
1st Eclipse Research International Conference
on Security, Artificial Intelligence and Modelling

for the next generation Internet of Things

17-18 September, 2020

Eclipse SAM IoT 2020
| |Security ModellingAI

Immagini @Shutterstock, Inc

PROCEEDINGS

Enrico Ferrera
Philippe Krief

EDITORS

Eclipse Foundation, Germany
LINKS Foundation, Italy

CO-ORGANIZED BY

BRAIN-IoT EU H2020 Project
IoT European Security and Privacy Projects

SUPPORTED BY

SAM IoT 2020

Proceedings of the

1st Eclipse Research International Conference on Security, Artificial Intelligence

and Modelling for the next generation Internet of Things

Virtual Conference | September 17-18, 2020

CO-ORGANIZED BY

Eclipse Foundation, Germany

LINKS Foundation, Italy

SUPPORTED BY

BRAIN-IoT, EU H2020 Project, Grant agreement 780089

Copyright © 2020 for the individual papers by the papers' authors.

Copyright © 2020 for the volume as a collection by its editors.

This volume and its papers are published under the Creative Commons License Attribution 4.0 International

(CC BY 4.0).

Edited by Enrico Ferrera and Philippe Krief

Submitted by Enrico Ferrera

Published on ceur-ws.org

ISSN 1613-0073

https://events.eclipse.org/2020/sam-iot/

samiot2020-chairs@edas.info

https://events.eclipse.org/2020/sam-iot/

III

BRIEF CONTENTS

ORGANIZING COMMITTEES ...IV

INVITED SPEAKERS ...IV

PROGRAM COMMITTEE .. V

FOREWORD .. VII

CONTENTS ..IX

IV

ORGANIZING COMMITTEES

GENERAL CHAIRS

Enrico Ferrera, LINKS Foundation, Italy

Philippe Krief, Eclipse Foundation, Germany

PROGRAM COMMITTEE CHAIR

Rosaria Rossini, LINKS Foundation, Italy

LAYOUT DESIGNER

Ilaria Bosi, LINKS Foundation, Italy

PUBLICITY

Susan Iwai, Eclipse Foundation, Germany

INVITED SPEAKERS

Henrik Plate

SAP Security Research

Germany

Paul-Emmanuel Brun

Airbus Cybersecurity

France

V

PROGRAM COMMITTEE

Alessio Angius, ISI Foundation, Italy

Luca Anselma, University of Turin, Italy

Paolo Azzoni, Eurotech, Italy

Alessandra Bagnato, Softeam, France

Peter Bednár, Technical University of Kosice,

Slovakia

Ilaria Bosi, LINKS Foundation, Italy

Paolo Brizzi, Competence Center Industry

Manufacturing 4.0, Italy

Benoit Combemale, University of Toulouse INRIA,

France

Davide Conzon, LINKS Foundation, Italy

João Pedro Correia dos Reis, Faculty of

Engineering, University of Porto – FEUP, Portugal

Maria Teresa Delgado, Eclipse Foundation,

Germany

Frederic Desbiens, Eclipse Foundation, Germany

Charalampos Doukas, Amazon Web Services,

Germany

Juliver Gil, Universidad de Antioquia, Colombia

Laurent Gomez, SAP Security Research, Germany

Gil Gonçalves, Faculty of Engineering, University

of Porto – FEUP, Portugal

Marco Jahn, Eclipse Foundation, Germany

Prabhakaran Kasinathan, Siemens AG -

Cybersecurity Technologies, Germany

Thomas Krousarlis, INLECOM Innovation, Greece

Zakaria Laaroussi, Ericsson, Finland

Konstantinos Loupos, INLECOM Innovation,

Greece

Cesar Marin, Information Catalyst for Enterprise –

ICE, United Kingdom

Yod Samuel Martín, Universidad Politécnica de

Madrid, Spain

Claudio Pastrone, LINKS Foundation, Italy

Nikolaos Petroulakis, Foundation for Research and

Technology Institute of Computer Science, Greece

Virginia Pilloni, Università di Cagliari, Italy

Ivana Podnar Žarko, University of Zagreb, Faculty

of Electrical Engineering and Computing, Croatia

Mohammad Rifat Ahmmad Rashid, University of

Liberal Arts Bangladesh – ULAB, Bangladesh

Alejandra Ruiz Lopez, Tecnalia, Spain

Julian Schütte, Fraunhofer AISEC, Germany

Xu Tao, LINKS Foundation, Italy

Mark Vinkovits, Pasero, Hungary

Rui Zhao, LINKS Foundation, Italy

VI

VII

FOREWARD

The adoption of the Internet of Things (IoT) is drastically increasing in every application domain, contributing to the

rapid digitalization of contemporary society. Current IoT scenarios are characterized by constantly increasing demands

in terms of non-functional requirements, from low latency to high reliability, dependability, and dynamic resources

allocation. This paradigm shift, also considered as the next evolutionary phase of IoT, is expected to create numerous

opportunities for the technology market supporting applications in multiple areas, i.e. Smart Factories, Smart Cities,

Critical Infrastructures, Cooperative Service Robotics, etc. To cope with these demanding requirements, a multitude of

novel technologies - such as Edge Computing, Artificial Intelligence and Analytics, Digital Twin, as well as Security,

Privacy and Trust schemes – are being investigated in order to be adopted in current IoT architectures standards,

identifying efficient integration schemes with proper design patterns. Hence, designing and managing the next

generation of IoT-based systems is set to become even more complex.

This book contains the proceedings of the 1st Eclipse International Conference on Security, Artificial Intelligence and

Modeling for the next-generation Internet of Things (SAM IoT 2020).

SAM IoT 2020 is the first scientific conference organized by Eclipse Foundation with the aim of promoting the building

of a richer public domain culture within the research community, with special attention to applied research. SAM IoT

2020 has organized a call for papers to collect the latest research results in Europe and all around the world, with a

specific focus on the open issues related to Security, Artificial Intelligence and Modelling in the next-generation of

Internet of things applications. SAM IoT is also supported by the EU-funded H2020 BRAIN-IoT project. As a project

focused on the definition and implementation of novel architectures and methodologies for supporting the developers

and operators of modern IoT applications to deal with the increasing complexity and dynamicity of IoT systems in Smart

city, Industry and Robotics domains, BRAIN-IoT is among the pioneer projects on the Next-Generation IoT paradigm.

For this reason, LINKS Foundation, as coordinator of the BRAIN-IoT project, participates in the organization of SAM

IoT 2020 to promote the discussion around the Next-Generation IoT research topics, bringing together participants from

research and industry.

Submissions, with authors from 16 different countries spread across Europe, Asia and the United States have been

received. To evaluate each submission, a blind paper review was performed by the Technical Program Committee,

whose members are highly qualified researchers in SAM IoT topic areas. Each paper was reviewed by at least three

reviewers. Based on those reviews, papers that adequately balanced quality, originality and relevance to the conference

themes were selected. Based on the classifications provided, 11 papers have been selected.

The conference also featured 2 keynote lectures delivered by experts, namely Henrik Plate (SAP Security Research) and

Paul-Emmanuel Brun (AIRBUS CyberSecurity). These talks contributed to increasing the overall quality of the

conference and to provide a deeper understanding of the conference fields of interest.

The proceedings of SAM IoT 2020 will be submitted for publication to CEUR Workshop Proceedings (CEUR-WS.org),

which is a free open-access publication service at Sun SITE Central Europe operated under the umbrella of RWTH

Aachen University. CEUR-WS.org is a recognized ISSN publication series, ISSN 1613-0073.

We believe the proceedings published demonstrate new and innovative solutions, and highlight challenging technical

problems in each of the SAM IoT fields.

To recognize the best submission, an award based on the paper review scores, as assessed by the Technical Program

Committee was conferred at the closing session of the conference.

As a final point, we would like to express our thanks, first of all, to the authors of the technical papers, whose work and

dedication made it possible to put together a program that we believe is very exciting and of high technical quality.

Next, we would like to thank all the members of the program committee, who helped us with their expertise and time.

VIII

We would also like to thank the invited speakers for their invaluable contributions and for sharing their vision in their

talks. Finally, we acknowledge the professional support of the SAM IoT 2020 team for all organizational processes,

especially given the need to introduce online streaming, breakouts management, direct messaging facilitation and other

web-based activities in order to make it possible for SAM IoT 2020 authors to present their work and share ideas with

colleagues in spite of the logistic difficulties caused by the current pandemic situation.

Enrico Ferrera

LINKS Foundation, Italy

Philippe Krief

Eclipse Foundation, Germany

IX

CONTENTS

KEYNOTE SPEAKERS 1

Cobbles and Potholes – On the Bumpy Road to Secure Software Supply Chains

Henrik Plate .. 1

Securing Low Power Device Communication in Critical Infrastructure Management

Paul-Emmanuel Brun ... 1

PAPERS 3

Risk Assessment in IoT Case Study: Collaborative Robots System

Salim Chehida, Abdelhakim Baouya, Miquel Cantero, Paul-Emmanuel Brun, Guillemette Massot ... 3

Integrated Solution for Industrial IoT Data Security - The CHARIOT Solution

Konstantinos Loupos, Alexandros Papageorgiou, Thomas Krousarlis, Antonis Mygiakis, Konstantinos Zavitsas, Christos

Skoufis, Stelios Christofi, Vasos Hadjioannou, Sofiane Zemouri, Magdalena Kacmajor, Andrea Battaglia, Andrea Chiappetta,

Jacopo Cavallo, George Theofilis, Harris Avgoustidis, Vassilis Kalompatsos, Basile Starynkevitch, Franck Vedrine 11

Guidelines for Privacy and Security in IoT

Pasquale Annicchino, Simone Seminara, Francesco Capparelli ... 19

Semantic Models for Network Intrusion Detection

Peter Bednár, Martin Sarnovsky, Pavol Halas ... 25

Smart Building Energy and Comfort Management Based on Sensor Activity Recognition and Prediction

Francesca Marcello, Virginia Pilloni .. 31

Prescriptive System for Reconfigurable Manufacturing Systems Considering Variable Demand and Production

Rates

Catarina Baltazar, João Pedro Correia dos Reis, Gil Gonçalves ... 38

A Cross-Platform Communication Mechanism for ROS-Based Cyber-Physical System

Rui Zhao, Xu Tao, Davide Conzon, Enrico Ferrera, Yenchia Yu .. 46

REPLICA: A Solution for Next Generation IoT and Digital Twin Based Fault Diagnosis and Predictive

Maintenance

Rosaria Rossini, Davide Conzon, Gianluca Prato, Claudio Pastrone, João Pedro Correia dos Reis, Gil Gonçalves 55

DINASORE: A Dynamic Intelligent Reconfiguration Tool for Cyber-Physical Production Systems

Eliseu Moura Pereira, João Pedro Correia dos Reis, Gil Gonçalves .. 63

Bringing Clouds Down to Earth: Modeling Arrowhead Deployments via Eclipse Vorto

Géza Kulscár, Sven Erik Jeroschewski, Kevin Olotu, Johannes Kristan .. 72

Model Based Methodology and Framework for Design and Management of Next-Gen IoT Systems

Xu Tao, Davide Conzon, Enrico Ferrera, Shuai Li, Juergen Goetz, Laurent Maillet-Contoz, Emmanuel Michel, Mario Diaz

Nava, Abdelhakim Baouya, Salim Chehida .. 80

AUTHOR INDEX 90

X

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Cobbles and Potholes – On the Bumpy Road to

Secure Software Supply Chains

Henrik Plate

SAP Security Research, Germany

Abstract — Open source software is ubiquitous – all across the stack, in the cloud and on-premise, on all devices, in commercial

and non-commercial offerings. This success, the dependency of the software industry on open source, combined with recent data

breaches and attacks, puts security into the spotlight. This talk will provide an overview - for sure opinionated, hopefully

controversial – about the state of affairs and current trends regarding the security of software supply chains, both from consumer

and producer perspective.

Brief Biography — Henrik Plate is a senior researcher at SAP Security Research. He received his MSc in Computer Science and

Business Administration in 1999 from the University of Mannheim. His current research focusses on the security of software supply

chains, esp. the use of open source components with known vulnerabilities and supply chain attacks. He is a co-author of Eclipse

Steady [5], which supports the detection, assessment, and mitigation of vulnerable open source dependencies in Java and Python

applications.

Securing Low Power Device Communication in

Critical Infrastructure Management

Paul-Emmanuel Brun

Airbus Cybersecurity,France

Abstract — An overview of a secure IoT data transmission ecosystem will be completed with a concrete example of a water

management use case from the Brain-IoT project. In this use case, to ensure high trust in the device’s data, we integrated an end-to-

end security layer that is compatible with battery-less devices with high constraints in terms of energy, power computation and

bandwidth.

Brief Biography — Passionate about cybersecurity, IoT and identity management, Paul-Emmanuel Brun, is expert in IoT system

security, and leading the innovation activities within AIRBUS CyberSecurity France. As a former security and identity management

engineer, he was involved in several European initiatives and contributes to several projects for the French MoD, from secure

architecture definition to integration of cybersecurity solution. After applying several patents linked to the cybersecurity of IT and

IoT systems, he is now focus on innovation and IoT system security.

1

2

Risk Assessment in IoT
Case Study: Collaborative Robots System

Salim Chehida, Abdelhakim Baouya
University of Grenoble Alpes, CNRS, VERIMAG F-38000

Grenoble, France
{name.surname}@univ-grenoble-alpes.fr

Miquel Cantero
Robotnik Automation S.L.L

Valencia, Spain
mcantero@robotnik.es

Paul-Emmanuel Brun, Guillemette Massot
Airbus CyberSecurity SAS

Elancourt, France
{name.surname}@airbus.com

Abstract—Security is one of the crucial challenges in the design
and development of IoT applications. This paper presents an
approach that focuses on existing security standards to evaluate
and analyse the potential risks faced by IoT systems. It begins by
identifying system assets and their associated vulnerabilities and
threats. A list of security objectives and technical requirements
are then defined to mitigate the risks and build a secure and
safe system. We use our approach to assess risks in the robotic
system for supporting the movement of loads in a warehouse.

Index Terms—Security Risk Assessment, IoT, Threats, Security
Requirements.

I. INTRODUCTION

Internet of Things (IoT) is a promising technology that
offers significant improvements to various domains such as
health, commerce, construction, buildings management, en-
ergy, and transport. It reduces management costs, automates
the monitoring of infrastructures and equipment, saves energy,
and more. An IoT system consists of a network of smart
devices that collaborate with users to accomplish intelligent
services. It generally groups a large number of devices that
interact using multiple communication technologies and pro-
tocols.

In the last decade, IoT systems are increasingly susceptible
to various security issues, such as malicious access to services
and network attacks. These problems have caused considerable
damage and affected the secrecy, integrity, and availability
of information. There are several surveys, such as [1]–[4],
that discuss vulnerabilities that can be exploited by attackers
to damage IoT systems. Taking into account these risks and
their possible consequences constitute one of the principal
challenges for the designer and developer of these systems.

Security Risk Assessment (SRA) is the process that aims
to identify the most critical threats and provide the required
measures to avoid these threats. It aims to mitigate the risks
and build a secure system while covering its vulnerabilities.
Several SRA methodologies [5]–[9] have been proposed to
evaluate risks and enforce a common level of security. How-

ever, these methods are generic, and they do not consider the
complexity and the dynamic of IoT systems.

In this work, we present a new approach that considers
existing methodologies and standards for risk assessment in
IoT systems. It starts by identifying the assets that should be
protected and evaluating the threats they face. Then, a list of
security objectives and requirements are defined to defend the
system against potential threats. We apply our approach to the
collaborative robots system. Our approach is different from
all the generic approaches mentioned above and presented in
Section II. It is dedicated to IoT systems and takes into account
the relevant domain model and standards, as well as the need
for evolution of these systems.

This paper is organized as follows: Section II presents the
main approaches and standards for security assessment. We
give an overview of our risk assessment approach in section
III, then we describe its different stages and apply them to
our case study in sections IV to VI. Finally, we give our
conclusions in Section VII.

II. STATE OF THE ART

We first present the main security standards, then the
existing methods for risk assessment.

A. Security Standards

Security standards guide an organization in best security
practices in order to enforce a common level of security by en-
suring availability, integrity, and confidentiality requirements.
Many countries and organizations have established standards
for risk assessment and analysis. In this section, we briefly
present the relevant common and IoT security standards.
(a) Common Standards

• ISO/IEC 27002 [10]: International standard that gives
general guidance on the commonly accepted goals of
information security management. It describes general
principles structured around 36 security objectives and
133 controls.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

3

• AS/NZS 4360 [11]: The joint Australian/New Zealand
risk management standard that provides a generic
framework for identifying, analysing, evaluating, treat-
ing, monitoring, and communicating risk.

• ISO/IEC 27005 [12]: International standard that pro-
vides guidelines for managing information security
risks in an organization. The standard describes the risk
management process, which includes context establish-
ment, risk assessment, risk treatment, risk acceptance,
risk communication, and risk monitoring and review.

• BS7799 (ISO17799) [13]: British Standard (Code
of Practice for Information Security Management),
evolved into ISO17799 (The Information Security
Standard). It gives a basis guide for risk assessment
and information security management.

• NIST SP 800-30 [14]: Special Publications Risk Man-
agement Guide for Information Technology Systems
standard that provides practitioners with practical guid-
ance for carrying out each of the three steps in the risk
assessment process (i.e., prepare for the assessment,
conduct the assessment, and maintain the assessment).
It also discusses how organizational risk management
processes complement and inform each other.

• NIST SP 800-82 [15]: This standard guides on im-
proving security in Industrial Control Systems (ICS),
including Supervisory Control and Data Acquisi-
tion (SCADA) systems, Distributed Control Systems
(DCS), and other control system configurations such
as Programmable Logic Controllers (PLC).

• IEEE 1686 [16]: Standard for Intelligent Electronic
Devices Cyber Security Capabilities’ that defines func-
tions and features to be provided in Intelligent Elec-
tronic Devices (IEDs). The document addresses access,
operation, configuration, firmware revision, and data
retrieval of an IED.

(b) IoT Security Standards
The authors in [17] analyse the existing regional and
international standards for IoT security and indicate their
limitations. Among international standards:
• ITU-T standards1 :

– Y.2060 provides reference models of IoT and shows
generic security capabilities on every layer.

– Y.2063 covers the authorization of heterogeneous
devices of WoT.

– Y.2066 defines common requirements of IoT and
also security and privacy protection requirements
related to all the IoT actors.

– Y.2067 covers gateway security mechanisms in-
cluding authentication, data encryption, privacy
protection, etc.

– Y.2068 defines concepts of functional framework
and capabilities of IoT, including service provision
security, security integration, security audit, etc.

1https://www.itu.int/en/ITU-T/Pages/default.aspx

– Y.2075 specifies the security capabilities of EHM
(e-health monitoring) with IoT.

– Y.4112/Y.2077 specifies the concept, purpose, and
components of plug and play (PnP) capability of
the IoT, including security-related requirements.

– Y.4553 specifies the requirements of the smart-
phone as a sink node for IoT applications, including
authentication and data protection capabilities.

– Y.4702 provides common requirements and ca-
pabilities of device management (DM) in IoT,
including security management capabilities such
as security event detection and reporting, device
security assurance, and device security control.

• ISO/IEC standards: ISO/IEC 30128 [18] covers IoT
security related to sensor network application interface.

Among regional standards, ETSI (standards organization
in the telecommunication industry in Europe) recently
provided “ETSI TS103645” [19] (Cyber Security for
Consumer Internet of Thing) standard that gives security
practices for consumer devices connected to the Internet.

According to [17], most of the IoT security standards
presented above are just specification-level standards and
a few of them are involved in availability and non-
repudiation.

B. Risk Assessment Methods

EBIOS [9] is used for the assessment and treatment of
risks associated with an Information System (IS). Its steps are:
definition of the context, identification and estimation of the
security needs and eventual sources of threats, identification
and analysis of threat scenarios, and finally specification
of security objectives and measures to be implemented for
risk treatment. The goal of the EBIOS method is to create
a common ground for security discussion between various
stakeholders in order to support management-level decision-
making. One of the main strengths of the EBIOS approach is
its modularity; its knowledge bases can be tuned to comply
with local standards and best practices, and to include external
repositories of attack methods, entities or vulnerabilities [20].

CRAMM [7] (CCTA Risk Analysis and Management
Method) is a qualitative risk assessment methodology that
consists of the following steps: collection of data and definition
of objectives, identification and evaluation of system assets,
threat and vulnerability assessment, and finally determining
countermeasures.

AURUM [5] (Automated Risk and Utility Management)
supports the NIST SP 800-30 standard [14]. It consists of
the following steps: identification of risks and their impacts,
implementation of adequate countermeasures, and evaluation
of the impact of countermeasures.

CORAS [6] allows risk assessment, documentation of in-
termediate results, and presentation of conclusions. The main
steps of the methodology are: definition of security goals,

4

description of threats, risk estimation by giving likelihood
values for identified unwanted incidents, and risk treatment.

MEHARI [8] (MEthod for Harmonized Analysis of RIsk)
aims to provide a risk management model compliant to ISO-
27005 [12]. The steps of MEHARI are: establishment of the
organization context, identification and classification of assets,
identification and analysis of risks, and finally quantification
and management of risks. MEHARI allows the analysis of the
security stakes and the preliminary classification of the IS en-
tities according to three basic security criteria (confidentiality,
integrity, and availability).

OCTAVE [21] (Operationally Critical Threat, Asset, and
Vulnerability Evaluation) method allows to define a risk-
based strategic assessment and planning technique for system
security. It is based on process broken into three phases
: development of initial security strategies, identification of
infrastructure vulnerabilities, and development of final security
strategy and plans.

IT-Grundschutz [22] provides methods, processes, proce-
dures, and measures to establish a system for information
security management. It describes a two-tier risk assessment:
one is designed for reaching a standard level of security, while
a second supplementary risk analysis can be undertaken by
companies that desire an approach customized to their specific
needs or sector or that have special security requirements.
IT-Grundschutz also provides lists of relevant threats and
required countermeasures that can be adapted to the needs
of an organization.

III. AN OUTLINE OF OUR METHODOLOGY

Starting from standards and methods presented in the pre-
vious section, we define the risk assessment methodology
depicted in Figure 1.

Our method consists of four steps:

1) The first step identifies the assets based on the IoT domain
model.

2) The second step specifies threats on the assets based on
common threats database proposed by the risk assess-
ment methods presented in Section II. In this work, we
consider EBIOS database [9], which is compatible with
all relevant ISO standards and provides a complete list
of possible threats (42 threats) relative to information
systems. EBIOS threats database is widely used in risk
assessment. Some works like [23] have used it for risk
analysis of IoT systems.

3) In the third step, security objectives are derived from the
threats. In this step, we extract relevant objectives (13
objectives) for IoT systems from ISO-27002 [10] that
provides a set of generic security objectives supported by
a set of controls that are an important part of information
security management.

4) In the last step, security requirements are built in order
to implement the security objectives and provide coun-
termeasures of the identified threats.

Fig. 1. IoT Risk Assessment Methodology.

Our approach is iterative, and security requirements can be
revised after the system assets have been refined. The results
of each step should be checked with the customer.

In this work, we apply our method to the service robotics
system. As shown in Figure 2, our system consists of a fleet
of robots installed in a warehouse to support the movement of
different loads.

Fig. 2. Service Robotics System.

The flow of these loads does not require any operator to
command the fleet. Robots are expected to empty continuously
an “unload area” where different loads are put together. At
some point, the system needs to identify the different items
and then asks a specific robot to pick it and place it in a
specific storage area following some predefined rules. It is also
foreseen that in order to perform such activity, the system will
need to actuate IoT devices, for example, an automated door
in the middle of the robot’s path to “storage areas”.

5

IV. IDENTIFICATION OF ASSETS

ISO-27001 [24] defines an asset as “any tangible or intangi-
ble thing or characteristic that has value to an organization”.
In our approach, we refer to IoT domain model proposed by
[25] to facilitate the identification of the system assets. In this
model, the main concepts are: thing, device, user and resource.

As shown in Figure 3, Thing is the combination of PE
(Physical Entity) together with its digital representation VE
(Virtual Entity).

Fig. 3. IoT Things.

VE can be of both types:
• Passive Digital Artefact (PDA): a digital representation

of PE stored in a database or similar form.
• Active Digital Artefact (ADA): any type of active code or

software program usually be some sort of software agent
or embedded application.

Device is a hardware with computing and network capabil-
ities that allows to monitor or interact with PE. As shown in
Figure 4, device can be:

• Sensor : allows to monitor PE.
• Actuator : allows to act on PE.
• Tag : allows to identify PE and can be read by sensors.
User represents who interacts with PE physically or through

software interfaces. Users can either be humans or ADA.
Resource is software components that can provide infor-

mation about PE, allow the execution of actuation tasks, or
analyse data provided by multiple sensors. Resources may be
hosted on a Device, or they could be hosted anywhere in the
network.

Table I presents examples of 16 assets identified in our case
study. The system includes different types of devices, such as
sensors (e.g., A3, A4, A5) and actuators (e.g., A13, A14, A15).

V. IDENTIFICATION OF THREATS AND VULNERABILITIES

ISO-27001 [24] defines a threat as “a potential cause of an
unwanted incident, which may result in harm to a system or
organization” and considers vulnerability as “weakness that
is related to the organizations’ assets, which sometimes could
cause an unexpected incident”.

As mentioned in Section III, our method considers a list of
generic threats from EBIOS database. In Table II taken from

Fig. 4. IoT Devices.

Asset ID Asset Description

A1 Mobile Robot: Embedded Computer

A2 Mobile Robot: Motion Control (motor driver)

A3 Mobile Robot: Sensor 1, RGBD Camera

A4 Mobile Robot: Sensor 2, Lidar

A5 Mobile Robot: Sensor 3, Odometry

A6 Mobile Robot: Lift Mechanism

A7 Mobile Robot: Battery (LiFePo)

A8 Mobile Robot: Network (Card)

A9 System: User Computer

A10 System: Network (Router and infrastructure)

A11 System: Mission Command (Outwards)

A12 System: Robot State (Inwards)

A13 Door PLC

A14 PLC WiFi Gateway

A15 PLC: Opening order (Inwards)

A16 Operator HMI

TABLE I
ROBOTS SYSTEM ASSETS.

the EBIOS knowledge bases, threats are classified into eight
main categories:

• Physical damage: T-1010 to T-1050.
• Natural events : T-2010 to T-2050.
• Loss of essential services : T-3010 to T-3030.
• Disturbance due to radiation : T-4010 to T-4030.
• Compromise of information : T-5010 to T-5110.
• Technical failures : T-6010 to T-6050.
• Unauthorized actions : T-7010 to T-7050.

6

ID Threats Description A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
T-1010 Fire X X X X X X X X X X X X
T-1020 Water damage X X X X X X X X X X X X
T-1030 Pollution X X X X X X X X X X X X
T-1040 Major Accident X X X X X X X X X X X X
T-1050 Destruction of equip-

ment or media
X X X X X X X X X X X X

T-2010 Climatic
Phenomenon

X X X X X X X X X X X X

T-2020 Seismic
Phenomenon

X X X X X X X X X X X X

T-2030 Volcanic
Phenomenon

X X X X X X X X X X X X

T-2040 Meteorological Phe-
nomenon

X X X X X X X X X X X X

T-2050 Flood X X X X X X X X X X X X
T-3010 Failure of air-

conditioning
X X X X

T-3020 Loss of power sup-
ply

X X X X X X X X X X X X

T-3030 Failure of
telecommunication
equipment

X X X X X X X X

T-4010 Electromagnetic ra-
diation

X X X X X X X

T-4020 thermal radiation X X X X X X X X X X X X
T-4030 Electromagnetic

pulses
X X X X X X X X X X X X

T-5010 Interception of
compromising
interference signals

X X X X X X

T-5020 remote spying X X
T-5030 eavesdropping X X X X X X X
T-5040 Theft of media or

documents
X X

T-5050 Theft of Equipment X X X X X X X X X X X X
T-5060 Retrieval or recycled

or discarded media
X

T-5070 disclosure X
T-5080 data from untrust-

worthy sources
X X X

T-5090 Tampering with
hardware

X X X X X X X X X X X X

T-5100 Tampering with soft-
ware

X X X X X X X X

T-5110 Position detection X X
T-6010 Equipment failure X X X X X X X X X X X X
T-6020 Equipment malfunc-

tion
X X X X X X X X X X X X

T-6030 Saturation of the in-
formation system

X X X

T-6040 Software
malfunction

X X X

T-6050 Breach of informa-
tion system main-
tainability

X X X X

T-7010 Unauthorised use or
equipment

X X X

T-7020 Fraudulent copying
of software

X X X X

T-7030 use of counterfeit or
copied software

X X X X

T-7040 corruption of data X X X X X X X
T-7050 Illegal processing of

data
X X X X X X X X

T-8010 Error in use X X X X X X X
T-8020 Abuse of rights X X X X X X X
T-8030 Forging of rights X X X X X X X
T-8040 Denial of actions X X X X
T-8050 Breach of personnel

availability
X X X X

TABLE II
THREAT-ASSET MATRIX.

7

• Compromise of functions :T-8010 to T-8050.
The threat factors can be divided into two categories:
• Environment factors such as earthquakes or floods, cannot

be avoided. The risk manager should always consider
environment threats according to their operating environ-
ment, even if it is difficult to consider them.

• Human factors, which are more of our concern because
they are vagrant regarding different people and different
situations, and it is more difficult to predict human behav-
ior than regular natural disasters. We distinguish persons
who belong to the organization like different users of the
system and persons from outside the organization such
as recipient, provider, and competitor.

In Table II, we show the threats associated to each asset

presented in Table I.

VI. SPECIFICATION OF SECURITY OBJECTIVES AND
REQUIREMENTS

In this step, we based on ISO-27002 [10] generic list
to specify security objectives needed to protect the system
assets against the identified threats. We also map each security
objective with the threat list. Table III gives an example
of security objectives that cover the most potential threats
presented in the previous step.

After the specification of security objectives, we define
security requirements. In Table IV, each security objective
from Table III leads to the implementation of one or more
technical requirements.

ID Security Objective Security Objective Description Threats
O1010 Protection Against Malicious

Code
Prevent and detect the allocation of any malicious code, as well
as connections of any unprivileged user to the robot network

T-50xx

O1020 Backup The data from the initial robot setup and the robot firmware
require regular backup

T-10XX
T-20XX

O1030 Network Security
Management

Protect the information and communication in network from a
client to robot. Sending REST Command once authenticated in
the same network can modify the operations

T-5030
T-5090
T-7010
T-7020
T-7040

O1040 Exchange of information Secure the interaction between the platform and robot system
T-5070
T-5080

O1050 Monitoring Logs and robot system state shall be secured to prevent a bad
usage (i.e. a door opened)

T-5030
T-5040
T-60xx
T-70xx
T-80xx

O2010 User Access Management Authentication and authorization of the robot and any user or
system accessing the robot

T-7010
T-7020
T-7040
T-8020
T-8030

O2020 Network Access Control Prevent unauthorized use of robot network services
T-6030
T-70xx

O2030 Operating System Access
Control

Rely on the access control mechanism offered by Ubuntu
T-8020
T-8030
T-8040

O3010 Correct processing in applica-
tions

Check any command received by the robot and the processing
status of the robot. No robot shall accept commands out of reach
by itself

T-60xx

O3020 Cryptographic controls Protect the sensible information in the robot network and also the
authentication operations of the users or systems accessing the
robot

T-8020
T-8030

O3030 Security of system files Rely on the security mechanisms and limitation rules offered by
Ubuntu to protect the system files

T-8020

O3040 Security in Development and
support process

Control of information flow and integrity in robot systems

T-6040
T-6050
T-8040
T-8050

O3050 Technical vulnerability man-
agement

Detect and deal with the technical vulnerabilities to reduce the
risks such as physical interfacing of robots.

T-6020
T-6040

TABLE III
SECURITY OBJECTIVES OF SERVICE ROBOTICS SYSTEM

8

Objective ID Requirement ID Requirements Description

O-1010

R-1010-0010 REST API must detect malformed commands

R-1010-0020 Access to the REST API must be authenticated

R-1010-0030 Robot firewall should block all the connection except SSH

R-1010-0040 SSH connection should be restricted to unprivileged users

O-1020 R-1020-0010 Robot firmware should be stored in a non-erasable memory

O-1030
R-1030-0010 Network access must require authentication

R-1030-0020 Network communication from a client with a robot must be authenticated and
encrypted

O-1040 R-1040-0010 Communication from platform to robot must be authenticated and encrypted (e.g:
using protocol like TLS1.2 minimum)

O-1050 R-1050-0010 Access to log information must be limited to authorized person only

O-2010
R-2010-0010 System account management (right, password, creation, deletion, ...) should be

done in a central application (to avoid account / password duplication and error in
duplicated right management system)

R-2010-0020 User (or technical account) password should be at least 12 characters, with at least
one upper case, lower case, number and special character)

O-2020 R-2020-0010 Network equipment should implement network access control (e.g: 802.1.X)

O-2030
R-2030-0010 Sudo account should be blocked

R-2030-0020 Sudoers rules should be set up according to the system privileged action to perform

O-3010
R-3010-0010 Commands received by the robot should be parsed and checked using whitelist

approach

R-3010-0020 The robot should monitor its processing status (to avoid overprocessing)

O-3020
R-3020-0010 Authentication operation should be performed using cryptographic signature (at

least SHA256 combined with RSA or ECC algorithms)

R-3020-0020 Operating system integrity should be guarantee using cryptographic proof (signa-
ture) securely stored (e.g: TPM)

O-3030
R-3030-0010 File systems access must be limited to authenticated and allowed users (or technical

account)

R-3030-0020 File systems should be encrypted

O-3040
R-3040-0010 Source code and binaries should be signed to ensure their integrity

R-3040-0020 Binaries compilation should be done using hardening arguments (memory random-
ization, . . .)

O-3050
R-3050-0010 Software vulnerability should be managed

R-3050-0020 Outdated packaged should be upgradable

TABLE IV
SECURITY REQUIREMENTS OF SERVICE ROBOTICS SYSTEM

VII. CONCLUSION

In this paper, we have tackled the highly vast subject of IoT
systems security while concentrating on risk assessment. The
proposed approach provides several advantages, including:

• It considers IoT domain model to identify all system
assets.

• It follows relevant security standards to define security
requirements.

• It is an iterative approach and responds to the need for
evolution of IoT systems.

We have applied this methodology to a robotic system that
supports the movement of loads in the warehouse. We started
by identifying the critical assets and the potential threats
that might compromise them. Then, we defined the technical
requirements considering the identified threats and a list of

security objectives extracted from a common database. All the
steps of our approach was understandable and easy to follow
by the case study owners and several threats related to the
target infrastructure not previously considered were discovered
in this study.

In the analysis performed in this paper, we have taken
into account all system assets and a complete list of possible
threats taken from the standards, which allows us to identify all
potential risks and the requirements needed to mitigate those
risks.

After the specification of security requirements, appropriate
countermeasures can be deployed to protect the system against
the identified risks. There are also approaches such as [26] that
helps security experts to determinate impactful and adequate
countermeasures considering organization defense budget.

9

In future work, we plan to apply our method to other
systems. We also plan to support our approach with a tool
that automates the various analysis activities.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union through the BRAIN-IoT project
H2020-EU.2.1.1. Grant agreement ID: 780089.

REFERENCES

[1] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Computer
Networks, vol. 76, pp. 146–164, Jan. 2015.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey
on Internet of Things: Architecture, Enabling Technologies, Security
and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4,
no. 5, pp. 1125–1142, Oct. 2017.

[3] J. Sengupta, S. Ruj, and S. Das Bit, “A Comprehensive Survey on
Attacks, Security Issues and Blockchain Solutions for IoT and IIoT,”
Journal of Network and Computer Applications, vol. 149, p. 102481,
Jan. 2020.

[4] P. I. Radoglou Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios,
“Securing the Internet of Things: Challenges, threats and solutions,”
Internet of Things, vol. 5, pp. 41–70, Mar. 2019.

[5] A. Ekelhart, S. Fenz, and T. Neubauer, “Aurum: A framework for infor-
mation security risk management,” in 2009 42nd Hawaii International
Conference on System Sciences, 2009, pp. 1–10.

[6] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen,
“Model-based security analysis in seven steps — a guided tour to the
CORAS method,” BT Technology Journal, vol. 25, no. 1, pp. 101–117,
Jan. 2007. [Online]. Available: http://link.springer.com/10.1007/s10550-
007-0013-9

[7] Z. Yazar, “A qualitative risk analysis and management tool–CRAMM,”
SANS InfoSec Reading Room White Paper, vol. 11, pp. 12–32, 2002.

[8] “MEHARI: MEthod for Harmonized Analysis of RIsk,” 2010. [Online].
Available: https://en.wikipedia.org/wiki/MEHARI

[9] The National Cybersecurity Agency of France (ANSSI), EBIOS
2010 - Expression of Needs and Identifiation of Security objectives.,
2010. [Online]. Available: https://www.ssi.gouv.fr/guide/ebios-2010-
expression-des-besoins-et-identification-des-objectifs-de-securite/

[10] ISO/IEC 27002:2013. (2013) Information technology — Security
techniques — Code of practice for information security controls.
[Online]. Available: https://www.iso.org/standard/54533.html

[11] AS/NZS 4360-2004. (2004) Risk management. [On-
line]. Available: https://www.standards.org.au/standards-catalogue/sa-
snz/publicsafety/ob-007/as-slash-nzs–4360-2004

[12] ISO/IEC 27005:2011. (2011) Information technology — Security
techniques — Information security risk management. [Online].
Available: https://www.iso.org/standard/56742.html

[13] ISO/IEC 17799:2005. (2005) Information technology — Security
techniques — Code of practice for information security management.
[Online]. Available: https://www.iso.org/standard/39612.html

[14] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management guide
for information technology systems,” Nist special publication, vol. 800,
no. 30, pp. 800–30, 2002.

[15] K. Stouffer, J. Falco, and K. Scarfone, “Nist special publication 800-
82, guide to industrial control systems (ics) security,” NIST Special
Publication, pp. 800–882, 01 2011.

[16] IEEE 1686. (2013) IEEE Standard for Intelligent Electronic
Devices Cyber Security Capabilities. [Online]. Available:
https://standards.ieee.org/standard/1686-2013.html

[17] I. Hwang and Y. Kim, “Analysis of Security Standardization for the
Internet of Things,” in 2017 International Conference on Platform
Technology and Service (PlatCon), 2017, pp. 1–6.

[18] ISO/IEC 30128:2014. (2014) Information technology — Sensor
networks — Generic Sensor Network Application Interface . [Online].
Available: https://www.iso.org/standard/53248.html

[19] ETSI TS 103 645. (2019) Cyber Security for Consumer Internet of
Things .

[20] European Network and Information Security Agency, Inventory of
risk management/ risk assessment methods, 2013. [Online]. Avail-
able: https://www.enisa.europa.eu/topics/threat-risk-management/risk-
management/current-risk/risk-management-inventory/rm-ra-methods

[21] C. J. Alberts, S. G. Behrens, R. D. Pethia, and W. R. Wilson, “Opera-
tionally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
Framework, Version 1.0,” 6 1999.

[22] Federal Office for Information Security . (2005) IT Grundschutz.
[Online]. Available: http://www.bsi.de/gshb/

[23] B. F. Zahra and B. Abdelhamid, “Risk analysis in Internet of things
using EBIOS,” in 2017 IEEE 7th Annual Computing and Communication
Workshop and Conference (CCWC). IEEE, 2017, pp. 1–7.

[24] ISO/IEC 27001:2013. (2013) Information technology — Security tech-
niques — Information security management systems — Requirements.
[Online]. Available: https://www.iso.org/standard/54534.html

[25] S. Haller, A. Serbanati, M. Bauer, and F. Carrez, “A Domain Model
for the Internet of Things,” in 2013 IEEE International Conference on
Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, 2013, pp. 411–417.

[26] S. Chehida, A. Baouya, M. Bozga, and S. Bensalem, “Exploration of
impactful countermeasures on iot attacks,” in 2020 9th Mediterranean
Conference on Embedded Computing (MECO), 2020.

10

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Integrated Solution for Industrial IoT Data Security –

The CHARIOT Solution

Konstantinos Loupos, Alexandros

Papageorgiou, Thomas Krousarlis, Antonis

Mygiakis

Inlecom Innovation,

Athens, Greece

{name.surname}@inlecomsystems.com

Christos Skoufis, Stelios Christofi, Vasos

Hadjioannou

EBOS Technologies Ltd,

Nicosia, Cyprus

{christoss, stelios, vasosh}@ebos.com.cy

Konstantinos Zavitsas

VLTN GCV,

Antwerpen, Belgium

kzavitsas@gmail.com

Sofiane Zemouri, Magdalena Kacmajor

IBM Ireland Ltd,

Ballsbridge, Ireland

sofiane.zemouri1@ibm.com,

magdalena.kacmajor@ie.ibm.com

Andrea Battaglia, Andrea Chiappetta, Jacopo

Cavallo

ASPISEC Srl,

Rome, Italy

{a.battaglia, a.chiappetta,

j.cavallo}@aspisec.com

George Theofilis

CLMS Hellas,

Athens, Greece

g.theofilis@clmsuk.com

Harris Avgoustidis, Vassileios Kalompatsos

TELCOSERV,

Agios Stefanos, Greece

{h.avg, vkal}@telcoserv.gr

Basile Starynkevitch, Franck Vedrine

CEA, LIST,

Gif-sur-Yvette, France

{name.surname}@cea.fr

Abstract— The CHARIOT H2020 (IoT) project (Cognitive

Heterogeneous Architecture for Industrial IoT), integrates a state-

of-the-art inclusive solution for the security, safety and privacy

assurance of data in industrial networks. The solution is based on

an integrated approach for IoT devices lifecycle management

(based on blockchain and public key infrastructure technologies),

IoT firmware development and deployment (source and binary

level vulnerability analyses), data analytics (privacy by design,

sensitive data detection, dynamic network configurations etc.) and

a set of user interfaces for management and control of the

network, devices and the CHARIOT platform. CHARIOT is

funded by the H2020 programme under the IoT topic, has a 3-year

duration and concludes its activities by the end of 2020.

Keywords— IoT, industrial data, security, privacy, safety

I. INTRODUCTION

The CHARIOT project is focusing its activities on an
integrated solution towards recent risks and challenges of the
industrial IoT domain. These include a wide span of cyber
technological concerns and attacks that include: i)
eavesdropping, interception and hijacking (man in the middle,
protocol hijacking, network reconnaissance etc.), ii) Nefarious
activities, abuse (malware, denial of service, software
manipulation, targeted attacks, personal data abuse and brute
force attacks), iii) unintentional damages (configuration
changes, third party damages, erroneous usage etc.), iv) network
failures and malfunctions (failure of sensor/device, software
vulnerabilities, failure/malfunction of control systems) and v)
legal (contractual requirements, violation of rules). The paper
contribution is summarized to IoT Devices’ Lifecycle
management, IoT Firmware Development and Deployment,
Intelligent IoT Data Analytics and IPSE and Platform and User
Interface as components of the CHARIOT solution.

II. INDUSTRIAL IOT SECURITY ORIENTATION

A. Industrial Requirements Overview

The requirements related to the CHARIOT project offerings
are strongly related to recent challenges in modern IoT networks
and mostly target sensing and monitoring systems in various
industrial themes including smart buildings, airports and trains.
All investigated scenarios require data exchanges in a safe,
secure and private approach resulting into overall needs of
trusting the actual sensors and information they convey in a
complex network, guaranteeing thus the network devices
accuracy and non-intrusion. These challenges have driven the
CHARIOT solutions in placing the actual network devices as the
‘root of trust’ in these IoT networks [1] [2] [3].

CHARIOT central revolution and innovation over the
current state of the art is oriented in placing the actual devices of
an IoT network as the root of trust through its cohesive approach
towards Privacy, Security and Safety (PSS) of industrial IoT
Systems. This is achieved through a combination of Public Key
Infrastructure (PKI) technologies coupled with pre-programmed
private keys deployed to IoT devices with corresponding private
keys in Blockchain for affirming/approving valid transactions, a
blockchain ledger affirming various levels of
operational/functional changes in the network (devices
authorization, provisioning, status changes etc. as an audit log),
a supervision engine combining supervision, analytics and
predictive modelling over IoT data and a firmware development,
validation and update approach (based on online and offline
code/binary analyses) securing end-to-end code development
and execution on the devices.

CHARIOT provides a series of unique and innovative
management features for Industrial IoT and connected devices

11

including providing devices’ software and firmware level
security and sensor visibility through a dashboard for,
configuration, software updates management etc. By automating
key sensor management functions using blockchain, PKI and
automated workflows, CHARIOT provides a solution to coping
with the fast pace growth of emerging IoT technologies whose
pace of evolution is faster pace than skilled staffing and
available resources while at the same time places the IoT devices
as the root of trust (central innovation point in CHARIOT). In
other words, CHARIOT automates key sensor management
functions to improve their cost effectiveness. In this direction,
CHARIOT, addresses the whole lifecycle of IoT devices and
networks supporting various verticals.

B. Building Management Requirements and Challenges

In building management view, CHARIOT has investigated
the IBM Technology campus (partner in CHARIOT) including
thousands of sensors and actuators of varying types,
functionalities and levels of sophistications deployed across six
main buildings. These endpoints constantly monitor and report
back to different systems such as safety and workplace
management systems. The endpoints range from state-of-the-art
fire detection sensors down to inexpensive heat sensors placed
in computer racks in internal lab rooms by operations staff.
These systems perform monitoring and control functions in an
isolated manner. Each system is an IoT silo that has visibility
over a limited area and has actionability to perform a constrained
set of functionalities only. In addition, these heterogeneous
systems contain different user interfaces, which makes it
difficult for administrators to get used to and use them to their
full potential. This makes the enforcement of campus wide
safety and security policies extremely difficult to realise. In fact,
in the best of cases, these systems only allow for basic analysis
of aggregated and historical data collected through some
datapoints spread across multiple silos on the campus.
Visualization and reporting of intrusions, out of boundary
behaviour as well as end to end devices lifetime monitoring
(software upgrades etc.) are of primal importance and need.

C. Airport Environment Requirements and Challenges

In airport situations, as analyzed from the Athens
International Airport (partner in CHARIOT), the primal
importance of the operators is focusing on evacuation cases,
passengers’ comfort and maintaining smooth conditions in both
cases. For this, monitoring/sensing systems are spread in various
places of the airport infrastructure and continuously monitor the
infrastructure sensor measurement to ensure in bounds
behaviour. However, tampering (software or hardware) of these
devices remains practically impossible (or very difficult), airport
operators remain seriously alert in keeping up with modern IoT
cyber security solutions and standards to avoid this. For this,
recent cyber security implementations ensuring the data safety,
security and privacy are of outmost importance in view of
trusting the sensor data itself.

D. Train/Rail Environment Requirements and Challenges

Cooperation with TRENITALIA (as also a partner in
CHARIOT), has revealed a different dimension also related to
data security and privacy that relates to data collection for safety
and predictive maintenance operations as well as efficiency
management. This is seen usually in train (wagon) scenarios

where collected data are analysed in modern systems to perform
continuous monitoring of traffic flows, prevention, early
detection, diagnosis and mitigation of the data breaching effect
controlling the IoT sensors data package that are delivered to
Dynamic Maintenance Management Systems. In this case, train
operators need a system that checks the IoT communications and
collects status reports informing the operator of potential
security violations detected.

III. OVERALL CHARIOT TECHNICAL ORIENTATION

In view of detailed analyses of the above requirements,
CHARIOT is developing an innovative Privacy, Security and
Safety (PSS) platform for IoT Systems, that places devices and
hardware at the root of trust, in turn contributing to high security
and integrity of industrial IoT.

The solution consists of a CHARIOT platform that integrates
the various components and services of the solution integrated
into a cohesive and dynamic approach. The main components
consisting the CHARIOT solution include three run-time
engines: i) privacy engine ii) security engine and iii) safety
engine, each responsible for different layer of IoT data
management and security. Machine Learning (ML) technologies
are running in both the safety and privacy engines to ensure that
data are inside the predictive boundaries and follow normal (and
acceptable) operational behaviors inside the networks.

The solution also integrates recent research results on
software level guarantees, including source code analysis
(development time) and binary code analysis (execution time).
These are strongly interconnected (via metadata interchanges
into the security engine) to provide an end-to-end IoT devices
lifecycle management and security at the firmware level.

A strong component of the solution includes a blockchain
layer combining Public Key Infrastructure (PKI) technologies to
affirm firmware or devices modifications storing the related
information in a Distributed Ledger approach. This is used for
both the devices’ network registration (and commissioning) and
also for the firmware updates (guarantees of IoT device
firmware) from source code development up to the firmware
update at the device. Operational and management dashboards
serve as the User Interface (UI) for the platform and system
operators including IoT sensors/devices commissioning,
network setup, management and control as well as zones’
definition and topology considerations.

As described above, a reference architecture integrates all
above modules and technologies into a modern IoT solution
span inside the cloud and fog layer of services. A high-level
system description is included in the diagram below:

12

Fig. 1. High Level CHARIOT System Design

More details for the operation and capabilities of the
developed modules are described in the following sections in
this publication.

The table below summarizes the technical orientation of
CHARIOT over modern IoT threats and the particular
components of CHARIOT

IoT Threat CHARIOT Solution

▪ Man-in-the-

middle attack

▪ IoT protocol

high jacking

▪ Network

reconnaissance

▪ Ruggedized communication

protocol and encrypted

communications between devices

and controllers/gateways

supported by blockchain

▪ Provisioning of all sensors in an

IoT network through blockchain

registration/affirmation

▪ Blockchain-based PKI for sensor

and gateway authentication

▪ Four-eye-principle based sensor

provisioning in the IoT network

▪ Dashboard-based solutions for

sensor configuration,

management and alerting

▪ Malware

▪ Denial of service

▪ Software/hardw

are/

info

manipulation

▪ Targeted attacks

▪ Abuse of

personal data

▪ Brute force

▪ Firmware static analysis avoiding

software vulnerabilities (etc.) at

source code and existence of

backdoors, software scope

alteration etc.

▪ Firmware binary checking

against injected code at execution

level avoiding Ransomware,

viruses, Trojan horses and

spyware

▪ Firmware hashing and meta data

storage inside the binary (and

blockchain) for increased

software update assertion

▪ Orchestrating mechanism for

sensor data ingestion,

management, storage,

normalization and external API

▪ Registration of sensor status and

alerts in blockchain affirming

transactions and events

▪ Private data automated flagging

and reporting

▪ Safety engine managing

topology, sensors deployment,

commissioning and provisioning

▪ Data encryption policies based on

blockchain technologies to avoid

privacy breaches in IoT

▪ Dashboard-based solutions for

sensor configuration,

management and alerting

▪ Unintentional

configuration

changes

▪ Damages by

third parties

▪ Erroneous usage

by

administration

▪ Orchestrating mechanism for

sensor data ingestion,

management, storage,

normalization and external

connectivity API

▪ Machine learning anomaly

detection based on user-defined

models and neural networks

▪ IoTL (language) for dynamic

network configuration, access

control rules and network

topology definition

▪ Dashboard-based solutions for

sensor configuration,

management and alerting

▪ Failure of sensor

or device

▪ Software

vulnerabilities

exploitation

▪ Failure/malfunc

tion of control

system

▪ Machine learning anomaly

detection based on user-defined

models and neural networks

▪ Predictive analytics to highlight

out-of-bounds behaviors and

assess combined interdependent

risks

▪ Contractual

requirements

▪ Violation of

rules

▪ Machine learning anomaly

detection based on user-defined

models and neural networks

▪ Predictive analytics to highlight

out-of-bounds behaviors and

assess combined interdependent

risks

▪ Sabotage /

Vandalism

▪ Out of CHARIOT scope for

CHARIOT however support for

malfunctioning devices is

provided

IV. THE CHARIOT IOT ENGINES

CHARIOT integrates three (3) IoT data management layers
responsible for performing operations on the data to verify and
affirm their privacy, security and safety inside the IoT network.
The components have been designed by taking into
consideration the operation and scalability requirements of the
three living labs participating in CHARIOT (rail, airport, smart
buildings) into the IPSE (Integrated Privacy and Safety Engine).
Safety here refers to Machine learning anomaly detection based

13

on user-defined models and neural networks. The IPSE can be
scaled out by distributing the runtime across multiple nodes if
needed. A CHARIOT simulation tool will also be used
internally to test the platform and overall system scalability and
elasticity through exhaustive testing using large series of data
that may not be available in the CHARIOT LLs but still pose a
significant challenge in IIoT systems and networks. These are
described below:

A. Privacy Engine

The CHARIOT Privacy Engine employs and integrates
modern security protocols and technologies (e.g. Blockchain) to
provide the foundation layer for the trusted interchange of
information between the different network actors (sensors,
nodes, devices, gateways, controllers etc.). The Privacy engine
utilizes the IoT topology described with the IoTL language to
ensure that only data from well-known sensors are accepted into
the system. The IoTL language itself was extended with new
concepts that can fully describe access control rules and allow
access to sensor data only to specific systems, users, roles, etc.
These new concepts also add semantics relevant to privacy, such
as explicitly flagging a sensor as a sensitive data sensor, that can
later be used e.g. to obfuscate or anonymize some or all
properties of the data [4]. When a system needs to receive sensor
data it must register its public key with CHARIOT’s
Blockchain-based PKI. The Privacy engine uses the PKI to get
the public keys of the system that is allowed to receive sensor
data and uses it to encrypt the data before sending them. This
way only the owner of the private key can decrypt and access
the raw data [4].

This component considers recent privacy issues in IoT
systems including data being collected by individual sensors that
should enter the system if only the sensor is known and
registered in the topology and also if the data is from a known
sensor, data encryption must be applied using a public key stored
in a blockchain PKI. This module uses advanced cryptography
in achieving protection towards confidential information stored
in network and secure transmission over one network to another
network. Cryptography is applied on the sensor data,
immediately after, sensor data are verified over their receival
from a (topology) well known sensor. CHARIOT has designed
the encryption PKI engine so it can support multiple encryption
algorithms and has initially adopted the RSA Cryptography
algorithm for the first version of the Engine. The integrated
blockchain layer provides valuable security features such as
certificate revocation, elimination of central points-of-failure
and a reliable transaction record that are otherwise unattainable
by traditional PKI systems. Additionally, blockchain is applied
as a public append-only log, naturally provides the certificate
transparency (CT) property proposed by Google [5].

The CHARIOT Privacy engine ensures data privacy through
encrypting data at the source, specifically at the southbound
dispatcher through a PKI supported by CHARIOT blockchain
infrastructure. Using CHARIOT Blockchain solution for
handling PKI provides secure encryption for the multiple data
streams handled by CHARIOT. Alert flags are raised in every
case of sensitive data transfer through the fog-node; thus, the
Network Administrator is informed in order to report
accordingly.

To build the Privacy Engine, open source solutions and
Python scripts have been used to develop this application. For
encryption an RSA algorithm was used to complete the engine.
The solution was packed as a docker container and it is available
at GitLab Private Registry.

B. Security Engine

The CHARIOT security engine is responsible for the
integrity and trust of the devices (sensors, gateways, controllers
etc.) of the IoT network. This protects the devices (and network)
against modern IoT attacks such as: i) reverse-engineer of the
entire firmware (extract the file system and understand how the
entire device works, knowing the possible use of known-to-be-
vulnerable out-of-date API/libraries or unknown exploitable
vulnerabilities), ii) insert a firmware backdoor (making the
device covertly connected to a malicious Command & Control
server), iii) change the device behaviour (altering its
performance), iv) find hard-coded private symmetric-
cryptography keys/passwords/user-names or private certificates
(used to encrypt communications between the device and other
systems and eavesdrop these communications) and v) roll-back
the firmware to a previous legitimate version with known
vulnerabilities he/she wants to exploit (verify if the pushed
firmware is authentic, so it can easily survive most of the in-
place controls, as usually, they tend to check just the firmware
source and/or the firmware integrity) [6].

The CHARIOT security engine verifies the reliability of new
issued firmware(s) during the tricky and demanding update
phase using features detection and heuristic approach. The
firmware verification analyses the firmware’s binary that will be
flashed on the end-device (sensor or gateway). The firmware
analysis is performed during the firmware update process, and
its purpose is to highlight any vulnerabilities inside the firmware
code that could potentially lead to cyber-attacks. A created hash
(during the firmware development stage) of the firmware is
stored in the blockchain after the validation of the Security
Engine. The hashing of the binary file is performed by the
CHARIOT platform along with the keypair and the registration
of the hashing to the blockchain. When a potential security issue
has been found inside the reversed binary code of the firmware,
the Engine reports a security violation to the management for the
subsequent actions and analysis.

The heuristic method treats the system as different sub-
systems so that the sub-system's solution must spread widely at
the solution space. This approach is more appropriate since we
have to deal with types of firmwares that are often very different
from each other (in architectures/CPUs/ characteristics).
Heuristic method brings several benefits, giving us flexibility in
analysis, in fact we can combine different features as well as
news instructions and features could be added as new functions
with new parameters for analysis. This allows an analysis
addressed by considering different aspects of the characteristics
of the firmware, the change of its behavior and possible
vulnerabilities that could be exploited to tamper the firmware,
leading to a more complete and reliable analysis.

The utility is designed to collect data by binaries, perform
statistical analysis, compare two firmware images and checking
for vulnerabilities and formal contracts. The analysis is
performed on the assembler instructions level. Based on the

14

analysis results, a report is generated which contains information
on the differences between the two images and if a vulnerability
has been detected. An advanced attack pattern recognition helps
to detect unusual hardware behavior and compares anomalies
with an internal set of instruction that can lead to recognize an
unknow attacks and exploitations [6].

Fig. 2. CHARIOT Security Engine Model Implementation [6]

The CHARIOT security engine vulnerability detection layer
provides the following vulnerability classes check: i) buffer
overflow, ii) format string and iii) artbitrary memory access and
reports its findings during the firmware update process to the
platform and in-turn to the User Interface, accepting or
declining/stopping the firmware update process.

C. Safety Engine

The CHARIOT Safety Engine analyses the IoT topology and
signal metadata relative to the relevant safety profiles and
applies closed-loop machine-learning techniques to detect safety
violations and alert conditions. This comprises a later capability
on the cognitive engine that will leverage the Cyber-Physical
topological representation of the system-of-systems combined
with the security and safety polices.

Anomaly detection aids finding patterns in data that do not
conform to expected behavior [7]. Under IoT terms, anomalies
are considered as any abnormal data stream pattern whose root
cause may have safety security implications. These may be a
faulty sensor, a safety hazard or a security issue. By identifying
these issues and providing a central alerting mechanism,
CHARIOT will help operators in reducing response time and
identify root causes in cases of issues.

The CHARIOT security engine uses rule-based policies with
simple arithmetic comparisons to enforce policies on data
streams. An innovative IoTL (IoT scripting language -IOT
Language) supports alerting the industrial gateway if a safety
policy violation is observed within the IoT State. Furthermore,
the security engine is using machine learning based anomaly
detection.

In addition to a low-level Swagger API, IBM has developed
a high-level UI for interfacing with the IoTL to facilitate

interactions with the service topology as well as static and
dynamic policies enforcement. The IoT Manager UI is
implemented using the React and Leaflet libraries and features
a Quake-style terminal for inputting IoTL commands [8].

V. PREDICTIVE MACHINE LEARNING MODELLING

IoT data are in general characterized by volume, velocity and
variety-lack of structure/heterogeneity. The frequent lack of
structure in IoT data makes it difficult to analyze such data with
traditional analytics and business intelligence tools.
Additionally, IoT data that capture physical processes such as
temperature, motion, or sound can be noisy. Finally, the quality
of IoT data can vary, i.e. datasets can have significant gaps, and
contain corrupted readings. Lastly, meta-data/context may be
essential to understand IoT data, as such data are often
meaningful in some context. IoT data typically contain patterns
that include seasonal fluctuations and trends. Such patterns must
be detected amongst noise, random fluctuations and other non-
important findings. IoT analytics systems can filter, transform,
and enrich the IoT data before storing it, usually in a time-series
data store for analysis. Insights from the IoT analytics are then
used to better understand the system measured by the IoT
sensors and to make better decisions.

Anomaly detection refers to the problem of finding patterns
in IoT data that do not conform to some norm [9]. These non-
conforming patterns are often referred to as anomalies, (and also
as outliers, exceptions, aberrations, etc.) in different contexts.
Anomaly detection has wide applicability in a variety of IoT
applications such as for security protection and fault detection in
industrial systems. One major application of anomaly detection,
of relevant to CHARIOT is fault detection in mechanical units.
The anomaly detection techniques in this domain use IoT to
monitor the performance of industrial components such as
motors, turbines, and other mechanical components to detect
when maintenance of the system will be required (‘predictive
maintenance’).

CHARIOT is using several different methodologies for the
anomaly detection layer including: i) One Class Support Vector
Machine (OSVM) - trained using both positive and negative
examples, however studies have shown there are many valid
reasons for using only positive examples, ii) Elliptical Envelope
(EE) - based on the Minimum Covariance Determinant (MCD)
estimator the first affine equivariant and highly robust
estimators of multivariate location and scatter and iii) Isolation
Forest (IF) - efficient unsupported machine learning algorithm
for anomaly detection focusing on identifying the few different
points of the dataset, rather than the normal data, and uses the
isolation mechanism that detects anomalies purely based on the
concept of isolation without employing and distance or density
measure, which is fundamentally different from previously
described methods [11].

15

Fig. 3. Example of Anomaly Detection Modelling

VI. SOFTWARE LIFE-CYCLE MANAGEMENT

The CHARIOT software analysis and lifecycle management
includes a software source code verification analysis level
(Bismon) that is strongly linked to the CHARIOT security
engine (and the firmware update process). This, includes the
source code analysis, creation of metadata and hashing of source
code inside the binary file that are analysed during the firmware
update process (via the security engine and together with the
binary level warnings) to either accept or decline the software
update process.

CHARIOT focuses mainly on a system of systems (e.g.
networks of systems and systems of networks) approach, so [10]
“aims to address how safety-critical-systems should be securely
and appropriately managed and integrated with a fog network
made up of heterogeneous IoT devices and gateways.”. Within
CHARIOT, static analysis methods support its Open IoT Cloud
Platform through its IoT Privacy, Security and Safety
Supervision Engine. Some industrial CHARIOT partners, while
being IoT network and hardware experts, acknowledge that their
favourite IDE (provided by their main IoT hardware vendor) is
running some GCC under the hoods during the build of their
firmware. Nevertheless, these partners do not use static source
code analysis tools.

The CHARIOT approach to static source analysis leverages
on an existing recent GCC cross-compiler [11] so focuses on
GCC-compiled languages [12]. Hence, the IoT software
developer following the CHARIOT methodology would just
add some additional flags to existing gcc or g++ cross-
compilation commands, and needs simply to change slightly
his/her build automation scripts (e.g. add a few lines to his
Makefile). Such a gentle approach (see figure 1) has the
advantage of not disturbing much the usual developer workflow
and habit, and addresses also the junior IoT software developer.
The compilation and linking processes are communicating -via
some additional GCC plugins (cf. GCC Community [6] §24)
doing inter-process communication- with our persistent

monitor, tentatively called bismon. It is preferable (see Free
Software Foundation) to use free software GCC plugins (or free
software generators for them) when compiling proprietary
firmware with the help of these plugins; otherwise, there might
be some licensing issues on the obtained proprietary binary
firmware blob, if it was compiled with the help of some
hypothetical proprietary GCC plugin.

CHARIOT static analysis tools will leverage on the
mainstream GCC compiler (generally used as a cross-compiler
for IoT firmware development). Current versions of GCC are
capable of quite surprising optimizations (internally based upon
some sophisticated static analysis techniques and advanced
heuristics). But to provide such clever optimizations, the GCC
compiler has to be quite a large software, of more than 5.28
million lines of source code (in gcc-8.2.0, measured by
sloccount). This figure is an under-estimation, since GCC
contains a dozen of domain specific languages and their
transpilers to generated C++ code, which are not well
recognized or measured by sloccount.

Since a single Bismon process is used by a small team of IoT
developers, it provides some web interface: each IoT developer
will interact with the persistent monitor through his/her web
browser. In addition, a static analysis expert (which could
perhaps be the very senior IoT developer of the team) will
configure the static analysis (also through a web interface) [13].

VII. SUPPORTING BLOCKCHAIN AND PKI TECHNOLOGIES

The blockchain component of CHARIOT (based on a
hyperledger Fabric implementation) is used at different engines
and layers to affirm data, devices and network information. In
this, the information stored in blockchain include sensor IDs,
network states and firmware validation hashings. These are used
by the privacy, security and safety engine as described before.

Blockchain-based PKI approach makes MITM attacks
virtually impossible as when group of authorities publishes or
revokes the public key of an identity on the blockchain, the
information will be distributed across all nodes, so tampering the
public-key will be (theoretically) out of the question. Traditional
PKI resolves MITM risks by embedding Root CA certificates
into browser installations, thus artificially expanding CA
entrance barriers and increasing the time necessary for Root CA
certificate revocation.

There are several advantages of using this PKI-based
blockchain implementation including: i) The validation of a
certificate is simple and fast with no form of CA certificate
chain, ii) Blockchain-based PKI solves a longstanding problem
of traditional PKIs by not requiring the use of a service that
issues certificate revocation lists (CRLs) thanks to blockchain
synchronization between network’s nodes where any
modification to the state of a certificate will be instantaneously
notified to the all nodes and iii) Blockchain-based PKI provides
flexible protection against the man-in-the-middle (MITM)
attacks. Traditionally, MITM is considered as a major security
risk implying attacker to hijack a browser’s connection for a
given website by presenting a valid certificate (i.e., forged public
key) for that domain. For users and web browsers it is difficult
to identify the replacement of certificate when the related CA
has been hacked by the attacker [7] [8].

16

VIII. OPERATIONAL AND DEVICE MANAGEMENT

DASHBOARDS

User interfacing is considered as an important layer where
two distinct interfaces (dashboards) are being developed
(Device Management Dashboard: handling blockchain devices
registration, firmware updates, engine management and IoTL
interfacing and Operational Dashboard: providing Engines’
health and performance monitoring as well as alerts’ and sensor
data visualization).

The device management dashboard is utilizing the latest
state-of-the-art web technologies to deliver rich content
information to the LL users and achieve cross-browser and
multi-device compatibility. Further to that, the dashboard is
designed as a user friendly and fully responsive web solution,
based on the CHARIOT industrial needs, providing an easy
access to the necessary information. Blockchain security and
accessing controls are applied to secure the access to specific
information and data by different users. Moreover, Dashboards
focus not only to standard monitoring actions and providing a
visibility on an industrial IoT topology, sensor values and alerts
but also to secured (utilizing blockchain technology) managerial
activities. Those activities such as authenticating and registering
(or unregistering) a sensor in the IoT topology and updating the
firmware (of a sensor or a gateway) can be performed by the
security engineers and management. It is important to mentioned
that during the “firmware update” there is a chain of actions and
integration with a number of CHARIOT components.

Fig. 4. Example of Data Management Dashboard

The CHARIOT Operational Dashboard is providing
Engines’ health and performance monitoring as well as alerts’
and sensor data visualization. CHARIOT has identified the need
of a more sophisticated method for platform performance
monitoring as designed following the micro-services software
architecture paradigm. After research on the industry-standard
of micro-service platform monitoring techniques, CHARIOT
has decided to adopt CNCF best practices and deploy Jaeger.
With Jaeger, we can trace every action trail at the CHARIOT
platform. The analysis of the collected traces helps the developer
to identify bottlenecks to improve system performance and find
the cause of platform malfunction. In addition to this, we
implement service to monitor health of every micro-services by
sending a “magic-package” to it and then wait for its response,

in the end the system administrator has a dashboard to view all
the collected information [14].

Fig. 5. Example of Operational Dashboard

IX. CHARIOT INDUSTRIAL VALIDATION

CHARIOT is by design driven by industrial IoT
requirements following actual needs and paradigms of three
sectors: rail, airports and smart buildings. These three industrial
cases’ analysis has derived exhaustive sets of requirements,
industrial scenarios and validation KPIs on which, CHARIOT,
has based its technical implementations.

CHARIOT will be validated in the above three (3) industrial
cases based on representative security related scenarios
highlighting the value and integrated approach of CHARIOT in
solving modern IoT security issues and challenges.

CHARIOT is currently through its deployment and
validation phase, having deployed its whole platform in the three
infrastructures and having performed its first round of technical
recommendations from the end-users. In the next five months,
and up to the end of 2020, CHARIOT is expected to finish its
activities with the final feedback of recommendations and
adaptations to the three industrial setups.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program (No
780075). The authors acknowledge the research outcomes of
this publication belonging to the CHARIOT consortium.

REFERENCES

[1] K. Loupos - INTEGRATED SOLUTION FOR PRIVACY AND

SECURITY OF IOT DEVICES IN CRITICAL INFRASTRUCTURES,

Critical Infrastructure Protection and Resilience Europe (CIPRE 2020),
6-8 October 2020, Bucharest, Romania.

[2] K. Loupos, A. Papageorgiou, A. Mygiakis, B. Caglayan, B. Karakostas,
T. Krousarlis, F. Vedrine, C. Skoufis, S. Christofi, G. Theofilis, H.

Avgoustidis, G. Boulougouris, A. Battaglia, M. Villiani - COGNITIVE

PLATFORM FOR INDUSTRIAL IOT SYSTEM SECURITY, SAFETY
AND PRIVACY, Embedded World 2020 Conference and Exhibition, 25
- 27 February 2020, Nuremberg, Germany.

[3] Adel S. Elmaghraby, Michael M. Losavio, “Cyber security challenges in

Smart Cities: Safety, security and privacy”, Journal of Advanced
Research Volume 5, Issue 4, pp 491–497, 07/ 2014.

[4] CHARIOT – D3.2 – IoT Privacy Engine based on PKI and Blockchain
technologies, CHARIOT 2019.

17

[5] L. Axon and M. Goldsmith, “PB-PKI: A privacy-aware blockchain based

PKI,” in Proceedings of the 14th International Joint Conference on e-

Business and Telecommunications (ICETE 2017) - Volume 4:
SECRYPT, Madrid, Spain, July 24-26, 2017., 2017, pp. 311–318.

[6] CHARIOT - D3.8 – IoT Security Engine based on vulnerability checks,
CHARIOT 2020.

[7] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly
detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.

[8] CHARIOT – D3.9 - IoT Safety Supervision Engine (ISSE) (final
prototype) v1.0_FINAL, CHARIOT, 2020.

[9] Chandola, Varun, Arindam Banerjee, Vipin Kumar. Anomaly detection:
a survey. ACM Computing Surveys, September 2009.

[10] Taken in October 2018 from https://www.chariotproject.eu/About,
§Technical Approach.

[11] The actual version and the concrete configuation of GCC are important;
we want to stick -when reasonably possible- to the latest GCC releases,

e.g. to GCC 8 in autumn 2018. In the usual case, that GCC is a cross-

compiler. In the rare case where the IoT system runs on an x86-64 device
under Linux, that GCC is not a cross-, but a straight compiler.

[12] The 2019 Gnu Compiler Collection is able to compile code written in C,
C++, Objective-C, Fortran, Ada, Go, and/or D.

[13] CHARIOT – D1.5 - Specialized Static Analysis tools for more secure and
safer IoT software development (ver.2).

[14] CHARIOT – D6.9 – CHARIOT Rescoping Guideline

18

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Guidelines for Privacy and Security in IoT

Pasquale Annicchino

Archimede Solutions

Geneva, Switzerland

pannicchino@archimede.ch

Simone Seminara, Francesco Capparelli

Istituto Italiano per la Privacy e la Valorizzazione dei Dati

Rome, Italy

{s.seminara, f.capparelli}@ istitutoprivacy.eu

Abstract— Norms and standards define the ecosystem in which

IoT solutions are developed and deployed. It is often difficult for

people without a legal training or an understanding of

standardization dynamics to fully grasp the state of the art in this

very relevant field. This contribution aims at highlighting the most

relevant tools available and explaining their relevance.

Keywords— Data protection; privacy; security; Internet of

Things; guide-lines.

I. INTRODUCTION: MAPPING THE LANDSCAPE

A. Relevance of the exercise

The mapping of international security and data protection by

design guidelines is of paramount relevance in the identification

of best practices in the context of IoT. With regard to the

implementation and demonstration of appropriate technical and

organizational measures as referred in Articles 24(1)-(3), 25,

and 32(1)-(3) of the General Data Protection Regulation

(GDPR) [1], the literature on data protection is extensive,

ranging from regulations to privacy-enhancing technologies

and rules that are general. Without any objective of

completeness, which would be outside the scope of this

contribution, we briefly introduce below some of the best-

known approaches to data management and data protection

from a technical perspective (among those freely available

online) which might be useful also for researchers with no

previous legal training.

First of all, the European Union Agency for Cybersecurity

(ENISA) in the eminent document Privacy and Data Protection

by Design [2] declares eight general strategies for implementing

the principle of “privacy by design“ as defined in the GDPR:

minimise, hide, separate, aggregate, inform, control, enforce

and demonstrate.

Another important approach to formulate general principles for

the protection of personal data and cybersecurity is the one

developed by the Information & Privacy Commissioner of the

State of Ontario, Canada. This work [3] proposes seven general

principles: Proactive not Reactive (Preventative not Remedial);

Privacy as the Default Setting; Privacy Embedded into Design;

Full Functionality (Positive-Sum, not Zero-Sum); End-to-End

Security (Full Lifecycle Protection); Visibility and

Transparency (Keep it Open); Respect for User Privacy (Keep

it User-Centric).

It should also be noted that there are several non-legal

frameworks resulting from the application of international

cybersecurity standards and, therefore, the present document is

useful to provide a mapping of the actual international

standards, guidelines and best practices regarding IoT.

B. Regulations

Almost all the articles of the GDPR provide the European

interpretation of the concept of personal data protection,

specifying several rights for citizens with regard to the

processing of their personal data. Rights such as access and

limitation are well detailed in the Regulation, which therefore

gives control over the data primarily to the individual to whom

the data are related. To complement this, there are three articles

referring to cybersecurity, without which data protection would

inevitably be compromised. Article 32 outlines the security

measures, while Articles 33 and 34 the notification obligations

in case of data breach.

In relation to the focus on the IoT systems in this document,

however, it should be noted that the GDPR is not entirely

explicit on how an IoT device should protect data. The

manufacturers are therefore obliged to supply products that

comply with the Regulation and to ensure that the companies

that will (acquire and then) use them can operate in accordance

with the Regulation. Finally, Article 25 outlines provisions on

data protection by design and by default, i.e. already by design

and by default, taking over the concepts outlined in Articles 5

(on “data minimization”) and 32 (on security measures,

mentioning in particular “pseudonymization”). However, it is

completely implicit what characteristics an application must

have in order to be considered GDPR-compliant.

The processing of personal data within the IoT framework often

sees the interaction between the system and its operator, the

latter being authorised to the specific processing possible

through the use of the given IoT device. In particular, the

authorisation to the processing – as mandated by the GDPR –

details the areas of the processing itself, i.e. what and how the

authorised person is allowed to process personal data. There is

then a so-called ceremony between device and operator, i.e. a

protocol distributed and enacted between machines and human

beings. Sometimes such a protocol may involve several persons

or even none: the GDPR defines the latter case as automated

processing.

The articles of the GDPR can be interpreted as a set of

requirements, aimed at achieving the general objective of

personal data protection, for the participants in the

ceremony/protocol mentioned above.

This work has been partially supported by NGIoT [52], a Coordination and

Support Action funded by European Union’s Horizon 2020 research and
innovation programme (H2020-EU.2.1.1.) under grant agreement ID

825082.

19

II. RELEVANT GUIDELINES

In this paragraph we detail general guidelines, reviews and

mappings which can be applied to the world of the Internet of

Things as a whole. Each subsection details one of the

organisations involved in such publications.

A. OWASP

The Open Web Application Security Project (OWASP) [4] is a

nonprofit foundation that works to improve the security of

software through its community-led open source software

projects. One of its flagship projects is the OWASP Top 10 [5],

a standard awareness document for developers and web

application security; it represents a broad consensus about the

most critical security risks to web applications.

Here are two of its publications about IoT.

1) OWASP IoT Top 10, 2018 (previous version in 2014)

Along the lines of the widely known Top 10 for web apps, the

OWASP IoT Top 10 [6] focuses on things to avoid when

building, deploying or managing IoT systems. The list is:

1) Weak, Guessable, or Hardcoded Passwords. Use of easily

brute forced, publicly available, or unchangeable

credentials, including backdoors in firmware or client

software that grants unauthorised access to deployed

systems.

2) Insecure Network Services. Unneeded or insecure network

services running on the device itself, especially those

exposed to the internet, that compromise the

confidentiality, integrity/authenticity, or availability of

information or allow unauthorised remote control.

3) Insecure Ecosystem Interfaces. Insecure web, backend API,

cloud, or mobile interfaces in the ecosystem outside of the

device that allows compromise of the device or its related

components. Common issues include a lack of

authentication/authorization, lacking or weak encryption,

and a lack of input and output filtering.

4) Lack of Secure Update Mechanism. Lack of ability to

securely update the device. This includes lack of firmware

validation on device, lack of secure delivery (un-encrypted

in transit), lack of anti-rollback mechanisms, and lack of

notifications of security changes due to updates.

5) Use of Insecure or Outdated Components. Use of

deprecated or insecure software components/libraries that

could allow the device to be compromised. This includes

insecure customization of operating system platforms, and

the use of third-party software or hardware components

from a compromised supply chain.

6) Insufficient Privacy Protection. User’s personal

information stored on the device or in the ecosystem that is

used insecurely, improperly, or without permission.

7) Insecure Data Transfer and Storage. Lack of encryption or

access control of sensitive data anywhere within the

ecosystem, including at rest, in transit, or during

processing.

8) Lack of Device Management. Lack of security support on

devices deployed in production, including asset

management, update management, secure

decommissioning, systems monitoring, and response

capabilities.

9) Insecure Default Settings. Devices or systems shipped with

insecure default settings or lack the ability to make the

system more secure by restricting operators from

modifying configurations.

10) Lack of Physical Hardening. Lack of physical hardening

measures, allowing potential attackers to gain sensitive

information that can help in a future remote attack or take

local control of the device.

2) OWASP IoT Top 10 2018 Mapping Project

This project [7] provides mappings of the OWASP IoT Top 10

2018 [6] to industry publications and sister projects, such as:

• OWASP IoT Top 10, previous version (2014) [8];

• GSMA IoT Security Assessment Checklist [9] (see also §

2.3.2);

• Department for Digital, Culture, Media & Sport (UK

Government), Code of Practice for Consumer IoT Security

[10] (see § 2.2.1);

• ENISA Baseline Security Recommendations for IoT in the

context of Critical Information Infrastructures, 20 November

2017 [11] (see § 2.4.1);

• CTIA Cyber-security Certification Test Plan for IoT Devices

[12][13] (see § 2.5);

• CSA IoT Security Controls Framework [14][15] (see § 2.5);

• ETSI Technical Specification (TS) 103 645 V1.1.1 (2019-

02), CYBER; Cyber Security for Consumer Internet of

Things [16].

Since this Mapping Project, ETSI published an updated version

of the above standard [17] and its European counterpart [18].

From this starting point, in the following subsections we will

explore these publications.

B. UK Government, Department for Digital, Culture, Media

& Sport

The Department for Digital, Culture, Media & Sport (DCMS)

[19] helps to drive growth, enrich lives and promote Britain

abroad. Among other activities, the DCMS commissioned the

PETRAS IoT Research Hub [20], a consortium of universities

and research institutions that work together to explore critical

issues in privacy, ethics, trust, reliability, acceptability and

security of the IoT to conduct two literature reviews: on

industry recommendations for government to improve IoT

security; on the current international developments around IoT

security. The two aims to these reviews, jointly published in

[21], were to identify the key themes emerging from the

literature and to identify international consensus around core

Security by Design principles for the IoT.

1) Code of Practice for Consumer IoT Security, 14 October

2018

The DCMS, in conjunction with the UK National Cyber

Security Centre (NCSC) [22] and following engagement with

industry, consumer associations and academia, has developed

this Code of Practice [10] (see § 2.1.2) to support all parties

involved in the development, manufacturing and retail of

20

consumer IoT with a set of guidelines to ensure that products

are secure by design and to make it easier for people to stay

secure in a digital world. The Code of Practice brings together,

in thirteen outcome-focused guidelines, what is widely

considered good practice in IoT security. The Code was first

published in draft in March 2018 as part of the Secure by Design

collection of reports [23].

An indication is given for each guideline as to which

stakeholder is primarily responsible for implementation.

Stakeholders are defined as Device Manufacturers, IoT Service

Providers, Mobile Application Developers and Retailers. The

thirteen guidelines are:

1) No default passwords. All IoT device passwords shall be

unique and not resettable to any universal factory default

value.

2) Implement a vulnerability disclosure policy. All companies

that provide internet-connected devices and services shall

provide a public point of contact as part of a vulnerability

disclosure policy in order that security researchers and

others are able to report issues. Disclosed vulnerabilities

should be acted on in a timely manner.

3) Keep software updated. Software components in internet-

connected devices should be securely updateable. Updates

shall be timely and should not impact on the functioning of

the device. An end-of-life policy shall be published for end-

point devices which explicitly states the minimum length of

time for which a device will receive software updates and

the reasons for the length of the support period. The need

for each update should be made clear to consumers and an

update should be easy to implement. For constrained

devices that cannot physically be updated, the product

should be isolatable and replaceable.

4) Securely store credentials and security-sensitive data. Any

credentials shall be stored securely within services and on

devices. Hard-coded credentials in device software are not

acceptable.

5) Communicate securely. Security-sensitive data, including

any remote management and control, should be encrypted

in transit, appropriate to the properties of the technology

and usage. All keys should be managed securely.

6) Minimise exposed attack surfaces. All devices and services

should operate on the ‘principle of least privilege’; unused

ports should be closed, hardware should not unnecessarily

expose access, services should not be available if they are

not used and code should be minimised to the functionality

necessary for the service to operate. Software should run

with appropriate privileges, taking account of both security

and functionality.

7) Ensure software integrity. Software on IoT devices should

be verified using secure boot mechanisms. If an

unauthorised change is detected, the device should alert the

consumer/administrator to an issue and should not connect

to wider networks than those necessary to perform the

alerting function.

8) Ensure that personal data is protected. Where devices

and/or services process personal data, they shall do so in

accordance with applicable data protection law, such as the

GDPR. Device manufacturers and IoT service providers

shall provide consumers with clear and transparent

information about how their data is being used, by whom,

and for what purposes, for each device and service. This

also applies to any third parties that may be involved

(including advertisers). Where personal data is processed

on the basis of consumers’ consent, this shall be validly and

lawfully obtained, with those consumers being given the

opportunity to withdraw it at any time.

9) Make systems resilient to outages. Resilience should be

built in to IoT devices and services where required by their

usage or by other relying systems, taking into account the

possibility of outages of data networks and power. As far

as reasonably possible, IoT services should remain

operating and locally functional in the case of a loss of

network and should recover cleanly in the case of

restoration of a loss of power. Devices should be able to

return to a network in a sensible state and in an orderly

fashion, rather than in a massive scale reconnect.

10) Monitor system telemetry data. If telemetry data is

collected from IoT devices and services, such as usage and

measurement data, it should be monitored for security

anomalies.

11) Make it easy for consumers to delete personal data.

Devices and services should be configured such that

personal data can easily be removed from them when there

is a transfer of ownership, when the consumer wishes to

delete it and/or when the consumer wishes to dispose of the

device. Consumers should be given clear instructions on

how to delete their personal data.

12) Make installation and maintenance of devices easy.

Installation and maintenance of IoT devices should employ

minimal steps and should follow security best practice on

usability. Consumers should also be provided with

guidance on how to securely set up their device.

13) Validate input data. Data input via user interfaces and

transferred via application programming interfaces (APIs)

or between networks in services and devices shall be

validated.

2) Mapping of IoT Security Recommendations, Guidance

and Standards to the UK’s Code of Practice for Consumer IoT

Security, 14 October 2018

This document [24], and the open data files and graphs provided

in its companion website [25], maps the Code of Practice for

Consumer IoT Security against published standards,

recommendations and guidance on IoT security and privacy

from around the world. Around 100 documents were reviewed

from nearly 50 organizations. Whilst not exhaustive, it

represents one of the largest collections of guidance available

to date in this area.

The purpose of the mapping is to serve as a reference and tool

for users of the Code of Practice. Manufacturers and other

organisations are already implementing a range of standards,

recommendations and guidance and will seek to understand the

relationship between the Code of Practice and existing material

from industry and other interested parties.

21

C. GSMA

The GSM Association (GSMA) [26] represents the interests
of mobile operators worldwide, uniting more than 750 operators
with almost 400 companies in the broader mobile ecosystem,
including handset and device makers, software companies,
equipment providers and internet companies, as well as
organisations in adjacent industry sectors.

1) GSMA IoT Security Guidelines, version 2.2, 29 February

2020

The goal of the Internet of Things Security Guidelines

document set [27][28][29][30] is to provide the implementer of

an IoT technology or service with a set of design guidelines for

building a secure product. The set of guideline documents

promotes a methodology for developing secure IoT Services to

ensure security best practices are implemented throughout the

life cycle of the service. The documents provide

recommendations on how to mitigate common security threats

and weaknesses within IoT Services.

2) GSMA IoT Security Assessment

The GSMA IoT Security Assessment [31][32] (see § 2.1.2)

provides a flexible framework that addresses the diversity of the

IoT market, enabling companies to build secure IoT devices and

solutions as laid out in the GSMA IoT Security Guidelines (see

§ 2.3.1), a comprehensive set of best practices promoting the

secure end-to-end design, development and deployment of IoT

solutions.

D. ENISA

The European Union Agency for Cybersecurity [33] has been

working to make Europe cyber secure since 2004. The Agency

works closely together with Members States and other

stakeholders to deliver advice and solutions as well as

improving their cybersecurity capabilities. It also supports the

development of a cooperative response to large-scale cross-

border cybersecurity incidents or crises and since 2019, it has

been drawing up cybersecurity certification schemes.

1) ENISA Good practices for IoT and Smart Infrastructures

Tool

This website [34] intends to provide an aggregated view of the

ENISA Good Practices for IoT and Smart Infrastructure [35]

that have been published the last years. This link comprises the

above-mentioned Baseline Security Recommendations for IoT

in the context of Critical Information Infrastructures [11] (see

§ 2.1.2) and then other publications about cars, hospitals,

airports, public transport and Industry 4.0.

E. Other sources and references

In this subsection we mention other miscellaneous sources

about privacy and security in IoT.

CTIA [36] represents the U.S. wireless communications

industry and companies throughout the mobile ecosystem and

has organised a certification programme for the cybersecurity

of IoT devices [12, 13] (see § 2.1.2).

The Cloud Security Alliance (CSA) [37] is an organization

dedicated to defining and raising awareness of best practices to

help ensure a secure cloud computing environment, including

the Internet of Things with specific security controls [14, 15]

(see § 2.1.2).

The Internet of Things Security Foundation (IoTSF) [38] is a

collaborative, nonprofit, international response to the complex

challenges posed by cybersecurity in the expansive hyper-

connected IoT world. Among its publications, listed in [39], we

can cite [40][41].

The World Wide Web Consortium (W3C) [42] is an

international community that develops open standards to ensure

the long-term growth of the Web. It is led by Tim Berners-Lee,

the inventor of the Web. Its Web of Things (WoT) section [43]

seeks to counter the fragmentation of the IoT through standard

complementing building blocks (e.g. metadata and APIs) that

enable easy integration across IoT platforms and application

domains; to date, two W3C Recommendations have been

published about WoT [44][45].

Of course, international standards developing organisations

(SDOs) – whose members are governmental bodies, agencies or

committees, one per member economy – have published IoT-

related standards. We can cite the ITU-T Y.4000 series from the

International Telecommunication Union (ITU) [46][47] and a

few of those jointly published by the International Organization

for Standardization (ISO) and the International Electrotechnical

Commission (IEC) [48][49][50].

Lastly, we show a glimpse of other relevant international

standards, under development or just finished. This list is taken

from the outcome of the 2020-04-10 webinar Integrating

privacy in the IoT ecosystem [51], organised by the Horizon

2020 project Next Generation Internet of Things (NGIoT) [52],

with the participation of Antonio Kung:

• ISO/IEC TR 20547-1, Information technology — Big data

reference architecture — Part 1: Framework and

application process, first edition published August 2020

• ISO/IEC TR 20547-2:2018, Information technology — Big

data reference architecture — Part 2: Use cases and derived

requirements, first edition published January 2018

• ISO/IEC 20547-3:2020, Information technology — Big data

reference architecture — Part 3: Reference architecture,

first edition published March 2020

• ISO/IEC 20547-4, Information technology — Big data

reference architecture — Part 4: Security and privacy, first

edition published September 2020

• ISO/IEC TR 20547-5:2018, Information technology — Big

data reference architecture — Part 5: Standards roadmap,

first edition published February 2018

• ISO/IEC CD 23751, Information technology — Cloud

computing and distributed platforms — Data sharing

agreement (DSA) framework

• ISO/IEC CD 27400.2, Cybersecurity – IoT security and

privacy – Guidelines (formerly known as ISO/IEC CD

27030, Information technology — Security techniques —

Guidelines for security and privacy in Internet of Things

(IoT))

• ISO/IEC CD TS 27101, Information technology — Security

techniques — Cybersecurity — Framework development

guidelines

22

• ISO/IEC CD 27556, Information technology — User-centric

framework for the handling of personally identifiable

information (PII) based on privacy preferences

• ISO/IEC WD 27557, Organizational privacy risk

management

• ISO/IEC WD TS 27560, Privacy technologies — Consent

record information structure

• ISO/IEC AWI 30149, Internet of things (IoT) —

Trustworthiness framework

• ISO/AWI 31700, Consumer protection — Privacy by design

for consumer goods and services

III. CONCLUSION

Guidelines are important tools for different stakeholders
involved in the deployment of IoT solutions. They offer key
basic points and requirements to enhance the trust of end-users
and facilitate deployment. The documents highlighted in this
contribution show that an important amount of work has been
already done by several organisations and deserves to be taken
into account.

Following the recommendations provided by the mapped
international standards, therefore, allows to respect the
principles of the GDPR: for example, the international standards
referred to the development phase are useful to respect the
“privacy by design” principle set in Article 25 GDPR; the
standards on the security of personal data processing are
functional to the respect of Article 32 GDPR.

As a side note, the application of the principles of the GDPR
is not sufficient in cases where such processing of personal data
should concern Law Enforcement Agencies (LEAs). According
to the provisions of Article 29 of Directive (EU) 2016/680 [53],
in fact, the data controller may use an accountability mechanism
in the evaluation and adoption of technical-organisational
measures. In any case, the aforementioned measures must be
suitable to guarantee an adequate level of security in order to
avoid the risk of personal data violation.

In general, it is useful to use all international standards as
guidelines and to deduce the best practices necessary to achieve
a level of security that can generate trust in end-users and
simultaneously achieve compliance with the main regulations.
All the mapping efforts across different security controls and
publications show that the amount of redundancies is very high:
we can then state that a consensus, a “common sense” has
emerged in the field of IoT cybersecurity and privacy. Moreover,
from a broader perspective, we can say that IoT security
measures overlap consistently with cybersecurity frameworks
and standards already in place for “traditional computing”:
consider, for instance, ISO/IEC 27001:2013 [54] and the
Common Criteria for Information Technology Security
Evaluation [55][56][57][58][59][60].

It is paramount at legislation level to properly address the
need to go beyond what the GDPR and the NISD (Network and
Information Security Directive) [61] today represent. With the
progress of technology, is obvious that lawmakers have the duty
to follow rapidly the new challenges that arise from the evolution
in the societal and economic global landscape. In this sense, the
integration of IoT in homes, cities and industries gives the

legislators the opportunity (or necessity?) to build a new legal
framework to comply with ethical requirements, to better protect
freedoms and rights of citizens, at an increasingly supranational
and intergovernmental level. A “GDPR of Things” is therefore
urgent, with an expanded scope from previous laws, in order to
establish stricter rules and norms for information security and
personal data protection in World that moves fast towards
“ubiquitous computing” (IoT, 5G, wearables, etc.).

In parallel with new legislative frameworks, it would be
preferable a consolidation of standards and best practices carried
forward by SDOs and the private sector in an open and
interoperable way, before the proliferation of “walled gardens”
that may compromise freedoms and rights of citizens worldwide.

REFERENCES

[1] Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the
processing of per-sonal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation) (Text
with EEA relevance); current consoli-dated version (2016-05-04)
available at https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

[2] European Union Agency for Cybersecurity (ENISA), Privacy and Data
Protection by Design – from policy to en-gineering, 12 January 2015; PDF
available at https://www.enisa.europa.eu/publications/privacy-and-data-
protection-by-design/

[3] Information & Privacy Commissioner (Ontario, Cana-da), Ann
Cavoukian, The 7 Foundational Principles. Im-plementation and Mapping
of Fair Information Practices; PDF available at https://www.ipc.on.ca/wp-
content/uploads/Resources/pbd-implement-7found-principles.pdf

[4] OWASP Foundation, Inc.; https://owasp.org/

[5] OWASP Top 10; https://owasp.org/www-project-top-ten/

[6] OWASP IoT Top 10, 2018;
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#t
ab=IoT_Top_10

[7] OWASP IoT Top 10 2018 Mapping Project;
https://scriptingxss.gitbook.io/owasp-iot-top-10-mapping-project/ and
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#t
ab=OWASP_IoT_Top_10_2018_Mapping_Project

[8] OWASP IoT Top 10, 2018;
https://wiki.owasp.org/index.php/Top_10_IoT_Vulnerabilities_(2014)

[9] https://www.gsma.com/security/resources/clp-17-gsma-iot-security-
assessment-checklist-v3-0/

[10] https://www.gov.uk/government/publications/code-of-practice-for-
consumer-iot-security/

[11] https://www.enisa.europa.eu/publications/baseline-security-
recommendations-for-iot/

[12] CTIA, IoT Cybersecurity Certification Program Manage-ment Document,
version 1.1, May 2019; PDF available at https://api.ctia.org/wp-con-
tent/uploads/2019/05/ctia_IoT_cybersecurity_pmd_ver-1_1.pdf

[13] CTIA, IoT Cybersecurity Certification FAQ, version 1.0, 28 March 2019;
PDF available at https://api.ctia.org/wp-content/uploads/2019/03/CTIA-
Certification-FAQ-Ver-1.0-28-March-2019.pdf

[14] CSA, IoT Security Controls Framework, 5 March 2019;
https://cloudsecurityalliance.org/artifacts/iot-security-controls-
framework/

[15] CSA, Guide to the IoT Security Controls Framework, 5 March 2019;
https://cloudsecurityalliance.org/artifacts/guide-to-the-iot-security-
controls-framework/

[16] https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_6
0/ts_103645v010101p.pdf

[17] https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/02.01.02_6
0/ts_103645v020102p.pdf

[18] ETSI European Standard (EN) 303 645 V2.1.1 (2020-06);
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_6
0/en_303645v020101p.pdf

23

[19] https://www.gov.uk/government/organisations/department-for-digital-
culture-media-sport/

[20] https://petras-iot.org/

[21] PETRAS IoT Hub, Summary literature review of industry
recommendations and international developments on IoT se-curity, 7
March 2018; https://www.gov.uk/government/publications/summary-
literature-review-on-iot-security/

[22] https://www.ncsc.gov.uk/

[23] https://www.gov.uk/government/collections/secure-by-design/

[24] https://www.gov.uk/government/publications/mapping-of-iot-security-
recommendations-guidance-and-standards/

[25] Copper Horse Ltd. on behalf of DCMS, Mapping Securi-ty & Privacy in
the Internet of Things; https://iotsecuritymapping.uk/

[26] GSM Association; https://www.gsma.com/

[27] GSMA, IoT Security Guidelines Overview Document;
https://www.gsma.com/iot/iot-security-guidelines-overview-document/

[28] GSMA, IoT Security Guidelines for IoT Service Ecosystem;
https://www.gsma.com/iot/iot-security-guidelines-for-iot-service-
ecosystem/

[29] GSMA, IoT Security Guidelines Endpoint Ecosystem;
https://www.gsma.com/iot/iot-security-guidelines-for-endpoint-
ecosystem/

[30] GSMA, IoT Security Guidelines for Network Operators;
https://www.gsma.com/iot/iot-security-guidelines-for-network-
operators/

[31] GSMA, IoT Security Assessment Checklist, version 3.0, 30 September
2018; .zip file available at https://www.gsma.com/iot/iot-security-
assessment/

[32] GSMA, IoT Security Assessment Process, version 2.0, 30 September
2018; .zip file available at https://www.gsma.com/iot/iot-security-
assessment/

[33] https://www.enisa.europa.eu/

[34] https://www.enisa.europa.eu/topics/iot-and-smart-
infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool/

[35] https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/

[36] https://www.ctia.org/

[37] https://cloudsecurityalliance.org/

[38] https://www.iotsecurityfoundation.org/

[39] https://www.iotsecurityfoundation.org/best-practice-guidelines/

[40] IoTSF, IoT Security Compliance Framework, Release 2.1, May 2020; .zip
file available at https://www.iotsecurityfoundation.org/wp-
content/uploads/2020/05/IoTSF-IoT-Security-Compliance-Framework-
Questionnaire-Release-2.1.zip

[41] IoTSF, Mapping the IoT Security Foundation’s Compliance Framework
to ETSI TS 103 645 Standard, February 2019; PDF available at
https://www.iotsecurityfoundation.org/wp-
content/uploads/2019/02/Mapping-the-IoTSF%E2%80%99s-
Compliance-Framework-to-ETSI-TS-103-645-Standard.pdf

[42] https://www.w3.org/

[43] https://www.w3.org/WoT/

[44] W3C, Web of Things (WoT) Architecture, W3C Recom-mendation, 9
April 2020; https://www.w3.org/TR/wot-architecture/

[45] W3C, Web of Things (WoT) Thing Description, W3C Rec-ommendation,
9 April 2020 (link errors corrected 23 June 2020);
https://www.w3.org/TR/wot-thing-description/

[46] ITU-T Recommendation Y.4000/Y.2060 (approved in 2012-06-15);
SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE,
INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION
NETWORKS; Next Generation Networks – Frameworks and func-tional
architecture models; Overview of the Internet of things (former ITU-T
Y.2060 renumbered as ITU-T Y.4000 on 2016-02-05 without further
modification and without being republished); https://www.itu.int/rec/T-
REC-Y.4000

[47] https://www.itu.int/ITU-T/recommendations/index.aspx?ser=Y

[48] ISO/IEC 21823-1:2019, Internet of things (IoT) — Interop-erability for
IoT systems — Part 1: Framework, February 2019;
https://www.iso.org/standard/71885.html

[49] ISO/IEC 21823-2:2020, Internet of things (IoT) — Interop-erability for
IoT systems — Part 2: Transport interoperabil-ity, April 2020;
https://www.iso.org/standard/80986.html

[50] ISO/IEC 30141:2018, Internet of Things (loT) — Reference Architecture,
first edition published August 2018 (sec-ond edition pending);
https://www.iso.org/standard/65695.html

[51] https://www.ngiot.eu/event/ngiot-webinar-integrating-privacy-in-the-iot-
ecosystem/

[52] https://cordis.europa.eu/project/id/825082

[53] Directive (EU) 2016/680 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the
processing of per-sonal data by competent authorities for the purposes of
the prevention, investigation, detection or prosecution of criminal
offences or the execution of criminal penal-ties, and on the free movement
of such data, and re-pealing Council Framework Decision 2008/977/JHA;
current consolidated version (2016-05-04) available at https://eur-
lex.europa.eu/eli/dir/2016/680/2016-05-04

[54] ISO/IEC 27001:2013, Information technology — Security techniques —
Information security management systems — Requirements;
https://www.iso.org/standard/54534.html

[55] ISO/IEC 15408-1:2009, Information technology — Securi-ty techniques
— Evaluation criteria for IT security — Part 1: Introduction and general
model, December 2009 (cor-rected version January 2014);
https://www.iso.org/standard/50341.html

[56] ISO/IEC 15408-2:2008, Information technology — Securi-ty techniques
— Evaluation criteria for IT security — Part 2: Security functional
components, August 2008 (corrected version May 2011);
https://www.iso.org/standard/46414.html

[57] ISO/IEC 15408-3:2008, Information technology — Securi-ty techniques
— Evaluation criteria for IT security — Part 3: Security assurance
components, August 2008 (corrected version May 2011);
https://www.iso.org/standard/46413.html

[58] ISO/IEC DIS 15408-4, Information security, cybersecurity and privacy
protection — Evaluation criteria for IT security — Part 4: Framework for
the specification of evaluation methods and activities, under development;
https://www.iso.org/standard/72913.html

[59] ISO/IEC DIS 15408-5, Information security, cybersecurity and privacy
protection — Evaluation criteria for IT security — Part 5: Pre-defined
packages of security requirements, under development;
https://www.iso.org/standard/72917.html

[60] ISO/IEC 18045:2008, Information technology — Security techniques —
Methodology for IT security evaluation, Au-gust 2008 (corrected version
January 2014); https://www.iso.org/standard/46412.html

[61] Directive (EU) 2016/1148 of the European Parliament and of the Council
of 6 July 2016 concerning measures for a high common level of security
of network and in-formation systems across the Union; https://eur-
lex.europa.eu/eli/dir/2016/1148/oj

24

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Semantic Models for Network Intrusion Detection

Peter Bednar, Martin Sarnovsky, Pavol Halas

Department of Artificial Inteligence and Cybernetics

Technical University of Kosice

Kosice, Slovakia

{name.surname}@tuke.sk

Abstract—The presented paper describes the design and

validation of the hierarchical intrusion detection system (IDS),

which combines machine learning approach with the knowledge-

based methods. As the knowledge model, we have proposed the

ontology of network attacks, which allow to us decompose

detection and classification of the existing types of attacks or

formalize detection rules for the new types. Designed IDS was

evaluated on a widely used KDD 99 dataset and compared to

similar approaches.

Keywords—ontologies, network security incidents, machine

learning

I. INTRODUCTION

With the extensive usage of the information and
communication technologies the number and variety of the
security attacks grow. This is also reflected in the growing of
budget invested by companies or public institutions into the
security. In order to cope with the current situation, the new and
innovative techniques are applied in order to automatize the
security management [1].

Recently, we can observe two main approaches to the
security of the ICT: the first approach is data-oriented, and it is
based on the application of machine learning techniques to
proactively achieve the best possible prediction of the new
attacks [2][3][4][5]. The second approach is more user-centric
and it is based on the application of knowledge modelling
techniques in order to model user behavior and ICT environment
[8][9][10].

The presented article tries to combine these two approaches
into a single system, where the domain knowledge about the
types, effects and severity of the attacks is used to decompose
intrusion detection task into the classification subtasks which
can be handled more efficiently with less training data. The
design of the proposed intrusion detection system is symmetrical
in the sense that both approaches (machine learning and
knowledge based) are equal and mutually contribute to address
the challenges of the detection and prevention of the security
threats.

The rest of this paper is organized as follows: in the
following chapter we will present hierarchical knowledge model
in the form of the ontology which will be used for the
decomposition of the detection problem and which will provide
additional contextual information. Subsequent part describes
implemented machine learning models and how these models
are combined with the knowledge in the ontology. Subsequent
section then presents the experimental evaluation of the

proposed combined approach. In this chapter we at first define
quantitative evaluation metrics and then summarize the
performance of the system on the standard benchmark dataset
from the KDD Cup competition.

II. HIERARCHICAL KNOWLEDGE-BASED INTRUSION DETECTION

SYSTEM

A. Overall system architecture

The main objective of the proposed architecture is to
hierarchically decompose detection and classification of the
intrusions according to the types of the attacks. For the
decomposition we have proposed the Network Intrusion
Ontology which main part is formalized as the taxonomy of
attack types. This ontology allows to capture all knowledge
related to the known types of the attacks, including the
description of rare cases which are difficult to detect using the
machine learning methods.

The main decomposition of the detection and classification
process can be divided into the following phases:

1. Coarse attack/normal classification - this phase is
implemented using the machine learning algorithm
which distinguish normal traffic and attacks. If a
network connection is labelled as a normal one, then an
alarm is not raised. Otherwise, the suspicious
connection is processed by a set of models to determine
the class of attack during the phase 2.

2. Attack class and type prediction—this phase is guided
by the taxonomy of the attacks from the Network
Intrusion Ontology. The system hierarchically processes
the taxonomy and selects the appropriate model to
classify the instance on a particular level of a class
hierarchy. The model can be a machine learning model
statistically inferred from the training data, or rule-based
model formalized using the classes and relations from
the ontology.

3. When a class of attack is predicted, ontology is queried
for all relevant sub-types of the attack type and to
retrieve the suitable model to predict the particular sub-
type. Knowledge model can also be used to extract
specific domain-related information as a new attribute,
which could be used either to improve the classifier’s
performance or to provide context, domain-specific
information which could complement the predictive
model.

25

The details about the predictive models and their evaluation will
be presented in the subsequent chapter.

B. Network Intrusion Ontology

The proposed knowledge model captures all essentials
concepts required to describe network intrusion systems. We
have designed our semantic model according to the
methodology proposed by Grüninger and Fox and with some
extensions from Methodology.

The designed ontology is formalized using the OWL 2 RL
profile, which allows to formalize common constructs such as
multiple hierarchies and at the same time provides compatibility
with the rule languages for automatic reasoning. As the objective
of the knowledge model was to use it in the data analytical tasks,
the concepts and properties map directly to the data used in the
process. Moreover, ontology was extended with the concepts
related to the classification models, to create the relation
between the particular classifier and its usability on the specific
level of target attribute hierarchy. The main classes of ontology
include:

• Connections - This class represents the status of each
connection record. It specifies Attack connection or
normal traffic. Attack connections are further
conceptualized using the Attack hierarchy described
below.

• Effects - This class contains subclasses that represent all
possible consequences of individual attacks (e.g., slows
down server response, execute commands as root, etc.).

• Mechanisms - The subclasses represent all possible
causes of individual ontology attacks (poor environment
sanitation, misconfiguration, etc.).

• Flags - The subclasses represent normal or error states
of individual connections (Established, responder
aborted, Connection attempt was rejected, etc.). Each of
these subclasses has a 1 equivalent instance.

• Protocols - The class contains subclasses that represent
the types of the communication protocols on which the
connection is running (TCP, UDP, and ICMP).

• Services - The subclasses represent each type of
connection service (http, telnet, etc. ...). Each of these
subclasses has a 1 equivalent instance.

• Severities - This class represents the severity of the
attack, its subclasses represent the severity level (weak,
medium, and high).

• Targets - The subclasses represent possible targets of a
given type of attack (user, network).

• Models concept covers the classification models used to
predict the given target attribute.

The instances of the specified classes represent the network
connections (e.g., connection records from the data set). Trained
and serialized classification models are instantiated as the
instances of the Model class. The models are represented as the
web resources and they could be accessed by their URI property,
which points to the location where the model is serialized in the

system. The main concepts and relations of the ontology are
represented on the Figure 1.

The central part of the proposed semantic model is the
taxonomy of Attacks which are summarized in the following
figure. The taxonomy was extracted from the types of the attacks
described in the KDD 99 datasets. Attacks are divided into the
four main groups such as DOS, R2L, U2R and PROBE. The
main types of the attacks are further specified on the additional
level of the hierarchy.

Fig. 1. The main concepts of the proposed sematnic model.

Fig. 2. The hierarchy of Attacks.

C. Machine learning models

To evaluate the proposed approach, we used the KDD Cup
1999 competition dataset, which is a commonly accepted
benchmark for the intrusion detection task. The dataset consists
of the records from the device logs in a LAN network collected
over nine weeks. For the evaluation, we have used 10% sample
with the 494,021 records in total. Each record is labeled as the
normal communication or it is assigned to the major attack class
and specific attack types. There are 22 different attack types
which corresponds to the classes in the proposed ontology.

The common problem with the diagnostic tasks such as
intrusion detection systems is that the target attribute (i.e. in our
case type of the attack) is highly unbalanced with the majority
of normal communication. Table I presents the taxonomy of
attack types together with the number of cases in the dataset.
Some attack classes such as Probe are more balanced but
generally for each attack class we can find some minor types
with only the few training examples. The lack of cases is

26

problematic not only for the training of statistical models but
also for the evaluation. On the other side, rare cases can be still
very critical and can in overall a big impact on the security of the
system.

TABLE I. ATTACK TYPES AND NUMBER OF SAMPLES

Attack Attack class # of samples

back

DoS

2203

land 21

neptune 107,201

pod 264

smurf 280,790

teardrop 979

satan

Probe

1589

ipsweap 1247

nmap 231

portsweep 1040

guess_passwd

R2L

53

ftp_write 8

imap 12

phf 4

multihop 7

warezmaster 20

warezclient 1020

spy 2

buffer_overflow

U2R

30

loadmodule 9

perl 3

rootkit 10

normal Normal 97,227

The records for each connection are described by set of
features, which are represented in the ontology as the data
attributes. The features can be divided into the basic features,
content features and traffic features. Overall there are 32
features. The first group describes the type of the communication
protocol, duration of the connection, service on the destination
network node and other standard attributes describing the TCP
connection. Content features are attributes that can be linked to
the domain specific knowledge depending on the applications
and environment in which communication occurs. The last
group of features (traffic) describe the communication attributes
captured during the 2 seconds time window, e.g. the number of
hosts communicating with the target host etc. For the data
preprocessing, we have selected only the most relevant features

for the classification which were identified in the work of [4].
The final list of features includes: service, src_bytes, dst_bytes,
logged_in, num_file_creations, srv_diff_host_rate,
dst_host_count, dst_host_diff_srv_rate,
dst_host_srv_diff_host_rate, srv_count, serror_rate, rerror_rate,

Since the data of diagnostic tasks are commonly highly
unbalanced towards the normal cases, the proposed approach is
based on the decomposition of the diagnostic classification task
into the hierarchy of classifiers. At the top level of the class
hierarchy, an attack detection model is used for the prediction to
distinguish between the attack connections and normal traffic.
The classifier on this level was trained on the whole dataset and
target attribute was transformed to the binary indicator. The
main goal of this top-level classifier is to reliably separate
normal connections from the attack ones.

If the top-level model detects an attack connection, the cases
are further classified by the ensemble models into the one of the
four types of the attack on the second level of the taxonomy
(DoS, R2L, U2R, Probe). In this level, we use ensemble
classifier with voting scheme trained on all attack instances (i.e.
without the normal communication cases). We found that the
proposed ensemble model is more efficient in the case of
unbalanced target classes. The standard machine learning
models proposed in the previous works were able to gain good
accuracy, achieved mostly on the dominant class (in our case on
KDD 99 dataset, on the most common DoS attack). However,
the simple models struggled to predict minor classes such as
U2R, which can be even more serious from the point of view of
network security. For example, when training a decision tree
model, the model has very good performance for the DoS and
R2L classes but missed a significant amount of the Probe attacks
and was not able to detect the U2R class at all.

Proposed weighting schema is based on the idea of
complementing classifiers which is based on the performance of
a particular model on the particular class. This weighting schema
is presented on the Table II. The wi,j terms represent the weight
associated with the i-th model and j-th class.

TABLE II. WEIGHTING SCHEME OF THE ENSEMBLE MODEL

Model DoS R2L U2R Probe

model 1 w1,1 w2,1 w3,1 w4,1

model 2 w1,2 w2,2 w3,2 w4,2

model 3 w1,3 w2,3 w3,3 w4,3

...

After the binary classification and classification of the attack
class by ensemble weighted classifier, we have trained particular
models to further classify specific type of the attack on the most
specific level of the taxonomy. Four different models were
trained using only the records of particular attack classes (i.e.
models for DoS, R2L, U2R and Probe). The most problematic
was minority U2R class, as the dataset contains very few records
of that type. The final implemented classification schema is
presented on the Figure 3. All models were implemented in the
Python environment using the standard pandas and scikit-learn

27

stack. Predictive models were then persistently stored and the
models URIs (Uniform Resource Locators) were added as the
data properties to the knowledge model.

Fig. 3. The implemented hierarchical classification schema.

The main role of the semantic model in the proposed
detection system is to navigate through the target class taxonomy
and decompose classification problem to the sub-problems
implemented by the particular models for the specific type of
attack. The system is implemented using the Python language
and RDFlib package which provides integration with the
ontology using the SPARQL query interface. When predicting
the unknown connection, system query the ontology using the
SPARQL query and retrieve correspondent model for the
particular class of the attacks according to the URL stored in the
hasTargetAttribute property. Once the classification of the main
type is performed, the system checks in the ontology if there is a
classifier able to process the record further and to detect subtype
of the attack.

Besides the hierarchical decomposition of the detection
process, knowledge model provides also additional context
which can be leveraged during the classification and improve
detection of the minor classes. We have mainly extended the
context with the potential effect of the attack. Additionally, if the
models are not reliable enough to predict the concrete attack sub-
type, the system can be used to classify attacks at least according
to the severity which is retrieved from the knowledge model for
the particular main class of the attack. This could serve as a
supporting source of information, completing the attach type
classification.

III. EVALUATION

For the evaluation, we used the most common metrics
employed in the classification tasks such as recall and precision.
We have also computed confusion matrix for the particular
classes of attacks. The confusion matrices were especially
informative since they record number of correctly and
incorrectly classified examples and also the types of the error.
For the binary classification on the top level of the taxonomy
hierarchy we used standard evaluation metrics:

• Precision: P = TP / (TP + FP)

• Recall: R = TP / (TP + FN)

where TP, TN, FP, FN are numbers of true positive, true
negative, false positive and false negative records (e.g. for true
positive number of records when the predicted attack was in fact
attack, false positive when the predicted attack was in fact a
normal traffic, false negative when the predicted normal traffic

was in fact an attack, etc. The entire system was also evaluated
with the number of missed attacks and raised false alarms as
FAR metric (False Alarm Rate), which corresponds to the false
positive records divided by total number of normal traffic
records (true negative + false positive).

For the evaluation of the binary classification on the top level
of the taxonomy, we used directly precision and recall metrics.
In the subsequent stages on the more specific levels of taxonomy
we have computed precision and recall for each class and used
macro-averaging for overall evaluation. Additionally, we have
computed multi-class confusion matrix to further investigate the
types of the errors produced by the system.

A. Training and evaluation

For the binary classification for the attack detection, we used
the decision tree classifier. Dataset includes all records and
target attribute was transformed to binary indicator
attack/normal traffic. The classifier was trained without the limit
for maximum depth with default settings for pruning and gini
index as the splitting criterion. We split the dataset randomly to
70/30 training/testing ration. The testing data were also used for
overall evaluation of the entire system. Model for the binary
classification achieved the accuracy 0.9997. The detailed
confusion matrix is presented in the Table III.

TABLE III. PERFORMANCE OF THE BINARY ATTACK CLASSIFICATION

 Normal Attack Precision Recall

Normal 29,095 11
0.999 0.999

Attack 35 119,066

For the training of ensemble classifier, we have selected only
the attack records from the training set. As the base classifiers
we have used various configuration of the Naive Bayes and
Decision Tree models. The experiments proved that the Decision
Tree classifier performed well on the Probe, DoS and R2L
attacks. On the other hand, for the U2R class model produces
many false alarms or (depending on pruning) the model was not
able to detect U2R attacks at all. For this reason, we have trained
one-vs-all model just to separate U2R class. We have then
combined both types of the models into the ensemble classifier.
The weights of the base classifiers were computed according to
the accuracies of the models on the training data. For the
evaluation we have used the same 70/30 dataset split as for the
binary classification, but we have further selected only the attack
records (since the normal communication is filtered already by
the binary classifier). In total, models were trained on 396743
records. The confusion matrix of the ensemble classifier is
presented on the Table IV.

TABLE IV. PERFORMANCE OF THE ENSEMBLE ATTACK CLASSIFICATION

 Probe U2R DoS R2L Prec. Rec.

Probe 1279 0 1 0 0.992 0.992

U2R 0 15 0 0 1 0.882

DoS 6 0 117,385 0 0.999 0.999

28

R2L 4 2 0 331 0.982 1

On the most specific level of the taxonomy, each major
attack class has dedicated one model for the further classification
of subtypes. The performance of each model was evaluated
using the precision and recall macro-averaged for each subtype.
The overall performance of the models is summarized in Table
V.

TABLE V. PERFORMANCE OF THE SUBTYPE CLASSIFICATION

 Probe U2R DoS R2L

Accuracy 0.991 0.937 0.999 0.989

Precision 0.989 0.927 0.999 0.879

Recall 0.989 0.875 0.999 0.833

The overall system with the hierarchical classification was
evaluated using the standard precision, recall F-measure and
FAR (False Alarm Rate) metrics. Comparison of the proposed
system and models published in previous works [4][6][7][11] is
presented in Table VI.

TABLE VI. OVERALL PREFORMANCE OF THE SYSTEM

Classifier Acc. Prec. F1 FAR

C4.5 0.969 0.947 0.970 0.005

Random forests 0.964 0.998 0.986 0.025

Forest PA 0.975 0.998 0.998 0.002

Ensemble model 0.976 0.998 0.998 0.001

Our approach 0.998 0.998 0.998 0.001

Additionally, we have computed confusion matrix, which
summarizes the performance for each attack class. The
confusion matrix is presented in the Table VII.

TABLE VII. CONFUSION MATRIX FOR THE OVERALL PREFORMANCE OF

THE SYSTEM

 Probe U2R DoS R2L Normal

Probe 1176 0 5 0 7

U2R 0 15 0 0 5

DoS 4 0 117547 0 1

R2L 3 1 0 346 7

Normal 1 0 3 1 48454

Besides the classification of attack types, we have
implemented and also evaluated the classification of the attack
severity. To train the severity detector we have used 10 % of
KDD 99 dataset with the 70/30 training/testing ratio. The
severity classifier was applied complementary to the ensemble

model for the detection of the attack class. Overall achieved
performance was 0.999 precision and recall with very good
accuracy for the high and low severity. The Table VIII presents
the confusion matrix for the severity detection in comparison for
each class of the attack.

TABLE VIII. CONFUSION MATRIX FOR THE SEVERITY DETECTION

 High Low Medium Prec. Recall

DoS 117695 0 0

0.999 0.999
Probe 443 0 779

R2L 0 346 6

U2R 0 0 20

Medium severity was biased by our model towards the high
severity which has the similar effect like the higher false positive
rate. Further details and information about the designed model
were published in [9].

IV. CONCLUSION AND FUTURE WORK

In this paper we have proposed an approach based on the
combination of knowledge based and machine learning methods
for intrusion detection. The proposed knowledge model in the
form of the ontology is used for the hierarchical decomposition
of the detection process according to the types of the attack. This
decomposition allows to overcome the problems with the
unbalanced training data which are typical for the diagnostic
machine learning tasks. By the leveraging of the domain
knowledge, our combined approach also provides an additional
context which includes for example the effects and severity of
the attacks.

The performance of the proposed IDS is 0.998 in terms of
precision as well as recall and 0.001 in terms of FAR metric,
which on the standard benchmark dataset outperforms other
state-of-the-art methods. Moreover, the proposed method has
also potential to partially detect new emerging types of attacks
in terms of the contextual information stored in the knowledge
model.

In the future work we plan to extend the role of the
knowledge model by introducing a rule-based classifier which
will be based on the declarative rules and application of
automatic reasoning technique and logical programming. We
hope that this will allow to further improve accuracy for minor
classes with the low number of training examples. Additionally,
extended knowledge model will allow to create formalized
knowledge base of the existing cases.

ACKNOWLEDGMENT

This work was supported by Slovak Research and
Development Agency under the contract No. APVV-16-0213
and by the VEGA project under grant No. 1/0493/16.

29

REFERENCES

[1] Park, J. Advances in Future Internet and the Industrial Internet of Things.

Symmetry 2019, 11, 244.

[2] Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A Deep Learning Approach for
Network Intrusion Detection System. In Proceedings of the 9th EAI
International Conference on Bio-inspired Information and
Communications Technologies (formerly BIONETICS), New York, NY,
USA, 3-5 December 2016.

[3] Khan, M.A.; Karim, M.d.R.; Kim, Y. A Scalable and Hybrid Intrusion
Detection System Based on the Convolutional-LSTM Network.
Symmetry 2019, 11, 583.

[4] Zhou, Y.; Cheng, G; Jiang, S.; dai, M. An efficient detection system based
on feature selection and ensemble classifier. arXiv 2019,
arXiv:190401352

[5] Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion
detection system through feature selection analysis and building hybrid
efficient model. J. Comput. Sci. 2018, 25, 152–160.

[6] Sharma, N.; Mukherjee, S. A Novel Multi-Classifier Layered Approach
to Improve Minority Attack Detection in IDS. Procedia Technol. 2012, 6,
913–921.

[7] Ahmim, A.; Ghoualmi Zine, N. A new hierarchical intrusion detection
system based on a binary tree of classifiers. Inf. Comput. Secur. 2015, 23,
31–57.

[8] Abdoli, F.; Kahani, M. Ontology-based distributed intrusion detection
system. In Proceedings of the 2009 14th International CSI Computer
Conference, Tehran, Iran, 20–21 October 2009; pp. 65–70.

[9] Sarnovsky, M.; Paralic, J. Hierarchical Intrusion Detection Using
Machine Learning and Knowledge Model. Symmetry 2020, 12, 203.

[10] More, S.; Matthews, M.; Joshi, A.; Finin, T. A Knowledge-Based
Approach to Intrusion Detection Modeling. In Proceedings of the 2012
IEEE Symposium on Security and Privacy Workshops, San Francisco,
CA, USA, 24–25 May 2012; pp. 75–81.

[11] Özgür, A.; Erdem, H. A review of KDD99 dataset usage in intrusion
detection and machine learning between 2010 and 2015. PeerJ Preprints
2016, 4, e1954v1.

30

Smart Building Energy and Comfort Management
Based on Sensor Activity Recognition and

Prediction
Francesca Marcello, Virginia Pilloni

Department of Electrical and Electronic Engineering - University of Cagliari - Italy
National Telecommunication Inter University Consortium - Research Unit of Cagliari - Italy

Email: {francesca.marcello,virginia.pilloni}@unica.it

Abstract—Thanks to Building Energy and Comfort Man-
agements (BECM) systems, it is possible monitor and control
buildings with the aim to ease appliance management and at the
same time ensuring efficient use of them from the energetic point
of view. To develop such kind of systems, it is necessary to monitor
users’ habits, learning their preferences and predicting their
sequences of performed activities and appliance usage during the
day. To this aim, in this paper a system capable of controlling
home appliances according to user preferences and trying to
reduce energy consumption is proposed. The main objective of
the system is to learn users’ daily behaviour and to be able to
predict their future activities basing on statistical data about the
activities they usually perform. The system can then execute a
scheduling algorithm of the appliances based on the expected
energy consumption and user annoyance related with shifting
the appliance starting time from their preferred one.

Experimental results demonstrate that thanks to the schedul-
ing algorithm energy cost can be reduced of 50.43% and 49.2%
depending on different tariffs, just by shifting the use of the
appliance to time periods of non-peak hours. Scheduling based on
probability evaluation of preferred time of usage of the appliances
allows to still obtain evident energy savings even considering the
errors on predicted activities.

Index Terms—Activity Recognition; Activity Prediction; En-
ergy Management; Comfort Management; Smart Building

I. INTRODUCTION

Smart buildings are characterised by the presence of sensors,
actuators and smart devices that give the opportunity to
monitor and control, either manually or automatically, key
equipment within buildings [1]. This is the concept behind
Smart Building Energy and Comfort Management (BECM)
systems [2][3]. As a matter of fact, domestic electricity usage
accounts for about 40% of the global energy consumption
and contributes over 30% of total greenhouse gas emis-
sions [4]. Nevertheless, user comfort is crucial when policies
of Demand-Side Management (DSM) are put in place [5].
In such an intelligent scenario, one of the major goals is to
provide users with tools that support cost-effective solutions
to appliance management, which: i) demand the lowest effort
in terms of training and management, dynamically adapting to
user requirements, and ii) take into account user habits so that
appliance management decisions do not conflict with them,
causing a disaffection that may lead the user to turn off the
system [6].

Currently, most of the literature considers user comfort as
a set of hard constraints on appliance usage, which are a
priori set considering general statistics [7][8]. This approach
neglects the fact that users are likely not only to have different
subjective requirements with respect to the others, but they also
dynamically change over time.

In this paper, user preferences and habits about appliance
usage are continuously monitored, recognised and predicted,
by means of a BECM system based on sensors deployed
inside the reference building. The system merges two pre-
vious studies about activity recognition [9] and appliance
scheduling [6], by including the crucial activity prediction
functionality. Indeed, activity prediction enables appliance
scheduling by predicting which appliances are likely to be
used in the following hours and scheduling them in advance,
so that their starting time is shifted to off-peak times when
electricity tariffs are lower.

The main contributions provided by this paper can be
summarised as follows:
• an activity recognition algorithm used to model user

profiles, which was first proposed in [9] and whose
accuracy is here improved;

• an activity prediction algorithm is proposed, along with
statistics about mutual correlation of activities. Accord-
ingly, appliance usage is predicted for a specified time
window (test were run for a time window of 6 hours);

• user profile and activity prediction are incorporated into
the user-annoyance-aware energy-cost-saving appliance
scheduling algorithm proposed in [6].

To the best of the authors’ knowledge, this is the first com-
prehensive system to use sensor-based activity prediction and
occupants’ preference inference, and integrate them into a
BECM. Accordingly, based on simulations of the system on
a real dataset, this paper further analyses how the proposed
system affects energy-related costs.

The remainder of the paper is organised as follows. Section
II presents past works and the required background. In Section
III an overview of the proposed system model is provided.
Section IV describes the reference use case considered to
test the performance of the system. Finally, in Section V
a performance analysis is provided. Conclusions and final
remarks are drawn in Section VI.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

31

II. RELATED WORKS

Smart technologies can be used in all kinds of different
buildings (i.e., residential, office, and retail sectors) to improve
the comfort and the safety of people in their home, concerning
various topics, from healthcare and providing living assistance,
to environmental monitoring and ensuring energy saving.
Accordingly, BECM systems have the objective of combining
power consumption minimisation while preserving user com-
fort [10][11]. This issue has been addressed by researchers
from many different perspectives. The authors in [10], present
a review of control systems for energy management and
comfort in buildings, where the quality of the comfort is con-
sidered mostly dependent on thermal comfort, indoor air qual-
ity and visual comfort, explaining current and conventional
controller solutions and their disadvantages. Also in [12][13]
two different solutions for building management considering
user preference in terms of indoor environment comfort are
presented. In [14], an algorithm for thermostatically controlled
household loads based on price and consumption forecasts of
grid energy is presented. The issue of scheduling appliances
according to user preferences was also addressed by [6], where
Quality of Experience (QoE) is measured as a function of the
interval between the preferred and proposed appliance starting
time for switching controlled loads (e.g., washing machines
and clothes dryers), and as a function of the interval between
the preferred and proposed temperature for thermostatically
controlled loads (e.g., conditioning systems and water heaters).

It is evident that user preferences and habits severely affect
results of BECM systems. For this reason, in recent years re-
searchers have started to observe users’ behaviour, in order to
infer their habits and preferences. The monitoring of activities
of people in their home can be done by analysing data that
can be gathered with different technologies. Different studies
proposed solutions based on using cameras and wearable
sensors or gathering data provided by phone accelerometer
and gyroscope [15][16]. These solutions are not very practical
in home scenarios where people are often not inclined to
accept those devices. To monitor what activities people are
performing in their house, non-intrusive sensors are often
preferred: typical devices that are installed in the environment
are motion sensors, door sensors or temperature and pressure
sensors [17]. The data collected from sensors inside resident
houses are analysed using data mining and machine learning
techniques to build activity models that are used as the basis
of behavioural activity recognition.

With reference to modelling and classification methods,
researchers have investigated the recognition of resident ac-
tivities using a variety of mechanisms, such as Naı̈ve Bayes
classifiers, Markov models, and dynamic Bayes networks. In
multiple cases, in spite of its simple design and simplified
assumptions, Naı̈ve Bayes classifiers often work much better
than expected, especially when a specific group of sensors can
easily be identified as characteristic of a certain activity [18].

Event
Detection

Appliance
Scheduling

Activity
Recognition

Activity
Prediction

User Profile

Home
Profile

BECM System

s1

s2

s3

s4

Sensors

User Interface Actuators

Fig. 1. Overview of the proposed BECM system

III. SYSTEM MODEL

In this paper, the considered scenario is that of a BECM
system, based on distributed smart home sensor networks.
An overview of this system is represented in Figure 1. More
specifically, sensors are used to make observations on users
and their interactions with the surrounding environment; the
combinations of these interactions, which are detected by
the Event Detection module as events, provide meaningful
information on users’ activities. As described in more details
in [9], after a training period the Activity Recognition module
can correctly recognise activities with an accuracy of more
than 80% on average. Accordingly, a correlation can be
observed between detected events and activities, which can
be used to infer users’ habits. These habits, stored in the User
Profile module, are used with information about previously
recognised activities by the Activity Prediction module, with
the aim to predict the following activities that are expected to
be carried out by the users. The information related to activity
prediction, user profile and home profile are then processed
by the Appliance Scheduling module to find a scheduling
for controllable appliances that corresponds to the best trade-
off between energy cost reduction and user comfort. Note
that the Home Profile module stores home-related information
collected by sensors and/or through user interfaces, such as
electricity tariffs, and which appliances are installed along with
their energy consumption characteristics.

In the following, more details will be provided about the
core modules of the proposed BECM system, i.e. the Activity
Recognition module, the Activity Prediction Module and the
Appliance Scheduling module.

A. The Activity Recognition Module

The activity recognition approach used in this paper was
earlier proposed in [9]. It encompasses two phases: i) training,
during which the system learns the association between activ-
ities and their instances, i.e. sequences of detected events; ii)
running, which uses the probabilistic model created during the
training phase to associate an activity to the detected events.

a) Training phase: for each k-th activity instance
Ijk of activity Aj observed during an
observation time window OA, a feature vector
F jk(Ijk) = [f1jk, f2jk, . . . , fijk, . . .] is computed with
the rates of detected event occurrences, that is the number
of events related to one specific sensor with respect to

32

the total number of events observed considering all the
sensors within OA. Then, for each activity Aj , a model
vector mj = meank(F jk) = [f1jk, f2jk, . . . , f ijk] is
defined such that the rates of event occurrences of its
sensors is the average rate for all the observed instances
associated with the same activity.

b) Running phase: it relies on the use of a sensor-based
windowing implementation [18], according to which se-
quences of detected events are divided into subsequences
using an observation window OW(t) starting at time t,
which contains a certain number of events equal to its
size W . Each subsequence z of events is then associated
with a feature vector FW

z , computed analogously to mj .
Finally, the sequences of detected events are classified
based on their probability to belong to a given activity.

For further details the reader is referred to [9].

B. The Activity Prediction Module

The main task of the the Activity Prediction module is to
provide, for the next Appliance Scheduling module, a possible
scenario in time t ahead in the future, that explains the proba-
bilities of every activity that can begin in t, calculated thanks
to information about all the activities happened and recognised
before the current time t0. Starting from the assumption that
activities are linked between one another, so that when an
activity Ai occurred at time ti it is possible to evaluate the
probability of another activity Aj to be performed by the
user in a different time tj , the module has to evaluate the
probability in t for every single activity Aj .

During the training phase, two different kind of probabilities
have been evaluated for every activity under consideration:
• p(Ai(ti)) indicate the prior probability for activity Ai of

starting at time ti;
• p((Aj |Ai)(k∆t)) indicate the conditional probability of

activity Aj of being carried out since activity Ai has
started (k∆t) before.

The period between the current time t0 and the time t in which
the prediction is needed, is split in different k time intervals
of duration (∆t).

All the activities that have been recognised before the
current time t0 are stored with their respective starting time
ti, so that it is known how many time intervals outdistance
every ti up to t, and it is possible to calculate the conditional
probability of activity Aj in t considering all the activities Ai

that occurred in ti. Then, for every (k∆t) between t0 and t,
the probability of Aj to be happening in t is calculated with
respect to the fact that Ai could be happening in (k∆t). These
two contributions are added together according to the equation
below:

p(Aj(t)) =
∑
i

p((Aj |Ai)(
t− ti
∆t

))+∑
i

∑
k

p((Aj |Ai)(k∆t)) · p(Ai(t0 + k∆t))
(1)

with k ∈
{

0, (t− t0)/∆t
}

.

Every activity coincides with one of the appliances in the
house, so that the probability for each activity in t, calculated
as explained, is then translated in the probability of one
appliance to be used at time t. Therefore, the output from
this module is going to enable the scheduling algorithm to
make the validation necessary for the scheduling of control-
lable appliances and for evaluating energy consumption. The
algorithm decides to schedule at time t only those appliances
corresponding to activities that have their value of probability
higher than a certain threshold.

C. The Appliance Scheduling Module

The appliance scheduling algorithm is based on the smart
home energy management system proposed in [6]. This system
dynamically shifts tasks of controlled appliances to times when
it is more convenient (e.g. off-peak times), after finding a trade
off between the overall energy cost and the annoyance expe-
rienced by users as a consequence of this shift. Accordingly,
appliances are subdivided into three groups:
G1: not controlled loads, i.e., small loads such as lights, and

not controlled high loads such as fridges;
G2: switching controlled high loads, such as washing ma-

chines and dishwashers;
G3: thermostatically controlled high loads, i.e. appliances that

are controlled by a thermostat, such as water heaters.
The energy consumption for an appliance i is defined as
Econs

i = P cons
i ×texeci , where P cons

i is its power consumption
and texeci is its execution time. While for switching controlled
loads the execution time corresponds to a complete working
cycle, for thermostatically controlled ones it depends on ap-
pliance characteristic parameters and temperature conditions.
As described in more details in [6], the execution time of G3
appliances to reach a temperature T exp

i is defined as

texeci (T exp
i) = −RiCi ln

(
T out
i − T exp

i +RiP
heat
i

T out
i − T in

i +RiPheat
i

)
(2)

where T out
i (t) and T in

i (t) Pheat
i are the initial outside and

inside temperature respectively, and Pheat
i , Ri and Ci are

characteristic parameters for the appliance. More specifically,
Pheat
i is the heat rate (in Watt), Ri is the equivalent thermal

resistance (◦C/Watt) and Ci is the equivalent heat capacity
(Joule/◦C). If the appliance is off, Pheat

i = 0.
The appliance scheduling algorithm then schedules appli-

ances according to their related cost contribution value, which
includes both the energy consumption- and user annoyance-
related costs. User annoyance is computed according to the
results of a survey, completed by 427 people, as reported in [6].

For G2 appliances, the cost to start at time tST
i and end at

time tEND
i = tST

i + texeci is defined as

CG2
i (tST

i) =
P cons
i

σ
(
∆tST

i

) · tEND
i∑

t=tST
i

Φ(t) (3)

where Φ(t) is the electricity tariff at time t, and σ
(
∆tST

i

)
is

the relative satisfaction level for a time interval ∆tST
i = tST

i −

33

tPT
i , which is in inverse proportion with the user annoyance

of shifting the appliance starting time. If σ
(
∆tST

i

)
= 0, the

cost value CG2
i (tST

i)→∞.
For G3 appliances, the cost to start at time tST

i and end at
time tEND

i = tST
i + texeci (T exp

i) is defined as

CG3
i (tST

i , tEND
i) =

2 · P cons
i

σ
(
∆TST

i

)
+ σ (∆T exp

i)
·
tEND
i∑

t=tST
i

Φ(t)

(4)
where σ

(
∆TST

i

)
and σ (∆T exp

i) are the relative satisfaction
values for a difference in temperature respectively of ∆TST

i =
T in
i (tST

i)−TPT
i between the temperature at the starting time

and the preferred temperature, and of ∆T exp
i = T exp

i − TPT
i

between the temperature expected at the ending time and the
preferred temperature. Also in this case, if σ (∆T exp

i) = 0, the
cost value is CG3

i (tST
i , tEND

i)→∞.
For further details about this appliance scheduling system,

the reader is referred to [6].

IV. REFERENCE USE CASE

The algorithm for modelling the activities and then discov-
ering what the resident is doing is implemented and tested
using the Aruba real-word dataset from the CASAS smart
environment project of the Washington State University [19].
The data were collected from one smart apartment provided
with motion sensors, contact sensors in the doors or cabinets
and temperature sensors. The events decoded by these sensors
are significant for recording elementary actions that people are
performing, while the aggregation of these elementary actions
defines one activity of interest. To correctly evaluate the
correlation between the sets of events and the observed user’s
activities, without interference from other people, a dataset
with only one resident living in the home was considered.

To evaluate the proposed system, in addition to the activities
of the Aruba real-word dataset, some other activities have been
simulated as performed by the same user inside this home
scenario, using the same kind of sensors already installed in
the house. The simulated activities are the following three
activities not reported in the real dataset: using the washing
machine, using the dish washer, taking a shower, which, along
with the activity of washing dishes by hand, causes the water
heater to turn on. Taking a shower is supposed to be carried
out by the user in the bathroom, therefore involving the motion
sensors already installed close to this room and assuming that
hot water is used, thus causing the water heater to switch on.
The use of the dish washer is supposed to be performed in
the kitchen, involving the sensors in that area and simulating
the presence of a specific cabinet containing the appropriate
detergent and with a magnet sensor to understand its opening
or closing, so that the activity of loading the dish washer could
be recognised concluded only when this cabinet had been
closed. The same thing was done for the activity of using the
washing machine, by setting up another specific cabinet with
its magnetic sensor, and placing it in a room of the house
where there are not other linked activities.

TABLE I
CORRESPONDENCE BETWEEN ACTIVITIES AND HOME APPLIANCES

Activity Appliance Appliance type

1 Housekeeping (HK) Vacuum Cleaner G1

2 Meal Preparation (MP) Microwave Oven G1

3 Relax (Rel) TV G1

4 Wash Dishes (WD) Water Heater G3

5 Work Laptop/Pc G1

6 Taking Shower (TS) Water Heater G3

7 Laundry Washing Machine G2

8 Wash Dishes with
Dish Washer Dish Washer G2

9 Always on Fridge/Freezer G1

10 Always on when user
is at home/not sleeping Lighting G1

The system needs a correspondence between some of the
activities and the use of certain household appliances, in order
to predict energy consumption based on the probability of
the activities to occur. Table I shows the considered activities
along with their corresponding appliance owned by the user.

V. EXPERIMENTS AND RESULTS

A. Activity Recognition and Prediction Algorithm

With respect to only the four activities corresponding to
controllable appliances, i.e. appliances belonging either to
G2 or G3, the recognition algorithm presented in [9] has an
accuracy of 100% in recognising the activities of taking the
shower and using the washing machine, while for the activity
of using the dish washer it has an accuracy of 66.7% and
for the activity of wash dishes by hand it gives an accuracy
of 69.7%. This result is due to the fact that these two last
activities are more difficult to recognize because they involve
many of the kitchen sensors, which are also associated with
other possible activities. The overall accuracy of the activity
recognition algorithm is of 83.2%.

As for the prediction of future activities, the algorithm has
an overall accuracy of 67%. The activities more accurately
predicted are those with many samples and recurrent starting
time, like the activity “Taking a Shower”, because statistics
about them are quite significant. For other less frequent
activities, i.e “Wash Dishes”, the prediction is instead less
reliable.

B. Scheduling Algorithm

The algorithm has been compared with two different situa-
tions with respect to the case where no scheduling is involved.
There are then three possible scenarios:
• the first one is the classic situation where appliances are

normally used by the resident and the scheduling is never
programmed (Without Scheduling Algorithm-WSA);

• the second one is based on a perfect knowledge of
the time in which the user wants to use some of the

34

appliances in the house (Scheduling Based on Perfect
Time-SBPT). This case coincides with the possible sce-
nario in which the user instructs the system about the
exact moment they want the appliance to start, but it
has the disadvantage of requiring continuous interactions
between users and system;

• the last one bases its scheduling evaluations on the
probability of using any of the appliance at time t,
calculated as explained in equation 1 (Scheduling Based
on Probability-SBP). This solution allows to avoid inter-
actions between users and the system, considering only
the system’s previous knowledge about user habits.

The training phase to obtain all the information about user’s
behaviours and preferences, and that allowed the system to
perform the calculations on the probabilities indicated in
subsection III-B, took into consideration two months of data
about performed activities. Due to the fact that the shortest
duration for the activities in exam is around 15 minutes, while
the longest activities can elapse for several hours, conditional
probabilities between activities was valuated choosing dura-
tion of intervals (∆t) equal to 15 minutes. The scheduling
algorithm was instead tested on one week of data. For every
interval of time t0 during the testing week, the algorithm
schedules appliances that are going to be used every k∆t time
intervals after t0, with k ∈ N, trying to improve energy savings
and user’s comfort. Simulations were done considering time
intervals of 30 minutes and predicting future activities in t
up to 9 hours forward in the future, so that every half an
hour the scheduling algorithm could re-evaluate its scheduling
based on the new information about previously user performed
activities and with new calculations of probabilities p(Aj(t)).
The obtained results were considered with respect to energy
consumption in one week, comparing the case with scheduling
in relation to the case of normal use of household appliances,
and evaluating if the scheduling could generate some kind of
annoyance for the user. The evaluation of the energy costs has
been made using two different tariffs listed in Table II, based
on some typical Italian tariffs. The annoyance rate is defined
as in [6], in relation to a possible shifting of appliance starting
time or, with reference to the water heater, to a variation
in the water temperature with respect to the user preferred
temperature of use. Value 1 of annoyance indicates that there is
not any discomfort for the user in the change of time in which
the appliance was turned on, while a value of 5 indicates the
highest level of annoyance for the user. Annoyance levels are
modelled as a normal distribution with 15% deviation.

Table III shows the results about energy saving compar-
ing the two cases with scheduling against the case without
scheduling. These results are obtained taking into account
the fact that cost savings are coming from a scheduling of
switching controlled high loads to hours where the energy has
lower prices and considering that there is a reduction in energy
consumption due to a better optimisation in the usage of the
water heater, which is switched on only at times of interest
for the user and not every time the temperature drops below

TABLE II
ENERGY PRICING

Weekends, holidays and
everyday from 19:00 to 8:00 Everyday from 8:00 to 19:00

Tariff 1
0.0534 e/kWh

Tariff 1
0.07666 e/kWh

Tariff 2
0.067990 e/kWh

Tariff 2
0.07666 e/kWh

TABLE III
ENERGY CONSUMPTION FOR DIFFERENT SCENARIOS

WSA SBPT SBP

Energy consumption
in kWh/week 65.43 42.43 35.83

Cost Saving
with Tariff 1 - 50.4% 64.7%

Cost Saving
with Tariff 2 - 49.2% 63.18%

a certain value. Depending on the different tariff considered,
energy consumption was calculated to be decreased of 50.4%
with tariff 1 and of 49.2% with tariff 2, in contrast to the
energy consumption with a classic use of appliances and
energy over the week. As expected, greatest savings are
obtained when there is a greater pricing difference between
the higher cost range and the lower cost range. In particular,
thanks to the scheduling, there is an evident better use of the
water heater, since this appliance is scheduled and turned on
only for the strictly necessary duration of time to obtain the
water to be heated enough for when the resident needs to
use it. This result can be verified in Fig.3, which represents
the energy saving over the week differentiated by three of
the appliances of the house: the water heater, the washing
machine and the dish washer. Only those three appliances
are considered because they are the only ones owned in the
house that belong to groups G2 and G3 and that can be
scheduled: the other appliances possessed by the user are
part of G1 group. From Fig. 3 it is evident how most of
the savings come from the scheduling of the water heater,
while there is a lower incidence from washing machine and
dish washer. This is explained by the fact that the preferred
times of using those two appliances are already evaluated as
the best compromise between energy consumption and user
comfort, especially because in most cases they are very distant
in time compared to the periods of non-peak hours. In fact,
in Fig.2, where the average annoyance rate is presented, it is
possible to observe how for every appliance the annoyance
rate is always close to the lowest value of 1. The knowledge
of user behaviours has therefore guaranteed the scheduling of
the appliance with the best trade-off between energy costs and
user preferences.

A slightly different discussion has to be done with reference
to the scenario in which the scheduling is evaluated based
on the probabilities of activities and, accordingly, on the

35

Fig. 2. Average annoyance rate with the proposed system

Fig. 3. Energy saving comparison differentiated by appliance

probabilities of using a certain appliance. Even in this case
there is an evident reduction in energy consumption during the
week, as shown in table III. Most of the saving come again
from the wiser use of the water heater thanks to the scheduling
only at appropriate time. Looking at Fig.2 it is possible to see,
however, how the annoyance rate reaches a higher level. This
is due to the fact that the use of the water heater is linked to
two different activities, as shown in Table I. While activity
6 is always easily recognised and predicted, and therefore
scheduled, activity 4 gives some problems because it is often
confused with other activities [9]. Additionally, activity 4 is
an activity that the user does not carry out often so there is
not much statistical data on it. This last problem is common to
the other two activities in exam, and this explains why even
for this appliances there are higher level of annoyance rate
due to the fact that the prediction module has made an error
evaluating the probability of this activity to be performed. The
algorithm has otherwise proved that the prevision about future
activities can still ensure a good evaluation for the scheduling
when the statistical data are reliable.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on a solution for energy and comfort
management inside buildings, with the purpose of reducing
energy waste thanks to a proper control over appliances, while
on the same time ensure the well-being of users. To this aim,
a BECM system is proposed that integrates a solution for two
different problem: the first one concerns the needs for such a
system to be able to know users behaviour and preferences and
to predict usual activities; the second is about the necessity
to manage appliances with respect of that behaviours and
preferences and with respect of energy consumption.

The system has been tested in a real scenario, evaluating
if the predictions were correct and proposing a coherent
scheduling that could guarantee energy savings. The obtaining
results show that, as expected, the scheduling of the appliances
can guaranteed energy savings, reducing consumption over
a week of at least 49.2% in comparison with classic use
of energy and appliances. The prediction module permitted
a quite accurate scheduling basing on probabilities, even if
some of the activities has given some problem due to the fact
that the statistic data about them were based of few instances.
Furthermore, it was possible to guarantee that the annoyance
rate was never too high, thus respecting user comfort.

Future works will investigate the adaptability of the pro-
posed system to different real-case scenario, trying to improve
the prediction module considering a larger training phase
and more instances of the activities and corresponding use
of appliances. Furthermore, it will be evaluated how the
presence of Renewable Energy Sources could affect appliance
scheduling and improve energy savings.

ACKNOWLEDGEMENTS

This work was partially funded by the INSIEME MiSE
project, HORIZON 2020, PON 2014/2020 POS. 395, and by
the LEAPH project, POR FESR Sardegna 2014-2020, Asse 1,
Azione 1.1.3.

REFERENCES

[1] D. Minoli, K. Sohraby, and B. Occhiogrosso, “Iot considerations, re-
quirements, and architectures for smart buildings—energy optimization
and next-generation building management systems,” IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 269–283, 2017.

[2] A. I. Dounis and C. Caraiscos, “Advanced control systems engineering
for energy and comfort management in a building environment—a
review,” Renewable and Sustainable Energy Reviews, vol. 13, no. 6-7,
pp. 1246–1261, 2009.

[3] M. Shafie-Khah and P. Siano, “A stochastic home energy management
system considering satisfaction cost and response fatigue,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 2, pp. 629–638, 2017.

[4] L. Yang, H. Yan, and J. C. Lam, “Thermal comfort and building energy
consumption implications–a review,” Applied energy, vol. 115, pp. 164–
173, 2014.

[5] M. H. Shoreh, P. Siano et al., “A survey of industrial applications of
demand response,” Electric Power Systems Research, vol. 141, pp. 31–
49, 2016.

[6] V. Pilloni, A. Floris et al., “Smart home energy management including
renewable sources: A qoe-driven approach,” IEEE Transactions on Smart
Grid, vol. 9, no. 3, pp. 2006–2018, 2016.

[7] Z. Pooranian, J. Abawajy et al., “Scheduling distributed energy resource
operation and daily power consumption for a smart building to optimize
economic and environmental parameters,” Energies, vol. 11, no. 6, p.
1348, 2018.

[8] M. Rasheed, N. Javaid, A. Ahmad, Z. Khan, U. Qasim, and N. Alrajeh,
“An efficient power scheduling scheme for residential load management
in smart homes,” Applied Sciences, vol. 5, no. 4, pp. 1134–1163, 2015.

[9] F. Marcello, V. Pilloni, and D. Giusto, “Sensor-based early activity
recognition inside buildings to support energy and comfort management
systems,” Energies, vol. 12, no. 13, p. 2631, 2019.

[10] S. Merabti, B. Draoui, and F. Bounaama, “A review of control systems
for energy and comfort management in buildings,” in 2016 8th Inter-
national Conference on Modelling, Identification and Control (ICMIC).
IEEE, 2016, pp. 478–486.

[11] P. H. Shaikh, N. B. M. Nor et al., “A review on optimized control
systems for building energy and comfort management of smart sustain-
able buildings,” Renewable and Sustainable Energy Reviews, vol. 34,
pp. 409–429, 2014.

36

[12] ——, “Intelligent multi-objective optimization for building energy and
comfort management,” Journal of King Saud University-Engineering
Sciences, vol. 30, no. 2, pp. 195–204, 2018.

[13] M. Fayaz and D. Kim, “Energy consumption optimization and user
comfort management in residential buildings using a bat algorithm and
fuzzy logic,” Energies, vol. 11, no. 1, p. 161, 2018.

[14] P. Du and N. Lu, “Appliance commitment for household load schedul-
ing,” in PES T&D 2012. IEEE, 2012, pp. 1–1.

[15] G. Bhat, R. Deb et al., “Online human activity recognition using low-
power wearable devices,” in 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2018, pp. 1–8.

[16] M. M. Hassan, M. Z. Uddin et al., “A robust human activity recognition
system using smartphone sensors and deep learning,” Future Generation
Computer Systems, vol. 81, pp. 307–313, 2018.

[17] Y. Liu, L. Nie, L. Liu, and D. S. Rosenblum, “From action to activity:
sensor-based activity recognition,” Neurocomputing, vol. 181, pp. 108–
115, 2016.

[18] N. C. Krishnan and D. J. Cook, “Activity recognition on streaming
sensor data,” Pervasive and mobile computing, vol. 10, pp. 138–154,
2014.

[19] D. J. Cook, “Learning setting-generalized activity models for smart
spaces,” IEEE intelligent systems, vol. 2010, no. 99, p. 1, 2010.

37

Prescriptive System for Reconfigurable
Manufacturing Systems Considering Variable

Demand and Production Rates
Catarina Baltazar, João Reis, Gil Gonçalves

SYSTEC, Research Center for Systems and Technologies
Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: {up201406435, jpcreis, gil}@fe.up.pt

Abstract—The current market is dynamic and, consequently,
industries need to be able to meet unpredictable market changes
in order to remain competitive. To address the change in
paradigm, from mass production to mass customization, manu-
facturing flexibility is key. Moreover, current digitalization of the
industry opens opportunities regarding real-time decision sup-
port systems allowing the companies to make strategic decisions,
and gain competitive advantage and business value.

The main contribution of this paper is a proof of concept
Prescriptive System with a highly parameterizable simulation
environment catered to meet the needs of Reconfigurable Manu-
facturing Systems allied with an optimization module that takes
into consideration productivity, market demand and equipment
degradation. With this system, the effects of different throughput
rates are monitored which results in better recommendations
to mitigate production losses due to maintenance actions while
taking into consideration the health status of the remaining assets.

In the proposed solution the simulation module is modeled
based on Directed Acyclic Graphs and the optimization module
based on Genetic Algorithms.

The results were evaluated against two metrics, variation of
pieces referred as differential and availability of the system.
Analysis of the results show that productivity in all testing
scenarios improves. Also, in some instances, availability slightly
increases which shows promising indicators.

Index Terms—Reconfigurable Manufacturing Systems, Indus-
try 4.0, Variable Throughput, Genetic Algorithm

I. INTRODUCTION

Nowadays industries face constant changes as the result of
unpredictable market trends. The challenge is to be flexible
enough in order to respond in a timely manner to clients
demand while maintaining a sustainable cost structure to
remain competitive in a fierce business environment. For the
purpose of attending markets needs, it is necessary to increase
the efficiency of manufacturing processes in which machinery
plays a fundamental role.

Reconfigurable Manufacturing Systems (RMS) arise to deal
with uncertainty and individualized demand [1] by combining
advantages of both Dedicated Manufacturing Lines and Flex-
ible Manufacturing Systems [2]. Moreover, during the current
industrial revolution, also referred as Industry 4.0, significant
interest in the upgrade of Prognostics and Health Management

(PHM) frameworks emerge as they allow improvements in
reliability and reduction of costs associated with maintenance
actions [3]. Advances in the Information and Communica-
tion Technologies domain enable the development of more
sophisticated PHM tools, especially, based on Deep Learning
methods as they simplify the process of feature learning
and have superior performance. Deep Learning approaches
represent a promising path towards a one-fits-all framework
[4]. An effective PHM system should be able to timely
predict failures by constantly monitoring health status of the
equipment and also isolate and identify the faults [5]. Addi-
tionally, it must support decision-making systems to take full
strategic advantage of the predictions provided by diagnosis
and prognosis techniques [6]. While prognosis is related to
failure prediction and tries to answer the questions ”What will
happen?” and ”When will it happen?” [7], diagnosis consists
in identifying and isolating the faults. Despite the intuitive
relationship between predictions and prescriptions, and the
undeniable benefits to gain competitive advantage, prescriptive
systems’ area is the field with less research [8]. These systems
intend to recommend one or more courses of action based
on predicted future and, therefore, allow to take proactive
measures [7].

A thorough review of prescriptive systems is given by [8]
where three categories were identified: production schedul-
ing, life cycle optimization, supply chain management and
logistics. For example, regarding inventory management, in
both [9] and [10], spare parts are ordered based on equipment
degradation. In the former, decisions regarding the purchase
of spare parts are decided based on the levels of degradation
observed during irregular inspections. In the latter, long short-
term memory (LSTM) networks are employed to predict
failure probability during different time windows. Then, based
on the information provided by the prediction model, the
appropriate options regarding maintenance and order of spare
parts are chosen.

From the three categories identified, in an industrial context,
maintenance scheduling is the more predominant one. In
[11], a Genetic Algorithm (GA) is employed to optimize

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

38

maintenance scheduling for manufacturing systems with a
fixed structure. In this paper, it is assumed that the infor-
mation regarding failure probabilities is available. Similarly,
in [12], a GA is used to schedule maintenances based on
machine degradation. However, in this case, the variables that
are optimized are the throughputs of machines and possible
maintenance actions instead of discrete time moments. In
general, the proposed optimization procedure searches for the
best trade-off between maintenance actions and throughput
settings. Likewise, in [13] a continuous maintenance system
based on real-time monitoring is proposed. The optimization
module is also based on GA and assures production targets
by searching the best sequence of machine throughputs taking
into consideration equipment degradation. In contrast, in this
paper, a Predictive Maintenance module is integrated and
the GA helps in avoiding unexpected breakdowns based on
constant condition monitoring in real-time. Solving scheduling
problems is not limited to the application of GA but these
algorithms represent the majority of the proposed solutions
[14].

Few Prescriptive Systems are applied to RMS. In this
context, the mitigation of production losses due to machines
downtime can be achieved not only by tuning throughputs
of different machines, but also by routing pieces to healthy
assets. Accordingly, the main contributions of this paper are an
optimization approach that shows good indicators in finding
throughput sequences that balance productivity and mainte-
nance actions in a RMS context, as well as a straightforward
simulation module based on Directed Acyclic Graphs (DAG)
that allows quick layout changes and easy parametrization
of the shop-floor namely, scheduling of maintenance shifts,
different types of failures and types of equipment.

The remainder of this paper is organized as follows. In
section II both simulation module and optimization module
are discussed. Then, in section III, the scenarios that are tested
in order to validate the solution were presented. Additionally,
some preliminary results are discussed. A more in depth
analysis of the results presented in the previous section can
be found in section IV and finally, in section V conclusions
and future work are discussed.

II. IMPLEMENTATION

The proposed Prescriptive System is mainly composed of
two modules: simulation module and optimization module. In
the following subsections each module is further described and
this current section concludes with the interactions between the
two.

A. Simulation

The goal is to model manufacturing layouts such as the one
presented in Fig. 1 so it allows easy changes in configurations
in order to respond to different demands in the future. These
configurations possess crossovers and all machines within the
same stage execute the same tasks. Consequently, pieces in
stage i can be transferred to any machine at the stage i+1.

According to [15], these configurations are defined as Class II
RMS.

Fig. 1. Generic Manufacturing Layout

Accordingly, DAGs were chosen to model the system. This
approach allows the rapid response in changing layouts con-
figuration and the control of pieces flow in the manufacturing
system. In order to implement it, the package Networkx, only
available in Python, was chosen.

Each node of the graph represents a machine and the edges
connections between machines that might be, for instance,
conveyor belts. The edges are weighted and represent path
priority. The lowest the weight the higher the priority. This
approach allows to favour, for example, the shortest path when
deciding to which machine should the piece be sent.

The machines are represented by the class Machine and each
instance represents a node of the graph. This approach allows
high parameterization of the equipment and the parameters can
be separated in three main groups:

• Identifying Parameters: relate to the identification of the
equipment

– machine id;
– type of machine;
– age;
– line;
– stage;

• Operations Parameters: relate to the machine operation
– available operations;
– current throughput;

• Reliability-related parameters: relate to degradation of the
equipment

– mean time to repair (MTTR);
– mean time between failures (MTBF);
– types of failures.

Concerning to identifying parameters, line and stage cor-
respond to the position of the machine in the layout, Fig. 1,
while the remaining parameters in this category are related to
specifications of the equipment. In respect of operation param-
eters, available operations relate to the range of operations that
the machine can perform and current throughput identifies the

39

production rate at which the equipment is operating. Lastly,
regarding reliability-related parameters, this are of the utmost
importance to simulate the degradation of the equipment. In
terms of different types of failures, each machine can have
associated different ones which will correspond to different
MTTR and, as a result, maintenance actions will have different
periods of time. Also, MTBF will be used as a mean to predict
the failure.

In addition, in this case, the machines are also responsible to
control the flow of production in the shop-floor. Each machine
has a state machine associated as the one represented in Fig.
2.

Fig. 2. State Machine associated with each machine

The machine has four states. It starts in its IDLE state and if
the machine is not going to start any maintenance, maintenance
= 0, and is available, the machine can receive pieces. Once the
pieces are received they are processed. When the processing
time ends, three things might happen: if the next machine
is available the piece is dispatched and then the machine
can return to its IDLE state or IN MAINTENANCE state.
Otherwise, it will transition to WAITING state. This transition
happens when there are no available machines and the current
machine behaves as a buffer until a possible machine becomes
available. While in the WAITING state, the machine cannot
receive any pieces. In the case that the machine does not
have the respective tool, the piece experiences the same cycle,
however, processing times are equal to zero. In short, the
edges of the graph provides the different connections between
machines and each connection is only admissible if green-
lighted by the destination machine state.

In addition, not only machines can be parameterized but also
other parts of the manufacturing environment. The simulation
module developed in this paper takes into consideration,
different simulation times, maintenance shifts and different
sequences of operations to apply to different raw materials.
Simulation times are related to how many seconds each tick
(time unit in the simulation environment) worth and how many
working weeks are being simulated. Also, it defines how many

working days and working hours are considered. In regards to
maintenance shifts, if one decides to integrate them in the
simulation, the starting times and duration of said shifts can
be defined. The only thing, which in some cases might be
considered a limitation, is the fact that the maintenance shifts,
by default, are periodic. Simply put, in every working day
the shift starts at the same time and has the same duration.
Additionally, different sequences of operations can be applied
to the pieces in order to achieve different final products as long
as the needed operations are available in the current machines
and as long as the operations can be performed in a sequential
manner as represented in Fig. 1. All these features allows the
simulation of a wide variety of scenarios not only on time
domain but also specification wise.

In this paper, it is assumed that the information regarding
probability failures is known, as no predictive model is pro-
posed. Recalling the parameters associated to each machine,
namely, reliability-related ones, both MTBF and MTTR are
known. In a simplified manner, MTTR refers to the average
time to repair certain component and MTBF the forecasted
time between failures [16]. Both these terms will allow to
simulate degradation of the equipment as well as management
of maintenance actions in order to implement the present
system. As a result, the prediction of a pending failure will be
calculated based on the difference between MTBF and current
simulation time. If that difference is below a certain threshold,
the failure will be signaled and maintenance scheduling takes
place. Both Fig. 3 and Fig. 4 exemplify how the maintenance
scheduling is handled. The difference between MTBF and
current simulation time corresponds to a certain time window.
This time window is the time to failure and is represented
by the yellow area. If during that time window a shift
takes place, blue area, then the maintenance of the respective
equipment will occur when the shift starts (Fig. 4). Otherwise,
an emergency maintenance is triggered (Fig. 3).

Fig. 3. Pending Failure that will result into an emergency maintenance

Fig. 4. Pending Failure that will result into a scheduled maintenance

40

Furthermore, different machines’ throughputs have different
impacts in degradation of the equipment. As stated in [12],
when a machine decelerates it is expected that its degradation
slowdown, and vice-versa if a machine increases its through-
put. To simulate the degradation effects influenced by the
chosen production rates, the MTBF will be inversely propor-
tional to production rate. Similar to [13], five throughputs are
available where mode 2 increases production rate two times
in regards to baseline production, mode 1 production rate is
1.5 times higher, mode 0 corresponds to baseline throughput,
mode -1 production rate decreases in 1.5 times and, lastly,
mode -2 where production rate decreases 2 times.

B. Optimization

The optimization module is key to the implementation of the
Prescriptive System as it is responsible for the compensation of
production losses due to machines’ downtime. A standard GA
approach was chosen as its employment is well documented
and produces near-optimal solutions [17]. GAs can be under-
stood as an abstraction of the theory of evolution by natural
selection by Darwin and are suitable to solve multi-objective
problems [18]. The genetic variability within a population is
simulated through mutation and crossover operators and the
selection is done based on the survival of the fittest [19].

The optimization module can be triggered in two instances:
when an emergency maintenance takes place, or when a
maintenance does not finish during a maintenance shift. As
a result, two types of maintenance can be identified:

• Emergency Maintenance - a maintenance that occurs
outside a maintenance shift;

• Scheduled Maintenance - a maintenance that is allocated
to a maintenance shift.

Emergency maintenances are more costly not only because
of resources allocation, but also their impact in production.
Even if a scheduled maintenance continues beyond the shift
duration, the losses in production are lower because the
downtime during maintenance shift is expected, which does
not happen in a context of an emergency maintenance. When
formulating the optimization problem, both types of mainte-
nance are taken into consideration with different weights, as
their impact is also different on production weekly goals.

The used approach follows very closely the one presented in
[13]. The proposed formulation was applied to three parallel
machines and can easily be applied to N parallel machines.
However, other configurations require some fine-tuning in their
weights and the addition of some terms depending on the
problem. In summary, the goal is to extend the mentioned
formulation to a more broad spectrum of layouts and adapt it
to the RMS system considered in this Prescriptive System.

Every week, the production should comply with the cus-
tomers orders so the GA optimizes a maximum of one week
and once the current week ends, the throughputs return to their
baseline unless new optimization takes place in that week and
the process repeats itself once again. In this regard, each gene
of the chromosome will represent the throughput of machine
i at the day j as represented in Fig. 5.

Fig. 5. Chromosome Structure. Source: [13]

Ti,j is an integer between -2 and 2 and corresponds to the
machine i operation mode at the day j. Thus, the size of the
chromosome is variable and equal to i× j.

Companies’ main goal is to attend customer’s needs while
remaining competitive and profitable. Therefore, it is crucial to
meet production targets in the most efficient way. Accordingly,
the fitness function (1) not only takes into consideration
production targets but also machines’ degradation.

F = min

[
Kp (W − P)2 +Ksm

N∑
i

Fsmi +Kem

N∑
i

Femi+

Knw

N∑
i

Fnwi +Kch

N∑
i

Cchi +Ksd

N∑
i

Si

]
(1)

subject to: Fsmi , Femi , Fnwi = {0, 1, ..., N} ∀i
Cchi = {0, 1, ..., d} ∀i

Si ≥ 0 ∀i
The first term is the difference between production weekly

target, W , and number of pieces produced, P , by the sys-
tem, squared. In essence, it evaluates how far the system
production is from the target and the square ensures that the
algorithm does not favour solutions that exceedingly surpass
the target, and the non-negativity of the values. The following
three terms are regarding the different maintenances. Each
type of maintenance is different and, as a result, also their
weight in the fitness function. The second and third term is
scheduled maintenance, sm, and emergency maintenance, em,
respectively, and their different impacts were already stated.
Throughout the formulation of the fitness function, initially
there was no distinction between those two maintenances and
the results were good so if a more broad approach is desired
the maintenance might not be distinguished. However, the
prescriptive system proposed has scheduled maintenance shifts
integrated and the distinction between the two makes sense
since they have different impacts in the production system.
The fourth term is also related to maintenance, but it is
regarding the first three days of the next week, nw. To increase
production the throughput of some machines has to inevitably
increase, which accelerates the degradation of those machines.
So, this term is to prevent new failures in the beginning of the
next week as it will affect the production goals of the next
week.

The constant change of throughputs in a real production line
is not practical. As a result, the last two terms are introduced
to promote homogeneous solutions. The first term of the two,
ch, corresponds to the number of changes in relation to the
baseline, mode 0, and the second is the standard deviation, S,
of the suggested throughputs to machine i.

Initially, the weights considered were the same as the ones
presented in [13]. After several simulations, it was observed

41

that the convergence of the solutions was not quite as desired.
At the boundary of solutions that achieve the weekly targets
and solutions with deficits, sometimes close to 2%, but with
throughput rates more homogeneous, the latter were given
priority (i.e., better fitness values). This behaviour was further
proved by the conduction of a sensitivity analysis where
the contributions from the different types of maintenance
were considered constant and the remaining terms of the
Equation (1) variable. As a term of comparison, margins of
1% in relation to production in regards to the desired targets
were considered acceptable. So, the weights needed to be
refined. Accordingly, based on the previous sensitivity analysis
and additional simulations, the finals weights are as follows:
Kp = 10,Ksm = 900,Kem = 1000,Knw = 300,Kch = 300
and Ksd = 400.

C. Prescriptive System

The proposed Prescriptive System involves the two modules
explained above and an overview can be found in Fig. 6.
Once a failure is detected and if the requirements regarding
the conditions in which the maintenance will occur are met,
the optimization module is triggered. As shown in Fig. 6,
represented by blue rectangles, two instances of the simulation
module are present: Manufacturing Environment Simulation
and Simulation Module. The former corresponds to the simu-
lation of the shop-floor of interest and the latter is an image of
the former. However, in this case, its purpose is solely to feed
the optimization module with the needed variables to evaluate
the candidate solutions: pieces produced and number of main-
tenances during current week and the following one. These
outputs are what allows the calculation of the solution fitness
value represented by Equation (1). Additionally, in both these
modules, a model to predict failures can be easily integrated.
This cycle between optimization module and simulation model
stops once the termination criteria is met. In this paper, the
optimization stops when the maximum number of generations
is exceeded. When the optimization module finishes, the best
solution is recommended (white rectangle) and applied to the
manufacturing environment simulation if the operator decides
to.

III. SYSTEM VALIDATION AND VERIFICATION

To evaluate the proposed system the testing was divided
into two phases. Firstly, a set of tests are applied in order
to analyze and validate the results provided by the GA as
well as to prove that this system might be easily applied to
configurations not fully connected or easily upgraded to handle
failure in transport equipment. Secondly, scenarios that are
more complex are investigated in order to check scalability.
The simulation time in all tests is one working week. Also,
there will be two shift changes per working day, where
maintenance actions can be performed. One in the beginning of
the day and other in the middle. The metrics used to assess the
performance of the system are the variation of pieces produced
in relation to target, named as differential, and an extension
of availability per machine [20] to the whole system defined

Fig. 6. Overview of the proposed Prescriptive System

by the ratio of total real operation time of all machines by
the total theoretical operation time of all machines. Taking
into consideration Fig. 1, the configurations will be referred
as nxm, where n corresponds to the amount of stages and m the
amount of production lines. The GA parameters were selected
after several runs and set to:

• Population size = 100;
• Maximum generations = 100;
• Mutation Rate = 0.2;
• Crossover Rate = 1.0;
• Crossover Method: Single-point crossover;
• Selection Method: Elitism.
All tests were performed in a personal computer with the

specifications: Intel core i5-3750 CPU @ 3.40GHz and 8.00
GB RAM.

A. First Set Scenarios

All tests were performed using a 3x2 configuration. In the
first test, one of the machines is down a whole working day
and another machine is on the verge of failing in the following
week. In the second one, the same machine is down, however
there is a second machine that fails in the middle of the
week, during half-day. In the third and last test of this set,
there are no broken machines but the connections from one
of the machines are interrupted which isolates the equipment
and, consequently, pieces processed by it have nowhere to
flow to. The main goal of all tests is to understand, under
different conditions, if the weekly target is achieved and how
the algorithm deals with the different maintenance moments.
However, the Test 3 is performed not only as a mean to study
the previous statements but also as a tool to prove that this
system might be applied to layouts different than the one
presented in Fig. 1 where all stages are fully-connected. It
may be applied, for example, to layouts where the stages
have different number of machines. Also, it demonstrates that
failures related to transportation equipment can be considered

42

as long as the failure predictions are fed to the algorithm in
order to trigger the optimization module.

In Table I, the effects of maintenances and connection inter-
ruptions during normal operation without optimization module
are represented and summarized. Expected Production is the
number of pieces produced by the system if no disturbances in
the system occur. Pieces produced are the pieces that system
manufactured under the conditions explained previously for
each test without the intervention of the Prescriptive System.
Also, differential and availability are the metrics previously
explained taking into consideration that no optimization took
place.

TABLE I
EFFECTS OF FAILURES IN THE SYSTEM WITHOUT OPTIMIZATION MODULE

Expected
Production

Pieces
Produced Differential Availability

Test 1 796 731 -8,16% 96,3%
Test 2 796 698 -12,31% 94,4%
Test 3 796 607 -23,74% 92,0%

B. First Set Results

Each test was executed three times. In Table II, the averages
of these three runs are presented, together with standard
deviation, σ, of differentials.

TABLE II
RESULTS OF FIRST TESTING SET WITH OPTIMIZATION MODULE

Pieces
Produced Differential σ Availability Processing

Times
Test 1 796 -0,044% 0,259% 96,3% 4,27h
Test 2 795 -0,084% 0,258% 94,4% 7,9h
Test 3 796 0% 0,000% 92,0% 2,87h

Recalling the conditions the test 1 was under, one of the
possible outcomes could be the advancement of the failure
that was scheduled to the beginning of the following week.
However, this did not happen. In the second test, two optimiza-
tion moments occurred, one per each failure. This is further
supported by the fact that in both cases the availability did not
change, which means that the downtime neither increased or
decreased. In the third test, it is confirmed that the system can
handle other types of situations and/or layouts. In this case,
both differential and standard deviation are 0% because in all
three runs the weekly target was scrupulously achieved.

C. Second Set Scenarios

Previous tests showed that the system behaves as expected
so scenarios that are more complex were tested in order to in-
vestigate the scalability of the system. For each configurations
tested, two types of situations were considered:

• Type A - weekly production target equal to expected
production;

• Type B - weekly production target 1,2 times higher than
expected production.

The purpose of type B tests is to explore situations where
market demand increases and verify if the manufacturing

system can still comply in those situations. Four different
configurations were tested and Table III summarizes all the
scenarios as well the effects of number of maintenances in
the system without the optimization module. It was decided
to increase the number of maintenances as the configurations
increase in size in order to test similar levels of stress. This
increase, in Table III, is referred as ”Number of maintenances”.
Expected Production and Pieces Produced, as well as, differ-
ential and availability, have the same meaning as the presented
in Table I. Each configuration has two different targets as they
correspond two each type as stated before.

TABLE III
SCENARIO DEFINITION OF THE SECOND TESTING SET

Config.

Number
of

mainte-
nances

Expected
Produ-
ction

Pieces
Produced

(Diffe-
rential)

Availa-
bility Target Test

name

3x3 1 1194 1113
(-6,78%)

97,5% 1194 Test1a
97,5% 1433 Test1b

4x4 2 1532 1412
(-7,83%)

97,9% 1532 Test2a
97,9% 1838 Test2b

7x7 5 1554 1490
(-4,12%)

97,5% 1554 Test3a
97,5% 1865 Test3b

10x10 8 2030 1954
(-3,14%)

98,3% 2030 Test4a
98,3% 2436 Test4b

D. Second Set Results

In all tests the target was achieved within 1% margin and,
in some cases, the availability slightly increased. Those cases
are marked in bold in Tables IV and V. In these instances, the
increase in availability was because the algorithm “pushed”
some failures to next week as a result of a reduction in
the throughputs of the respective machines. In addition, this
happened in higher order configurations, which indicates that
is likely due to the higher redundancy in these systems.

TABLE IV
RESULTS FOR TESTS TYPE A

Pieces
Produced Differential σ Availability Processing

Times
Test1a 1193 0% 0,181% 97,5% 3,0h
Test2a 1533 0,13% 0,134% 97,9% 8,7h
Test3a 1554 0% 0,273% 98,0% 30,9h
Test4a 2024 -0,279% 0,203% 98,7% 71,3h

TABLE V
RESULTS FOR TESTS TYPE B

Pieces
Produced Differential σ Availability Processing

Times
Test1b 1434 0,07% 0,057% 97,5% 3,1h
Test2b 1838 0,108% 0,112% 97,9% 9,7h
Test3b 1864 -0,018% 0,241% 97,8% 29,5h
Test4b 2438 0,096% 0,102% 98,5% 77,3h

Still, in respect to the increase in availability, the com-
parison between Fig. 7 with Fig. 8 gives an insight of how
the algorithm dealt with the different maintenance actions.
These figures are related to Run 1 of test4b and its results

43

can be found in Table VI. In Fig. 8, maintenance regarding
machines J5 and G7 disappeared from the current week and
the throughputs in those machines are, in general, lower than
baseline. This is consistent with Equation (1) as maintenances
in next week, F nw are less penalizing than current week and
the algorithm found a way of decreasing the fitness value by
pushing the maintenance to next week without jeopardizing
the achievement of the weekly target. In addition, considering
once more Fig. 8, maintenance regarding machine G8 was
advanced in relation to Fig. 7 however, this advancement trans-
lated into a scheduled maintenance instead of an emergency
maintenance which is also consistent with the fitness function
as emergency maintenances, F em, are more penalizing than
scheduled maintenances, F sm.

Fig. 7. Part of layout of configuration 10x10. Simulation correspondent to
Run1 of test4b where no optimization took place. The red vertical bands
represent the time that a machine is under maintenance and the blue horizontal
lines are the throughput rates in place during certain day.

Fig. 8. Part of layout of configuration 10x10. Simulation correspondent to
Run1 of test4b where the measures recommended by the Prescriptive System
were adopted.The red vertical bands represent the time that a machine is under
maintenance and the blue horizontal lines are the throughput rates in place
during certain day.

TABLE VI
RESULTS OF RUN1 OF TEST4B

Target Pieces Produced Differential Availability
2436 2441 (+5) 0,205 % 98,8 %

To evaluate how the results vary from configuration to
configuration in order to draw some conclusions, the averages
of the differential were plotted and the graphs are presented in
Fig. 9 and Fig. 10, tests type A and tests type B, respectively.

Fig. 9. Differential Averages per Configuration in tests type A

Fig. 10. Differential Averages per Configuration in tests type B

IV. DISCUSSION

The results show large improvements in the pieces differ-
ential and, in some instances, a slight increase in availability.
Despite the decrease in differential, in some instances, the
target value was not fully met, presenting low deficits (<1%),
but always by far better than the results without optimization.

The parameters of the GA are problem dependent. In the GA
implementation employed in this system, both generations and
population size are fixed. However the size of each chromo-
some is not. Remembering previous sections, the chromosome
size is equal to N×d where N is the total number of machines
and d, the days from the point the optimizer was triggered
until the end of the week. So, not only between different
configurations but also within configurations, the chromosome
size varies but the parameters are not recalculated. This could
led to believe that the algorithm when applied to bigger
configurations would generate worse solutions.

When comparing the averages of each configuration, the
desired results are that they gravitate towards zero with low
deviations. The solutions seem to follow this behaviour, how-
ever, there is a visible increase in deviation from configuration
3 to configuration 4, Fig. 9, in tests of type A but it did
not go beyond 1%. In fact, this corresponds to an average
deviation of 0,279% as can be observed in Table IV. Therefore,

44

this increase does not seem enough to jeopardize the results
regarding the tested configurations, and can be attributed to
the search strategy and convergence of the GA. However,
more testing should be conducted. Despite the increase in
complexity of the system, the GA model was always able to
find solutions with 1% margin. As a matter of fact, the biggest
differential was a deficit of 0,542% that occurred during Run
1 of Test4a. Additionally, note that the Test 4 refers to a
configuration 10×10 meaning that 100 machines are operating
which is already a considerable amount of equipment.

V. CONCLUSION

A Prescriptive System capable of adapting machines’
throughput depending on variable demand and taking into
consideration pending machine failures was presented. The
factory is modelled based on graphs theory which allows a
quick response in layout changes and the throughput sequences
are managed by a simulation-based GA. The proposed system
was evaluated to different layouts and showed consistent
results among them – the Differential decreased and had a
positive influence in the availability of the system as previously
stated.

There is no denying that Prescriptive Systems rely heavily
on each company’s goals and specifications, which leads to
one of the main reasons for the lack of prescriptive systems in
the current literature. In this respect, this paper tries to tackle
this gap by implementing both manufacturing simulation en-
vironment and optimization module in a considerably generic
manner. Thus, regarding the optimization module, despite the
objectives being already established they were chosen in order
to be suitable to any manufacturing industry.

The proposed system was developed with a future inte-
gration with a Predictive Maintenance Module in mind and
that would be one of the immediate improvements that could
be done to this system in order to offer a whole cohesive
framework that assists in the process of making decisions
based on constant monitorization of the machines health
status. Also, further research should be conducted not only
by increasing the number of runs per tests but also explore
how the system performs with real-data. In addition, other
limitation that needs to be addressed are the long processing
times needed which are a huge restriction when applied to real-
life scenarios. In this case, the exploration of distributed or
parallel GA approaches can help to overcame this constraint.

ACKNOWLEDGMENT

This paper is integrated in the project INDTECH 4.0 –
New technologies for intelligent manufacturing. Support on
behalf of IS for Technological Research and Development
(SI à Investigação e Desenvolvimento Tecnológico). POCI-
01-0247-FEDER-026653.

REFERENCES

[1] Z. M. Bi, S. Y. T. Lang, W. Shen, and L. Wang, “Reconfigurable
manufacturing systems: The state of the art,” Int. J. Prod. Res., vol.
46, no. 4, pp. 967–992, 2008.

[2] Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Front. Mech. Eng., vol. 13, no. 2,
pp. 121–136, 2018.

[3] G. W. Vogl, B. A. Weiss, and M. Helu, “A review of diagnostic and
prognostic capabilities and best practices for manufacturing,” J. Intell.
Manuf., vol. 30, no. 1, pp. 79–95, 2019.

[4] L. Zhang, J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei, “A Review on
Deep Learning Applications in Prognostics and Health Management,”
IEEE Access, vol. 7, pp. 162415–162438, 2019.

[5] G. Xu et al., “Data-driven fault diagnostics and prognostics for predictive
maintenance: A brief overview,” IEEE Int. Conf. Autom. Sci. Eng., vol.
2019-Augus, no. 1, pp. 103–108, 2019.

[6] F. Ansari, R. Glawar, and T. Nemeth, “PriMa: a prescriptive maintenance
model for cyber-physical production systems,” Int. J. Comput. Integr.
Manuf., vol. 32, no. 4–5, pp. 482–503, 2019.

[7] K. Lepenioti, A. Bousdekis, D. Apostolou, and G. Mentzas, “Prescrip-
tive analytics: Literature review and research challenges,” Int. J. Inf.
Manage., vol. 50, no. April 2019, pp. 57–70, 2020.

[8] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion
and machine learning for industrial prognosis: Trends and perspectives
towards Industry 4.0,” Inf. Fusion, vol. 50, pp. 92–111, 2019.

[9] F. Zhao, X. Liu, R. Peng, and J. Kang, “Joint optimization of inspection
and spare ordering policy with multi-level defect information,” Comput.
Ind. Eng., vol. 139, no. 3, p. 106205, 2020.

[10] K. T. P. Nguyen and K. Medjaher, “A new dynamic predictive mainte-
nance framework using deep learning for failure prognostics,” Reliab.
Eng. Syst. Saf., vol. 188, pp. 251–262, 2019.

[11] Z. (Max) Yang, D. Djurdjanovic, and J. Ni, “Maintenance scheduling in
manufacturing systems based on predicted machine degradation,” vol.
19, no. 1, pp. 87–98, 2008.

[12] Z. Yang, D. Djurdjanovic, and J. Ni, “Maintenance scheduling for a
manufacturing system of machines with adjustable throughput,” IIE
Trans. (Institute Ind. Eng., vol. 39, no. 12, pp. 1111–1125, 2007.

[13] L. Antao, J. Reis, and G. Goncalves, “Continuous Maintenance System
for Optimal Scheduling Based on Real-Time Machine Monitoring,” in
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, 2018, vol. 2018-Septe, pp. 410–417.

[14] B. Çaliş and S. Bulkan, “A research survey: review of AI solution
strategies of job shop scheduling problem,” J. Intell. Manuf., vol. 26,
no. 5, pp. 961–973, 2015.

[15] Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing
systems,” J. Manuf. Syst., vol. 29, no. 4, pp. 130–141, 2010.

[16] S. Aguiar, R. Pinto, and G. Gonc, “Life-cycle Approach to Extend
Equipment Re-use in Flexible Manufacturing,” INTELLI 2016 Fifth
Int. Conf. Intell. Syst. Appl. (includes InManEnt 2016) Life-cycle, no.
November, pp. 148–153, 2016.

[17] C. Renzi, F. Leali, M. Cavazzuti, and A. O. Andrisano, “A review on
artificial intelligence applications to the optimal design of dedicated and
reconfigurable manufacturing systems,” Int. J. Adv. Manuf. Technol.,
vol. 72, no. 1–4, pp. 403–418, 2014.

[18] S. N. Mirabedini and H. Iranmanesh, “A scheduling model for serial
jobs on parallel machines with different preventive maintenance (PM),”
Int. J. Adv. Manuf. Technol., vol. 70, no. 9–12, pp. 1579–1589, 2014.

[19] K. Jebari and M. Madiafi, “Selection Methods for Genetic Algorithms,”
Int. J. Emerg. Sci., vol. 3, no. 4, pp. 333–344, 2013.

[20] S. H. Huang et al., “Manufacturing productivity improvement using
effectiveness metrics and simulation analysis,” Int. J. Prod. Res., vol.
41, no. 3, pp. 513–527, 2003.

45

A Cross-Platform Communication Mechanism
for ROS-Based Cyber-Physical System

Rui Zhao, Xu Tao, Davide Conzon, Enrico Ferrera
LINKS Foundation

via Pier Carlo Boggio 61,
Turin,
Italy

name.surname@linksfoundation.com

Yenchia Yu
Tongji University

4800 Cao’an Road,
Shanghai,

China
yuyenchia@tongji.edu.cn

Abstract—Recently, one of the main research topics in the
context of application of Cyber-Physical System (CPS) in the
Smart City and Industry 4.0 scenarios is the one related to the
use of Robot Operating System (ROS)-based CPS. Specifically,
one of the main interest is to allow a ROS-based smart robot
communicating with other heterogeneous Internet of Things (IoT)
applications in an intelligent environment to efficiently react to
the system requirements and environment changes. However,
the communication between the IoT systems will face many
challenges and increase the cost and risks that lead to the
requirement of a cross-platform communication for bridging the
ROS-based CPS and other heterogeneous IoT applications.

This paper introduces ROS Edge Node for the interoperability
between Robotics domain and other IoT domains, leveraging
the highly modular BRAIN-IoT federation, which allows to de-
centralize, compose and dynamically federate the heterogeneous
IoT platforms using OSGi specification, thanks to its dynamic
modularity and wide usage in IoT middlewares. Together with
the flexible integration with existing IoT devices/platforms within
BRAIN-IoT platform, the event-driven asynchronous communi-
cation mechanism realizes cross-platform interaction with ROS-
based CPS and solves the major challenges faced. This commu-
nication mechanism allows dynamic deployment of new function-
alities for enhancing/extending the behaviour of robots according
to external events. In addition, some specific behaviours to new
”virgin” robots, which might be needed to extend the fleet of
robots or replace damaged/low batteries ones can be dynamically
deployed at the setup phase. In BRAIN-IoT platform, Edge
Node behaves as IoT devices/platform adaptors which integrate
the existing IoT devices/platforms. The ROS Edge Node is one
type of the Edge Node, which bridges the underlying ROS-
based robotics systems and BRAIN-IoT execution environment,
thus communicates with various IoT systems connected to the
BRAIN-IoT platform. A Service Robotic use case is developed to
demonstrate the proposed solution, it shows how the ROS Edge
Node enables the fast adaptivity and interoperability between
heterogeneous IoT domains in a federated environment.

Index Terms—Brain-IoT, Cyber-Physical System (CPS), Ser-
vice Robotics, IoT Middleware, Cross-platform Communication,
OSGi

I. INTRODUCTION

Nowadays, CPS are widely used in various aspects in our
society, including but not limiting in areas such as manufac-
turing, energy, health, transportation and intelligent buildings,
causing significant socio-economic impacts. CPS are defined

as physical and engineered systems whose operations are mon-
itored, coordinated, controlled and integrated by a computing
and communication core. To realize such an intelligent system,
various technologies need to be involved, including sensor and
actuator technology etc. Together with IoT, Cloud computing
and Cognitive computing, they become the main technologies
of Industry 4.0 [1]. Specially, CPS and IoT are often discussed
together, not only because they have many similarities but also
because they are the foundations of the intelligent production
environment, in another word, the smart factories, which is
one of the most important topics of Industry 4.0.

The communication is an important research topic for both
of CPS and IoT. As more and more different devices will
be integrated in an intelligent production environment, the
requirement of communication between different CPSs or
between CPS and IoT devices are becoming more and more
significant. For example, in a smart factory, different CPSs
such as Autonomous Mobile Robots (AMR) [2] need to
communicate with each other for cooperation, or an AMR
needs to communicate with IoT devices such as automatic
doors when it needs to cross different zones in the factory.
However, such communication is not that easy to realize since
heterogeneity is a basic property for both CPS and IoT devices.

On the one hand, heterogeneity exists because different
CPS and IoT devices use different technologies in hardware,
software, or communication method due to different needs. On
the other hand, it is because the manufacturers of the devices
are different. Different manufacturers will design the device
according to their own standards. Devices from different man-
ufacturers, even if they are using the same technologies, their
protocol will be different. According to the latest statistics [3],
there are officially 620 IoT platform companies in the global
open market in 2019, in which 50% of the platforms focus
on industrial use. From the perspective of communication,
devices from these companies could use hundreds of different
communication protocols which makes the standardization of
communication protocol extremely difficult. In the recent years
of research, the idea of using middleware to realize cross-
platform communication is proposed.

This paper presents a novel adaptor, ROS Edge Node, which

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

46

implements an event-driven asynchronous cross-platform com-
munication mechanism for ROS-based CPS. The work is a
part of the H2020 research project BRAIN-IoT [4] that is a
federation enabling the dynamic deployment, orchestration and
monitoring of the distributed IoT applications leveraging the
OSGi [5] technology, since OSGi is a series of specifications
for Java dynamic modular system, it provides the dynamicity
for the life cycle management of software components. One
of the main functions is to make components as decoupled
as possible, and to allow components to dynamically discover
with each other, so that programmers can develop refinable,
reusable, and assistive components in accordance with these
specifications. Nowadays, OSGi is the widest used technology
to support implementations of IoT abstraction layers. For
example, Bosch ProSyst and Eurotech are two examples
of companies providing OSGi-based IoT gateways; Oracle®
Fusion Middleware [6] is developed for developing Java
Enterprise Edition (EE) management applications for Oracle
WebLogic Server; SNPS [7] is an OSGi-based middleware
for Wireless Sensor Networks; The OSGi-based software
platform Eclipse SensiNact [8] provides support in technical
aspects (e.g. Connectivity, Interoperability, Data processing,
and Developer Tool) related to smart city platforms. BRAIN-
IoT platform is implemented with OSGi and it aims integrating
with generic existing IoT devices or IoT platforms or existing
IoT middlewares to allow them communicating with each
other. ROS Edge Node is one implementation of the BRAIN-
IoT Edge Node mainly focused on the integration of robotics
platforms in IoT domain allowing to interoperate with other
heterogeneous IoT devices by mapping the ROS services
to OSGi services, to maximize the connectivity of robots
within IoT systems. ROS Edge Node is a modular software
component of the BRAIN-Io platform. It provides four main
features: 1) Interoperability: it provides the connectivity to IoT
platforms connected to BRAIN-IoT solution. 2) Plug & Play:
leveraging the OSGi specification, the component follows
an event-driven approach and it is developed as a software
module that can be deployed/undeployed at runtime without
interrupting other running services. 3) Automatic Adaptation,
it provides a code generator to automatically expose the ad-
hoc ROS services provided by different ROS-based CPSs and
speeds up the adaptor development process. 4) Standards Com-
pliant, it exploits the Web of Things (WoT) Thing Description
(TD) [9] describing the services provided by the ROS-based
CPS, making it more portable to the production environment,
not restrict to the OSGi implementation.

The rest of this paper is organized as follows. Section II
introduces the state of the art of the solutions similar to the one
proposed in this paper in multiple domains and the challenges
to be addressed typically by these software. It also outlines the
relevant technologies used to develop the proposed solution.
Section III describes the architecture of the ROS Edge Node,
functionalities and development process. Section IV imple-
ments a simple robotic application to validate the solution in
a distributed environment. Finally, the paper concludes with
the Section V to provide a summary of the cross-platform

communication mechanism for ROS-based CPS and the future
work being undertaken.

II. BACKGROUND

A. State of the Art

One of the most popular example of CPSs is represented
by smart industrial robots. This sector is really fragmented,
in terms of hardware and software architectures, But in re-
cent years, more and more robots have begun adopting one
common technology, the middleware ROS. According to the
annual ROS Metrics Report for 2019 [10], there are near
150 types of documented robots available to the community
with ROS drivers, and in recent years, the total number of
papers citing “ROS: an opensource Robot Operating System”
(Quigley et al.,2009) increase at an annual rate of 20% to 30%.
More and more famous robot vendors such as Asea Brown
Boveri (ABB) Ltd., Comau Spa. and Kuka AG are starting to
support ROS in some models of their robots. ROS is the widest
used abstraction layer for robotics. However, even the robots
are using ROS middleware, the problems in communication
still exists. ROS-based CPS are often used to communicate
with other heterogeneous IoT applications to satisfy system
requirements and react physical environment changes. There
are two existing middlewares for interacting with ROS-based
CPS.

The ROS–YARP Framework for Middleware Interop-
erability [11]: ROS and Yet Another Robot Platform (YARP)
[12] are the most popular robotics middlewares. YARP is
more used in the domain of humanoid robots and develop-
mental robotics, whereas ROS has higher focus on mobile
robots. They have complementary functions and many robotic
platforms may benefit from using functions from both. But
it’s not an easy task mainly due to fundamental differences
in the communication architecture. This approach generates
the “bridging gap” code from a configuration file, connecting
YARP ports and ROS topics through code-generated YARP
bottles. It supports YARP/ROS and viceversa sender/receiver
configurations. Reading from/sending to ROS topics needs an
additional conversion, which is handled by the existing run-
time YARP to ROS converter. The generator abstracts YARP
and ROS developers from dealing directly with interoperability
issues. However, this work is only focusing the interoperability
among robotics middlewares.

ROBIN Middleware for CPS [13]: ROBIN is a mid-
dleware funded by European H2020 program providing an
effective, bidirectional, reliable and structured data interchange
mechanism to address the demand for flexible robotics in
contemporary industrial environments and the necessity to
integrate robots and automation equipment in an efficient
manner. ROBIN, the robotics bridge to industrial automation,
aims to allow the interoperability between robotics and au-
tomation systems by enabling the communication between
ROS and CODESYS [14], which is a softPLC1, a real-time
multi-task control kernel, that can run on embedded devices

1http://www.softplc.com/

47

and that supports a variety of fieldbuses, and other industrial
network protocols. CODESYS handles the establishment of
external communication with the equipment via a fieldbus
and communicates with ROS through the developed robotics
bridge. More specifically, since ROS implementation follows
the publisher–subscriber messaging pattern, which enables
exchanging data between ROS nodes [15], A ROS node is
basically a process that performs computation and it is an exe-
cutable program running inside the robotics application. Many
nodes can be implemented in ROS packages. The proposed
bridging mechanism allows developers to create or include
in existing ROS packages the valuable feature of connecting
with an external device via fieldbuses or industrial network
protocols promoted by the softPLC bridge. Multiple ROS
nodes can access and modify the data shared with the softPLC
application in ROS. The information to be propagated to the
external devices could be published on a ROS topic, handled
by the developed bridge, and then relayed by CODESYS to
the proper industrial network protocol or fieldbus.

B. Problems with State of the Art

ROS allows the communication between heterogeneous
devices, being deployable on heterogeneous platforms. After
ROS is deployed on the device, it can use ROS as communi-
cation method to communicate. However, it can only support
communication between devices developed based on ROS,
it cannot be used to communicate with off-the-shell devices
using different technologies. Furthermore, the messages used
in ROS are the original data sent by the device, which has
not been standardized. The receiver must know the content
of the communication in advance, otherwise it will not be
able to understand the received data. In State Of The Art
(SOTA), one of the limitations of ROS–YARP middleware is
the applicability area, which is limited to ROS and YARP
only, while CPSs are widely used in various aspects. The
robotic bridge provided by ROBIN project allows the com-
munication between ROS and the automation application
through the inter-node communication mechanism in ROS,
but it requires the developers to directly create or include in
existing ROS packages the valuable features for interacting
with other external devices via fieldbuses or industrial network
protocols. This requires to the developers to be expert in
ROS programming. Besides, the direct operation on existing
ROS packages may bring the risk of the damaging the basic
functionalities. Moreover, in the real production environment,
the robotics applications are significantly sophisticated and
dynamic, requiring to the bridge to be flexible enough to react
to the continuously changing production environment; to allow
this the robotic bridge needs to support the update at runtime
and the deployment on demand and this feature is not feasible
using only native ROS.

Instead, ROS Edge Node bridges ROS and other IoT
platforms using OSGi specification, in such way, the robot’s
behaviours can be developed at the application level using
OSGi instead of ROS. And this allows to have all the advanced
OSGi capabilities applied in robotics scenario(i.e., start and

stop atomic behaviours at runtime, deploy new ones, import,
update and upgrade behaviours at runtime every time a new
more stable or more secure version is available).

C. Challenges

ROS Edge Node intends to address the gaps mentioned in
the previous section in the current State of The Art (SoTA)
and the typical challenges faced in researches on middleware
for CPS [16], [17]. More specifically, apart from supporting
the interoperability between the ROS-based CPS and other
heterogeneous IoT applications, it also supports adaptivity,
security and privacy protection and autonomous operation, as
explained in the following subsections.

Abstraction and Automatic Adaptation: [18] An ideal
middleware for an intelligent environment such as the IoT
should provide abstractions at various levels such as hetero-
geneous input and output hardware devices, hardware and
software interfaces, data streams, physicality and the de-
velopment process. And an Adaptive middleware is usually
motivated by the need of adapting the middleware to changes
in application’s requirements, changes of environmental con-
ditions, fixing middleware’s bugs or extending/improving the
middleware functionality. ROS Edge Node solution proposes
an approach to create a software component to abstract the
ROS-based CPS for communicating with other OSGi-based
IoT middlewares/applications through the distributed BRAIN-
IoT EventBus. The adaptor can be generated according to
different ROS platform implementations. For the simplicity,
a code generator is provided to speed up the development
process.

Security and Privacy: Automatic communication of real-
life objects represents a huge challenge in terms of trust,
security and privacy. The security and privacy component is
needed to provide the integrity of the collected data (stream)
and to ensure that the user’s privacy is not violated. The
data can only be able to connect to authenticated/certified
IoT devices. The management support of security and privacy
has to be considered as a main function of the middle-
ware for the IoT. The ROS Edge Node adaptor will be
integrated with the BRAIN-IoT platform, which introduces
a holistic end-to-end trust framework and privacy-awareness
and control approach to address the challenge [4]. Currently,
the integration between ROS Edge Node and the end-to-end
framework guarantees only authenticated ROS-based CPSs can
integrate with BRAIN-IoT platform and communicate with
other authenticated IoT systems.

Autonomous Operation: Many CPS applications are con-
sidered complex systems which can be in a huge number of
different states at any point of time. It is generally extremely
difficult to develop code to handle all these states effectively
and in a timely manner. Having middleware that supports
autonomous operations such as self-adaptive, self-resilient, and
self-protected services can relax implementing and operating
these complex CPS applications. The ROS Edge Node ad-
dresses this challenge supporting the development of complex
IoT solutions for monitoring and controlling physical environ-

48

ments and systems. Specifically, it simplifies the operation of
application providing a an event-driven notification method,
which allow avoiding to use polling methods to query the
robot or mission status, reducing greatly the network traffics.

D. Relevant Technologies

RosJava Open Source Library2: RosJava project provides
a pure Java implementation of ROS, and it also can inter-
connect to an existing ROS environment through the Internet
Protocol (IP) address. It provides a client library for ROS
communications in java that allows Java programmers to
quickly interface with ROS topics, services and parameters
through the eXtensible Markup Language (XML)-Remote
Procedure Call (RPC) [19] protocol. It provides some common
Java API allowing to create new ROS nodes, services, topics in
native ROS environment, and the corresponding ROS clients.
The library can be fully integrated in OSGi software.

JCodeModel Open Source Library3: JCodeModel is a
Java code generation library. It provides common API to
generate Java programs using Java language.

World Wide Web Consortium (W3C) and WoT: In recent
years, W3C organization has developed the WoT [9] standard
aiming to achieve interoperability problem between IoT plat-
forms and application domains. WoT provides a mechanism
for describing IoT interfaces, allowing IoT devices (physical
or virtual entity) and services to communicate with each other,
independent of their underlying implementation, and can span
multiple network protocols. In addition, WoT also provides
a standardized way to define and plan IoT behaviors. WoT
Architecture specification is centered on the scope of W3C
WoT standardization, divided into several building blocks.
The four core building blocks provided by W3C WoT are:
Thing Description, Binding Template, Scripting Application
Programming Interface (API), Security and Privacy Guide-
lines. More specifically, The central building block is the
WoT TD4, which can describe the metadata of the object
and the network-oriented interfaces and it’s the entry point
of a Thing. TDs are encoded in a JavaScript Object Notation
(JSON) format that also allows JSON-based Serialization for
Linked Data (JSON-LD) processing, primarily intended to
be a way to use Linked Data in Web-based programming
environments. The building blocks allow an application client
(a Consumer) to interact with Things that expose diverse
protocols through the three types of Interaction Affordances
defined by W3C WoT Interaction Model representing the capa-
bilities of individual Things: i) Properties (PropertyAffordance
class) can be used for sensing and controlling parameters,
such as getting the current value or setting an operation
state; ii) Actions (ActionAffordance class) model invocation of
physical (and hence time-consuming) processes, but can also
be used to abstract RPC-like calls of existing platforms. iii)
Events (EventAffordance class) are used for the push model of
communication where notifications, discrete events, or streams

2https://github.com/rosjava
3https://github.com/phax/jcodemodel
4https://w3c.github.io/wot-thing-description/

of values are sent asynchronously to the receiver. TD can be
used for flexible implementation and simulation (if required).
WoT will break the barrier of interoperability of various IoT
platforms, thereby contributing to the explosive growth of the
market. It doesn’t aim to define a new platform, but to use the
metadata to bridge existing platforms and standards.

In this paper, these technologies will be used in the follow-
ing aspects. The ROS Edge Node, will be developed as OSGi
bundles, which can be remotely installed, started, stopped,
updated, and uninstalled without requiring a reboot in BRAIN-
IoT federation.

RosJava can be considered as the bridge between ROS world
and Java world. It provides an efficient way for the ROS Edge
Node to establish a communication with ROS-based devices.
Different ROS functionalities will be mapped into different
OSGi services in the ROS Edge Node. The mapping procedure
will be done automatically through JCodeModel library with
a TD of the underlying ROS environment. Anyway, the
corresponding formatting procedure of events and integration
with BRAIN-IoT framework should be done by developers.

III. ARCHITECTURE

This section details the ROS Edge Node architecture along
with its role in the overall BRAIN-IoT platform.

A. Overview in BRAIN-IoT Context

ROS Edge Node will be integrated with BRAIN-IoT Fabric
[20] infrastructure service, which is composed with a set
of the computing resources (physical/virtual machines) and
provides a distributed OSGi execution environment allowing
the interaction between the OSGi services deployed on it
through events, thanks to the implementation of OSGi Alliance
specifications for Remote Services and Remote Service Admin
[5]. Each BRAIN-IoT Fibre is an OSGi R7 framework, and
different Brain-IoT OSGi bundles deployed on local and
remote Fibres can communicate with each other using some
specific strongly typed BRAIN-IoT events delivered in the
asynchronous BRAIN-IoT EventBus [20] according to the
BRAIN-IoT approach. The BRAIN-IoT Nodes are the Service
Fabric Fibres with different BRAIN-IoT Services deployed
on them, they can be of two types: BRAIN-IoT Processing
Nodes and BRAIN-IoT Edge Nodes. The first ones are a
sort of Service Fabric Fibres deploying IoT application logic
and controlling the CPS behaviours through their adaptors
supported by the machine learning algorithms. The latter ones
are Fabric Fibres with the installed edge components deployed
on the top of them. BRAIN-IoT Fabric allows users to label
the BRAIN-IoT nodes, thus to guide where the BRAIN-IoT
service, satifying the required capabilities, should be deployed
at runtime. The BRAIN-IoT architecture allows the dynamic
redeployment of 1) new functionalities for enhancing/extend-
ing the behaviour of robots according to external events. 2)
specific behaviours to new ”virgin” robots, which might be
needed to extend the fleet of robots or replace demaged/low
batteries ones. Each ROS Edge node can be considered as
an access point or an adaptor to ROS-based CPS, to allow

49

Fig. 1. ROS Edge Node structure

heterogeneous IoT applications running on the processing
nodes to control the robots. In the BRAIN-IoT platform, the
authors’ contribution is to develop the ROS Edge Node as
OSGi Declarative Service, so that from the northbound it can
receive the interested BRAIN-IoT events from other different
IoT platforms in a distributed environment, then construct the
data and send to the connected ROS environment. Therefore,
any new functionalities for enhancing/extending the behaviour
of robots according to external events can be developed using
OSGi instead of ROS. From the southbound, the ROS Edge
Node is able to retrieve the information from ROS and inject
to the BRAIN-IoT Fabric as BRAIN-IoT events, which will be
received by other BRAIN-IoT services. The ROS Edge Node
aims to achieve the interoperability between heterogeneous
IoT applications integrated within BRAIN-IoT platform and
the ROS-based CPSs. It exposes the ROS functionalities as
OSGi services.

The architecture of ROS Edge Node is shown in Fig.1. For
its development and validation, the authors have used the ROS
simulation for BRAIN-IoT service robotic use case provided
by the Robotnik Automation S.L.L. (see Section IV). The
ROS Edge Node has two main requirements: i) to expose
all the relevant ROS functionalities as OSGi services (task
done by OSGi Service Component). The objective is to make
the adaptor able to interoperate with the ROS environment
leveraging APIs provided by the open source Rosjava project,
in this way, the adaptor is able to send/receive the ROS
request/response messages from/to the ROS services and pub-
lish/subscribe to the ROS topics between the OSGi world and
ROS world. ii) To collect and format of the BRAIN-IoT events
from different sources based on the Publish-Subscribe pattern5

(task done by BRAIN-IoT Robot Service). The adaptor receives
the events from heterogeneous platforms in the distributed
BRAIN-IoT Fabric environment and constructs them as Java

5https://en.wikipedia.org/wiki/Publish\%E2\%80\%93subscribe pattern

objects representing ROS messages, then transforms to ROS
environment through the exposed OSGi services. In contrast,
the adaptor also retrieves the ROS messages from the native
services/topics and convert to the BRAIN-IoT events, then de-
liver them in the distributed EventBus. The connectivity with
ROS is configurable through the ROS environment variable
ROS MASTER URI by default whose value is configurable
on-the-fly in order to set up which machine as a ROS master
when a new ”virgin” robot join the fleet of robots.

B. ROS Edge Node Approach

The ROS Edge Node adaptor is further explained in this
subsection, detailing its approach, implementation steps and
the addressed challenges.

1) Abstraction of ROS environment: It aims to address the
interoperability challenge when integrating other IoT devices
in BRAIN-IoT platofrm. As Fig.1 shows, the basic function of
ROS Edge Node is to map the ROS messages to BRAIN-IoT
events and vice-versa. The BRAIN-IoT services interact with
each other by leveraging the Requirements and Capabilities
metadata provided by default by all OSGi Bundles, the events
issued by a source BRAIN-IoT service contains the sufficient
information presenting the Requirements of this service, in the
meanwhile, the events also identify the Capabilities of the sink
BRAIN-IoT services that will consume them.

The ROS Edge Node simply interconnects to the ROS
environment thanks to the RosJava library which provides a
simple interface enabling the ROS Edge Node to automatically
generate a set of Java object classes, which is totally compliant
with native ROS messages’ structure in the ROS environment.
The instances of the classes could be transformed to the ROS
environment. However, it’s not possible to make the BRAIN-
IoT events types the same as the names of the native ROS
messages. For a single robot, there could be hundreds of types
of native ROS messages in the ROS environment and their
data structures are in general very complex, direct mapping
between the ROS messages types and BRAIN-IoT events is
inefficient and will increase the complexity of the usage of the
events for other IoT applications. Also, different robots having
same functions may use completely different types of ROS
messages as commands. In such case, if directly mapping each
ROS message into an event, the difficulty to integrate different
robots in a system will be increased. Thus, some common data
types including necessary information need to be defined and
shared between diverse IoT applications. So it’s necessary for
ROS Edge Node to format the received events into the specific
Java objects that are compliant with ROS messages.

The ROS Edge Node wraps also the native ROS functionali-
ties, exposing them to the OSGi services for heterogeneous IoT
applications’ access, by creating the corresponding ROS ser-
vices and publish/subscribe clients in OSGi bundles, through
the APIs provided by RosJava project. The exposed OSGi
services are a set of java classes containing multiple robot
operations mapped to Java methods. The BRAIN-IoT Robot
Service in Fig.1 is a wrapper of the exposed OSGi services,
with the specific Capabilities information represented by the

50

consumed event types. The ROS Edge Node is responsible
for communicating with other BRAIN-IoT services using
Events. When the robot service receives an event from the
EventBus, it will construct a ROS message in Java type and
perform the corresponding action by calling the exposed ROS
functionalities. Thanks to the BRAIN-IoT solution, the service
will be deployed on the BRAIN-IoT Fabric by the event-driven
mechanism. It’s completely de-coupled from the underlying
BRAIN-IoT Fabric runtime.

2) The Autonomous Operation: As mentioned in Sec-
tion II-C, supporting autonomous operation is one of the
challenges for a CPS adaptor. In the ROS Edge Node, the
autonomous operation is fully supported by a feedback mech-
anism: the ROS Edge Node is responsible for continuously
querying the execution status of CPS where it is installed
and then to issue an response event if the status changes.
This allows building services, which leverage the ROS Edge
Node, which are “smarter” and reducing the communication
workload on the EventBus,(see Fig.6 in Section IV).

3) Automatic Adaptation and Standards Compliant: This
is a usual task that needs to be supported by such type of
solutions. For ROS-based devices, this challenge is addressed
by ROS Edge Node. As mentioned above, the exposed service
components are a set of java classes containing multiple
methods for robot operations. The operations are done through
ROS services/topics clients in Java code via simple API
provided by RosJava library. Normally, when developers create
the java clients for the used native ROS functionalities, the java
clients could be grouped in one or more Java classes for better
organization.

Since the services or topics and their related methods in a
component class have the same structures, the authors achieve
to automatically realize the adaption by creating a Code
Generator to automatically generate the OSGi service classes
from a predefined configuration file as the input. Since all
entities in ROS-based CPS communicate through services and
topics, the authors choose to use the W3C WoT TD, which
is a general standard for both integrating diverse devices and
interoperability of diverse applications to describe the ROS
functionalities. In the proposed solution, WoT TD describes
the interfaces for OSGi to expose the ROS services and topics.
In this way, a standard approach is used to describe the ROS
API and to generate the corresponding OSGi services, this
allows to have a solution WoT integration-ready and highly
reusable. The ROS functionalities are compliant with TD
specification: 1) the topics are as Properties Interaction Af-
fordances 2) the services are described as Actions Interaction
Affordances.

For a ROS service, the part of TD file is shown as Fig.2.
More specially, there could be a set of ROS services described
in the Actions element, and for each of them, the informa-
tion will include serviceClientName, serviceName, service-
Type, serviceRequestType, serviceResponseType and Class-
Name, which are used by the Code Generator to create
service clients in OSGi world. The Code Generator uses the
ClassName property to generate multiple component classes

Fig. 2. Thing Description of ROS Environment

Fig. 3. Expose of ROS Environment to OSGI Services Using WoT TD

for different types of robot functionalities, and each component
can contain multiple service clients and the different operations
could be done through the methods called by each client. The
values of other properties will be used as the arguments of the
generated methods. Similarly, the ROS topics will be described
in the Properties element, including the information about
Role, ReferenceName, TopicName, TopicType, MessageType
and ClassName. The value of the Role property could be
publisher or subscriber, so the corresponding client type
will be created with the client name equal to the value of
ReferenceName.

To automatically expose relevant ROS functionalities and
speed up the ROS Edge Node development for the ad-hoc
ROS platforms, A code generator is provided to generate the
artefacts automatically by taking the TD as a configuration
file, to describe the ROS services and topics, as shown in
Fig.3, which is demonstrated in Fig.5 in Section IV. This
approach greatly reduces the dependence for developers in the
process of adapting to different ROS-based CPSs, increasing
the development simplicity. Developers can therefore focus
more on the development of BRAIN-IoT services rather than
on adaptation work.

51

Fig. 4. Warehouse simulation

IV. USE CASE DEMONSTRATION

In this section, a brief description of ROS simulation
used for the Brain-IoT Service Robotic Use Case and the
result obtained evaluating the cross-platform communication
mechanism using it are presented.

A. Use Case Introduction

Smart warehouse is a popular application of Industry 4.0.
The basic elements of a smart warehouse include AMR,
heterogeneous IoT devices and cargo carts. To be “smart”,
these elements need to interact and cooperate with each other.
The use case aims to realize one of the basic function of smart
warehouse: the cart movement. The Fig.4 shows the warehouse
with three zones in 3D perspective in Gazebo simulator: a
docking area, a unloading area and a storage area. The last
two zones are separated by an automatic door, which is an
IoT device. There are three rb1 base robots (robot1, robot2 and
robot3) in the docking area responsible for moving all carts to
the storage area. In the unloading area there are 3 carts (cart1,
cart2 and cart3) and each has a different QR code attached.
The storage area is divided into three sub-zones (zone A, zone
B and zone C). The robots need to pick up these carts from
the unloading area, pass through the door and place them in
the storage area according to the received commands from the
robot application.

B. Robot System Design

In order to demonstrate how the adaptor bridges the ROS
environment and the OSGi environment, the authors imple-
mented a simple multi-agent robot system based on OSGi to
control the simulated robots.

The system contains three system parts: a Robot Behaviour
Service, a ROS Edge Node Service and a Door Edge Node
Service. There are several tables storing the coordinates of
the carts and the storage positions will be used as the shared
resources among three robots. In the ROS simulation, the basic
task for each robot is that starting from the docking area, it
needs to go to the picking area for picking up a cart, then pass
through a door to the storage area and finally place the cart,
the procedure is controlled by the Robot Behaviour Service.

Fig. 5. Method Blocks of Automatically Exposed ROS Services from TD file

The new functionalities for enhancing/extending the behaviour
of robots according to external events can be dynamically
upgraded and redeployed in the BRAIN-IT architecture. Based
on that, the authors define the events in three types: action,
query and cancellation. The events in action type includes
WriteGoTo, PickCart and PlaceCart, which present the basic
functions of the robot. There are also other events defined for
querying the execution status of corresponding actions and for
cancelling current actions.

In the use case, there are three services related to the
WriteGoTo action event, a WoT TD file is defined for the com-
munication with the robotic system, the code generator using
the TD as input will automatically generate the class named
GoToComponent as shown in Fig.5 by using the open source
JCodeModel library which is a Java code generation library.
Specifically, according to the ROS functionalities described
in the TD, there are three ROS service clients (e.g. gotoRun,
gotoCancel, gotoQuery) will be created in the generated class.
when the ROS Edge Node receives an event, the corresponding
construct XXX Msg method representing the operation of the
client will be called to construct a Java object representing the
ROS message as a ROS service request to be sent to the native
ROS environment through the call XXX method of the service
client, where the XXX stands for the name of the service client.

The Robot Behaviour Service continuously checks the
shared tables to get a task and then it controls the robots
through a sequence of BRAIN-IoT events to finish the mission.
The events will be received by the ROS Edge Node Service
and sent to the connected robot. As an example shown in Fig.6,
after the ROS Edge Node receives a WriteGoTo event from the
Controller Service containing the coordinates where the robot
should go, with the autonomous operation of the ROS Edge
Node, only twice communications are needed between the
Controller Service and the ROS Edge Node, one for sending
the action command, while the other one for receiving the
action result. When the robots detected a door on the way
to the storage area, it reports the situation and the Robot
Behaviour Service will instruct the Door Edge Node Service
to open the door.

52

Fig. 6. Communication Procedure of “WriteGoTo” action for ROS Edge Node

Fig. 7. Deployment of Robot System in the distributed BRAIN-IoT Fabric

In the test, the robot system above is deployed on a dis-
tributed Fabric environment containing multiple Raspberry Pis
and one Linux server running the ROS simulation as BRAIN-
IoT nodes in a same network. The Linux server is labeled
in advance when BRAIN-IoT Fabric cluster is created and the
ROS Edge Node Service is automatically deployed on it when
the label is detected. Since there are three simulated robots,
three instances of the ROS Edge Node Service instantiated
by OSGi Configuration Admin Service Specification [5] to
connect to the robots through IP address, the interested events
will be delivered to the ROS Edge Node through the integrated
EventBus. In the multi-agent system, each Robot Behaviour
Service instance will control one robot to take a task from
the shared table, after one task is finished, it will start next
iteration. In this case, the deployment of Robot Behaviour
Service and the ROS Edge Node Service in the real physical
environment can be shown as Fig.7. Meanwhile, The door
in the simulation environment is a IoT device controlled by
the Door Edge Node Service, which is simulated in the ROS
environment.

C. Validation in Simulation Environment

When the multi-agent robot system is activated, each Robot
Behavior Service instance will check the shared cart table to

find the pending tasks. When a cart to be moved is found in
the table, Robot Behavior will change the status of the cart
to moving and start the moving procedure. Robot behaviors
will deliver a sequence of events to the corresponding ROS
Edge Node one by one to command the robot to move to cart
position, pick up the cart, move the cart to specific position
in the storage area and finally drop the cart. When ROS Edge
Node receives an event, it extracts the information contained
in the event, constructs a ROS message in Java type, and com-
municates with the robot through the exposed OSGi services.
ROS Edge Node is responsible for continuously querying the
execution status from the specific ROS service/topic, when the
action of an event is finished or something wrong happened,
a feedback event will be issued to inform the Robot Behavior
to ask for the next action. During the moving procedure, if
the door is closed, it will scan the QR code of the automated
door, and return a DoorFound event to the Robot Behavior.
The Robot Behaviour will send a OpenDoor event to the Door
Edge Node service to open the door.

After finishing the moving procedure, the Robot Behavior
Service will change the status of the cart to moved in the table
and search for the next mission. Finally all carts are moved in
ROS simulation.

D. Validation in Physical Environment

To prove the feasibility of the approach proposed in the
paper, ROS Edge node has been installed on a real rb-1 base
mobile robot. Due to the difference of the simulated world
and the physical world, the autonomous robotic system is not
used in the physical environment, but authors implemented
an Orchestrator service, which provides a simple interface
for users to manually send a sequence of BRAIN-IoT events
including the coordinates to control the actions of the robots in
a physical environment. The Orchestrator is implemented as a
OSGi Declarative Service and it injects a sort of commands in
the Apache Felix Gogo 6, which is a subproject of Apache Fe-
lix implementing a command line shell for OSGi, which could
be accessed via its web interface in a distributed BRAIN-IoT
Fabric environment. When a user enters the command in Gogo
shell, the corresponding method in the Orchestrator will issue
a specific event to EventBus. The Orchestrator service could
be installed on any BRAIN-IoT node. Finally, ROS Edge Node
is able to receive the events and the robot will move towards
to the target positions.

V. CONCLUSION AND FUTURE WORK

The paper has presented the ROS Edge Node, which enables
the interoperability between the ROS-based CPS applications
and other heterogeneous IoT platforms in a sophisticated IoT
software ecosystem, based on the available services in BRAIN-
IoT framework. This solution provides several innovative
features, to ease such interaction. Firstly, it can be dynamically
deployed and flexibly scaled on demand to connect to multiple
ROS-based CPSs at runtime whenever a new CPS joins the

6https://felix.apache.org/documentation/subprojects/apache-felix-gogo.html

53

cluster. Secondly, it provides an approach to automatically
expose the ROS functionalities as OSGi services for bridging
the ROS world and OSGi world. Thirdly, ROS Edge Node
maximizes the flexibility of the mechanism by supporting
customized autonomous operation to detect the changes of
action status and issue feedback events, thus greatly reduces
the communication load on EventBus and its dependence
on other system components. Finally, the use of WoT TD
standardizes the description of the ROS functionalities.

Compared with the existing CPS middleware or IoT middle-
ware, the proposed solution presents several advantages, but
some further developments are still ongoing. The integration
with the BRAIN-IoT End-to-End Security Framework are
still under development. Besides, its functionalities will be
enriched more, such as the graphical monitoring of robot status
and the warehouse coordinates at runtime by integrating with
other BRAIN-IoT monitoring tools. ROS Edge Node will be
tested on the real robots with a more complex Robotics use
case and the performance will be compared with other existing
solutions, in the future work.

ACKNOWLEDGMENT

The work presented here was part of the project ”Brain-IoT-
model-Based fRamework for dependable sensing and Actua-
tion in iNtelligent decentralized IoT systems” and received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 780089.

The simulation environment is provided by Robotnik Au-
tomation S.L.L.

REFERENCES

[1] N. Boulila, “Cyber-physical systems and industry 4.0: Properties, struc-
ture, communication, and behavior,” 04 2019.

[2] S. Barai, M. K. Kundu, and B. Sau, “Path following of autonomous
mobile robot with distance measurement using rfid tags,” in 2019 IEEE
International Symposium on Measurement and Control in Robotics
(ISMCR), 2019, pp. A3–4–1–A3–4–4.

[3] nud Lasse Lueth, “Iot platform companies landscape
2019/2020: 620 iot platforms globally,” https://iot-analytics.com/
iot-platform-companies-landscape-2020/, December 2019.

[4] D. Conzon, M. R. A. Rashid, X. Tao, A. Soriano, R. Nicholson, and
E. Ferrera, “Brain-iot: Model-based framework for dependable sensing
and actuation in intelligent decentralized iot systems,” in 2019 4th
International Conference on Computing, Communications and Security
(ICCCS), 2019, pp. 1–8.

[5] O. Alliance, “Osgi core release 7,” OSGi Alliance, Tech. Rep., Apr.
2018.

[6] https://docs.oracle.com/middleware/1212/wls/WLPRG/overview.htm#
WLPRG107.

[7] G. Di Modica, F. Pantano, and O. Tomarchio, “Snps: An osgi-based
middleware for wireless sensor networks,” 09 2013, pp. 1–12.

[8] https://projects.eclipse.org/proposals/eclipse-sensinact.
[9] https://www.w3.org/TR/wot-architecture/.

[10] “Community metrics report,” http://download.ros.org/downloads/
metrics/metrics-report-2019-07.pdf, July 2019.

[11] M. Aragão, P. Moreno, and A. Bernardino, “Middleware interoperability
for robotics: A ros–yarp framework,” Frontiers Robotics AI, vol. 3, p. 64,
2016.

[12] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot
platform,” International Journal of Advanced Robotic Systems, vol. 3,
03 2006.

[13] R. Arrais, P. Ribeiro, H. Domingos, and G. Veiga, “Robin:
An open-source middleware for plug‘n’produce of cyber-physical
systems,” International Journal of Advanced Robotic Systems, vol. 17,
no. 3, p. 1729881420910316, 2020. [Online]. Available: https:
//doi.org/10.1177/1729881420910316

[14] A. Pletsch, “Codesys eases programming for multiple controls hard-
ware,” vol. 50, pp. 34–35, 06 2004.

[15] A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos,
“Mining the usage patterns of ros primitives,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 3855–3860.

[16] N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, and I. Jawhar, “Mid-
dleware challenges for cyber-physical systems,” Scalable Computing.
Practice and Experience, vol. 18, no. 4, pp. 331–346, 2017.

[17] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware solutions
for the internet of things,” pp. 21–26, 2012.

[18] N. Rosa, D. Cavalcanti, G. Campos, and A. Silva, “Adaptive middleware
in go - a software architecture-based approach,” J Internet Serv Appl 11,
3 (2020), 05 2020.

[19] T. Tomlinson and J. VanDyk, “Xml-rpc,” 01 2010.
[20] R.Nicholson, T.Ward, D.Baum, X.Tao, D.Conzon, and E.Ferrera, “Dy-

namic fog computing platform for event-driven deployment and orches-
tration of distributed internet of things applications,” pp. 239–246, 2019.

54

REPLICA: A Solution for Next Generation IoT and
Digital Twin Based Fault Diagnosis and Predictive

Maintenance
Rosaria Rossini, Davide Conzon, Gianluca Prato,

Claudio Pastrone
IoT and Pervasive Technology Area

LINKS Foundation
Turin, Italy

{name.surname}@linksfoundation.com

João Reis, Gil Gonçalves
SYSTEC, Research Center for Systems and Technologies

Faculty of Engineering, University of Porto
Porto, Portugal

{jpcreis , gil}@fe.up.pt

Abstract—Nowadays competitiveness goes through several as-
pects: digitalization, productivity and environmental impact.
Technology is advancing fast and helping industries to obtain
more and more detailed data about their processes and equip-
ment. In fact, the possibility to monitor and control each part
of the process is a strong base on which a more intelligent
and focused control can be built. Technology advance brings
innovation and the possibility to manage the production in
terms of ”near future” through AI prediction and decision-
making support. Forecasting demands and planning production,
optimizing process by reducing costs and improving efficiency
without corrupting the quality of the product is a big challenge
at the plant level. In this paper, a flexible, scalable architecture
for intelligent digital twin realization called REPLICA has been
proposed to cope with such problem and help industries to
advance and discover possible optimizations. This architecture
sits on top of two European projects, namely CPSwarm and
RECLAIM, where their contribution focus on distributed sim-
ulation and optimization, and Adaptive Sensorial Networks,
correspondingly. As a validation process, a hypothetical use case
is presented, detailing the key differentiating points and benefits
of the proposed architecture.

Index Terms—IoT, Digital Twin, AI, Fault Diagnosis, Predictive
Maintenance

I. INTRODUCTION

In the era of Industrial Internet of Things (IIoT) and Industry
4.0, complex electromechanical systems can be equipped with
a variety of sensors providing new opportunities for the
development of Health Monitoring and Management Systems.
These new opportunities target an optimum exploitation of
available information in order to maximize the performance
of the machinery and optimize the process. Focusing on the
increase of production reliability and safety, as well as on the
reduction of costs, there is an ever increasing industrial need
not only for accurate and on time online diagnostics, but also
for a robust and early estimation of the Remaining Useful Life
(RUL) of the defected components, within a high confidence
interval, independent of the operating conditions.

For this reason, and many others, a new concept of ’inter-
action’ with the process arose; a concept of controlling and

monitoring a replica instead of the real object, a perfect virtual
replica that interacts with both humans and machines: a Digital
Twin. The concept of “twin” is originally derived from Na-
tional Aeronautics and Space Administration (NASA)’s Apollo
Project when the aircraft’s twin body was a real physical
system [1]. Twin models help astronauts and staffs make
decisions under emergency situations. Digital twin integrates
the life cycle of a machine [2], and achieves a closed loop
and optimisation of the machine design, production, operation,
and maintenance, etc. In Magargle et al. [3], a multi-physical
twin model is built to monitor the status of the brake system
through multiple angles. NASA hopes to realise the health
management and residual life prediction of the aircraft by
building a multi-physical, multi-scale Digital Twin model [4],
furthermore serveral roles are envisioned for Digital Twin in
the industry 4.0 scenario [5].

The present paper focuses on the proposition of an intel-
ligent digital twin architecture called REclaim oPtimization
and simuLatIon Cooperation in digitAl twin (REPLICA), that
focuses on two important aspects: 1) plug’n’play of models
on demand and 2) Workflow design to orchestrate the models
used in the Digital Twin itself. Aspect (1) aims to ease
the integration and removal of models into digital twins,
whenever a new version of the software is available or it
performs any necessary correction in the used models. The
goal of the latter aspect is dedicated to the creation of a
pipeline that can manage the flow of data among all the
available models. These models might be from pure data
processing and decision making, from sensor and actuator
integration, to third party synchronization with information
systems such as Manufacturing Execution Systems (MES)
or Enterprise Resource Planning (ERP). Most digital twins,
and in particular intelligent digital twin architectures focus
on providing the best set of models that one should have
to accomplish, e.g. predictive maintenance, from the type of
simulation required to machine learning models that should be
refined based on newly acquired data. Furthermore, REPLICA
can allow a flexible and distributed deployment in such a

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

55

way that both completely cloud or mixed edge/cloud solutions
deployment are accepted, with respect to the need of the
specific application.

However, these architectures are normally rigid and do not
support changing software models or even easily set up the
orchestration of those resources. Fixed data flows are generally
hardcoded, meaning that if an implementation needs to be
modified, changes in code are required. This is often not
recommended since these changes might negatively influence
the stability of the system. To this intent, an architecture that
addresses these challenges is presented.

The paper is organized as follows: in Section II, the authors
introduce a literature review about predictive maintenance and
fault diagnosis based on digital twin. Complementary, Section
III presents the core technologies of the solution presented
in this paper. Section IV describes the architecture of the
solution proposed and Section V presents a first prototype
implementation followed by Section VI in which a possible
application is described. Finally, Section VII concludes the
paper by summarizing and discussing the work.

II. LITERATURE REVIEW

With the rapid advancement of Cyber-Physical Production
Systems, Artificial Intelligence (AI) and IIoT, Digital Twin
(DT) has gained increasing attention due to its capability to
adapt and replicate the industry processes. Accordingly to
these changes, many different DT architectures have been pro-
posed to realize several use cases in an intelligent and complex
production system. Industrial AI [6] brings to the processes
self-aware, self-adapt, and self-configure functionalities and
facilitates the integration of the DT.

In [7], the authors propose to insert an intelligent DT in
the Cyber Layer architecture. The concept has been partially
realized with two industrial use cases, namely a modular pro-
duction system as well as a metal forming industrial process
to show its potential and gains over the challenges in Cyber-
Physical System (CPS), i.e., synchronization throughout the
lifecycle of a cyber-physical production system; development
of the DT, which can contain different models; the interac-
tion between DT, both for the purpose of co-simulation and
operation data exchange; and the active data acquisition.

In [8], the authors present a methodology for enabling
DT using advanced physics-based modelling in predictive
maintenance. This methodology for advanced physics-based
modeling aims to enable the DT concept in predictive main-
tenance application and consists of two main points: digital
model creation and DT enabling. Then, the user is able to
define, create and utilize the digital model of a resource, as
well as its DT. The integration of DT and deep learning in CPS
environment has been also proposed in [9] for the development
and realization of smart manufacturing.

In [10], the authors present solutions for fault diagnosis
based on DT. The paper includes an experiment and interesting
results obtained with the software proposed. Compared to
the solution presented in this paper, this work has a limited
flexibility since it is only suitable for fault diagnosis.

In [11], [12] and [13], the authors show how it is possible
to build a DT of machines and systems of systems to allow
autonomous smart manufacturing, but these works, while
interesting, are not specifically presenting a solution for fault
diagnosis and predictive maintenance.

The authors of [14] introduce a solution for predictive main-
tenance of computer numerical controlled machines, based
on DT. They demonstrate how the exploitation of a DT for
predictive maintenance can provide better results compared to
more traditional approaches. Even if this work provides a good
example of application of DT for predictive maintenance, it
doesn’t aim to present a solution that can be leveraged in other
scenarios.

In this paper, the authors intend to propose a novel ar-
chitecture that supports several features missing in the other
solutions presented above. Specifically, the proposed solution
is not based on a set of fixed components but it can integrate
heterogeneous modules, in terms of Internet of Things (IoT)
sensors, AI algorithms and simulation tools, easing its cus-
tomization in different use-cases. Furthermore, thanks to the
flexibility guaranteed by the distributed nature of the system,
the setting-up of the platform can easily be adapted to the each
specific industrial infrastructure, selecting the most suitable
mix of edge/cloud deployed components.

Moreover, the proposed architecture can support the creation
at runtime of workflows both among the AI modules as well
as between the IoT sensors and the models. This drastically
reduces the time needed to run and collect results from the
AI algorithms. In these terms, a possible process optimization
can be quickly evaluated and eventually discarded if not
appropriate. Finally, all the entities (sensors, AI modules and
simulators) can be substituted following a plug&play approach
that ease the adaption of the system to the changes in the
physical world.

III. CORE TECHNOLOGIES

A. RECLAIM platform

Following the industry 4.0 paradigm, the business models
of manufacturing companies need to be transformed, resetting
their strategies to improve productivity and quality. The current
maintenance strategies often require the user to manually
analyse data collected to extract useful information from them
and, furthermore, periodic human inspection is required to
assess the real condition of the assets monitored.

Currently, the lack of continuous operation and health status
monitoring tools and predictive maintenance solutions lead
to unpredictable situations in industry like sudden machine
operation failures. In this case, the current common procedure
is to ask the intervention of technicians, which then try to
repair and solve the problem. This causes several problems:
it is time-consuming; it leads to production delays since the
machine is stopped until it is not repaired; it doesn’t support
resources distribution. The industry 4.0 paradigm goes in the
direction to address such problems through different actions: 1)
re-manufacturing systems for material and resource efficiency,
2) increased flexibility in changing machine operation purpose,

56

3) application of big data analytics techniques, and 4) pre-
dictive analytics and model-based forecasts and optimization
procedures, based on completely data-driven processes.

These four suggestions have been the funding principles
of the RE-manufaCturing and Refurbishment LArge Industrial
equipMent (RECLAIM) concept definition. The main objec-
tive of the project is to increase productivity, extending the
lifetime of the machines and reducing the time and cost of
machinery refurbishment and/or re-manufacturing. This objec-
tive will be achieved designing and developing a set of tools
supporting several activities: from the monitor of machines’
health status, to the implementation of adequate recovery
strategy (e.g., refurbishment, re-manufacturing, upgrade, main-
tenance, repair, recycle, etc.). To achieve this, the RECLAIM
outcomes will include two main components: an Adaptive
Sensorial Network used to collect data and a Decision Support
Framework (DSF) for optimization based on different criteria.
Specifically one of the technologies supporting the DSF is the
proposed REPLICA where simulation and optimization is used
for fault diagnosis. The Adaptive Sensorial Network is one of
the key elements to be used in the proposed architecture and
is seen as an entry point for the essential data to be used.

B. CPSwarm Simulation and Optimization Environment

As indicated in [15], the CPSwarm Workbench - the set
of tools released by the project for the development of CPS
swarms applications - includes also a Simulation and Opti-
mization Environment, used to evaluate the performance of
a swarm solution. Such solution is composed mainly by: the
Simulation and Optimization Orchestrator (SOO), which over-
sees the simulation and optimization tasks; a set of Simulation
Managers (SMs), which provide common Application Pro-
gramming Interface (API) to control heterogeneous Simulation
Tools (STs); and an Optimization Tool (OT) used to perform
the optimization processes. The network-based architecture is
depicted in Fig. 1.

Fig. 1. Network-based Architecture from CPSwarm for Distributed Optimiza-
tion and Simulation.

Such environment is useful both to simulate the behaviour
of a designed swarm solution in a ST, leveraging the ST’s
Graphical User Interface (GUI) to evaluate its behaviour; and,
on the other side, to optimize the controller parameters of
algorithm/module, and possible aspects of the problem, i.e., the

number of CPSs used, leveraging evolutionary design method-
ologies. In the latter case, candidate parameter sets are ranked
based on a fitness score computed after the controller was
executed with those parameters in a predefined environment.
Successful parameter sets are then adapted to produce a new
generation of candidates to be tested. This is a high time- and
resource-consuming process, which requires a high number of
simulation runs. To address this, the CPSwarm solution allows
to parallelize the execution of these simulations, reducing the
times required to complete an optimization. For this objective,
the Simulation and Optimization Environment has a network-
based architecture, allowing to parallely use a set of STs
distributed on different machines [16]. This architecture has
been implemented leveraging the eXtensible Messaging and
Presence Protocol (XMPP) protocol, already tested executing
multiple simulations on Robot Operating System (ROS)-based
STs, i.e., Stage, Gazebo and Virtual Robot Experimentation
Platform (V-REP). In the last release of the software (available
as open-source on github1), a set of technologies have been
integrated to improve its scalability and easy-to-use, i.e.,
docker and Kubernetes. Such final release has been tested,
showing that it is able to scale till 128 SMs and that the time
required to complete one optimization is inversely proportional
to the number of STs used. Finally, a proof of concept has
demonstrated the ability to deploy the controller with the
optimized parameters onto CPSs.

The concept of distributed simulation and optimization
is brought to the proposed REPLICA architecture by the
CPSwarm results and the whole orchestration process and
main building blocks are inspired by this project.

IV. ARCHITECTURE

This section introduces the REclaim oPtimization and sim-
uLatIon Cooperation in digitAl twin (REPLICA) architecture
that has been designed to provide an infrastructure and be
used for Digital Twin-based fault diagnostics and predictive
maintenance solutions, which can be easily deployed and
customize in different Industrial IoT environments.

REPLICA is composed by several modules (shown in
Figure 2), mainly subdivided in two blocks: Backend and
Frontend. The first one contains three main components:
Artificial Intelligence (AI) Environment that hosts the AI
modules, Digital Twin Orchestrator (DTO) that is used to
orchestrate the operations done by the REPLICA and the Sim-
ulation Environment that is a distributed environment includ-
ing several heterogeneous simulators deployed into different
machines. The latter one instead contains two applications:
one devoted to show the results obtained and another one for
the configuration of the component. These modules will be
described in the remainder of this section.

As explained in Section I, the DT concept concerns the
integration of three main components: the data collected by
IoT sensors; the realistic models of the real devices and the

1https://github.com/cpswarm/SimulationOrchestrator/wiki/Simulation-and-
Optimization-Environment

57

Fig. 2. REPLICA Architecture.

synchronization with those using the data collected; and a set
of AI modules connected to these models. REPLICA fully
supports this concept, providing the infrastructure to integrate
these technologies.

In REPLICA, the Digital Twin Orchestrator (DTO) is the
module in charge to manage all the IoT data flow coming from
the field: machinery data, historical data and other data from
legacy systems already present in the shop-floor. As described
in Section III, these data are flowing through a component
of the RECLAIM platform, the Adaptive Sensorial Network.
Furthermore, the DTO is in charge to create the correct flow
among the AI modules running in the AI environment and
the machine models running in the Simulation Environment.
Finally, the DTO oversees the storing and organization of
the processed and simulated data, which are saved in a local
database.

In REPLICA every machinery of interest has a corre-
sponding realistic model running in one of the simulators
integrated in the Simulation Environment. Specifically, the
Simulation Environment is a distributed environment based on
the one presented in Section III-B. Similar to what has been
presented for the original solution about swarm intelligence,
the environment supports a set of heterogeneous simulators
distributed in different machines. Each of these simulators
is wrapped by a Simulation Manager, and the role of this
component is to abstract the functionalities provided by the
simulators using the standard API exported by the DTO. In
this way, the DTO can: 1) control the simulators to run the
required simulations; 2) inject the data needed to keep the
models synchronized with the real machines; 3) inject in the

simulators data produced by the AI algorithms (for example to
simulate failures); 4) receive from the simulators the produced
results. Finally, the Simulation Environment supports for each
integrated simulator one advanced Simulator GUI that allows
to monitor the simulated device. This GUI is the one integrated
in the simulator, which provides a graphical representation
(also 3D) of the simulated device.

Finally, in REPLICA the AI algorithms are hosted and
executed in the AI Environment. This environment allows to
host and run heterogeneous algorithms for fault diagnosis and
predictive maintenance. Besides the algorithms, the environ-
ment also hosts a module called AI engine. This module has
the objective to orchestrate the algorithms creating the needed
workflows among them. Furthermore, the AI Engine uses the
API provided by the DTO to interconnect the AI modules with
the machine models and the data coming from the shop-floor.

The architecture is completed by the two interfaces in the
Frontend: the OutputMonitor GUI is used to monitor in real
time the results produced by the running solutions in a user
friendly interface. Instead, the Configuration GUI is leveraged
by the users of the system to configure the AI engine for the
needed tasks.

The proposed architecture aims to provide the following key
features: 1) Allowing the integration of heterogeneous compo-
nents in terms of sensors data collected from the field, AI algo-
rithms and simulators running accurate machine models in the
shop-floor; 2) Supporting the creation at runtime of workflows
not only among both AI modules and the IoT sensors, but also
among themselves; 3) Supporting the plug&play at runtime
of the IoT sensors, the AI modules and machine models,
without the need to restart the system; 4) Easing the adaptation
of the digital twin to the changes in the physical world; 5)
Enabling a flexible and distributed deployment: supporting
both completely cloud or mixed edge/cloud solutions, based
on the need of the specific application.

A first partial implementation of the proposed architecture
and a set of possible future works for the part not yet
implemented is presented in the next section.

V. PRELIMINARY IMPLEMENTATION AND FUTURE
PROSPECTS

This section presents the first prototype of the proposed
architecture. The solution is a combination of newly developed
components and the evolved version of components already
developed in previous European Union (EU) projects. For
the new components, this section will introduce only some
possible technologies that the authors are evaluating and
testing so far to leverage and implement the architecture, while
for the existing components a more concrete implementation is
presented. More specifically, the software already implemented
is one algorithm for predictive maintenance, one for fault
diagnosis and a distributed simulation environment already
developed in CPSwarm, while the components yet to be
implemented are the AI environment, the AI engine, the DTO,
the Configuration GUI and the OutputMonitor GUI.

58

The authors have chosen to base the AI environment on a
docker container based solution. Each predictive maintenance
and fault diagnosis algorithm will be wrapped in one container.
In this way the AI environment will support the integration of
AI modules based on different technologies.

Two examples of solutions currently supported in the AI
environment are the fault diagnosis and predictive maintenance
modules presented in Fig. 3 and 4. The fault diagnosis module
is composed by techniques to find abnormal behaviors that
deviate from normal process conditions to raise warnings
and find root causes for the problem. This algorithm will be
fed directly with sensor data (when possible and pertinent)
or transformed data from the field in order to be more
interpretable. Based on the analysis of data streaming, the
algorithm should indicate if a warning should be sent to the
key personnel to check the system. This algorithm is the first
front-line of analysis from shop-floor components in order to
understand machine’s health.

Additionally, the predictive maintenance module is com-
posed of 1) a component failure prediction in the future
(e.g. 48h and which maintenance action should take place);
2) Optimization module for scheduling future maintenance
actions based on the existing scheduling; 3) Simulation module
that aims at assessing the impact of changes in the machine
and shop-floor [17]. The main idea of this method is to predict
what kind of maintenance and when it will be required based
on the failing component in the machine. With this, it will be
possible to understand what changes need to be done in order
to compensate the downtime of the failing machine.

As can be seen from Figure 3, the implementation already
follows a block based approach which allows a better flexibil-
ity once building the required data workflows among models.
For this particular case, the Dynamic INtelligent Architecture
for Software MOdular REconfiguration (DINASORE) [18]
platform was used, which is a run-time environment devel-
oped in python language for the International Electrotech-
nical Commission (IEC) 61499 standard [19] and integrated
with the Eclipse based Framework for Distrubeted Industrial
Automation and Control (4DIAC) Integrated Development
Environment (IDE) [20]. Moreover, this implementation does
not only allow for the orchestration of models, but also the
plug&play of such models in a distributed system, where
software can be reconfigured on-demand. This supports both
completely cloud or mixed edge/cloud systems, depending on
the required application and the number of machines available
for execution. Finally, since DINASORE is implemented in
python, the state of the art implementations of AI can be
promptly used.

For the implementation of the AI Engine that interconnects
the AI modules, the authors have already evaluated several
solutions. One is the possibility to run the modules in a
docker environment, making them read and write from text
files located in specific folders and then interconnect them
through a software that allows to handle the workflow, e.g.,
Node-red or NiFi. Another evaluated solution is the possibility
to use Acumos AI to implement the AI environment; in this

case, the deployment of the containers, the interconnection of
the components and the workflow will be handled by tools
included in the framework. At the moment of writing, the
final solution to be used is still under evaluation and the
authors are investigating if Acumos AI satisfies all the needed
requirements of the AI environment, particularly focusing on
the possibility to add and remove AI modules at run-time and
the dynamic change of their interconnections to create new
workflows.

For the implementation of the DTO and the Simulation En-
vironment, the Simulation and Optimization Environment so-
lutions provided by CPSwarm will be leveraged and extended.
Specifically, REPLICA will incorporate the communication
API based on XMPP and the deployment system, based on
docker and Kubernetes [21]. The use of these technologies will
allow to integrate heterogeneous simulators, to simply deploy
and run the simulations needed on distributed machines, add
and remove at run-time the simulators running different mod-
els. More specifically, in the Simulation Environment, consid-
ering that the solutions proposed in CPSwarm was integrating
only ROS based simulators, new types of simulators, e.g.,
java based simulators, will be included during the RECLAIM
project. For this scope, a specific SM will be developed for the
required simulators and the API will be refactored to support
also these new simulators. Beside the SM, also docker contain-
ers to easily deploy such simulators will be created. Instead,
for the implementation of the DTO, the authors have defined
that the SOO implemented in CPSwarm will be completely
refactored and extended to support the functionalities required
by REPLICA. Additionally, only some of the functionalities
of the SOO will be leveraged, extending them to support
data storage and data analysis features. Finally the DTO will
provide a set of API based on some standard technologies,
e.g., Message Queue Telemetry Transport (MQTT), which will
allow to collect data to be used by the algorithms and to keep
the models updated and synchronized with the physical world.
Thanks to these API, the DTO will be able to collect data
from heterogeneous devices that, in the RECLAIM platform,
are integrated through the IoT Gateway (see Section II). Also
in this case, it will be possible to add and remove devices
at run-time, without the need to restart the system. The new
devices can be immediately used by the solution developed,
just after they have registered themselves.

Finally, for the implementation of the GUI included in the
architecture, the presented modules are in different phases
of development. Specifically, for the Configuration GUI, the
authors have not yet chosen how to implement it and different
solutions will be evaluated, keeping in consideration a thor-
ough integration with the rest of the platform. Instead, for the
Output/Monitor GUI, for the monitoring and assessment of the
results of the algorithms, a simple implementation based on
the work done in CPSwarm is already available. Specifically,
this solution is based on Thingsboard, which has been used
to develop two different GUI: one for process monitoring and
another one for the assessment of results. The first one shows
live data in a chart and allows the monitoring of the process;

59

Fig. 3. Fault Diagnosis algorithm.

Fig. 4. Predictive Maintenance algorithm [17].

the latter one, instead, shows the data in a table, where it can be
sorted by column (one column for each data). These GUIs have
been used in this first implementation, but the possibility to
enhance or completely replace them with something different,
based on the requirements of the solution proposed, will be
evaluated in the future.

VI. RECLAIM USE CASE

The aim of this section is to present a possible application
of the solution presented in this paper, focusing on the predic-
tive maintenance and refurbishment of a large Woodworking
Production Line. The main objective of such use case will be
to show the benefits of the adoption of advanced maintenance
strategies in a large scale industrial scenario.

The selected scenario presents different challenges: firstly,
the need to integrate in a single environment both heteroge-
neous data collected by installed sensors at the shop-floor
and AI modules; together with the realistic models of the
machines, enabling and easing the construction of a shop-
floor’s digital twin. Moreover, the proposed solution will have
to optimize the use of a large industrial equipment providing
novel machine learning solutions able to monitor the current
system status and predict possible failures. In particular, the

exploitation of fault diagnosis and predictive maintenance
techniques based on the use of digital twin will increase
the efficiency of the maintenance activity with respect to the
performance obtained with the traditional methods based on a
fixed schedule and a simple telemetry analysis.

The flexibility and adaptability of REPLICA can be well
demonstrated both during the system setup in the industrial
site and in case of replacement of one machine in the Wood-
working Production Line.

In the first case, when the platform is going to be deployed,
the data collected by the Adaptive Sensorial Network and a
set of AI algorithms for fault diagnosis and predictive main-
tenance developed by different analysts have to be integrated.
Furthermore, to allow the simulation of different operative
scenarios, the realistic models of different machines have to
be imported and executed in one simulator.

Using REPLICA, the effort to make all these components
provided by heterogeneous vendors working together is signif-
icantly reduced, allowing their integration by simply exposing
their inputs/outputs through the REPLICA defined interfaces.
In particular, for the machine simulation, if the simulator used
to execute it is already supported by REPLICA, no further
developments are needed; otherwise only the SM for that
simulator needs to be developed to allow its integration with
the rest of the solution. The same advantage can be considered
also for the AI algorithms: if the ones already integrated
in the AI environment are suitable for the specific case, no
developments are necessary and the platform should be just
configured to enable the correct flow of data among different
components. Otherwise, to integrate a new algorithms, the only
requirement is to implement the inputs/outputs API defined in
REPLICA.

Once all the components are connected, the AI modules can
be trained using the data coming from the Adaptive Sensorial
Network (as it is usually done), but also with data produced
by the simulated machines. The integration of this secondary
source of data not only allows to speed up the training process
(more data available means less time to learn) but also to add
the possibility of using data that are generally more difficult to
collect, such as the one associated with specific failures that,

60

for obvious reasons, are not so common in a real industrial
plant.

The advantages of the REPLICA solution can be further
demonstrated taking into consideration the scenario of a
machines part replacement in the production line which is
already monitored by the system. In this case, the administrator
of the platform needs to update the components used for
the fault diagnosis and predictive maintenance to reflect the
new situation on the field. In a traditional system, this is a
process that requires a complete shutdown of the system in
order to setup and reconfigure it; instead, by using REPLICA
the process is fast and mainly automatic. Indeed, for the
replacement of the simulation models, this can be done just
removing the old simulator and instantiating a new one with
the updated model, taking advantage of the integration of
the solution with Kubernetes. Once the updated simulator
is instantiated, the same process can be applied to the AI
algorithms, which can replace the previous ones. All these
updates can be done without the need to interrupt the execution
of the system. Obviously, if this change requires the integration
of some new AI modules or the development of a new SM,
these have to be implemented in advance. Also the workflow
of the components need to be updated to interconnect the new
ones, and can be done simply by using the tools provided
by AI engine and DTO. These will automatically update the
workflow to reflect the status of the components available in
the system and that allow the administrator to easily create the
new workflows. Finally as for the previous use-case, REPLICA
can also be used to speed up the training time needed to have
the new algorithms ready to be used, supporting the use of
simulated data, instead of using the actual devices.

VII. CONCLUSION

The paper has presented REPLICA, a solution that enables
the application of innovative fault diagnosis and predictive
maintenance techniques based on DT. The software proposed
is part of a more complex platform developed by the RE-
CLAIM project that provides a complete software solution
for both extending machinery lifetime while also improving
productivity and performance.

The paper shows the main key innovations introduced by
REPLICA in terms of fault diagnosis and predictive mainte-
nance techniques based on DT. Specifically, one of the basic
concepts of REPLICA is to build the solution not as unique
suite of technologies, but as a run-time environment with APIs
that allow the integration of heterogeneous AI modules and
simulators. In this way, the solution can be easily customized
to be used in different industrial sites, integrating components
provided by different vendors, without requiring the devel-
opment of new components, but just adapting the existing
ones. Furthermore, using REPLICA the user can integrate
and replace AI modules and simulation models at run-time,
without the necessity to stop the system and reconfigure it.
REPLICA provides tools to interconnect among each other
the different modules with the data collected from the field.
This allows the creation and the modification at run-time

of the workflows needed for fault diagnosis and predictive
maintenance, adding/removing/replacing entities to reflect the
situation of the components available in the system.

In this work, the authors introduced the details of the
first implementation of the proposed architecture; since the
development currently is only in a preliminary phase, Section
V presents the implementations of the modules that were
evolved from previous EU projects’ outcomes. Instead, for
the new components only some initial design choices are
presented. In particular, the AI environment and the DTO have
been just designed and will be developed in next phases of the
project, while the Simulation Environment is already available
and only some SMs for new simulators will be developed.
In the same way, a dashboard for monitoring and results
assessment is ready, while the GUI for configuration has still
to be implemented.

Finally, the authors have provided in Section VI two use
cases based on one realistic industrial scenario, which show
the advantages of using the proposed solution to apply fault
diagnosis and predictive maintenance techniques based on
digital twin.

ACKNOWLEDGMENT

The work presented here was part of the project
”RECLAIM- RE-manufaCturing and Refurbishment LArge
Industrial equipMent” and received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 869884.

REFERENCES

[1] R. Rosen, G. [von Wichert], G. Lo, and K. D. Bettenhausen, “About the
importance of autonomy and digital twins for the future of manufac-
turing,” IFAC-PapersOnLine, vol. 48, no. 3, pp. 567 – 572, 2015, 15th
IFAC Symposium onInformation Control Problems inManufacturing.

[2] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-
driven product design, manufacturing and service with big data,” The
International Journal of Advanced Manufacturing Technology, vol. 94,
02 2018.

[3] R. Magargle, L. Johnson, P. Mandloi, P. Davoudabadi, O. Kesarkar,
S. Krishnaswamy, J. Batteh, and A. Pitchaikani, “A simulation-based
digital twin for model-driven health monitoring and predictive main-
tenance of an automotive braking system,” in Proceedings of the 12th
International Modelica Conference, Prague, Czech Republic, May 15-
17, 2017, 07 2017, pp. 35–46.

[4] E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of digital
twin in cps-based production systems,” Procedia Manufacturing, vol. 11,
pp. 939–948, 12 2017.

[5] ——, “A review of the roles of digital twin in cps-based production
systems,” Procedia Manufacturing, vol. 11, pp. 939–948, 12 2017.

[6] J. Lee, H. Davari, J. Singh, and V. Pandhare, “Industrial
artificial intelligence for industry 4.0-based manufacturing systems,”
Manufacturing Letters, vol. 18, pp. 20 – 23, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2213846318301081

[7] B. A. Talkhestani, T. Jung, B. Lindemann, N. Sahlab, N. Jazdi,
W. Schloegl, and M. Weyrich, “An architecture of an intel-
ligent digital twin in a cyber-physical production system,” at-
Automatisierungstechnik, vol. 67, no. 9, pp. 762–782, 2019.

[8] P. Aivaliotis, K. Georgoulias, Z. Arkouli, and S. Makris, “Methodology
for enabling digital twin using advanced physics-based modelling in
predictive maintenance,” Procedia CIRP, vol. 81, pp. 417–422, 2019.

[9] J. Lee, M. Azamfar, J. Singh, and S. Siahpour, “Integration of digital
twin and deep learning in cyber-physical systems: towards smart man-
ufacturing,” IET Collaborative Intelligent Manufacturing, vol. 2, no. 1,
pp. 34–36, 2020.

61

[10] Y. Xu, Y. Sun, X. Liu, and Y. Zheng, “A digital-twin-assisted fault
diagnosis using deep transfer learning,” IEEE Access, vol. PP, pp. 1–
1, 01 2019.

[11] K. Ding, F. T. Chan, X. Zhang, G. Zhou, and F. Zhang, “Defining
a digital twin-based cyber-physical production system for autonomous
manufacturing in smart shop floors,” International Journal of Production
Research, vol. 57, no. 20, pp. 6315–6334, 2019. [Online]. Available:
https://doi.org/10.1080/00207543.2019.1566661

[12] G. Zhou, Z. Chao, L. Zi, K. Ding, and C. Wang, “Knowledge-driven
digital twin manufacturing cell towards intelligent manufacturing,” In-
ternational Journal of Production Research, 04 2019.

[13] M. Borth, J. Verriet, and G. Muller, “Digital twin strategies for sos 4
challenges and 4 architecture setups for digital twins of sos,” 05 2019,
pp. 164–169.

[14] W. Luo, T. Hu, Y. Ye, C. Zhang, and Y. Wei, “A hybrid predictive
maintenance approach for cnc machine tool driven by digital twin,”
Robotics and Computer-Integrated Manufacturing, vol. 65, p. 101974,
10 2020.

[15] M. Jdeed, M. Schranz, A. Bagnato, S. Suleri, G. Prato, D. Conzon,
M. Sende, E. Brosse, C. Pastrone, and W. Elmenreich, “The cpswarm
technology for designing swarms of cyber-physical systems,” in Proc.
Int. Conf. on The Research Project Showcase of Software Technologies:
Applications and Foundations (STAF), Jul. 2019.

[16] M. Rappaport, D. Conzon, M. Jdeed, M. Schranz, E. Ferrera, and W. El-
menreich, “Distributed simulation for evolutionary design of swarms
of cyber-physical systems,” in Proc. Int. Conf. on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE). IARIA, Feb. 2018,
pp. 60–65, ISBN: 978-1-61208-610-1.

[17] L. Antão, J. Reis, and G. Gonçalves, “Continuous maintenance system
for optimal scheduling based on real-time machine monitoring,” in 2018
IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 410–417.

[18] Digital and I. I. Lab. Dinasore - dynamic intelligent architecture
for software and modular reconfiguration. [Online]. Available: https:
//digi2-feup.github.io/dinasore/

[19] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in iec 61499 execution runtime,”
in 2006 IEEE Conference on Emerging Technologies and Factory
Automation, Sep. 2006, pp. 1269–1276.

[20] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,
and A. Martel, “Framework for distributed industrial automation and
control (4diac),” in 2008 6th IEEE International Conference on Indus-
trial Informatics, July 2008, pp. 283–288.

[21] C. Consortium, “Finalintegration of external simulators, d6.7,” Deliver-
able of the CPSwarm Project, 2020.

62

DINASORE: A Dynamic Intelligent Reconfiguration
Tool for Cyber-Physical Production Systems

Eliseu Pereira, João Reis, Gil Gonçalves

SYSTEC - Research Center for Systems and Tecnologies
Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: {eliseu, jpcreis, gil}@fe.up.pt

Abstract—The nowadays industrial digital revolution demands
for software driven solutions where reconfiguration is one of the
key enablers to achieve smart manufacturing by easy deployment
and code reuse. Despite existing several tools and platforms that
allow for software reconfiguration at the digital twin / edge
level, it is most of the times difficult to make use of state of
the art algorithms developed in the most popular programming
languages due to software incompatibility. This paper presents
a novel framework named Dynamic INtelligent Architecture for
Software MOdular REconfiguration (DINASORE) that imple-
ments the industrial standard IEC 61499 based in Function
Blocks (FB) in Python language for Cyber-Physical Production
Systems’ implementation. It adopts the 4DIAC-IDE as graphical
user interface (GUI) to ease the design and deployment of
FBs to quickly and on-demand reconfigure target equipment.
The proposed framework provides data integration to third
party platforms through the use of OPC-UA. The test scenarios
demonstrate that the proposed framework 1) is flexible and
reliable for different applications and 2) the CPU and memory
workload linearly increases for a large amount of FBs.

Index Terms—Cyber-Physical Systems, IEC 61499, Smart
Manufacturing, Machine Learning

I. INTRODUCTION

One of the key aspects of the nowadays fourth indus-
trial revolution is the digitization of shop-floor entities like
processes, equipment and components to increase their in-
teroperability with users and information systems. In order
to achieve digitization, an increased effort of standardization
is required to create uniformed interfaces that promote a
transparent communication among a set of heterogeneous
entities. This standardization is often attained with the concept
of digital twin (DT), and is often seen as a wrapper used
to integrate any device or process into a network, where
information can be easily accessed and shared [1]. In industry
4.0 context, a Cyber-Physical Production System (CPPS) is
a distributed system of networked digital twins representing
industrial processes, controllers, components, and any sort of
information technology (IT) software. These CPPSs should
allow for dynamic reconfigurability, software reusability and
an external service orchestration [2]. On the one hand, by
improving the accessibility via DTs, users can have a better
grasp of the holistic shop-floor dynamics through the inte-
gration with information systems (vertical integration) such
as Manufacturing Execution Systems (MES) or Enterprise

Resource Planning (ERP). On the other hand, it is possible to
explore new ways of data sharing among shop-floor entities
(horizontal integration) promoting a distributed control system
for continuous monitoring and process optimization.

With a change in paradigm from closed programmable
logic controller (PLC) implementations to industrial PCs that
allow a more flexible information sharing and storage, new
opportunities taking advantage of this transparency can be
explored. From multi-agent systems to artificial intelligence
applications, democratizing data storage and sharing is key for
the new advances in manufacturing systems, where machine
learning is one of the key enablers of industry 4.0. This way,
applications like artificial vision to detect production defects,
predict when and why a certain component will fail or even
explore new energy efficiency solutions are some examples
of the well established importance of artificial intelligence in
manufacturing.

Albeit not specific for manufacturing applications, there are
several platforms developed in order to ease the development
of such intelligent systems in a modular fashion, where the
main idea is to accelerate the implementation of an end-to-
end solution without the need to know the technical details
of certain techniques. Some examples of this modular design
and execution are Rapidminer Studio [3], Microsoft Azure
Machine Learning Studio [4], Cloud AI from Google Cloud
[5]. All these platforms have a strong graphical user interface
(GUI) based in components that, through drag and drop, a
complex machine learning system is possible to be built.

However, the use of such platforms in industrial applica-
tions, mainly at the level of control systems, is not straight-
forward. On the one hand, some of these are Cloud-based solu-
tions, which is still an obstacle for specific industries nowadays
due to the industry’s policy, restricting the data access only to
local network components. On the other hand, these modular
designs do not implement any industrial standard, such as IEC
61499 adopted in 2005 and based in the function block (FB)
definition that abstracts both software and hardware modules
suitable for manufacturing requirements.

Based on this, the present paper proposes a framework
called DINASORE for the execution of digital twins in
Cyber-Physical Production Systems that is able to support
the latest advances in machine learning. DINASORE stands

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

63

for Dynamic INtelligent Architecture for Software MOdular
REconfiguration and is compliant with the 4DIAC platform
[6] that implements the standard IEC 61499 [7]. The proposed
framework is a Python environment for any system (embedded
or not) that is able to run Python 3.6, or above, for the execu-
tion of function blocks (FBs) developed in Python language.
The same way FORTE is used together with 4DIAC for the
low level interaction and execution of C/C++ applications in
industrial equipment, DINASORE is a similar implementation
but for Python FBs, which makes possible the use of important
machine learning packages such as TensorFlow, PyTorch,
Keras and Theano.

From this perspective, with DINASORE it is possible to
develop a distributed control system for industrial applications
which is machine learning-enabled. This framework allows to
overcome the difficulty to use and develop state of the art algo-
rithms due to the C/C++ (FORTE) requirement. Therefore, all
the latest developments in the Python community, from deep
learning to optimization, can be used in industrial applications
with DINASORE. It is capable of online-reconfiguration of
Python FBs, where an easy to understand Python FB template
is provided for customized developments. On top of that, and
due to industrial requirements, each DINASORE environment
has an embedded Open Platform Communications - Unified
Architecture (OPC-UA) server with a data model to facilitate
the integration with third-party platforms. The OPC-UA data
model abstracts the concepts of equipment and device for
fully industrial integration with other devices or information
systems. In sum, the main contributions and differentiation of
this work lie in:

1) A Python implementation of a digital twin that is inte-
grated with 4DIAC and compliant with IEC 61499;

2) A Python template to build FBs compliant with DINA-
SORE;

3) OPC-UA data availability using an OPC-UA server;

The remainder of the present work is organized in five more
sections. A literature review is made in Section II, and the
DINASORE implementation explained in Section III, from its
architecture to the Python template definition to develop new
FBs. The following section presents the test case scenarios
defined and the main results obtained. Finally, Section V will
discuss the results obtained and draw some conclusions and
future work for the current implementation.

II. RELATED WORK

One of the most widely used platforms for component-based
design and execution of distributed control systems is 4DIAC
[6], an Eclispe-based IDE that implements the standard IEC
61499 [7] based in function blocks (FBs). This platform has
a vast set of functionalities, from FB design, system design
based on a pipeline of FBs, to the deployment of this system
in a distributed environment. From CNC applications [8],
Distributed Time-Critical Systems (DTCSs) such as aerospace
applications [9], to Smart Grids [10], the use of 4DIAC for the
implementation of IEC 61499 is becoming well established

due to its easiness of system design and execution for dis-
tributed environments.

There is already a great motivation in using these ap-
proaches, mainly the development of CPPSs using the IEC
61499 standard, as can be seen in literature. A use case that
implements such an approach is presented in aluminum cold
rolling mill plant demonstrator where the authors design and
test an event-driven process based on IEC 61499 standard
using OPC-UA [11]. Another similar use case that used the
same philosophy is about Oil&Gas production where the
authors have implemented a CPPS to deal with the complexity
of equipment data on existing production processes, based on
IEC 61499 and OPC-UA [12].

In [13] the authors implement a CPPS based in FORTE, and
deployed the configuration system into a couple of Raspberry
Pi 3 Model B that mimics an industrial process composed of
a human-machine interface, a handling system and a conveyor
belt. Further, the authors have integrated the OPC-UA into a
more complex system [14], with the aforementioned scenario,
plus a stack station. The major difference from the proposed
framework is the use of FORTE and OPC-UA data model
through a Service Interface Function Block (SIFB). In the case
of DINASORE there is no SIFB since OPC-UA is embedded
in specific FBs and automatically provides data in a OPC-UA
server with no effort to the final user.

Regarding the technologies used to support the development
of CPPS based on the IEC 61499, there are a set of plat-
forms already available that can be used. Some examples are
the Archimedes [15], FBDK [16] and FUBER [17] in Java
language (Archimedes also supports C++); FBBeam [18] in
Erlang; FORTE and nxtIECRT in C++; ISaGRAF [19] using
IEC 61131-3 standard; Icaru-FB [20] and RTFM-RT in C [21].
Demonstrating the relevance of OPC-UA in such approaches,
there’s a work that presents an implementation of a Service
Interface Function Block (SIFB) for OPC-UA communications
in 4DIAC [22]. For a more comprehensive understanding of
these platforms, there’s also a small review about the topic
[23].

Some effort has been applied to the integration of UML
with the IEC 61499, where a case scenario composed by
a distributing and sorting process using FESTO FMS-200
FORTE platform was built resulting in a CPPS [24]. Portability
among NxtStudio, FBDK and 4DIAC platforms was also
already explored [25] to have a cross-platform implementation
of a CPPS, and increase the integration capabilities when
building a CPPS.

Regarding all the works previously presented, the DINA-
SORE framework presents an additional, but important, step
towards the implementation of the IEC 61499 standard using
Python language, and consequently, the use of state of the
art machine learning algorithms in CPPSs. Together with the
OPC-UA for vertical integration, DINASORE can be seen as
a powerful framework that can accelerate and strengthen the
next generation of smart industry.

64

III. IMPLEMENTATION

Similar to FORTE (4DIAC-RTE) portable implementation
in C++ of IEC 61499, DINASORE1 shares the same phi-
losophy but in Python language. With all the latest artificial
intelligence advances and current implementations in Python,
DINASORE can be seen as a tool that enables advanced
machine learning systems to execute as close to shop-floor
equipment as possible. The further integration with OPC-UA
for sharing a simple and intuitive data model allows for each
digital twin DINASORE implementation easy to integrate with
most information systems.

A. 4DIAC-IDE

The graphical user interface (GUI) integrated with the DI-
NASORE is the 4DIAC-IDE, which enables drawing and de-
ploying distributed configurations, based in FBs. The 4DIAC-
IDE uses the Eclipse Project as a core development framework,
providing a GUI based in a desktop application, with the
typical Eclipse IDE appearance. The process of development
of a new CPPS based in FBs has as main steps: 1) the
definition of CPPS network configuration, specifying for each
device its IP address and port used for 4DIAC communica-
tion, 2) the drawing of the FB pipeline, drag&dropping FBs
and linking them through specific connections, modeling the
required software architecture, 3) the mapping of specific FB
to devices, and 4) the deployment of the FB pipeline to the
corresponding DINASORE devices. Therefore, the 4DIAC-
IDE GUI has several views directed to the user to implement
different steps, e.g. the network configuration, the development
and the deployment views. After the development and deploy-
ment of the FB pipeline, 4DIAC-IDE enables to monitoring
(watch) the whole system for real-time visualization of the
current state of each data and event inputs and outputs in
the configuration. Additionally, the 4DIAC-IDE allows the
interaction with the actual pipeline, triggering events, stopping
the configuration, or cleaning the actual DINASORE runtime
environment resources.

The standard IEC 61499 defines several rules at the industry
level, including the composition and structure of FBs, which
is the graphical representation of a set of functionalities. Each
FB contains events and variables to communicate with other
FBs, where each event allows to trigger the execution of a
certain FB, while each variable stores the data (e.g. sensor
measurements, algorithm outputs). The 4DIAC-IDE uses FBs
as elementary components that connect among themselves,
using both events and variables forming a functional pipeline.
Considering that, there are three types of FBs defined by IEC
61499, namely:

1) Basic Function Blocks (BFBs): In simplistic terms, they
are state machines that according to specific events are
able to execute the corresponding algorithms;

2) Composite Function Blocks (CFBs): It is a composition
of BFBs making up a network of FBs to model more
complex system behaviors;

1Available Online: github.com/DIGI2-FEUP/dinasore

3) Service Interface Function Blocks (SIFBs): It allows
to specify how FBs should interface in terms of both
events and data connectors to other FBs that execute
(mainly) in different physical platforms (Machine-2-
Machine communication).

Additionally, the developer has the autonomy to implement
their own FBs and integrate them in both 4DIAC-IDE and
DINASORE runtime environment. The main type of FBs
adopted in the DINASORE is the Basic Function Block (BFB),
characterized by two files, an XML metadata file containing
the FB structural information and a Python file implementing
the code functionalities.

B. DINASORE

The main goal of DINASORE is to serve a gateway to
machine learning into distributed control systems based on
IEC 61499. As we believe the future design and deployment
of CPPSs will definitely pass through the use of block-based
technologies, such as 4DIAC-IDE and IEC 61499 as depicted
in the related work, DINASORE can be seen as a key comple-
mentary technology to enrich the area of CPPS with artificial
intelligence algorithms. Although integrated with 4DIAC-IDE,
DINASORE is not designed in its root to execute in embedded
systems, complying with real-time constraints as FORTE. The
idea behind using Python language is to enable the latest
advances in machine learning to integrate at the edge level
with existing shop-floor equipment, without the need for cloud
based processing. With the embedded implementation of OPC-
UA in the DINASORE function blocks (FBs), any external
data is automatically provided in a OPC-UA server for further
system integration.

As for DINASORE implementation, there’s the need to
classify the used execution model type framing the technology
into the IEC 61499 guidelines. One of the most well known
categorization of Execution Control Chart (ECC) execution
model was proposed by Ferrarini in [26], where 7 differ-
ent classes were defined, from A0 to A6, exploring two
dimensions, namely scan order and multitasking. The scan
order refers to execution models that can have either fixed
(predefined order), or dynamically (order calculated on-the-
fly) FB execution during the ECC, while the multitasking
dimension refers to no controlled ways of multitasking, where
FBs execute in a multi-threading fashion; done by time slice
allocation to each FB execution (preemptive scheduling) and
done by FB slice, where each FB executes at a time (non-
preemptive scheduling).

Additionally, there’s a small and brief survey of run-time
environment (RTE) platforms for IEC 61499 where 4 types of
execution models are introduced [23]: 1) Buffered Sequential
Execution Model (BSEM) [27]; 2) Cyclic Buffered Execution
Model (CBEM) [16]; [26]; 3) Non-Preemptive Multithreaded
Resource (NPMTR) [28]; 4) Preemptive Multithreaded Re-
source (PMTR) [23]. For a more formal definition of the
BSEM, CBEM and NPMTR please refer to [29]. Despite the
authors in the survey present a table that integrates RTE plat-
forms with Ferrarini model and execution models, there’s not

65

a one-to-one correspondence of Ferrarini model to execution
models. This happens because there are some categories in
the Ferrarini model without a corresponding execution model.
This way, it is important to first fill this gap in terms of formal
definition, and only then use it to frame the DINASORE.
Hence, the complete set of Ferrarini categories is presented in
the following list, with the corresponding execution models:

• A0: The execution of each FB is calculated on-the-
fly depending on the input events of each one. One
formalized execution model that meets this category is
the BSEM;

• A1: The execution of each FB as a thread-object is made
in parallel, like in a multi-threading fashion. We name
this execution model as Multithreaded Resource (MTR);

• A2: To each of the executing FBs as a thread-object
is given a small time slice of execution, where the
allocation of time slice to FB is dynamically done. The
most similar execution model is PMTR, briefly defined
in [23]. However, due a dynamic scan order, we name
this execution model as Buffered Sequential-Preemptive
Multithreaded Resource (BS-PMTR);

• A3: Each FB as a thread-object should execute one at a
time, and executed dynamically as soon as a notification
is created. One formalized execution model that meets
this category is the NPMTR. However, due a dynamic
scan order, we name this execution model as Buffered
Sequential-Non-Preemptive Multithreaded Resource (BS-
NPMTR);

• A4: The execution of each FB is predefined beforehand.
One formalized execution model that meets this category
is CBEM;

• A5: To each of the active (that requires execution due to
an event input) FBs as a thread-object is given a small
time slice of execution according to a fixed order that
follows a list or active FBs. This can be viewed as a
PMTR, however, due to fixed scan order, we name this
execution model as Cyclic Buffered-Preemptive Multi-
threaded Resource (CB-PMTR);

• A6: Each FB as a thread-object should execute one at a
time according to a fixed order that follows a list or active
FBs. This can be viewed as a special case of the NPMTR,
however, due to fixed scan order, we name this execution
model as Cyclic Buffered-Non-Preemptive Multithreaded
Resource (CB-NPMTR);

TABLE I
AGGREGATION OF FERRARINI MODEL [26] WITH EXISTING [23] AND NEW

EXECUTION MODELS FOR IEC 61499.

Multitasking Implementation
Not Used Not Controlled Time Slice FB Slice

Dynamic
Order

BSEM
(A0)

MTR
(A1)

BS-PMTR
(A2)

BS-NPMTR
(A3)

Fixed
Order

CBEM
(A4) x CB-PMTR

(A5)
CB-NPMTR

(A6)

As for the DINASORE, the closest category is A2, where we

have a thread-object per FB with all threads executing using
a time slice scheduling and the execution order for all FBs
is dynamically calculated by the received event inputs. Since
Python language is used together with threading package, once
we have multiple FBs thread-objects executing at the same
time, a time slice scheduling strategy is used. This package
uses an implementation called Global Interpreter Lock (GIL)
that manages the execution time per thread, being around 5ms.
This way, this implementation is not truly multithreaded (A1),
but A2 using a similar approach as BS-PMTR.

The DINASORE execution model implementation, Fig-
ure 1, uses a producer-consumer pattern, where each FB
performs in a different thread, which is both producer and
consumer. The data transmitted between FBs addresses both
events and variables, where the FB object stores the input
events in a queue and the variables in register attributes. Thus,
each FB object has an internal queue for the input events,
waiting until it receives an input event in the data struc-
ture, reading after the variables’ actual value, and processing
the event’s functionality. After completing the functionality
execution, the FB object pushes the corresponding output
events in the queue of the following connected FBs. The same
thing happens to the variables where the FB updates their
output variables and consequentially the input variables of the
following linked FBs. The actual value of each FB event and
variable is available through the monitoring/communication
interfaces, i.e., using the OPC-UA server or 4DIAC-IDE watch
option.

Fig. 1. DINASORE Architecture.

The FB thread-object requires two external files to execute
that compose the FB itself. The first file is XML-based and
contains the meta-information about the FB, e.g. the FB type,
the FB class and the FB structure composed by input/output
events and variables, and their details, including the data type

66

and the OPC-UA role (variable, method or none). Besides the
DINASORE usage, the metadata file enables the 4DIAC-IDE
to render the FB with their events and variables in the GUI.
The second file composing the FB is a Python script encoding
the FB functionalities, which requires the implementation of
a class, assuming the Object-Oriented (OO) paradigm. That
class requires the implementation of the schedule method,
which receives as arguments the event name and respective
value, triggering the FB execution, with the current input
variable values. Then, according to the event received, the
method selects the functionality to execute. After executing
the functionality, the schedule method returns a list of output
events and variables. Both schedule method arguments and
output variables should follow the order specified in the
metadata file.

Concerning the need for external communication between
the DINASORE and other applications, e.g. 4DIAC-IDE and
third party information systems, there are two different and
independent communication interfaces integrated in the DI-
NASORE, 1) the 4DIAC interface, which uses TCP/IP, and
2) the OPC-UA interface, which uses a data model XML
file as a reconfiguration file. These two interfaces allow the
reconfiguration of the current runtime workflows and the
monitoring of each FB. The 4DIAC interface communicates
with the 4DIAC-IDE using a TCP/IP connection, where the
DINASORE interface executes a TCP server, receiving the
commands from the 4DIAC-IDE enabling the creation, stop,
and deletion of the configuration workflow and the runtime
configuration monitorization. The interaction between 4DIAC-
IDE and DINASORE for the configuration creation starts with
several messages instantiating every FB (Create FB); each
message contains the FB type and instance name. Then the
4DIAC-IDE sends the commands to create the connections
(events and variables) between FBs (Create Connection and
Write Connection), and finally the IDE requests the start of the
FB threads (Start Configuration). After starting the workflow,
the DINASORE enables the monitoring of each FB variable
and event, through the watch option (the Create Watch mes-
sage to activate the subscription; the Read Watch message to
request the variable/event current value; and the Delete Watch
message to unsubscribe). Additionally, the DINASORE allows
from the 4DIAC-IDE to stop and reset (Stop Configuration)
the configuration workflow, terminating the respective working
threads and the remote trigger of an event (Trigger Event),
performing a FB functionality in the DINASORE.

As an alternative, the DINASORE can use the OPC-UA
Data Model as reconfiguration channel. This way, the DI-
NASORE stores the configuration locally in the Data Model
XML file, where registers all the used FBs, and their respec-
tive connections (events and variables). The FB XML meta-
information classifies each FB in different sets, grouping them
in 1) devices, 2) equipment, 3) services, 4) endpoints, and 5)
start-points:

1) The device abstraction represents sensors, like sensors
integrated using Modbus protocol;

2) The equipment representation uses a more complex

structure allowing the aggregation of sensors and ac-
tuators, using events as relational connections;

3) The service type maps to FBs as a method and when
an event is received, its execution is triggered. This is
suitable for machine learning algorithms (e.g., Random
Forest, SVM) or statistical operations (e.g., moving
average, moving standard deviation);

4) The start-point type represents protocols interfaces that
receive data, e.g. subscribing a MQTT topic or request-
ing TCP/IP data;

5) The endpoint type provides data through the defined
interface, e.g. publishing in a MQTT topic and replying
to a TCP/IP request.

Those representations make the development of new FBs
easier by providing templates and specific behaviors to max-
imize the effectiveness of the Python code written in each
FB. The (1) device, (2) equipment, and (4) start-point scripts
adopt a loop template, which enables a cyclic execution of
the FB. The (3) service and (5) endpoint types use the typical
asynchronous approach executing when triggered.

Both OPC-UA and TPC/IP (4DIAC-IDE) interfaces are
essential to DINASORE operation, enabling different features
and capabilities. The 4DIAC communication interface allows
the combination with a graphical user interface (GUI) for
the development of workflows based on FBs. The OPC-UA
Data Model, besides enabling the workflow reconfiguration,
the primary purpose is to monitor the execution of a specific
pipeline monitoring using the OPC-UA industrial protocol and
the storage of the device configuration in an XML format. The
configuration storage transforms the DINASORE in a more
reliable and fault-tolerant platform, enabling the memorization
of the current state of the workflow, being tolerant of power
cuts restarting the runtime environment in the previous state.
The Data Model XML file updates every time, when the
DINASORE receives commands from the 4DIAC-IDE, for the
creation, stop, and removal of configuration workflows.

IV. TEST CASE SCENARIOS

The DINASORE evaluation focuses on the validation of
the tool in different scenarios. Those scenarios point out the
platform advantages and disadvantages, besides establishing
the most suitable applications, like sensing, control, or data
processing. The first scenario focuses on the use of machine
learning (ML) algorithms, in particular classification methods,
for the detection of collisions in a real mini-robotic arm based
in servo motors. The second example consists of a typical
distributed control architecture composed of two components
(gripper and robotic arm) that have to synchronize between
them to perform the required operation. The third case shows
the simulation of a manufacturing production line. Based on
the simulation scenario, several experiments with increasing
amounts of FBs allow to assess the scalability of the frame-
work in terms of processing and memory usage.

67

A. Collision detection based on servo motors analysis

The main goal of the collision detection implementation is
to transform a typical robotic arm into a collaborative one.
That scenario uses a robotic arm based in servo motors that
provide load metrics able to infer about possible collisions
with obstacles. Based on this, the process 1) monitors each
servo motor, 2) detects when one servo motor is in overload,
and 3) stops the robotic arm if it collides with an obstacle. The
network architecture contains two devices, both Raspberry’s
Pi: 1) responsible for monitoring the servo motors and check
the motors overload (Figure 2 rose FBs), and 2) controlling the
robotic arm, sending instructions to perform a particular task,
and waiting to receive an overload alert to stop its execution
(Figure 2 green FB).

Fig. 2. Collaborative Robot Workflow.

The servo motors sensing component uses as hardware an
Arduino Uno board (ATMega328P microcontroller), which
collects data of the voltage and current for each motor, using
a potential divider to measure the voltage and an amplifier
to obtain the current. The Root Mean Squared (RMS) uses
the last 250 samples to calculate the voltage and current
RMS value, which allows the computation of the real and
apparent power. This data processing is performed at the
microcontroller level, transmitting the eight features (4 metrics
of 2 servo motors) through the serial port to the Raspberry
Pi, which uses a FB, implementing the device template, to
read and parse the data. After parsing the data and calculating
the respective lag features (moving average and standard
deviation) for the last 10 samples, the overall features (total of
24 variables) feed a classification method. The model predicts
if the robotic arm is performing with regular efforts (output at
zero) or in overload/collision situations (output at one). The
classification model training uses an offline dataset, collected
from the serial port, containing the robotic arm performing
different operations with and without collisions. Several classi-
fication algorithms, including Support Vector Machine (SVM),
Random Forrest (RF), and Artificial Neural Networks (ANN),
were validated using the precision, the recall, and the f1-score
as performance metrics. The more accurate model was the
RF, exported to perform online on the second pipeline FB, that
implements the service template. The model output predictions
generate a stop event sent, through multicast sockets, to the
second Raspberry Pi, which controls the robotic arm. The
communication between the two Raspberry Pis, due to the
usage of UDP multicast sockets, adopts a paradigm producer-
subscriber, where the collision detection component produces

stop events when in overload, sent to the robotic arm control
component. The robotic arm control component (green FB,
using the device template), in a different Raspberry Pi, reads
from a text file, the sequence of motor positions to perform,
and sends them sequentially through the serial port to the
embedded controller. The robotic arm performs, in a cycle,
the list of instructions until it receives a stop event from the
monitoring component; then, it freezes, waiting to receive a
continue event from the user, using the 4DIAC-IDE, to restart
the operation.

B. UR5 Collaborative Robotic Arm and Gripper Control

The synchronized control between a Universal Robots 5
(UR5) robotic arm and a 3D printed gripper requires the
usage of a CPPS composed of two Raspberry Pi, similar
to the previous scenario. Considering that architecture, one
component controls the servo motor that opens and closes the
gripper (Figure 3 blue FBs), and the other sends commands
to the UR5 robotic arm (Figure 3 purple FBs). The operation
performed by both devices consists in 1) catch one object at
position A, 2) go with the piece to position B, 3) go back to
position A, 4) leave the object in position A, 5) go without
the item to position B, 6) go without the object to position A,
and restarts the cycle.

Fig. 3. UR5 Robotic Arm and Gripper Workflow.

The UR5 robotic arm uses an API to send commands
through a TCP/IP communication channel with the physical
controller, which enables the continuous flow of instructions
(X, Y, Z positions and Rx, Ry, Rz rotations) to the UR5 robotic
arm. The FB, using the service template, wraps the API func-
tion to move the robotic arm to a specific location (X, Y, and
Z) with the rotation of the joints (Rx, Ry, and Rz). The gripper
developed to pick up objects contains three different parts 1)
a Raspberry Pi, 2) a servo motor that opens and closes the
gripper, and 3) a 3D printed Polylactic Acid (PLA) casing. The
movement of the servo motor opens and closes the 3D printed
fingers, according to the instruction sent from the Raspberry
Pi interface using the General Purpose Input/Output (GPIO).
Thus, a FB, adopting the service template, encapsulates the
control of GPIO pins using an input variable to establish the
operation to perform (open or close). The communication in

68

the CPPS uses multicast sockets to send events between FBs
that are in different devices (different colors), as used in the
previous scenario.

C. Manufacturing Applications

The simulation of a manufacturing production line addresses
several challenges, like the material tracking on the shop-
floor or equipment sensorization. Regarding the flow of ma-
terials along the production line, the developed simulation
includes each station of the process, with its attributes, like the
current manufactured material and the respective transporter,
the sensors associated, and the operation time. The simulated
representation mainly serves as an advantage for the process
industries, which have a sequential set of productive steps, be-
ing able to simulate different layouts to optimize productivity.

Fig. 4. Manufacturing Scenario.

Figure 4 presents partially the FB pipeline of the simulation
implementation, where each simulated station uses three FBs
to model its behavior. The main FB, that adopts the equip-
ment template, represents a station and implements a state
machine with the following states: 1) unscheduled, waiting
for new material to produce; 2) standby, arrives a material
and transporter associated and waits to start the operation; 3)
productive, working in the operation of the station; and 4)
error, a stochastic state to simulate an extra time producing
the material. The additional two FBs, implemented using the
service template, allow to simulate the production time and
error time (if any). All the series of three FBs represent
the entire production line with its characteristic sequential U
shape and bifurcations. Additionally, this approach enables
the integration of real components with in this simulation
environment, turning the pipeline more accurate.

D. Performance Evaluation

The manufacturing line simulation scenario serves as a basis
for performance and workload evaluation for the DINASORE
framework. By using a series of three FBs that represent a
station it is possible to assess the CPU and memory usage
with a varying number of FBs. The htop monitoring tool
(linux) was used enabling the profiling of each process in the
operating system. Typically, the memory usage has a constant
value for the same input parameters; however, the CPU usage
has high variability, which requires more samples to obtain an
accurate estimation. The higher number of collected samples
for the same scenario, generates a more substantial variability,
computed in the form of standard deviation. Figure 5 considers
both metrics, representing the collected samples for the mem-
ory and the average and standard deviation for the processing
usage.

Fig. 5. DINASORE Performance Results.

The main property to evaluate on the DINASORE is how
an increasing number of FBs influences the framework usage
of computational resources. This kind of test requires a large
number of FBs (up to 200) focusing on the DINASORE
management of the runtime environment. The hardware spec-
ifications of the host machine are 16GB of RAM and an
Intel Core i7 processor, with 12 cores and a frequency of
2.20GHz. The analysis of the results indicates a growing trend
in both metrics with an increasing number of FBs. That trend
follows the natural behavior of computational systems: more
complexity causes more resources consumed, with the CPU
curve following a rate of approximately 18 FBs per 1% of CPU
usage. Those values prove the reliability and scalability of the
developed solutions, considering the target hardware, which
varies from low computational power devices (e.g., Raspberry

69

Pi) to high performance machines (e.g., servers). Such experi-
ments’ main intention is solely to validate the performance of
DINASORE, not considering CPU and memory usage in terms
of FB functionality (e.g., training a deep neural network).

V. CONCLUSION

Looking in perspective, the DINASORE framework enables
the deployment of powerful Python algorithms for CPPSs,
following industrial standards globally adopted, like the IEC
61499 and OPC-UA protocol. The proposed framework in-
creases the flexibility of the traditionally closed and hard to
re-configure industrial systems, being a step forward the high-
mix low-volume paradigm. The validation scenarios prove
the flexibility and reliability of the DINASORE, giving the
necessary freedom to developers for a multitude of different
application implementations, like sensor integration, equip-
ment control, data processing, or communication protocols.
The performance evaluation demonstrates the scalability in a
DINASORE runtime environment with an increasing amount
of FBs. Nevertheless, the DINASORE transforms a heavy-
weight local application into a distributed solution performing
in a clusters of devices. Considering that, the platform provides
capabilities to scale up the solutions for a larger amount of de-
vices, isolating the applications into FBs, and communication
through popular IoT protocols, like MQTT or OPC-UA.

As for the future work, and assuming that DINASORE
enables the use of computation-intensive machine learning
solutions, the exploration of speculative computation con-
cept, as implemented in [30] for FB-based systems, will be
explored. The central idea is to implement this concept as
a background process in DINASORE so the execution can
be accelerated transparently. An additional objective is the
continuous implementation of new methods using the FB
structure to easily experiment with them in different industrial
applications due to the FB portability between systems.

ACKNOWLEDGMENT

INDTECH 4.0 - New technologies for intelligent manufac-
turing. Support on behalf of IS for Technological Research
and Development (SI à Investigação e Desenvolvimento Tec-
nológico). POCI-01-0247-FEDER-026653

REFERENCES

[1] G. Gonçalves, J. Reis, R. Pinto, M. Alves, and J. Correia, “A step
forward on intelligent factories: A smart sensor-oriented approach,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA). IEEE, 2014, pp. 1–8.

[2] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory of
industrie 4.0: an outlook,” International Journal of Distributed Sensor
Networks, vol. 12, no. 1, p. 3159805, 2016.

[3] O. Rittho, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske, “Yale:
Yet another learning environment,” in LLWA 01-Tagungsband der GI-
Workshop-Woche Lernen-Lehren-Wissen-Adaptivität, no. 763. Citeseer,
2001, pp. 84–92.

[4] M. Corporation. (2018) Microsoft azure machine learning studio.
[Online]. Available: https://azure.microsoft.com/pt-pt/services/machine-
learning-studio/

[5] G. AI. (2017) Google cloud ai. [Online]. Available:
https://cloud.google.com/products/ai/

[6] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder, A. Valentini,
and A. Martel, “Framework for distributed industrial automation and
control (4diac),” in 2008 6th IEEE International Conference on Indus-
trial Informatics, July 2008, pp. 283–288.

[7] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in iec 61499 execution runtime,”
in 2006 IEEE Conference on Emerging Technologies and Factory
Automation, Sep. 2006, pp. 1269–1276.

[8] M. Minhat, V. Vyatkin, X. Xu, S. Wong, and Z. Al-Bayaa, “A novel open
cnc architecture based on step-nc data model and iec 61499 function
blocks,” Robotics and Computer-Integrated Manufacturing, vol. 25,
no. 3, pp. 560–569, 2009.

[9] C. C. Insaurralde, “Modeling standard for distributed control systems:
Iec 61499 from industrial automation to aerospace,” in 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). IEEE, 2016, pp.
1–8.

[10] F. Andrén, T. Strasser, and W. Kastner, “Model-driven engineering
applied to smart grid automation using iec 61850 and iec 61499,” in
2014 Power Systems Computation Conference. IEEE, 2014, pp. 1–7.

[11] T. Terzimehic, M. Wenger, A. Zoitl, A. Bayha, K. Becker, T. Müller,
and H. Schauerte, “Towards an industry 4.0 compliant control software
architecture using iec 61499 & opc ua,” in 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2017, pp. 1–4.

[12] M. V. Garcı́a, E. Irisarri, F. Pérez, M. Marcos, and E. Estévez, “En-
gineering tool to develop cpps based on iec-61499 and opc ua for
oil&gas process,” in 2017 IEEE 13th International Workshop on Factory
Communication Systems (WFCS). IEEE, 2017, pp. 1–9.

[13] M. V. Garcı́a, F. Pérez, I. Calvo, and G. Morán, “Building industrial
cps with the iec 61499 standard on low-cost hardware platforms,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA). IEEE, 2014, pp. 1–4.

[14] M. V. Garcı́a, F. Pérez, I. Calvo, and G. Moran, “Developing cpps within
iec-61499 based on low cost devices,” in 2015 IEEE World Conference
on Factory Communication Systems (WFCS). IEEE, 2015, pp. 1–4.

[15] K. Thramboulidis and A. Zoupas, “Real-time java in control and automa-
tion: a model driven development approach,” in 2005 IEEE Conference
on Emerging Technologies and Factory Automation, vol. 1. IEEE, 2005,
pp. 8–pp.

[16] V. Vyatkin and J. Chouinard, “On comparisons of the isagraf implemen-
tation of iec 61499 with fbdk and other implementations,” in 2008 6th
IEEE International Conference on Industrial Informatics. IEEE, 2008,
pp. 289–294.

[17] G. Cengic, O. Ljungkrantz, and K. Akesson, “Formal modeling of
function block applications running in iec 61499 execution runtime,”
in 2006 IEEE Conference on Emerging Technologies and Factory
Automation. IEEE, 2006, pp. 1269–1276.

[18] L. Prenzel and J. Provost, “Fbbeam: An erlang-based iec˜ 61499 imple-
mentation,” in IEEE International Conference on Industrial Informatics
(INDIN’19), 2019.

[19] J. H. Christensen, T. Strasser, A. Valentini, V. Vyatkin, A. Zoitl,
J. Chouinard, H. Mayer, and A. Kopitar, “The iec 61499 function block
standard: Software tools and runtime platforms,” ISA Automation Week,
vol. 2012, 2012.

[20] L. I. Pinto, C. D. Vasconcellos, R. S. U. Rosso, and G. H. Negri, “Icaru-
fb: An iec 61499 compliant multiplatform software infrastructure,” IEEE
Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1074–1083,
2016.

[21] P. Lindgren, M. Lindner, A. Lindner, D. Pereira, and L. M. Pinho, “Rtfm-
core: Language and implementation,” in 2015 IEEE 10th Conference on
Industrial Electronics and Applications (ICIEA). IEEE, 2015, pp. 990–
995.

[22] S. Kožár and P. Kadera, “Integration of iec 61499 with opc ua,” in
2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2016, pp. 1–7.

[23] L. Prenzel, A. Zoitl, and J. Provost, “Iec 61499 runtime environments:
A state of the art comparison,” in 17th International Conference on
Computer Aided Systems Theory (EUROCAST 2019), 2019.

[24] E. X. Castellanos, C. A. Garcia, C. Rosero, C. Sanchez, and M. V.
Garcia, “Enabling an automation architecture of cpps based on uml
combined with iec-61499,” in 2017 17th International Conference on
Control, Automation and Systems (ICCAS). IEEE, 2017, pp. 471–476.

[25] A. Hopsu, U. D. Atmojo, and V. Vyatkin, “On portability of iec 61499
compliant structures and systems,” in 2019 IEEE 28th International

70

Symposium on Industrial Electronics (ISIE). IEEE, 2019, pp. 1306–
1311.

[26] L. Ferrarini and C. Veber, “Implementation approaches for the execution
model of iec 61499 applications,” in 2nd IEEE International Conference
on Industrial Informatics, 2004. INDIN’04. 2004. IEEE, 2004, pp. 612–
617.

[27] G. Cengic and K. Akesson, “Definition of the execution model used
in the fuber iec 61499 runtime environment.[in:] industrial informatics,
2008. indin 2008,” in 6th IEEE International Conference on, 2008, p.
301.

[28] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan,
A. Valentini, L. Ferrarini, T. Strasser, J. L. Martinez-Lastra, and
F. Auinger, “Usability and interoperability of iec 61499 based distributed
automation systems,” in 2006 4th IEEE International Conference on
Industrial Informatics. IEEE, 2006, pp. 31–37.

[29] G. Cengic and K. Akesson, “On formal analysis of iec 61499 appli-
cations, part b: Execution semantics,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 2, pp. 145–154, 2010.

[30] D. Drozdov, V. Dubinin, and V. Vyatkin, “Speculative computation in
iec 61499 function blocks execution—modeling and simulation,” in 2016
IEEE 14th International Conference on Industrial Informatics (INDIN).
IEEE, 2016, pp. 748–755.

71

Bringing Clouds Down to Earth: Modeling
Arrowhead Deployments via Eclipse Vorto

Géza Kulcsár
IncQuery Labs Ltd.
Budapest, Hungary

geza.kulcsar@incquerylabs.com

Sven Erik Jeroschewski, Kevin Olotu, Johannes Kristan
Bosch.IO GmbH
Berlin, Germany

{name.surname}@bosch.io

Abstract—The design and development of interconnected in-
dustrial production facilities, which integrate aspects of the
Internet of Things (IoT) or, more specifically, the Industrial IoT
(IIoT), often deals with complex scenarios involving dynamic
System of Systems (SoS), resulting in immense development and
deployment efforts. The Arrowhead community aims at deliv-
ering mechanisms and technologies to cope with such complex
scenarios. In particular, the concept of local clouds constitutes a
service-oriented architecture (SOA) framework for IIoT. Here,
a central challenge is the conceptual modeling of such use-
cases. SysML is widely established as a standardized modeling
language and framework for large-scale systems engineering and,
thus, for Arrowhead local cloud designs. However, SysML and
its Arrowhead profile lack a canonical way to support actual
platform modeling and device involvement in heavily distributed
IIoT scenarios. The Eclipse Vorto project is ideal for filling
this gap: it provides a modeling language for IoT devices, a
set of modeling tools, and already existing reusable templates
of device models. In this paper, we propose an approach to
integrating Eclipse Vorto models into Arrowhead SysML models.
We illustrate the concept with a realistic yet comprehensible
industrial scenario and also present a prototype to emphasize
the benefits of our novel integration platform.

Index Terms—System Modeling, SysML, Eclipse Vorto, Eclipse
Arrowhead, IoT, IIoT

I. INTRODUCTION

Many IoT and, especially, industrial IoT (IIoT) scenarios
introduce high complexity in all phases of their life cycle.
Reasons for this are, among others, the use of multiple
hardware and software platforms or heterogeneous protocols
and data formats. With the recent trends of the increasing
volume and complexity of such scenarios, it becomes more
difficult and more expensive to model, operate, and manage
such complex Systems of Systems (SoS) [1]. The Arrowhead
initiative aims at overcoming these issues using a holistic,
comprehensive methodology and mindset. One of the central
facets of Arrowhead, also being highly relevant for the present
paper, is the application of the concepts of Service-Oriented
Architectures (SOA). In turn, Arrowhead introduces local
clouds for service-providing and service-consuming system
resources that can be grouped logically or geographically.

In turn, a novel kind of architectural and design challenges
arises in this context of SoS design combined with dynamic,
service-oriented orchestration principles, calling for new meth-
ods to cope with them. However, established techniques within
model-based systems engineering (MBSE) [2] serve as a

convenient baseline for introducing a new level of dynamicity
for system (of system) architectures. MBSE arguably provides
a great compromise between domain-specific expectations and
rigorous design on the one hand, and a flexible, accessible
modeling approach on the other hand. Besides, SysML is
an excellent base for formulating and validating the well-
formedness of complex systems.

Consequently, the Arrowhead approach to IIoT modeling
relies on SysML for specifying local cloud architectures. A
major challenge of such a modeling scenario is to integrate
the abstract architecture models created in design-time with the
actual IoT deployments, more precisely, with their digital twin
representations. Naturally, the device-specific and deployment-
specific details of these representations are out of scope in
abstract SoS (local cloud) models. The very metaphor in the
title of the paper, bringing clouds down to earth, unites two
key points of this conceptual hiatus: (1) while those platform-
and hardware-independent local cloud plans lack a connection
to their future embodiment, and thus, still have to be brought
down to earth, (2) such a device-oriented addition allows the
expression of those real communication channels which have
to be established between the systems taking part in a given
cloud architecture.

As for existing approaches to IoT deployment modeling,
VORTOLANG from the Eclipse Vorto1 project is one of
the most relevant and prevalent examples. Other benefits of
Eclipse Vorto are that it allows the reuse of existing models
through shared repositories and provides plugins for code
generation to integrate with other projects and platforms. As a
consequence, it seems promising to use Eclipse Vorto to ease
the modeling of local clouds by mapping those resources into
SysML models. In this paper, we investigate this approach
further. In particular, the main contribution of this work,
with potential industrial relevance, is an integration concept
for coping with the design complexity of industry-scale IoT
installations through an integrated modeling approach. As
an additional benefit, a baseline arises for a bilateral cross-
fertilization: we extend Eclipse Vorto towards functional and
architectural design, and systems modeling towards detailed
device platform specifications.

Therefore, we first introduce the Eclipse Vorto project and

1https://www.eclipse.org/vorto/

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

72

its VORTOLANG in Sect. II and give an example use case
in Sect. III to which we later apply our modeling approach.
Sect. IV introduces the Arrowhead Framework while Sect. V
presents the current model-based system engineering process
in the Arrowhead Framework with SysML. In Sect. VI, we
explain our approach for a mapping between SysML and
Eclipse Vorto. This mapping is then illustrated in Sect. VII.

II. ECLIPSE VORTO

Eclipse Vorto [3] is an open-source project for modeling
digital twins. The goal of the project is to provide platform-
independent and vendor-neutral tools to model digital twins
and to make use of the models by supplying plugins to ease
the integration in existing IoT ecosystems. The project consists
of 4 main components:

• VORTOLANG: a domain specific language (DSL) to de-
scribe digital twins

• Repository: a repository to create, manage and distribute
models

• Plugins: transform Vorto models into source code, request
templates or other representations

• Telemetry Payload Mapping: maps the telemetry data sent
by a device using a mapping specification based on a
Vorto model

A. VORTOLANG - The Vorto Language
VORTOLANG is the domain specific language used to de-

scribe digital twins. It consists of four different kinds of
elements:

• Information Model (IM): describes a digital twin and its
capabilities

• Function Block (FB): describes a set of capabilities that
are implemented by the digital twin. Function Blocks can
be designed hierarchically by extending other Function
Blocks. The individual capabilities are grouped into the
following property groups:

– Status: contains properties of the digital twin that can
only be read (read-only)

– Configuration: contains properties of the digital twin
that can be both read and set (read-write)

– Event: contains events that can be emitted by the
digital twin

– Operation: contains functions that can be invoked on
the digital twin

– Fault: contains fault states that can occur on the
digital twin

• Data Type (DT): describe complex data types or enumer-
ations that can be assigned to Function Block properties

• Mapping: describes platform-specific or implementation-
specific information that can be added to a generic
Information Model or Function Block.

B. Vorto Repository
The committers of Eclipse Vorto host an official public

instance of the repository2. The official repository is an

2https://vorto.eclipse.org

Fig. 1. A simplified model of VORTOLANG

offering for device manufacturers and IoT solution developers
to develop and publish re-usable models of their devices /
digital twins in a standardized way. However, it is also possible
to self-host a Vorto repository (e.g. for on-premise solutions
without internet access). The repository offers several features
to interact with the Vorto models:

• UI and APIs to interact with the repository and the models
• A web editor to create and edit models
• A review and release process for models
• Different levels of visibility (private / public)
• Import and export functionality of models
• Direct integration with Vorto plugins
• Java client that can interact directly with the APIs of the

repository

Fig. 2. Screenshot of the landing page of the public Eclipse Vorto repository
(https://vorto.eclipse.org/#/, accessed 04.08.2020)

73

C. Vorto Plugins

Vorto Plugins can be used to process Vorto models to
transform them into different formats, representations, source
code, and request templates. Currently, there are five officially
supported plugins:

• Eclipse Hono Plugin: transforms Vorto models into
source code to connect devices to Eclipse Hono via
MQTT

• Eclipse Ditto Plugin: transforms Vorto models into
Eclipse Ditto Digital Twin representations (JSON or
OpenAPI)

• JSON Schema Plugin: transforms Vorto models into a
JSON Schema representation

• OpenAPI Plugin: transforms Vorto models into an Ope-
nAPI YML representation

• Bosch IoT Suite Plugin: transforms Vorto models into
source code to connect to the Bosch IoT Suite or into a
request template to provision devices

In addition to the officially supported plugins, several ex-
perimental plugins offer other transformations. Experimental
plugins are managed in a separate Github repository.3 All
plugins can be used either as local run applications or as AWS
Lambda functions. The public Vorto repository is integrated
with the official plugins as AWS Lambda functions and can
thus be used directly from the Vorto Repository UI. One can
also use the plugin API to develop custom plugins.

D. Vorto Telemetry Payload Mapping

The Vorto Telemetry Payload Mapping engine is a stan-
dalone application to map telemetry data that is sent by a
device. To use the mapping application, one needs to create
a payload mapping configuration, to understand the source
format used by the device and the desired normalized target
format. The payload mapping engine offers a canonical JSON
target format and the Eclipse Ditto JSON format. The normal-
ized payload data can then be used to build applications with
normalized APIs based on the Vorto models.

III. EXAMPLE MODELS

In the following, we define an artificial example use case to
showcase the capabilities of the Eclipse Vorto models. Later in
this paper, we use these models for an example mapping of the
Vorto meta-model to an Arrowhead SysML Profile. Figure 3
gives an overview of the use case. In the depicted setup, we
assume a production facility with several units like conveyors
and an assembly robot. A server back end system allows
the collection of production data by providing connectivity,
a digital twin device abstraction, and storage e.g. through
instances of Eclipse Hono4, Eclipse Ditto5 and a database.
The back-end server also hosts Arrowhead core services to
provide the infrastructure for a local cloud with the mentioned
machines and software systems. The objective of the use case

3https://github.com/eclipse/vorto-examples/tree/master/vorto-generators
4https://www.eclipse.org/hono/
5https://www.eclipse.org/ditto/

/offset

/currentItem
/opshours

/distance

Local Cloud

Arrowhead mandatory core services

Demo Machine

Distance Measurement Machine

Off-Setter Machine

Fig. 3. Demo Setup

is to collect and centrally store data from the various units and
to perform basic control operations between the machines.

The local cloud has three machines. One of them is a demo
machine for which we created a custom Vorto model. The
starting point of the modeling approach is the information
model in Listing 1.

Listing 1. Information model for demo machine
1 vortolang 1.0

3 namespace org.arrowhead.demo
4 version 1.0.0
5 displayname "demo-machine"
6 using org.arrowhead.demo.CurrentItem ; 1.0.0
7 using org.arrowhead.demo.OpsHours ; 1.0.0

9 infomodel DemoMachine {

11 functionblocks {
12 currentItem as CurrentItem
13 opsHours as OpsHours
14 }
15 }

In our case, this machine tracks its operation hours and which
item it currently processes. For both aspects, we defined
separate function blocks. Listing 2 shows the function block
for the operational hours. Here the assumption is that the
machine tracks it operational hours and produces events when
it reaches a maintenance window (line 19 to 21) or requires
that it gets moved (line 15 to 18) depending on the operation
time. We assume that one needs to move the demo machine to
avoid it from wearing out when operating in the same position
for too long. The operator can further set the duration of the
maintenance window and the window until the next movement,
which we model with the configuration block in lines 9 to 12.

Listing 2. Function block for operation hours
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Operation Hours"
6 description "Operating hours"

8 functionblock OpsHours {
9 configuration {

74

10 turnWindow as long
11 mandatory largeMaintanceWindows as long
12 }

14 events {
15 moveTimeReached {
16 mandatory timestamp as long
17 mandatory offset as long
18 }
19 maintenanceReached {
20 mandatory timestamp as long
21 }
22 }
23 }

Then there is also a function block for the currently processed
item depicted in Listing 3. Here the item is identified by an
id. Since one can only read but not write this value from the
item we modeled this as status.

Listing 3. Function block for the currently processed item
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Current Item"

7 functionblock CurrentItem {
8 status {
9 mandatory id as string

10 }
11 }

Another machine can move the first machine to a given
offset. The capability of this off-setter machine can be modeled
as an operation in a function block corresponding to Listing 4.
We do not show the information model for the second machine
because it has strong similarities with the information model
of the demo machine.

Listing 4. Model for offset movement
1 vortolang 1.0

3 namespace com.eclipse.arrowhead
4 version 1.0.0
5 displayname "Offset Movement"

7 functionblock Offset {
8 operations {
9 moveToOffset(offset as long)

10 }
11 }

One had to describe the already mentioned machines in
particular models. However, as shown in Figure 6 the modeled
Arrowhead local cloud shall also contain a third machine,
which measures distances e.g. between objects on a conveyor.
For this machine, it is possible to reuse the distance sensor
model obtainable from the public Vorto repository [4] and thus
integrate the distance measurement machine into the model of
the local cloud with minimal additional effort. This integration
also highlights the benefit of having a central source for more
or less generic models to foster reuse and adoption of existing
models to decrease overall engineering overhead.

IV. ECLIPSE ARROWHEAD

Eclipse Arrowhead 6 is a newly founded open-source project
in incubation at the Eclipse Foundation, which offers methods
and tools to bring concepts of service orientation to the
Industrial Internet of Things. The Arrowhead initiative has
a strong focus on fostering interoperability via service and
interface descriptions between systems and components [5].
The Arrowhead community originated from a joint European
effort of more than 80 industrial and academical partners to
bridge the interoperability gaps for applications and tools in
IoT-based automated industrial scenarios. Currently, there are
multiple projects following up on the promising results, the
two most important, large-scale consortial endeavors being
Productive 4.0 and Arrowhead Tools. Productive 4.0 explicitly
aims at putting Arrowhead concepts into industrial production
in the context of Industry 4.0 [6]. In contrast, the goal of
the Arrowhead Tools project, started in 2019, is to establish a
mature software and tooling landscape around the Arrowhead
core to foster even broader and more efficient adoption of
Arrowhead technology in the industry. It is in the context
of Arrowhead Tools that the initially proposed Arrowhead
Framework has started its journey in the Eclipse universe.

As for its principles, the whole Arrowhead ecosystem bases
on a service-oriented architecture (SOA) [7]. However, in
contrast to classical SOA, the Arrowhead Framework does
not explicitly employ an enterprise service bus (ESB) as a
central messaging point. Instead, it uses service-to-service
communication as proposed for micro-services instead. The
Arrowhead Framework introduces the concept of local clouds,
which encapsulate geographically connected processes, such
as production facilities. Delsing et al. [5] define five substantial
requirements, which local clouds have to meet: (i) Low latency
guarantee for real-time use cases; (ii) a high degree of scalabil-
ity of automation systems; (iii) multi-stakeholder integration
and operations agility; (iv) security and safety measures; and
(v) ease of application engineering. As long as the listed
criteria are met, the Arrowhead local cloud concept does not
define the underlying architecture. However, especially latency
and security requirements, depending on how important they
are for the respective use-case, might require a complete IoT
setup involving edge deployments [5]. The local clouds contain
all necessary components to operate on their own. Generally,
each local cloud consists of three kinds of entities:

1) Devices are the hardware foundation of each local cloud
and are hosts to one or multiple systems. A device is not
bound to a specific performance threshold. Hence, small
and constrained hardware can be part of the local cloud,
as well as more powerful machines.

2) Systems are the software artifacts executed on the un-
derlying devices, forming a logical unit of semantically
coherent tasks. These systems autonomously register
themselves and their provided services at a service
registry. Besides service provision, a system is also
capable of consuming services of other systems.

6https://projects.eclipse.org/projects/iot.arrowhead

75

3) Services are functional representations of systems to-
wards the outside world. They are the primary artifacts
in connecting services according to SOA principles:
provided services get consumed by other systems (which
might, e.g., depend on specific inputs for their opera-
tion). There is no technical specification concerning the
choice of protocol or payload format. Since this is part
of the interface definition of each service and beyond the
scope of the Arrowhead specification. For instance, the
system might employ web technology or broker-based
communication patterns.

In the following section, we turn ourselves to a founded ap-
proach of capturing such local cloud architectures via systems
modeling techniques.

V. MODELING A CLOUD: ARROWHEAD TOOLS AND
SYSTEMS MODELING

The notion of model-based systems engineering (MBSE)
plays an important, even crucial role in holistic engineer-
ing workflows involving large-scale, complex, dynamic sys-
tems [2]. However, MBSE and its primary modeling language,
SysML [8] are arguably recognized for capturing monolithic
systems with a more fixed (though probably complex) archi-
tecture. Recently, there has been a growing interest around the
best ways to employ systems modeling in modern, dynamic,
even cloud-based scenarios.

As for modeling Arrowhead local clouds, we rely on the
aforementioned established systems modeling language and
methodology, SysML. SysML is a dialect of the well-known
Unified Modeling Language (UML), tailored to meet the spe-
cific needs of systems engineering activities. In turn, modeling
Arrowhead local clouds requires a custom-tailored approach
with a considerable amount of flexibility to adequately capture
the diverse set of entities as introduced above. SysML is the
canonical language of choice for such endeavors. Also, SysML
excels at language extensibility (being a primary concern) and
has mature, feature-rich tooling and an active community. The
language provides several different diagram types to represent
the facets of the system to be modeled, from requirements
to static structures to communication protocols. For further
general details, there is a large variety of textbooks available
— e.g., for practical information of SysML, refer to the
comprehensive book of Friedenthal et al. [8].

Recently, there has been a proposal for a concrete,
Arrowhead-centered approach for modeling service-oriented
applications, i.e., Arrowhead Systems of Systems [9], extending
and refining the Arrowhead documentation approach proposed
earlier [10]. The solution is a standard UML/SysML mecha-
nism to enlarge and tailor the modeling language for a specific
domain. In short, a profile is an organized collection of stereo-
types, i.e., domain-oriented specializations of generic SysML
language concepts. We refer the interested reader to [9]; here,
we focus on those parts which have direct relevance to the
present integration approach:

• The so-called interface design descriptions (IDD) can be
conceived as the realization blueprints for certain services

on certain systems (cf. Sect. IV). In particular, IDDs
contain operation signatures representing service func-
tionality. A single IDD can be used as a service “type”
for modeling both provider and consumer behavior.

• A central Arrowhead notion is that of devices; thus,
there is a corresponding stereotype, serving as a mere
placeholder (better said, a canonical integration point) in
the original version of the profile. The present paper is, in
fact, an actualization of such an integration, which results
in filling that stereotype with life and details.

• A local cloud configuration is modeled via deployed en-
titites, represented as specialized SysML part properties.
This part configuration is the place where platform mod-
eling gets realized on a (conceptual) deployment level—
the next section demonstrates this through examples.

This profile and modeling approach is referred to as
SoSysML in the rest of the paper. Figure 4 shows an overview
of the SoSysML representation of our example local cloud
(cf. Sect. III); in particular, the upper row of the diagram
consists of system design descriptions (SysDDs), representing
design templates for the three system kinds involved in the
use-case. SysDDs also play a significant role as the hosts for
actual interfaces. This is materialized by their ports (the small
rectangles at the edge of the SysDD boxes). The essential
logical structure of SoSysML lies here: SysDDs are brought
together with IDDs (abstract service and interface descriptions
not explicitly depicted here) by using IDDs as types of ports on
SysDDs. Thus, a SysDD represents an object (a system) while
its ports express its behavior (via the typing IDDs). Details on
IDDs are out of scope here—for the present paper, it suffices
to conceive of them as operation collections.

The bottom row, in turn, contains the SysML representations
of those device kinds, whose instances the actual system
instances will be allocated to. These device templates come
in two fashions: in some cases like the distance sensor in our
running example, an already modeled device can be readily
used and, thus, directly imported from the Eclipse Vorto
repository, while in other cases, the design process might
necessitate the modeling of new devices. The next section
covers details of this instantiation and allocation.

Fig. 4. SoSysML Overview: The Smart Assembly Use-Case (Sect. III)

Note that the above figure is an excerpt from an actual

76

model realization as available in MagicDraw, an industrially
established and widely used systems modeling tool. Thus,
the integration presented as the essential contribution of this
paper in the following Section VI also reveals an industrial
potential w.r.t. base technologies involved here: it seems that
while IoT device/deployment models are addressed in the
Eclipse ecosystems, abstract systems modeling and platform-
independent design have a home in the NoMagic7 (Magic-
Draw, Cameo Systems Modeler, Teamwork Cloud, ...) tool
infrastructure. The prototype serving as the practical baseline
for the present contribution constitutes an important step
towards integrating these two platforms/ecosystems (having
some conceptual touching points which we can rely on) and,
thus, we find that this “mismatch” is more a benefit than
an impediment. Moreover, the underlying implementation of
our MagicDraw plugin is based on VIATRA, an established
Eclipse model transformation engine.8 We will continue to
build upon this combined ground in the future. As for the
future potential of the current approach, we also remark that
this approach is very likely to play a leading role in the future
of systems modeling as well. Currently, the upcoming new
major release of the systems modeling standard, SysML v2,
considers the Arrowhead SoS profile mentioned as a candidate
for SOA modeling standardization.

VI. VORTO, SYSML, ARROWHEAD: THE INTEGRATION
APPROACH

As a culmination and summary of the ideas introduced
above, we turn ourselves to the primary concept of this paper:
the integration of Eclipse Vorto device models with SoSysML,
i.e., our Arrowhead-specific SysML-based design approach to
device-independent SoS (local cloud) modeling.

On a conceptual level, Table I summarizes the essence
of the integration approach. As it has already been hinted
at in the previous section, the main observation behind the
integration is a direct correspondence, i.e., a mapping, between
concepts from SoSysML and VORTOLANG. In particular,
Device in SoSysML serves as a topmost container for any
device descriptions, thus corresponding to the topmost VOR-
TOLANG elements, Information Models. The IDDs correspond
to the actual functional specifications, the Function Blocks of
VORTOLANG. This concise table also indicates that below this
level, the two modeling languages become equivalent: their
Operation concept represents the same abstraction level.

TABLE I
SOSYSML TO VORTOLANG CONCEPT MAPPING

SoSysML VORTOLANG
IDD Function Block

Device Information Model
Operation Operation

The essence of our contribution, i.e., the actual integration
of SoSysML local cloud models and Vorto digital twins is

7https://www.nomagic.com/
8https://www.eclipse.org/viatra/

Fig. 5. Example Use-Case: SoSysML-Vorto Integration

illustrated through our example in Fig. 5. The upper region
above the horizontal dashed line (Deployed systems) is the
way to organize non-allocated, abstract, platform-independent
system instances into a local cloud in SoSysML: each box
represents a system instance to be deployed, where the string
before the colon is its proper name, while the string after the
colon indicates its type, which is, in turn, a SysDD (cf. Fig. 4).
This typing provides each system with an interface (port)
structure. The structure is turned into an abstract, design-
time local cloud representation by the connectors (solid lines)
attaching provided interfaces to consumed interfaces (the latter
denoted by the same type name depicted with a tilde prefix).
Notice the resemblance of this part of the figure to the intuitive
scenario depiction in Fig. 3.

The extended, integrated local cloud representation (includ-
ing the lower region of Fig. 5) now contains Vorto devices
as well. These are represented, again, by boxes with typed in-
stances (using the same label convention)—but here, the types
come from a set of Vorto device descriptions (represented as
Information Models, cf. Table I). In turn, these information
models might originate from two different sources (cf. also
the bottom line of Fig. 4), both considered by our MagicDraw
Vorto Importer module:

• they either directly come from the Vorto repository itself;
to this end, the importer browses the online catalog and
the user can automatically create a SysML representation
of such information models, if she or he thinks that
one of them would fit their design (the case of the
DistanceSensor in our example); or

• if the desired functionality is not yet represented by any
“stock” solution, the user can choose to write his or her
own Vorto specification with any preferred local workflow
conforming to VORTOLANG. For example, they can use
the Vorto IDE or the web modeler, and might even reuse
already predefined function blocks.

Based on the Vorto models users may also use one of the
various code generators and plugins to generate integration
code for different back-end systems. We implemented both of
the aforementioned model input sources in our implementation
of the MagicDraw Vorto Importer, a plugin of the established

77

systems modeling tool MagicDraw9 (or its SysML-equipped
distribution Cameo Systems Modeler, the difference being
immaterial for our purposes). The prototype features a user-
friendly manner, where the built-in Import menu is extended
by two further options one for browsing the Vorto repository
and choosing information models to import, the others to
browse locally for user-created Vorto model packages. From
this point on, the usage of the imported information models
is the same regardless of the source, as detailed above.

VII. APPLYING THE INTEGRATION APPROACH

In the previous section, we presented our integration ap-
proach. Now we demonstrate its use in an engineering work-
flow using our running example from Sect. III. As our
metaphor in the title suggests, our integration approach fills
SoSysML models of Arrowhead local clouds with device
details, i.e., relates the cloud model with the bare metal devices
(or their abstractions).

To realize the scenario described in Sect. III, the following
steps have to be carried out.

a) Model System of Systems Model: Here the initial
Model of the SoS scenario, i.e. the Arrowhead local cloud,
has to be modeled. In the example case depicted in Fig. 6,
one has to create a SysML model for the three Systems and
their relationships, as shown in Fig. 4. This step is not unique
to our mapping approach but is more a prerequisite.

b) Select Devices in Repository: With the SoSysML
model available, the modeler can turn to fill the modeled
abstract devices with life. As the Vorto repository already
contains a considerable number of different models, the first
step should be to browse it and check if an information model
of the required device already exists. In our example, this is
the case for the distance sensor modeled for machine three.

c) Model Device: If a model does not already exist in the
repository, the modeler can still use VORTOLANG to model
the device capabilities. In our example, this is done with
the devices described in Listings 1–4. Those models can be
imported into the SoSysML as well. Using VORTOLANG has
the advantage that the whole infrastructure provided by the
Eclipse Vorto project can still be applied. For example, one can
integrate existing function blocks into an information model.
It is then possible to publish the models later on in the Vorto
repository if they are stable and of broader use.

d) Import Device Models: With the device models at
hand, the modeler can now import the Information models into
the SoSysML models (upper part of Fig 6). The device models
provide the SoSysML model with the concrete capabilities of
the devices, which in turn allows for fine-grained modeling
of processes and procedures. An example is the conveyor
maintenance procedure described in Sec. III.

With that step, the actual integration of Eclipse Vorto and
SysML is complete but there are some further steps possible.

9https://www.nomagic.com/products/magicdraw

e) Generate Connectivity Code: As the device models
are available as Vorto information models also the code gener-
ators of Eclipse Vorto can be used to generate the connectivity
code (lower part of Fig 6). In our example, the machines
connect to an Eclipse Hono instance. So we need code for the
connectivity with Eclipse Hono. The Vorto generator plugin
for Hono directly generates connectivity code stubs in C
(Arduino), Java, and Python that can be integrated into the
connectivity stack of the machine or an attached gateway.

f) Perform Arrowhead Wiring: As the SoSysML model
has all the required data, the actual Arrowhead wiring, i.e.,
registration of the services at the Service Registry and con-
figuration of the Arrowhead Orchestrator can happen semi-
automatically utilizing another plugin.10

Fig. 6. Applying Vorto models in an engineering process

VIII. RELATED WORK

The integration approach pursued in the paper touches on
various industrial concepts and frameworks of high relevance;
however, due to the rising interest around such topics, it is not
typical in IIoT and Industry 4.0 to have widely established
industrial solutions. We perceive an abundance of often non-
public domain-specific architectural solutions. The EU has
started to establish an industrial reference architecture frame-
work, RAMI4.0 [11], which represents a much higher abstrac-
tion than our present contribution, and a direct comparison
is, therefore, out of scope here. We mention some related
approaches in the most relevant fields in the following.

First, service-oriented architectures already have a standard
modeling language called SoaML [12] which is also a dialect
of UML (just as SysML). The concepts which SoaML relies on
are more orthogonal to the SysML-based design pursued here.
However, our flexible setup allows an integration of various
further diagram and representation types, even SoaML. SoaML
also lacks a device modeling aspect and one therefore would
have to refactor the Vorto integration in that case too. For an
overview of other SOA standards, refer to [13].

The topic of platform modeling and the clear distinction
between a platform-independent and a platform-specific model
(PIM/PSM) is a fundamental concept in the OMG standard

10https://github.com/IncQueryLabs/arrowhead-tools

78

Model-Driven Architecture [14]. Arguably, our integration
approach embodies this concept, SoSysML models being
representing the PIM, and their Vorto mapping the PSM part
of a comprehensive platform model. Other European industrial
digitalization projects have investigated well-founded platform
modeling, such as the OpenCPS11 endeavor.

As for IoT architecture design, there is no industrially
accepted general solution, framework, or workflow yet; i.e.,
every domain builds its specific modeling solution. However,
the Eclipse IoT Working Group aims at providing generic
technologies to enable end-to-end IoT solutions [15]. As for
other European approaches, Krčo et al. [16] had a look into the
various IoT endeavors within Europe. They identified several
projects and organizations, which either define different IoT
reference architectures or provide reference implementations
for IoT core systems. Further, they describe a landscape of IoT
activities in Europe in which the Arrowhead framework fits
quite well and for which the described integration approach,
with adjustments, could be of use, too.

As for combining Vorto with SysML, Pfenning and Roth
[17] present an approach to generate Vorto Information Models
from existing SysML models. The objective is to generate
digital twin implementations from existing SysML models of
the Product Lifecycle Management (PLM) via model trans-
formation techniques. The authors make use of the existing
generator implementations of Eclipse Vorto to obtain digital
twin implementations for different IoT-Platforms. Thus, their
approach is the inverse of our method described in this paper.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel integration ap-
proach to combine System-of-Systems modeling and a device
modeling ecosystem into a comprehensive industrial IoT plat-
form design solution. In particular, building on ongoing work
in Arrowhead Tools, we extend the SysML-based modeling
approach SoSysML with a capacity to represent devices
within the models in a tightly integrated fashion, resulting
in full-fledged, compact platform models. Moreover, we have
created and presented an importer tool prototype, not only to
demonstrate feasibility, but also to emphasize the integration
potential between the NoMagic modeling ecosystem on the
one hand, and the Eclipse Vorto ecosystem on the other hand.

An immediate item for future work is to investigate tooling
extensions by reaching deeper into both main ecosystems
involved here. On the one hand, we might consider the
Eclipse-native, but little less SysML centered modeling tool
Eclipse Papyrus.12 On the other hand, the NoMagic modeling
ecosystem has built-in model repository features that resemble
the shape of the Eclipse Vorto offering; such features could
allow for building a repository system for IIoT.

ACKNOWLEDGMENT

The research has received funding from the EU ECSEL
JU under the H2020 Framework Programme, JU grant nr.

11https://www.opencps.eu/
12https://www.eclipse.org/papyrus/

826452 (Arrowhead Tools project, https://www.arrowhead.eu)
and from the partners’ national funding authorities.

Project no. 2019-2.1.3-NEMZ ECSEL-2019-00003 has
been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, fi-
nanced under the 2019-2.1.3-NEMZ ECSEL funding scheme.

Project no. 16ESE0367 has been implemented with the
support from the Federal Ministry of Education and Research
of Germany.

REFERENCES

[1] M. Jamshidi, System of systems engineering: innovations for the twenty-
first century. John Wiley & Sons Incorporated, 2009, vol. 58.

[2] P. Micouin, Model Based Systems Engineering: Fundamentals and
Methods. John Wiley & Sons, 2014.

[3] The Eclipse Vorto project, “Eclipse Vorto,” accessed: 2020-07-17.
[Online]. Available: https://www.eclipse.org/vorto/

[4] A. Edelmann, “Distance Sensor - Informationmodel,” 2019, accessed:
2020-07-17. [Online]. Available: https://vorto.eclipse.org/#/details/org.
eclipse.vorto.tutorial:DistanceSensor:1.0.0

[5] J. Delsing, P. Varga, L. Ferreira, M. Albano, P. P. Pereira, J. Eliasson,
O. Carlsson, and H. Derhamy, “The arrowhead framework architecture,”
in IoT Automation. CRC Press, 2017.

[6] D. Kozma, P. Varga, and G. Soós, “Supporting digital production,
product lifecycle and supply chain management in industry 4.0 by
the arrowhead framework–a survey,” in 2019 IEEE 17th International
Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019, pp.
126–131.

[7] M. Bell, SOA Modeling patterns for service-oriented discovery and
analysis. John Wiley & Sons, 2009.

[8] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

[9] G. Kulcsár, K. Kadosa, T. Szvetlin, B. Péceli, A. Horváth, Z. Micskei,
and P. Varga, “From models to management and back: Towards a system-
of-systems engineering toolchain,” in Proc. of IEEE NOMS Workshop
on Management for Industry 4.0, 2020.

[10] F. Blomstedt, L. L. Ferreira, M. Klisics, C. Chrysoulas, I. M. de Soria,
B. Morin, A. Zabasta, J. Eliasson, M. Johansson, and P. Varga, “The
Arrowhead approach for SOA application development and documenta-
tion,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial
Electronics Society, 2014, pp. 2631–2637.

[11] T. Bangemann, M. Riedl, M. Thron, and C. Diedrich, “Integration of
classical components into industrial cyber–physical systems,” Proceed-
ings of the IEEE, vol. 104, no. 5, pp. 947–959, 2016.

[12] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen, and
A. Solberg, “Model-driven service engineering with soaml,” in Service
Engineering. Springer, 2011, pp. 25–54.

[13] H. Kreger and J. Estefan, “Navigating the SOA open standards landscape
around architecture,” Joint Paper, The Open Group, OASIS, and OMG,
2009.

[14] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda
framework,” in Proceedings 16th Annual International Conference on
Automated Software Engineering (ASE 2001). IEEE, 2001, pp. 273–
280.

[15] The Eclipse IoT Working Group, “The three software
stacks required for iot architectures,” Eclipse Foun-
dation, https://iot.eclipse.org/community/resources/white-
papers/pdf/EclipseTech. Rep., 2017.

[16] S. Krčo, B. Pokrić, and F. Carrez, “Designing iot architecture (s): A
european perspective,” in 2014 IEEE World Forum on Internet of Things
(WF-IoT). IEEE, 2014, pp. 79–84.

[17] M. Pfenning and A. Roth, “Systemmodellierung für das internet der
dinge – transformation von systemmodell in iot-plattform im kontext
später produktlebenszyklusphasen,” in Tag des Systems Engineering, S.-
O. Schulze and C. Muggeo, Eds., GfSE. Hanser, 2016, in German.

79

Model Based Methodology and Framework for
Design and Management of Next-Gen IoT Systems
Xu Tao, Davide Conzon, Enrico Ferrera

LINKS Foundation
Turin, Italy

{name.surname}@linksfoundation.com

Laurent Maillet-Contoz,
Emmanuel Michel, Mario Diaz-Nava

STMicroelectronics
Grenoble, France

{firstname.lastname}@st.com

Shuai Li
CEA, LIST

Paris-Saclay, France
{name.surname}@cea.fr

AbdelHakim Baouya, Salim Chehida
Univ. Grenoble Alpes

Grenoble, France
{name.surname}@univ-grenoble-alpes.fr

Juergen Goetz
Siemens AG Corporate Technology

Munich, Bavaria, Germany
juergen.goetz@siemens.com

Abstract—Internet of Things (IoT) is a pervasive technology
covering many applications areas (Smart Mobility, Smart Indus-
try, Smart Healthcare, Smart Building, etc.). Its success and the
technology evolution allow targeting more complex and critical
applications such as the management of critical infrastructures
and cooperative service robotics, which requires real time oper-
ation and a higher level of intelligence in the monitoring-control
command for decision-making. Furthermore, these applications
type need to be fully validated in advance considering that
bugs discovered during real operation could cause significant
damages. In order to avoid these drawbacks, IoT developers and
system integrators need advanced tools and methodologies. This
paper presents a methodology and a set of tools, defined and
developed in the context of the BRAIN-IoT European Union (EU)
project. The overall framework includes both Open semantic
models to enforce interoperable operations and exchange of data
and control features; and Model-based development tools to
implement Digital Twin solutions to facilitate the prototyping and
integration of interoperable and reliable IoT system solutions.
After describing the solution developed, this paper also presents
concrete use cases based on the two critical systems mentioned
above, leveraging the application scenarios used to validate the
concepts developed and results obtained by the BRAIN-IoT
project.

Index Terms—Model-Based System Engineering, Internet of
Things, Digital Twin, Brain-IoT

I. INTRODUCTION

Nowadays, the IoT concept is adopted in new application
domains, allowing fast digitalization of contemporary society
[1]. The application of IoT in innovative scenarios such as
critical infrastructures management, and cooperative service
robotics demand to satisfy a set of strict requirements in term
of low latency, high reliability, adaptability, heterogeneity and
scalability, highly more challenging than the ones required by
the traditional (e.g., domotics) environments. To satisfy these
requirements, the IoT developers needs to introduce in their
solutions next generation Internet of Things (next-gen IoT)
technologies, e.g., Edge Computing, Artificial Intelligence
(AI), Digital Twin, among others [2], thus leading them to
become more complex to design and manage and requiring

the introduction of methodologies and tools that ease the users
their development and runtime management.

Recently, several approaches have been proposed to ease
the development of IoT systems (see section III-A). However,
these solutions do not generally support all the functionalities
required by next-gen IoT applications and focus only on
development, not supporting the other phases of the appli-
cation life-cycle, e.g., deployment, validation, monitoring and
adaptation at runtime. Currently, the market asks for IoT so-
lutions supporting business critical tasks that can be deployed
rapidly and with low costs. Such solutions need to allow
the design of applications involving several interconnected
heterogeneous platforms and smart things and, at the same
time, be able to deploy, monitor and evolve the designed
complex solution adapting automatically and at runtime to
environmental changes.

This paper is organized as follow: Section II presents the
motivation and the requirements that has led to the devel-
opment of the BRAIN-IoT Modeling & Verification Frame-
work presented in this work. In Section III-A, some existing
model-based system engineering approaches are discussed.
Then, the BRAIN-IoT modeling methodology is introduced
in Section IV and the implementation of the methodology is
illustrated in Section V. Next, two use cases, in Section VI,
are exploited to demonstrate the functionalities provided by
the BRAIN-IoT Modeling & Verification Framework. Finally,
Section VII concludes the paper.

II. MOTIVATION AND REQUIREMENTS

The design of an IoT system today presents considerable
complexity. Several factors contribute to this complexity: first,
an understanding of IoT is still too focused on IoT tech-
nologies and objects (device types, communication protocols,
cloud, database type, etc.). Such a vision loses sight of the
true purpose of the system to develop and leads most of the
time to unsatisfactory solutions. Then, the wide variety of
IoT systems, in terms of their deployment, is a technological

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

80

source of complexity: IoT systems can be considered with a
”local” deployment such as an automatic lighting system of
a house (measurement, storage, data analysis and execution
of the application on a single ”device” connected to the
owner’s smartphone), or systems with a ”highly distributed”
architecture such as a weather forecasting system (sensor
networks for data capture capabilities, plus a cloud for storing,
analyzing data and running the end-user application). Another
aspect concerns the need to integrate legacy systems, i.e.,
IoT systems not designed from “zero”, the problem is then
to create new innovative services on the basis of existing
infrastructures. In this case, it is necessary to ”connect” what
exists and then develop / integrate supporting components
(authentication, monitoring, data distribution, data analysis,
etc.). The objective of this work is to develop a framework that
supports the designer of complex next-gen IoT applications,
easing the use of disruptive technologies, e.g., Digital Twins.

For this scope, the solution proposed needs to allow i)
modelling several aspects of an IoT system: the physical
layer, the IoT devices, the system layer, the system behaviors
and the interactions among the components. ii) Composing
IoT services also provided by different IoT platforms, using
a model-based design approach and semantically annotated
data formats to support interoperability among heterogeneous
systems. iii) Formally verifying and validating the models
designed with the framework. iv) The automatic generation
of code from the models to be deployed on real devices. v)
Supporting the co-simulation approach, with the creation of
a mixed reality environment, where virtual and real entities
can interact with each other. vi) Monitoring the IoT applica-
tions at run-time, keeping the models and the physical world
synchronized with each other. The next section will provide a
state-of-the-art (sota) of the solutions available to design and
manage next-gen IoT applications.

III. BACKGROUND

A. SOTA

A system design process that adheres to the principles and
methods related to ”system engineering” allows to understand
the design phase of a complex system w.r.t. expected function-
ality, cost, time, and quality. In the area of critical systems,
system engineering is in full development and benefits from
domain-specific and often user-specific solutions. Model-based
system engineering is a strong trend, and recent projects such
as AGeSys [3] and Connexion [4] highlight its importance and
have provided an important foundation for the development
of tooled solutions. This work places particular emphasis on
the importance of having interoperable, open, and scalable
solutions.

In the field of IoT, however, the offer has not yet reached
this level of maturity, even though stakeholders are investing
heavily in the implementation of model-based design solutions
for distributed software architectures, such as Ericsson for
network software through its development solution based on
the Papyrus [5] open source tool; or THALES through the

establishment of its Capella [6] engineering chain; or Dassault
System with its Delmia [7] solution.

More specifically, in the field of IoT system engineering,
the Internet of Things - Architecture (IoT-A) project [8]
proposes a methodological framework of design based on the
elaboration of a set of models for the specification of the
system according to different views. It is important to note that
the reference models proposed by IoT-A are independent of
modeling languages that could be used to represent them, even
though different case studies applying this methodology have
been developed using Unified Modelling Language (UML)
models.

In the world of standards, the international standardization
organization Object Management Group (OMG) has developed
the System Modeling Language (SysML) [9] with the aim
of treating software systems, CPS or organizational systems
alike. The generality of SysML requires that it be specialized
and, like any language, it must also be accompanied by a
specific methodology for each application domain so that its
use is best adapted to a given field of application and reach
a level of maximum efficiency. This is for example what has
been achieved for the field of critical embedded systems in
the AGeSys project, or for the field of nuclear power plants
control-command systems in the project Connexion.

Like embedded real-time systems, execution platforms are
a prime concern for IoT systems. The problem of platform
modeling and application allocation on the execution plat-
forms, in the field of embedded real-time systems, has been
addressed by the OMG in the context of the Modeling and
Analysis of Real-Time and Embedded systems (MARTE) [9]
standard, which complements SysML on this aspect. However,
MARTE needs to be taken up for two aspects: the first is
related to its richness which makes it a complex language
to handle and requires to be supported by a methodological
approach targeting the essential elements to the modeling of
IoT systems; the second point is that it remains very focused
on the embedded concerns, and only addresses very little dis-
tributed system aspects, in particular the aspects related to the
communications and the interactions between the distributed
components. The link between the system / platform model,
and the component / communication standards, needs to be
refined and even developed for some new cases, e.g., OMG
CORBA Component Model (CCM) [10], DDS for Lightweight
CCM (DDS4CCM) [11], Service oriented Architecture Mod-
eling Language (SoAML) [12] and more recently Unified
Component Model (UCM) [13]).

The authors have identified that no one of the approaches
described above is able to satisfy all the requirements listed
in Section II. Besides, methodologies proposed for the IoT
domain today do not benefit from dedicated model-based
development tools. Indeed, either these methodologies target
closed systems (e.g. critical embedded systems) or their only
goal is to only establish a guideline for the design process. In
the latter case, neither languages, nor development techniques,
are defined. However, the choice of a modelling language, and
its dedicated tools that will exploit the models, is imperative

81

for the development of well-suited integrated development
environment for the specific needs of the IoT domain.

B. Progrees Beyond SOTA

In this paper, the authors propose system engineering so-
lution for the IoT domain. The proposed solution combines
standard languages with methodologies, while remaining open
to domain-specific practices. Furthermore, the approach fosters
tools related to the modelling languages and methodologies.
The authors of this work believe this solution aims at filling
the gaps in the current system engineering offering for IoT
systems, while not omitting current developer practices.

The solution provides such main features: i) Modelling
methodology: A lightweight methodology accompanies IoT
Modelling Language (IoT-ML). Using the language’s capacity
to describe different levels of abstraction, the methodology
proposes to model entities representing system, software, and
hardware components. By relating such components among
them, and by linking them to their domain-specific represen-
tation and tools, the authors of this paper promote a system
holistic view of the whole IoT solution. ii) System behavior
modeling: It is based on IoT-ML and integrated with World
Wide Web Consortium (W3C) Web of Things (WoT) Thing
Description (TD), thus the service provided by the IoT devices,
communication protocol and its data structure can be modeled
as well. iii) IoT physical layer modeling and validation: It
models the IoT devices, BRAIN-IoT adopted the digital twin
concept to provide the ability for system application validation
on the modeled IoT devices before deploying in the production
environment. iv) Models@Runtime: One particular aspect that
is not well explored in the IoT domain, and critical embedded
systems domain altogether, is the human-friendly monitoring
of system state at runtime, directly through the system models.
A model-based runtime monitoring approach usually helps
identify and fix deviations observed at runtime, compared to
formal specifications defined in the models. In the BRAIN-
IoT solution, not only is runtime formal validation a priority,
but the authors also wish to benefit from monitoring to enable
behavior explanations friendly to humans. v) Code generation:
The code to be deployed is automatically generated from the
models.

As mentioned, the core of the system engineering solution
proposed for IoT is based on IoT-ML and its Papyrus tooling.
However, as a reminder, this work wishes to promote integra-
tion of domain practices through linking artefacts or refining
models. The following sections describe some domain-specific
languages and tools that refine entities in the system model.

IV. BRAIN-IOT MODELING METHODOLOGY

This section will present the modelling methodology pro-
posed BRAIN-IoT. As the primary objective, BRAIN-IoT aims
to allow modeling in different abstraction layers. Firstly, it
designs the system-level model composed by the involved
components’ functionalities and interactions based on the
system requirements. The system model also eases the linking

towards real devices and external services through meta-
data generation, and human-friendly monitoring of device
behaviors. Then, the system-level model will be refined as
a formal software-level model whose correctness will be
checked by using the statistic modeling checking and formal
verification. The obtained correct software model is used by a
code generator to generate the software artefacts. Finally, IoT
devices can be modeled as the refined physical-level models
to validate and test the IoT applications before deploying to
the real physical infrastructure. Hence, it allows to have three
different abstraction level models, including the system-level
architecture models, software-level components models, and
physical-level IoT devices, the focus of each abstraction level
is as follows: i) system-level models focuses on composability
of services provided by the IoT devices/platforms and the
overall system behaviors. The system model also serves as an
aggregator of blocks that are refined in lower level models, i.e.,
the software and device described further. Finally, the authors
of this paper promote exploitation of the system model, not
just for design, but also to help deployment, fast prototyping,
and human-friendly monitoring of behaviors at runtime. ii)
software-level models are the formal models of computation
with their formal validation capabilities, and their runtime to
guarantee execution conformity to formal specifications, are
obtained from the system-level models through the syntactical
transformation. iii) IoT physical device models allow the
virtual representation of the edge domain of an IoT system
following a Digital Twin approach, i.e., the possibility to
combine a virtual world with a physical one to validate the
behavior and performances of a complete system or a system
of systems in various steps. This is necessary when the system
is complex (the number of devices is high, from 100’s to
1000’s) and/or in the case of critical systems. These models
allow the modeling and simulation of the components perform-
ing the sensing / actuating, computing and communication
functions, which are the fundamental functions of an IoT
system. This approach could also facilitate the carry-out of
data analysis. However, to design and validate the physical
device, the digital twin model must be refined. This paper
describes the additional modeling levels required to perform
such design. The additional models will allow designing and
validating both the hardware components and the embedded
software them. The main expected benefits are twofold: first,
the elimination of the main bugs impacting the behavior and
the performances of the end devices (e.g., power consumption,
reach) and the whole system; second, the increase of the
system robustness to facilitate and accelerate the complete
system deployment in a more secure manner.

V. BRAIN-IOT MODELLING & VALIDATION FRAMEWORK

This section presents the BRAIN-IoT modelling & Vali-
dation framework developed to implement the methodology
described in Section IV. BRIAN-IoT Modelling & Validation
Framework defines a domain-specific Modelling Language
describing IoT devices capabilities and system-level behaviors;
it also provides toolset supporting the syntax of the modelling

82

Fig. 1. BRAIN-IoT Modelling & Validation Framework Components

language, allowing model verification, model checking, auto-
matic code generation to provide rapid model-based devel-
opment approach, and Models@Runtime monitoring features.
The components in the BRAIN-IoT modeling & Validation
framework are shown as in Fig. 1.

There are four main components in the BRAIN-IoT Mod-
elling & Validation Framework: BRAIN-IoT Modelling Lan-
guages and Modelling Tools, BRAIN-IoT Code Generators,
and BRAIN-IoT Repository. The detailed introduction for each
component are presented in the following subsections.

A. BRAIN-IoT Modelling Language

The BRAIN-IoT Modelling Language is decomposed for
three purposes: the system modelling language, the software
modelling language, and the physical layer modelling lan-
guage. Each of these modelling languages suits a different
concern according to the abstraction layer. As a reminder, these
abstraction layers are the system behavior, the software, and
the physical layer. The authors of this paper believe using
a domain-specific language, and de-facto common practice,
suits the needs and habits of the domain-specific developer.
Relationships are manually input to relate elements of each ab-
straction layer. This allows to have a holistic view of the whole
architecture. Each of the following sub-sections describe a
particular modelling language for a particular abstraction layer.

1) System Modelling Languages and Tools:
a) System Modelling Language: The IoT-ML is the

system modelling language of BRAIN-IoT. It federates the
specifications of heterogeneous sub-systems within a global
IoT system. The language provides the necessary constructs
to design the structural and behavioural system architecture
of the system, entities abstracting the software, and entities
abstracting the execution platform. At its conceptual core, IoT-
ML integrates the concepts present in the IoT-A architecture
reference model. Such a model is shown in Fig.2, extracted
from the standard.

Fig. 2. IoT-A concepts in IoT-ML

IoT-ML is implemented as a UML profile. The UML is a
generic modelling language with heavy roots in the object-
oriented community. A UML profile is an extension of UML.
It is composed of stereotypes that give additional syntax and
semantics to the base UML elements that the stereotype ex-
tends. IoT-ML aggregates syntax and semantics from standard
UML profiles to benefit from the languages they implement.
SysML is used to benefit from its ability to describe and trace
requirements. MARTE is used not only for the design of real-
time embedded systems design, but also because it fosters the
construction of models that may be used to make quantitative
predictions taking into account IoT characteristics. IoT-ML
takes a subset of stereotypes from such standards, and adds
new stereotypes of its own representing concepts of IoT-A that
are not present in MARTE or SysML. For example Virtual
Entity, that can be both software and hardware, is a concept
that does not exist in the UML standard profiles.

As a UML-based model, IoT-ML is a graphical modelling
language. The language focuses on structural modelling. Such
models are represented in UML composite structure diagrams.
Components have internal structures that show parts exposing
their interfaces through ports that are then connected together.

IoT-ML also focuses on behavioral modelling in the form of
UML state-machines. In such models, the behavior represents
the component’s different states. States can pass from one
to the other, based on captured events. Events may be due
to operation calls or signalling. Specific behaviors may be

83

executed upon transitioning across states, or entering / exiting
/ staying in a state.

While IoT-ML can already be used for domain-generic IoT
systems modeling, within BRAIN-IoT, the authors of this
paper have showcased that the core of IoT-ML (based on
MARTE, SysML, extended with IoT-A concepts) is generic
and rich enough to build domain-specific extensions for both
IoT standards and IoT technologies. Indeed, IoT-ML has been
extended with new concepts for the W3C TD standard. For
example, the main concept of the W3C TD is the Thing,
which can be either software or hardware or both. To showcase
IoT-ML for a particular IoT technology, the authors of this
work chose to integrate sensiNact [14] concepts into IoT-
ML. The sensiNact platform interoperates several different
middleware and communication protocols common to the IoT
domain, e.g., Message Queue Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP). Its particularity is
that it has a common data model to represent all devices
connected to different protocols. It is then possible monitor
such devices’ variables through common sensiNact API. The
common API are also used in behaviors, described with the
sensiNact domain-specific textual language, to prototype be-
haviors actuating the devices according to monitored variables.

Thanks to the profile mechanism of UML, all these domain-
specific stereotypes can co-exist with the core IoT-ML stereo-
types on the same UML base elements. Otherwise said, a same
structural or behavioral element, of an IoT-ML architecture
model, can be annotated with information specific to W3C
TD or sensiNact. This fosters model re-use, separation of
concerns, and model consistency through annotating the same
base elements.

The mission of W3C WoT (Web of Things) is to counter
the fragmentation in the IoT world through standardized com-
plementing building blocks - e.g., metadata and Application
Programming Interfaces (APIs) - based on Web technology.
WoT enables easy integration and interoperability across IoT
platforms and application domains. Therefore, the goal of
WoT is to preserve and complement existing IoT standards
and solutions like for the BRAIN-IoT domains Robotics and
Critical Water Infrastructure. In this context, the usage of WoT-
compliant Thing Descriptions (TDs) lays the foundation of
interoperable standardized solutions for the various BRAIN-
IoT domains and avoids their silo-like separation in order to
overcome the problematic diversity of IoT systems.

There are several prominent W3C standard recommenda-
tions for WoT based on the W3C WoT architecture1; the WoT
Architecture specification describes the abstract architecture
for the W3C WoT. This abstract architecture is based on
a set of requirements that were derived from use cases for
multiple application domains. A set of modular building blocks
is also identified whose detailed specifications are given in
other documents. The architecture document describes how
these building blocks are related and work together. Systems

1https://w3c.github.io/wot-architecture/

based on WoT architecture may cross different domains and
integrate several vocabularies and ontologies.

The WoT Thing Description (TD)2 can be considered as
the entry point of a Thing (much like the index.html of a
Web site). Its specification is the core enabling technology.
Different application layer protocols and media types can be
described in a TD .

A TD abstracts the capabilities of individual Things into
3 categories called Interaction Affordances: Properties for
sensing and controlling parameters, Actions for invocation of
physical (and hence time-consuming) processes, and Events
for the push model of asynchronous communication. A TD
includes information models representing functions, transport
protocol description for operating on information models,
security information and general metadata about the device.

In summary, a WoT TD comprises the application logic
requirements (e.g., values and alerts of a Thing). Devices are
required to put a TD either inside them or at locations external
to the devices, and to make the TD accessible so that other
components can find and access them. As soon as available for
a Thing, its TD can be used for flexible implementation and
simulation (if required). To support the implementation, WoT
Scripting API 3 specifies a common programming interface
for Thing implementations as well as Consumer applications
implemented by different programming languages.

b) System Modelling Tools and Relationship with Run-
time: While IoT-ML is expressive enough to encompass IoT
design, only with its modelling tools can exploit the full
benefits of this formalism. One of the main goals of the IoT-
ML modelling tools is to help deployment and connect it to
deployed devices at runtime. This is accomplished through
model transformation. Since IoT-ML, in BRAIN-IoT, has
extensions specific to other IoT standards and technologies,
the modelling tool offers transformation tools to go from one
formalism to the other. The goal of such transformations is to
bridge the gap between the runtime and the system model.

The IoT-ML models are made in the Papyrus modeller tool.
The modelling tool is a typical Eclipse Eclipse Modeling
Framework (EMF) [15] environment. It offers graphical ed-
itors, palettes to populate diagrams, and tree views to visit the
hierarchical UML-based models.

An IoT-ML model, with TD stereotypes annotating its base
elements, can be transformed to a TD in the JSON-based
Serialization for Linked Data (JSON-LD) physical format. As
a reminder, the TD files in JSON-LD are embedded on the
real devices and polled at runtime. The authors of this paper
believe this accelerates deployment of interfaces described in
the system model. Furthermore, it bridges the gap between a
natural way of describing architecture by the system engineers,
and the text-based interface description by the developer. The
importance to foster such a collaboration is explained in [16].

Using the same shared architecture model, the authors of
this work can also transform the structure of the architecture

2https://w3c.github.io/wot-thing-description/
3https://w3c.github.io/wot-scripting-api/

84

into a sensiNact data model. The behaviors in the architecture,
represented as state-machines, are transformed to equivalent
sensiNact domain-specific language scripts. By then connect-
ing to the sensiNact gateway, the data model and its sensiNact
scripts can be run to monitor devices variables, and prototype
system-level behaviors w.r.t. the runtime devices that should
comply to the system model.

One last feature of the IoT-ML modelling tool is its ability to
monitor its state machines. Although the connection between
IoT-ML and sensiNact allows us to monitor variables and
actuate devices, and therefore validate that the runtime is
consistent with the system model, it is not always sufficient to
understand the internal behaviors of the devices. For example,
actuating a device, and noticing a variable change, may not be
sufficient to understand what’s happening for the human being.
Therefore to provide human-friendly behavior explanations, it
is possible to monitor state machines in an IoT-ML model. The
state machines are animated and they mirror what’s happening
in the device state machines. What triggers the animations
are messages that are sent to the IoT-ML modelling tool.
Such messages are either sent by automatically generated code
instrumentation points (i.e., during code generation itself of the
state machine), or by any source that builds a string respecting
the message format of the state machine monitoring tool.

The system model in IoT-ML, although connectable to
existing runtimes, is not sufficient to develop the actual blocks
that are to be deployed to form the runtime. Therefore its
entities that represent software and hardware, must be refined,
respectively, into a software architecture model and a physical
architecture model. The next sections describe such models.

2) Physical Layer Modelling Approach: The BRAIN-IoT
Physical Layer Modeling Approach allows the refinement of
the digital twin model to an architectural model of the physical
design including its functional and extra-functional properties.
This model can be directly used by the device as well as the
Integrated Circuits (ICs) designers as a reference model. This
proposal follows a top-down model-based design approach
composed of black box and white box models, called virtual
twins. They are functionally equivalent to the physical IoT
devices and can be used to serve different purposes. One model
can be seamlessly replaced by the other, as they all share the
same functional specification that represents faithfully the IoT
device at its boundaries. They feature the functional and extra-
functional properties of the IoT device (behavior, security,
energy efficiency, reach, etc.).

a) Black box model: The black box (BB) model is
an abstract representation of the IoT device. It is a sim-
ple service-oriented model that represents its functionality,
regardless of the internal architecture that implements its
behavior. The BB model can be considered as the functional
reference of the end-device. It can be reused whatever the
implementation choices, or even in case of replacement of
the physical device by another one, as long as the functional
specification and interfaces remain unchanged. It provides the
functional contract, the other models or the physical device
shall comply to. Executable, it is a non-ambiguous, repeatable

and deterministic model of the end-device specifications. It
abstracts the internal architecture of the end-device, as well as
the embedded software. The BB model takes as input a file
containing the data values that would be obtained from a real
sensor operating in real conditions.

b) White box model: The second step of the top-down
methodology is the creation of a white box (WB) model of the
end-device representing the internal architecture of the device.

This architecture is composed of one or several sensors
or actuators, a micro-controller, and one or several con-
nectivity elements. Sensors are typically exposing an Inter-
integrated-circuit (I2C) interface for digital data (or I/Os for
analogue one), to let the microcontroller (MCU) read and
write into registers to gather the data from the sensor, while
the connectivity Internet Protocols (IPs) can be programmed
through a Serial Peripheral interface (SPI) bus or through a
Universal Asynchronous Reception and Transmission (UART)
connection. The Hardware Abstraction Layer (HAL) of the
MCU provides an API to access the hardware resources from
the embedded software.

The White-box model represents this typical architecture
that is described using the SystemC/TLM IEEE 1666 modeling
language [17]. The model of the micro-controller typically
includes a model of the embedded processor, such as Quick
EMUlator (QEMU) or Instruction Set Simulators, and the
models of all the peripheral blocks. This list obviously varies
with each micro-controller, but usually includes the timers, the
reset / clock / power controllers, the interrupt controller, and
the hardware accelerators available for the part number. It also
includes I/O models - UART, GPIO, I2C or SPI controllers
- that are used to interact with the other elements of the
end-device. The MCU is modelled to accurately represent
the bus transactions initiated by the processor. The sensor
model serves I2C requests issued by the micro-controller,
and implements the behavior of the block, to react to the
programming sequences. The connectivity model serves SPI
or UART requests issued by the micro-controller, and imple-
ments the behavior of the block, to react to the programming
sequences. In the current developments, the authors have
decided to perform the communication as an abstraction of
all the communication data path by issuing Hypertext Transfer
Protocol (HTTP) requests to the network. When detailed com-
munication protocol information is needed, the connectivity
models can be connected to an elaborated communication
model including communication medium such as LoRaWAN,
serving protocol-specific commands. The WB model conforms
to the functional contract of the end-device, as prescribed by
the BB model.

c) Benefits of the Physical Layer Modelling Approach:
The benefits BRAIN-IoT physical modeling language brings
to the IoT domain are 1) Early verification of the embedded
software, in charge of: data gathering from sensors; local
processing (data formatting, data analysis, power management,
payload construction, encryption, etc.); transmission of the
encrypted data or metadata using the device connectivity
capabilities (Bluetooth, LoRa, SigFox, etc.). 2) A system

85

verification can be achieved in advance without the debug
limitations inherent to physical devices, the models offer full
inspection and observabilicould yty capabilities for debug and
analysis; 3) The complexity of large-scale systems (from tens
to thousands of end-devices) can be addressed by instantiating
the appropriate number of models in the simulation platform;
4) The system reliability is increased, as the validation strategy
of the end-device is strengthened by adding scenarios focusing
on device robustness considering its interaction with system
environment.

3) Formal Software Modelling Language and BRAIN-IoT
Code Generator: The Behaviour, Interaction, Priority (BIP)
Modeling language, introduced in [18], is the software model-
ing language in BRAIN-IoT. It supports the methodology for
building systems from atomic components. It uses connectors,
to specify possible interactions between components, and
priorities, to select amongst possible interactions.

BIP is a highly expressive component-based language that
supports the specification of composite, hierarchically struc-
tured components starting from the atomic ones. In BIP, the
atomic components are finite-state automata having transitions
labeled with ports and states that denote control locations
where component waits for interactions. Ports are actions
that can be associated with data stored in local variables and
used for interactions with other components. Connectors relate
ports from components by assigning them to a synchroniza-
tion attribute, which may be either trigger or synchronous.
A compound type defines a level of the hierarchy. It con-
tains instances of component and connectors types (i.e., sub-
components) with connection definitions and also priorities
to schedule the interactions between these components. A
compound component offers the same interface as an atom,
so, externally, there is no difference between a compound and
an atom. Inner ports from sub-components can be exported.

The BIP formalisms allow the rigorous specification and
analysis of IoT systems components behavior. Moreover, the
component-based approach supported by BIP facilitates por-
traying behavior with reusability, and maintainability features.

The BRAIN-IoT Code Generator relies on BIP language to
describe the system behavior. It accepts as an input a formal
specification of system architecture and system behavior using
the BIP language, then it translates the system model into a
set Java code artifacts. The generated Vanilla code could be
simulated independently to the BRAIN-IoT execution platform
called Fabric [19], and thus, the user could check the validity
of the behavior specified at the BIP level. When the code
is simulated and validated by designers, the code is wrapped
in an envelope called bundles that fit the Brain-IoT execution
platform. BRAIN-IoT Code Generator is an Eclipse plugin that
includes two modules: (i) BIP language processor with the full
support of BIP grammar and syntax checking, (ii) Java code
generator of BIP model.

Using BRAIN-IoT Code Generator, the mapping of a formal
BIP language integrates all the structures related to com-
ponents development engineering such as composability and
reusability. Moreover, the target language is independent of

any technology; all the existing operating systems embed the
processing ability of JAVA language.

The information flow of the components described above
within the BRAIN-IoT modeling & validation framework is
shown in Fig. 1. It is firstly responsible for designing IoT
system application, which is going to be constructed, based
on the actions and relations between the available devices -
e.g., sensors, actuators, Cyber Physical Systems (CPSs) - and
external services, e.g., weather forecast, open data, third-party
IoT platforms, databases. The system level application is mod-
elled along with the relevant IoT environment using BRAIN-
IoT System Modeling Language (IoT-ML) through BRAIN-
IoT modeling tool, representing the system-level behavior
models and describing its self-adaptive behavior. Then, the
IoT-ML model is refined to BIP model representing functional
software-level components model. Finally, the BIP model is
converted in source code as system behavior OSGi bundles
through BRAIN-IoT Code Generator. The generated bundles
are then released and stored in BRAIN-IoT repository, to
be deployed and executed in the production environment.
Furthermore, it also offers the ability to use development-
time models to supervise running execution platform states.
This solution enables monitoring the IoT devices’ status and
system configurations. This is possible, because BRAIN-IoT
modeling tool supports the Models@runtime paradigm, allow-
ing to synchronize the system’s behavior and the real system.
In addition, the generated OSGi bundles can be validated
leveraging IoT device models developed with BRAIN-IoT
physical layer modeling language to validate the correctness of
the system behavior, before deploying in the physical world. In
the BRAIN-IoT repository, stores the public/private modeling
library that contains the system level models, BIP behavior
models, and WoT TD for the IoT device/platform. In the
BRAIN-IoT Service Artifacts library, there are System Behav-
ior Artefacts generated from the BRAIN-IoT Code Generator.

VI. BRAIN-IOT USE CASE

In this section, the methodology and the modeling frame-
work proposed has been evaluated using BRAIN-IoT use
cases [20].

A. Service Robotic

In a warehouse there are two zones: a loading area and a
storage area. These zones are divided by an automatic door.
This door has a QR code attached on each side which is legible
only when the door is closed. In the loading area there are 3
carts each with a QR code attached (different for each case)
and three robots responsible for warehouse management are
also located. The robots are equipped with vision cameras that
allow reading the QR codes they find. The model of the robots
is a RB1 base from Robotnik company. They are capable of
detecting and raising carts and also transport them from one
point to another in an autonomous way. The warehouse is
controlled through an Orchestrator that assigns the carts to the
storage areas and orchestrates the robots. On the other hand,
the storage area is divided into 3 sub-zones (A, B, C) where

86

Fig. 3. Simulation environment of the Use Case

Fig. 4. Example of Composite Structure Diagram in IoT-ML Describing
Robot, Door, and Orchestrator

carts can be stored. The Fig. 3 shows the scenario of the use
case in the simulation environment. The logic of the system is
that the robot takes the cart from the loading area and places
it in the storage area, on the way, it detects an elevator door.
The robot scans the QR code of the door. It then sends the
QR code to a Fleet Management System (FMS) with a door
open request, FMS opens the door. After the door opened, the
robot will send again the QR code to the FMS with a door
close request.

Firstly, the authors modeled the system level components
and the interaction interfaces using IoT-ML with the BRAIN-
IoT as shown in Fig. 4, in which, the FMS is represented
by an Orchestrator, with a robot and door connected to an Or-
chestrator that sends commands to both devices. Moreover, the
behavior of the FMS is modeled using BRAIN-IoT modeling
language with BRAIN-IoT modeling tool as shown in Fig. 6,
and the behavior of the door in Fig. 5

Then the system models are refined as BIP software models
and as the inputs of the code generator, the generated artefacts
are deployed in the robot. While the robot is running, its status
and warehouse coordinates configurations will be monitored
through the monitoring tools. The software architecture is as
shown in Fig. 7. As a reminder, the EventBus is a service
provided in BRAIN-IoT for the communication in a distributed
environment and the Robotic Operating System (ROS) Edge
Node is an adaptor deployed in the robot for communicating
with other applications deployed in the BRAIN-IoT Fabric
through the EventBus. Orchestrator Behavior represents the

Fig. 5. Door Behavior

Fig. 6. Fleeet Management System Behavior

system level behavior and orchestrates the robot and the door.
ROS Edge Node provides the adaptor for ROS environment
to communicate with other components via eventBus, the cur-
rent version is extended with Behavior Translator to connect
Papyrus using User Datagram Protocol (UDP). Papyrus will
provide the visual realtime monitoring of the robot state tran-
sitions with the state machine, it is integrated with ROS Edge
Node. To demonstrate the Models@Runtime feature, here the
authors monitored two aspects: one is the configuration of the
warehouse coordinates, another is the runtime status of the
robot.

a) Runtime Robot Status Monitoring: The sequence of
the workflow is as following: 1) ROS Edge Node receives
the command events from Orchestrator. 2) ROS Edge Node
sends the command to the robot, meanwhile, it converts the

Fig. 7. Service Robotic Monitoring

87

command to the messages can be received by Papyrus. 3)
When Papyrus receives the command transition message, it
will dynamically display the state change.

b) Runtime Warehouse coordinates monitoring: Before
the application is deployed, the end-user will configure the
warehouse through SensiNact studio, these values will be
delivered to warehouse manager through SensiNact Gateway
and EventBus, then stored in three tables, which are picking
points table storing the coordinates in the loading area, storage
points table storing the coordinates in the storage area, and
cartStorage points table storing the corresponding place point
in the storage area of each cart. On the other side, during
runtime, whenever a robot changes the attribute value in the
table due to the mission of moving a cart, the warehouse
manager will send an update event to sensiNact Gateway, then
be delivered to sensiNact studio. Hence, the updates will be
reflected in the sensiNact studio.

B. Critical Water infrastructure management

The services of water supply are associated to a series
of infrastructures that are considered, in accordance with
European norms, as critical, and therefore, they are bound to
a series of conditions for their development, especially in the
technological aspect.

In the water management sector, most of the processes
are associated to disperse infrastructures in large and varied
geographical sites, with numerous interactions with other
elements and services related to the human activities. The
sharing of information in a safe and efficient manner is a
challenge to optimize the actions in urban surroundings to
simplify and improve the citizen’s life. The development of
models and their implementation in multi-access platforms
(internal usage, clients, responsible entities, etc.), constitutes
a knowledge and technological challenge for the sector. They
require development for the correlation of data, its analysis
and the creation of indicators and processes for a better usage
of the infrastructure’s maximum potential.

In the water management use case, the scenarios aim to
leverage prediction models (based on the collected data),
to: increase the security of water supplies, optimize the
underlying costs, enhance the services for end-users and
connect the infrastructure to other urban services. Analyzing
gathered data will help to create more accurate indicators
for decision-making, and for real-time, smart and adaptive
control procedure and generally more efficient and automated
business processes. For evaluating scenarios and developments
carried on during the project, a mock-up called MEDUSA
was built in the facilities. In the Critical Infrastructure of
Water Management System, four use cases have been defined
to evaluate the main features, concepts and developments of
the BRAIN-IoT project. In this paper for space reasons, only
the Resilience Use Case is described. The objective of this
Use Case is to validate the resilience of the system in case
of hydraulic failures. Normally, the hydraulic system works
according to a defined consumption curves at the entrance
of the water meters sections. These curves represent the real

Fig. 8. Model of critical water infrastructure

consumption in various points of Coruña city (Elevado, Cola
and Cabecera). The curves are obtained with the opening
and closure of the electric valves of every section of water
meter, simulating the real consumption of the customers. The
resilience of the system is validated in terms of guarantee that
the consumption can be ensured in those points. One scenario
is to simulate the failure of an electric valve in a pipe and to
ensure that BRAIN-IoT platform can recirculate the water for
another pipe, controlling the electric valves that allows that,
and according to the Detection and Responsive System (DRS)
that have been trained for these real failures. Another possible
scenario is to simulate the failure of a flow meter and to ensure
that BRAIN-IoT platform can recirculate the water for another
section with the same goal of ensuring the consumption curves.
DRS uses Machine Learning techniques for the detection of
failures. The responsive part is based on defined rules, acting
as expert system. In the scenario described above, there are
three main parts involved: 1) data gathering from the IoT
devices 2) An algorithm for detecting the anomalies/failure
3) Control system for reacting the abnormal situation. Point 2
and 3 will be the main components of DRS.

In the critical water infrastructure architecture (see Fig. 8),
heterogeneous sensors are placed in various remote locations
to collect and transmit data through a LoRaWAN network,
obtaining a huge amount of data to be used for training anoma-
lies detection algorithm with the limited number of physical
devices. The authors have developed the simulated IoT devices
models to generate the data. The system model performs
data gathering (from an input table), data encapsulation and
encryption, and data transmission to the network through
HTTP requests, as an abstraction of the complete LoRaWAN
communication data path: gateway + LoRa server / MQTT.
Then, the data are processed and stored in the edge database.
System security and robustness against vulnerabilities and
attacks are guaranteed.

Fig. 9 shows an example of the simulation results, at
the system level, obtained by the data transmission, data
recovery, processing and display in the EMALCSA application
dashboard of a water meter end device. The curves represent,
for each device: i) the percentage of valve openness, ii) the
water flow measured as output of the valve, iii) the saturation

88

Fig. 9. Plot, in end user dashboard, of the data gathered by a water meter
end device model

of the pipe.
The authors also aim implementing the control system

in point 3 using the BRAIN-IoT Modeling & Validation
Framework, following the proposed modeling methodology
to get the intended system control models, then, generate
the application artefacts. Its correctness will be validated in
the simulated devices, hence the risk of physical critical
infrastructure damage could be reduced before deploying to
the real environment.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented the Model Based Methodology
and Framework proposed for design and Management of
next-gen IoT Systems. This solution provides a Model-Based
Engineering (MBE) approach to ease the development of the
IoT systems. It offers a system-level model, which captures the
system functionalities and behaviors to help refinement of the
software-layer modelling; it facilitates the linking towards real
devices and external services through meta-data representation
in WoT TD; the application code is generated from model for
monitoring and controlling the IoT infrastructure; it supports
the system application validation leveraging the simulated
IoT devices developed with the BRAIN-IoT physical layer
modeling language; finally, it allows monitoring the IoT sys-
tem behaviours and its configurations in a human-friendly
graphical manner through the Models@Runtime approach at
the execution time.

As future work, the Modelling & Validation framework
will be extended to also support AI modelling. In particu-
lar the authors will evaluate the feasibility of using system
modeling languages to either describe finely machine learning
algorithms, or their deployment, in the goal of accelerating
development and promoting interoperability between AI (sub)-
systems. Furthermore, the Critical Water Infrastructure man-
agement use case will be further developed including the con-
trol part and the associated actuators models to demonstrate the
complete functionalities provided by the modeling framework.
Furthermore, the authors would provide a survey to some users
and get some evaluations to demonstrate the benefits brought
by the solutions proposed in this paper.

ACKNOWLEDGMENT

The work presented here was part of the project ”Brain-IoT-
model-Based fRamework for dependable sensing and Actu-
ation in iNtelligent decentralized IoT systems” and received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780089. The
authors thank Robotnik Automation S.L.L. and EMALCSA
for providing the environment, real and simulated to test the
solution.

REFERENCES

[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[2] O. Vermesan and J. Bacquet, Next generation Internet of Things:
Distributed intelligence at the edge and human machine-to-machine
cooperation. River Publishers, 2019.

[3] AGeSys Consortium. AGeSyS Atelier de Genie Systeme. [Online].
Available: https://www.aerospace-valley.com/sites/default/files/encart
html/index.html

[4] Y. Sun, G. Memmi, and S. Vignes, “A model-based testing process for
enhancing structural coverage in functional testing,” in Complex Systems
Design & Management Asia, 2016.

[5] S. Dhouib, A. Cuccuru, F. Le Fèvre, S. Li, B. Maggi, I. Paez, A. Rade-
marcher, N. Rapin, J. Tatibouet, P. Tessier et al., “Papyrus for iot—a
modeling solution for iot,” Proceedings l’Internet des Objets (IDO:
Nouveaux Défis de l’Internet des Objets: Interaction Homme-Machine
et Facteurs Humains. Paris, France, 2016.

[6] P. Roques, “Mbse with the arcadia method and the capella tool,” in
Proceedings of ERTS 2016, Toulouse, France, 2016.

[7] Z. M. Bzymek, M. Nunez, M. Li, and S. Powers, “Simulation of
a machining sequence using delmia/quest software,” Computer-Aided
Design and Applications, vol. 5, no. 1-4, pp. 401–411, 2008.

[8] M. Bauer, M. Boussard, N. Bui, F. Carrez, C. (SIEMENS, J. (ALUBE,
C. (SAP, S. Meissner, A. IML, A. Olivereau, M. (SAP, W. Joachim,
J. Stefa, and A. Salinas, “Internet of things – architecture iot-a deliver-
able d1.5 – final architectural reference model for the iot v3.0,” 2013.

[9] H. Espinoza, D. Cancila, S. Gérard, and B. Selic, “Using marte and
sysml for modeling real-time embedded systems,” Model-Driven Engi-
neering for Distributed Real-Time Systems: MARTE Modeling, Model
Transformations and their Usages, pp. 105–137, 2013.

[10] W. Emmerich and N. Kaveh, “Component technologies: Java beans,
com, corba, rmi, ejb and the corba component model,” in Proceedings
of the 8th European software engineering conference, 2001.

[11] Object Management Group, “Dds for lightweight ccm (dds4ccm),” 2009.
[12] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen, and

A. Solberg, “Model-driven service engineering with soaml,” in Service
Engineering, 2011, pp. 25–54.

[13] Object Management Group, “Unified component model for distributed,
real-time and embedded systems,” 2020.

[14] L. Gürgen, C. Munilla, R. Druilhe, E. Gandrille, and J. Nascimento,
sensiNact IoT Platform as a Service, 08 2016, pp. 127–147.

[15] F. Budinsky, “The eclipse modeling framework,” Doctor Dobbs Journal,
vol. 30, pp. 28–32, 08 2005.

[16] V. C. Pham, S. Li, A. Radermacher, S. Gérard, and C. Mraidha, “Foster-
ing software architect and programmer collaboration,” in Proceedings of
the 21st International Conference on Engineering of Complex Computer
Systems (ICECCS), 2016.

[17] “IEEE 1666-2011; IEEE standard for standard systemc language ref-
erence manual,” standard, 2011.

[18] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the BIP
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, May 2011.

[19] R.Nicholson, T.Ward, D.Baum, X.Tao, D.Conzon, and E.Ferrera, “Dy-
namic fog computing platform for event-driven deployment and orches-
tration of distributed internet of things applications,” pp. 239–246, 2019.

[20] E. Ferrera., X. Tao., D. Conzon., V. S. Pombo., M. Cantero., T. Ward.,
I. Bosi., and M. Sandretto., “Brain-iot: Paving the way for next-
generation internet of things,” in Proceedings of the 5th International
Conference on Internet of Things, Big Data and Security - Volume 1:
IoTBDS,, INSTICC. SciTePress, 2020, pp. 470–477.

89

AUTHOR INDEX

Annicchino, P. .. 19

Avgoustidis, H. .. 11

Baltazar, C. .. 38

Baouya, A. ... 3, 80

Battaglia, A. ... 11

Bednar, P. ... 25

Brun, P-E. .. 1, 3

Cantero, M. .. 2

Capparelli, F. .. 19

Cavallo, J. .. 11

Chehida, S. ... 3, 80

Chiappetta, A. .. 11

Christofi, S. .. 11

Conzon, D. ... 46, 55, 80

Diaz-Nava, M. .. 80

Ferrera, E. .. 46, 80

Goetz, J. ... 80

Gonçalves, G. ... 38, 55, 63

Hadjioannou,V. .. 11

Halas, P. ... 25

Jeroschewski, S.E... 72

Kacmajor, M. ... 11

Kalompatsos, V. ... 11

Kristan, J. ... 72

Krousarlis, T. ... 11

Kulcsàr, G. ... 72

Loupos, K. ... 11

Maillet-Contoz, L. ... 80

Marcello, F... 31

Massot, G. .. 3

Michel, E. .. 80

Mygiakis, A. .. 11

Olotu, K. .. 72

Papageorgiou, A. ... 11

Pastrone, C. .. 55

Pereira, E. .. 63

Pilloni, V. ... 31

Plate, H. ... 1

Prato, G. ... 55

Reis, J... 38, 55, 63

Rossini, R... 55

Sarnovsky, M. .. 25

Seminara, S. ... 19

Skoufis, C. ... 11

Starynkevitch, B. ... 11

Tao, X. ... 46, 80

Theofilis, G. ... 11

Vedrine, F. ... 11

Yu, Y. .. 46

Zavitsas, K. .. 11

Zemouri, S. .. 11

Zhao, R. ... 46

90

