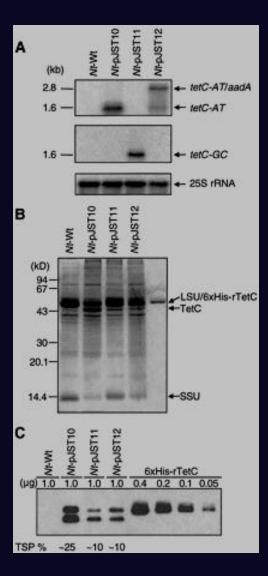
Nuclear: 2 - 3%


Chloroplast: 5-20%

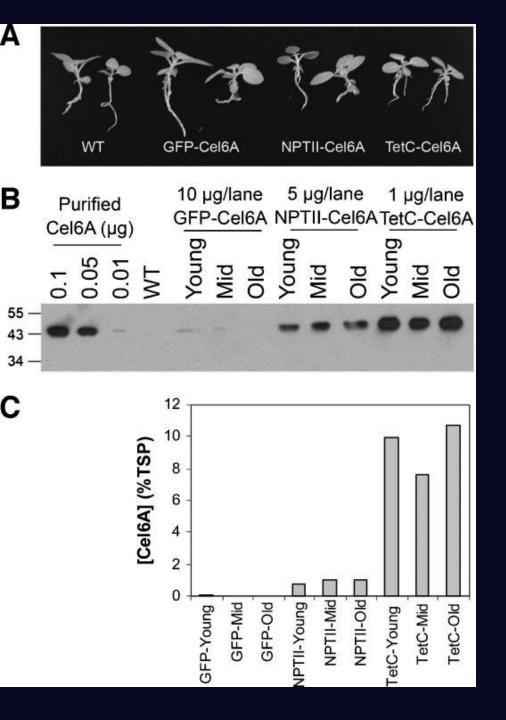
MacBride et al., Bio/Techn. 1995 Kota et al., PNAS, 1999 De Cosa et al., Nat Biotech, 2001

Nt

Nt-pZS224-5


Expression of Betaine aldehydedehydrogenase confers saline tolerance in carrot

(embryogenic culture)


Kumar et al., 2004

Expression of fragment-C of tetanus toxin in chloroplast genome

High expression is prejudicial to plant development - Nt-pJST10, Nt-pJST11 show low protein expression

High level Bacterial Cellulase Accumulation In Chloroplast Tobacco mediated by Downstream Box fusion

Thermobifida fusca cl6A gene Endoglucanase

Gray et al., 2008

New Perspectives

Sugarcane as Biofactory

Important Characteristics:

- fast growth
- efficient pathway for carbon fixation
- production of high amount of biomass
- storage system well developed (stem)

Challenges

-Improve efficiency of genetic transformation;

- Isolation of suitable genes from Eukaryotic or Prokaryotic sources;

- Control the expression of the transgene;
- Identification of suitable gene promoter elements to direct strong tissue/organ-and cell-specific expression;
- Improve stability and storage of the transgene product in the stem;
- Development of the plastid transformation technology for sugarcane.

BI

Acknowledgements:

Collaborators:

Rutgers University, USA Dr. Eric Lam Dr. Pal Maliga Dr. Michael Lawton

Max Planck Institute Dr. Ralph Bock

Laboratório de Biotecnologia Agrícola

Thank you!

Helaine Carrer (hecarrer@esalq.usp.br)