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A B S T R A C T 

The k-Means algorithm is extensively used in a number of data clustering applications. In basic k-means, 
initial cluster centroids are selected on random basis. As a result, every run of k-means leads to the 
formation of different clusters. Hence, accuracy and performance of k-means is susceptible to the 
selection of initial cluster centroids. Therefore, careful initialization of cluster centroids plays a major role 
on accuracy and performance of the k-means algorithm. In view of this, a new k-means using Partition 
based Cluster Initialization method called as ‘P-k-means’ is proposed in this paper. The experiment is 
carried out on six different datasets. The empirical results are compared using various external and 
internal clustering validation measures. The comparative results show that P-k-means is better than basic 
k-means. 
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1. Introduction 

Data mining is commonly used in numerous applications (Arora & Gupta, 2017; Han, Kamber & Pei, 2012). Clustering is one of the essential functions of 
data mining which is based on unsupervised learning (or learning by observations). It groups the data objects based on the distance or similarity. The 
objects which are similar or close to each other are grouped in the same cluster whereas the objects which are dissimilar or far off are grouped in another 
cluster (Han, Kamber & Pei, 2012; Jain & Dubes, 1988). The distance or similarity is defined based on the behavior or characteristics of the data objects 
by the various clustering methods (Gupta & Chandra, 2019; Jain, Murty, & Flynn, 1999).  

A number of clustering methods have been proposed by many researchers so far. Out of these methods, basic k-means is considered as oldest and 
commonly used clustering algorithm to identify spherical-shaped clusters.  Basic k-means is described as follows (Algorithm 1): 

 
Algorithm 1: Basic k-means  
1. Decide k (no. of clusters) 
2. Randomly initialize cluster centroids C = {c1, c2, ... , ck} 
3. Repeat 

a. For each data point (xi) in data set (D) 
i. Compute distance dis(xi, C) between xi and all cluster centroids 

ii. Assign di to the nearest cluster 
b. Re-compute cluster centroids as the mean of all cluster members. 

4. Until cluster membership stabilizes. 
 

As per Step 2 of basic k-means, the randomized selection of initial cluster centroids leads to a different set of clusters in every run of the algorithm.  
 
Related work done by some leading researchers in the area of cluster centroid initialization for k-means is presented in section 2 of this paper. The new 
approach called as P-k-means for initialization of cluster centroid is proposed and described in section 3. In section 4, the empirical results are presented. 
The results are compared based on the several metrices such as accuracy, performance, Within-cluster Sum of Squared Error (WSSE), Between-cluster 
Sum of Squared Error (BSSE), Purity, Precision, Recall and F-Measure. Finally in section 5, the conclusion is drawn. The results show that P-k-means 
outperforms the basic k-means in terms of the aforesaid metrics. 
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2. Related Work 

The accuracy, performance and reliability of basic k-means is majorly depends on the selection of initial cluster centroids. Therefore, if the initial clusters 
centroids are chosen which are closer to the actual cluster centroids then accuracy, performance and reliability of the k-means will be better. In view of 
this, many researchers have modified the basic k-means and proposed a number of different methods to initialize the cluster centroids (Gan, Ma, & Wu, 
2007; Motwani, Arora, & Gupta, 2019; Jain, 2010; Xu, & Tian, 2015). 

The initial attempt for cluster initialization was made by Forgy (Forgy, 1965) based on the random selection. The Forgy’s method was slightly 
modified by several researchers (McQueen, 1967; Kaufman & Rousseeuw, 1990; Katsavounidis, Kuo & Zhang, 1994; Bradley & Fayyad, 1998). New 
methods based on data distribution, estimation of density, deterministic divisive method, maximin initialization and hierarchical method was proposed in 
(Pei, Fan & Xie, 1999; Khan & Ahmad, 2004; Su & Dy, 2004; Hathaway, Bezdek & Huband, 2006; Arai & Barakbah, 2007) respectively. Arthur and 
Vassilvitskii (2007) proposed k-means algorithm based on improved cluster initialization method called as k-means++. A number of attempts have been 
made by several other researchers (Wu, Jiang & Huang, 2007; Kang & Cho, 2009; Maitra, 2009; Xu, Xu & Zhang, 2009; Dang, Xuan, Rong & Liu, 2010; 
Naldi, Campello, Hruschka & Carvalho, 2011; Reddy, Mishra & Jana, 2011; Bai, Liang, Dang & Cao, 2012; Chen, 2012; Aldahdooh & Ashour, 2013; 
Goyal & Kumar, 2014; Duwairi & Abu-Rahmeh, 2015; Poomagal, Saranya & Karthik, 2016; Dhanabal & Chandramathi, 2017; Golasowski, Martinovič 
& Slaninová, 2017; Kumar & Reddy, 2017; Ismkhan, 2018; Nguyen, Duc & Duong, 2018; Sandhya & Sekar, 2018; Yu, Chu, Wang, Chan & Chang, 
2018; Kurada & Kanadam, 2019). 

3. Proposed Method 

In order to improve the accuracy, performance and objective function of k-means, a novel scheme for initializing cluster centroids has been devised. In 
this method, the range of each dimension (or attribute), dimi , of the data set is logically divided in k equi-sized partitions, where k refers to the # of 
clusters.  The collection of k equi-sized partitions of all dimensions is modeled as k x d Matrix where d is the # of dimensions. From this Matrix, k distinct 
sets, where each set consists of one randomly selected partition from each dimension, are selected as k centroids for the k-means algorithm. From each 
selected partition, a randomized value is selected in the set. The motivation behind this method is that the clusters may spread horizontally, vertically, 
diagonally or in arc shaped. Therefore, to guess the centroids randomly from these cells will be more near to the actual centroids which results in the 
higher accuracy and performance of the k-means. The proposed method, k-means using Participation Based Cluster Initialization Method called as  
P-k-means, is presented as Algorithm 2. 

 
Algorithm 2: P-k-means: k-means using Partition Based Cluster Initialization Method  
1. Decide k (no. of clusters) 
2. Initialize cluster centroids C = {c1, c2, ... , ck} as 

a. Divide the range of data of each dimension, dimi into k equi-ranged partitions. 
b. Repeat 
c. Randomly choose one partition from each dimension (dimi), which was not selected earlier. 
d. Find the randomized value of each partition selected for centroid. 
e. Until all centroids are chosen. 

3. Repeat 
a. For each data point (xi) in data set (D) 

i. Compute distance dis(xi, C) between xi and all cluster centroids 
ii. Assign xi to the nearest cluster 

b. Re-compute cluster centroids as the mean of all cluster members. 
4. Until cluster membership stabilizes. 

4. Experiment Design and Results 

The k-Means based on the both proposed and the traditional methods have been implemented in MATLAB. Both the methods have been executed on 6 
data sets taken from UCI and Hartigan. The results computed and compared based on the average of 200 runs of each of the methods on each of the data 
sets used. 

4.1. Dataset used 

Both the methods have been evaluated on six different datasets Pen Digit, Iris, Image Segmentation, Spambase, Wine and Animal Milk. First five datasets 
are taken from UCI. The sixth data set Animal Milk is taken from Hartigan. The characteristics of these datasets are presented in Table 1. 
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Table 1 - Datasets Used 

Dataset No. of Instances No. of Attributes No. of Clusters 

Pen Digit 7494 16 10 

IRIS 150 4 3 

Image Segmentation 2100 19 7 

Spambase 4601 57 2 

Wine 178 13 3 

Animal Milk 16 4 5 

4.2. Metric 

The k-Mean algorithm has been tested using both the methods. The average of 200 runs of each of the methods on each of the above mentioned six 
datasets has been taken. The implementation is the standard one with no special optimizations. 

4.3. Clustering Evaluation and Validation Measures 

Clustering evaluation and validation measures are reliable and independent measures used to evaluate, assess the validity of goodness of the clustering 
(Halkidi, Batistakis & Vazirgiannis, 2001). These are also used for the comparison of experiments and results of the clustering algorithms. The measures 
are broadly classified into three categories external, internal and relative (Theodoridis & Koutroubas, 2003).  

4.3.1. External Measures 
 
External measures are based on supervised learning in which clustering is compared against the prior or expert-specified knowledge (i.e. ground truth or 
manual classification). These measures do not employ criteria intrinsic to the dataset (Halkidi, Batistakis & Vazirgiannis, 2001; Rendón, Abundez, 
Arizmendi & Quiroz, 2011). A number of external measures are commonly used. In this paper, the empirical results are compared based on Purity, 
Precision, Recall and F-measure external measures. 

4.3.2. Internal Measures 
 

Internal measures evaluate the goodness of clustering. These are mostly based on two criteria intra-cluster compactness (or cohesion) and inter-cluster 
separation (Halkidi, Batistakis & Vazirgiannis, 2001). There is a trade-off in maximizing intra-cluster cohesion and inter-cluster separation. These 
measures employ criteria derived from the dataset itself. A number of internal measures are commonly used. The sum of squared error (SSE) is the widely 
used internal measure for clustering validation and also used in this paper. 

4.3.3. Relative Measures 
 
These are used to evaluate the results of clustering based on the different parameter settings for the same algorithm. 

4.4. Results and Discussion 

The comparative empirical evaluation of basic k-Means and P-k-means are presented in Table 2 through Table 8. The results of both the methods are 
evaluated and compared based on (i) Iterations taken to converge, (ii) Accuracy of Cluster Assignment, (iii) Within-cluster SSE, (iv) Between-cluster 
SSE, (v) Purity / Precision of Clustering, (vi) Recall of Clustering and (vii) F-Measure of Clustering. As the purity and precision gives the same result 
hence the results of both purity and precision is presented in the same table. 

The comparative performance based on average # of iterations taken to converge by both the methods is presented in Tables 2. In Table 3, the 
accuracy of the both the methods based on cluster assignments compared with ground truth are presented. Table 4 and Table 5 present the Within-cluster 
Sum of Squared Error (WSSE) and Between-cluster Sum of Squared Error (BSSE) of both the methods respectively. In Table 6 through Table 8, the 
Purity / Precision, Recall and F-Measure of the clustering compared based on the ground truth of both the methods are presented respectively. 
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Table 2 shows that performance of P-k-means is better than basic k-means for all datasets except Animal Milk. The accuracy of P-k-means is better 
as compared to the basic k-means for all datasets as shown in Table 3. Table 4 and Table 5, shows that WSSE and BSSE of P-k-means are also better than 
that of basic k-means.  The Purity / Precision Measure of P-k-means in four data sets are better than that of basic k-means (Table 6). The Recall and  
F-Measure of P-k-means are also better than that of basic k-means for all datasets except Wine dataset as shown in Table 7 and Table 8.  

Table 2 - Iterations taken to Converge  

Dataset Basic K-means P-k-means 

Pen Digit 28.65 27.69 

IRIS 9.22 8.62 

Image Segmentation 13.89 13.79 

Spambase 7.13 6.87 

Wine 11.87 10.68 

Animal Milk 38.42 38.90 

Table 3 - Accuracy of the Cluster Assignment 

Dataset Basic K-means P-k-means 

Pen Digit 75.89% 76.09% 

IRIS 88.81% 88.83% 

Image Segmentation 97.09% 97.19% 

Spambase 98.92% 98.92% 

Wine 71.70% 72.57% 

Animal Milk 96.96% 97.49% 

Table 4 - Within-cluster SSE (WSSE) 

Dataset Basic K-means P-k-means 

Pen Digit 3510918.33 3502339.52 

IRIS 27.14 26.83 

Image Segmentation 4274503.45 4380699.66 

Spambase 620211350.51 620211350.51 

Wine 841436.80 867154.49 

Animal Milk 7.67 7.28 

Table 5 - Between-cluster SSE (BSSE)  

Dataset Basic K-means P-k-means 

Pen Digit 109851.99 109844.49 

IRIS 13.05 13.08 

Image Segmentation 2273924.87 2317511.20 

Spambase 7088425076.79 7088425076.79 

Wine 296495.06 305144.18 

Animal Milk 682.73 692.07 
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Table 6 - Purity / Precision of Clusters 

Dataset Basic K-means P-k-means 

Pen Digit 0.7718 0.7651 

IRIS 0.8972 0.9020 

Image Segmentation 0.8042 0.8028 

Spambase 0.6671 0.6875 

Wine 0.7406 0.7433 

Animal Milk 0.9582 0.9643 

Table 7 - Recall of Clusters 

Dataset Basic K-means P-k-means 

Pen Digit 0.7167 0.7202 

IRIS 0.8807 0.8869 

Image Segmentation 0.2162 0.2175 

Spambase 0.5073 0.5265 

Wine 0.6561 0.6474 

Animal Milk 0.9160 0.9280 

 

Table 8 - F-Measure of Clusters 

Dataset Basic K-means P-k-means 

Pen Digit 0.7079 0.7102 

IRIS 0.8789 0.8852 

Image Segmentation 0.1151 0.1163 

Spambase 0.3945 0.4379 

Wine 0.6703 0.6632 

Animal Milk 0.9125 0.9246 

5. Summary and Conclusion 

The basic k-Means is widely used because it is easy to implement and no complexity is involved in initializing the cluster centroids randomly. But, the 
accuracy and performance of k-means algorithm is sometimes extremely affected due to the initial cluster centroids. The proposed  
P-k-means is also easy to implement as it is also based on random selection. In P-k-means, k centroids are randomly selected which are having high 
probability to be closer to the actual cluster centroids. The empirical results presented in Table 2 through Table 8 show that P-k-means is better than basic 
k-means in terms of Accuracy, Performance, WSSE, BSSE, Purity / Precision, Recall and F-Measure. The results clearly shows that there is about 10% 
less number of iterations are required to converge the P-k-means and about 5% accuracy is increased in P-k-means as compared to basic k-means. In view 
of the above, the P-k-means outperformed the basic k-means algorithm. 
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