Intermolecular Forces

T. Kihara

Department of Physics University of Tokyo

Translated by

S. Ichimaru

Department of Physics University of Tokyo

Bibliothek FB7 Physikal. Chemle / Chem. Technologie Technische Hochschule Dermstadt

4

4

đ

1

q

ł

Kik A

JOHN WILEY & SONS Chichester • New York • Brisbane • Toronto

Inventar Nr. 10736 PG A

Contents

		the Original Japanese Edition the English Edition	ix x
1.	Intro	oduction	1
	1.1		1
	1.2	Chemical Bond between Hydrogen Atoms and Repulsive Force	
		between Helium Atoms	3
	1.3	The van der Waals Equation of State	5
	1.4	The van der Waals Attractive Force between Macroscopic Bodies .	6
2.	The	Symmetry of Molecules	9
	2.1	Structure of Molecules	9
	2.2	The Ground State of Atoms	10
	2.3		12
	2.4	Nonlinear Molecules	14
3.	Elec	ctrostatic Properties of Molecules	17
	3.1	Polarizability	17
	3.2		18
	3.3	Dipoles, Quadrupoles, and Octopoles	19
	3.4	Hydrogen Bond	22
4.	The	Potential of Dispersion Forces	25
	4.1	Electric Polarizability with Dispersion	25
	4.2	Time-independent Perturbation	27
	4.3	Attractive Potential between Two Molecules	28
	4.4	Three-molecular Potential	33
	4.5	Symmetric Uniaxial Molecules	36
5.	Equ	nation of State for Gases	39
	5.1		39
	5.2		42
	5.3	Zeros of the Cluster Coefficients and the Critical	
	,	Temperature	44
	5.4		47

į,

	5.5	The Grand Canonical Distribution						51
	5.6	Cluster Integrals						
	5.7	Spherically Symmetric Square-well Potential						55
	•••	Sprintenny Symmetric Square with Formation		·	•	•	·	55
6.	The I	Lennard-Jones Potential						60
	6.1	The Second Virial Coefficients						60
	6.2	Three-molecule Cluster Integrals						
	6.3	Four-molecule and Five-molecule Cluster Integrals.						
	6.4	Quantum Corrections to the Cluster Integrals						
	6.5	Potential between Unlike Rare-gas Atoms						
-	T	Lead a Detection of the Course of Course						70
7.		molecular Potential with Convex Cores	•	·	·	٠	•	79
	7.1	Core Potential and Fundamental Measures of a						7 0
		Convex Body						79
	7.2	Steiner's Formula						81
	7.3	Isihara–Hadwiger's Formula					•	85
	7.4	The Second Virial Coefficient for the Core Potential					·	87
	7.5	Three-convex-body Problems	•	•	•	•	•	93
	7.6	Three-molecule Cluster Integrals for Polyatomic						
		Molecules	•	·	•	•	•	97
8.	Potor	ntial Depth Depending on Molecular Orientations						100
0.	8.1	The Roles of Electric Multipoles						
	8.2	Core Potential Combined with Quadrupolar Interaction						
	8.3	Intermolecular Potentials for H_2 , N_2 , O_2 , and CO_2 .	•	•	•	·	٠	104
9.	Mole	cular Models Representing Crystal Structures						111
	9.1	The Symmetry of Crystal Structures						111
	9.2	Representation of Pa3 Structures by Means of						
		Quadrupole Spheres			•			114
	9.3	Crystals of Prolate, Uniaxial Quadrupolar Molecules						117
	9.4	Crystals of Oblate, Uniaxial Quadrupolar Molecules						124
	9.5	Octopolar Molecules.						128
	9.6	Molecules with Octahedral Symmetry						
10.	Visoo	sity and Thermal Conductivity of Gases						130
10.		Velocity Distribution Function for Molecules in Gases						
		The Boltzmann Equation						141
			•	·	٠	·	•	141
	10.3	Boltzmann's H Theorem and the Maxwellian						142
	10 4	Velocity Distribution						143
		Velocity Distribution not Far from the Maxwellian						
	10.5	Expressions for Viscosity	·	·	·	·	·	149
	10.6	Expressions for Thermal Conductivity	•	٠	•	•	•	152

vi

10.7 $\Omega^{(l, r)}$ for the Lennard-Jones Potential	•	•	•	. 157
Transport Coefficients	•	•	•	. 160
11. Diffusion and Thermal Diffusion in Gases				. 163
11.1 Two-component Gases		•		. 163
11.2 The Coefficient of Diffusion				
11.3 Thermal Diffusion between Isotopes				
11.4 The Rigid Convex-body Model of Polyatomic Molecules				
11.5 The Core Potential Applied to Transport Phenomena .				. 172
Bibliography			•	. 175
Bibliographical Notes				. 177
Chapter 4, 5, and 6				. 177
Chapter 7				. 177
Chapters 10 and 11				
References	•	•	•	. 178
Molecule Index				. 179
Subject Index				. 181

vii

í

ŧ

1

ŧ

ł

ţ

ł

١