Definizioz, koefizienteak A multzoan dituzten polinomioak erako adierazpena da.
Hori dela eta, polinomioen multzoa honela definitu daiteke:
Adibidez, polinomioak honako hauek dira:
Beste hauek, ordea, ez dira polinomioak, berretzaile negatibo edo ez-osoak dituztelako:
Gaur egun polinomioak adierazteko erabiltzen dugun notazioa XV. mendean garatu zen. Notazio hori baino lehen, hitzen bitartez idazten ziren. "Arithmetic in Nine Sections" aljebra-liburuan, adibidez, ikus dezakegu hitzezko notazio hori. La géometrie liburuan (1637), René Descartes matematikariak proposatu zuen: konstanteak alfabetoaren lehenengo hizkiez adieraztea (a, b, c, d...) eta ezezagunak azken hizkiez (x,y,z).
Batugaiak lau baino gutxiago badira, izen hauek jasotzen dituzte polinomioek: monomio (batugai bakarra), binomio (bi batugai) eta trinomio (hiru batugai).
Ekuazio aljebraikoak ebaztea edo polinomioen erroak zehaztea da matematikako arazo zaharrenetakoa. Hala ere, gaur egun erabiltzen dugun idazkera dotore eta praktikoa XV. Mendetik aurrera garatu zen.
Moskuko papiroaren 14. probleman (K.a. 1890. urtea) piramide enbor laukilarraren bolumena kalkulatzea eskatzen da. Eskribauak pausoak azaltzen ditu: 2 eta 4 karratuak, 2 4 bider, aurreko emaitzak gehitu eta 6 (h) -ren herena biderkatu; Honela esanez amaitzen du: "Ikusi, 56 dira, ondo kalkulatu duzu". Egungo notazio aljebraikoan honakoa litzateke: V = h (t² + b² + tb) / 3, lau aldagaiko polinomioa (V, h, t, b), hiru jakinda, laugarren aldagaia lortzeko aukera ematen duena.
Polinomio batzuek, hala nola P (x) = x² + 1, ez dute zenbaki erreala den erroa. Hala ere, erro posibleen multzoa zenbaki konplexuetara hedatzen bada, polinomio (ez konstante) orok du erro bat: hori da aljebrako oinarrizko teoremaren adierazpena.
Desberdintasunak daude erroen hurbilketaren eta haientzako formula konkretuen aurkikuntzaren artean. Mendetik laugarren gradurainoko polinomioen formak ezagutzen dira (ikus ekuazio koadratikoa, Gerolamo Cardano, Niccolò Fontana Tartaglia). Baina, bosgarren mailako polinomioen formulak konponezinak izan ziren ikertzaileentzat denbora luzez. 1824an, Niels Henrik Abelek erakutsi zuen ezin dela bosgarren graduko edo gehiagoko polinomioetarako formula orokorrik egon (ikus Abel-Ruffini teorema). Emaitza horrek Polinomioen erroen arteko erlazioen azterketa zehatzaz arduratzen den Galois teoriaren hasiera izan zen.
Charles Babbageren motor diferentziala funtzio logaritmikoen eta diferentzialen balioen taulak automatikoki sortzeko diseinatu zen, puntu askotan hurbilketa polinomikoak ebaluatuz, Isaac Newtonen desberdintasunen metodoa erabiliz.
Edozein polinomio p puntu batean ebaluatzeko, indeterminatuaren lekuan p puntua ordezkatzea besterik ez da egin behar. Lortzen dugun emaitzari polinomioaren zenbakizko balioa[1] deritzo. Adibidez,
polinomioa x=2 puntuan ebaluatzeko, zera egingo dugu: ; kasu honetan, x=2 puntuari dagokion P(x) polinomioaren zenbakizko balioa 74 da.
polinomioa (x,y) = (-2,1) puntuan ebaluatzeko: ; kasu honetan, (x,y)=(-2,1) puntuari dagokion P(x,y) polinomioaren zenbakizko balioa 19 da.
Monomioen batuketa edo kenketa egin ahal izateko, antzekoak izan behar dira monomioak; hau da, gai aljebraiko (aldagaien zatia) berbera izan behar dute. Kasu horretan, gai aljebraikoa mantentzen da eta koefizienteen batuketa edo kenketa egiten da.
Batuketa:
Adibidez:
eta monomioak izanda, eta
eta izanda, eta
(ezin dira batu monomioak, antzekoak ez direlako)
Polinomioen arteko batuketa edo kenketa egiteko, antzekoak diren monomioak batu edo kendu behar ditugu. Adibidez,
Monomioen arteko biderketa egiteko, koefizienteak biderkatu eta indeterminatu berdinen mailak batu behar ditugu.
,
Adibidez,
eta monomioak izanda,
eta monomioak izanda,
Bi polinomioen arteko biderketa egiteko, polinomio baten gai bakoitza beste polinomioaren gai guztiekin biderkatu behar da, eta ondoren, maila bereko terminoak batu edo kendu. Adibidez,
Monomioen koefizienteak zatituz eta indeterminatu berdinen mailak kenduz lortzen da. Adibidez,
Zenbaki errealekin egindako zatiketak polinomioekin egitekotan, zatikizunaren mailak zatitzailearen maila baino handiagoa edo berdina izan beharko du. Kasu horretan, zatiketa egiten ikasteko adibide honi jarraituko diogu: eta polinomioak izanda, lortzeko:
Zatiketa baten zatitzailea (x+r) edo (x-r) erakoa bada, orduan zatiketa Ruffiniren bidez egin ahal dugu.
zatikizun eta zatitzaile izanda,urrats hauei jarraituko diegu:
1.P(x) polinomioaren koefizienteak ordenaturik idatzi behar dira. Eta ondoren, lerro bat beherago, zatitzailea den x-r binomioko r jarri behar da, irudiko marra laguntzaileekin batera:
| an an-1 ... a1 a0
|
r |
----|---------------------------------------------------------
|
|
2. Ezkerreko lehenengo koefizientea behera eraman, hura aldatu gabe:
| an an-1 ... a1 a0
|
r |
----|---------------------------------------------------------
| an=
|
| bn-1
|
3. Behera pasatutako koefiziente hori r balioaz biderkatu eta polinomioaren hurrengo koefizientearen azpian jarri:
| an an-1 ... a1 a0
|
r | bn-1r
----|---------------------------------------------------------
| an
|
| = bn-1
|
4. Zutabe bereko bi balio hauen batuketa egin:
| an an-1 ... a1 a0
|
r | bn-1r
----|---------------------------------------------------------
| an an-1+(bn-1r)
|
| = bn-1 = bn-2
|
5. 3. eta 4. pausoak errepikatu lerroa bukatu arte:
| an an-1 ... a1 a0
|
r | bn-1r ... b1r b0r
----|---------------------------------------------------------
| an an-1+(bn-1r) ... a1+b1r a0+b0r
|
| = bn-1 = bn-2 ... = b0 = s
Adibidez:
Ohartu behar da x+1 binomioa x-(-1) bihurtzen dela, x-r erakoa izateko:
Polinomio baten erroak P(x)=0 ekuazioaren soluzioak dira[3]. Beraz, a zenbaki bati P(x) polinomioaren erroa esaten zaio baldin eta P(a)=0 bada. Adibidez:
polinomioa izanda,
eta ;
hori dela eta, x=0 polinomioaren erroa da eta x=1 ez.
M mailako polinomio batean, gehienez M erro aurki ditzakegu. Erroak berdinak edo desberdinak izan daitezke. Erro bat behin agertzen denean, erro sinple deritzo; erroa behin baino gehiagotan agertzen denean, aldiz, izen hauek jasotzen ditu erroak: erro bikoitza (bitan agertzen bada), hirukoitza (hiru alditan agertzen bada)...
Zenbakiak faktorizatu daitezkeen bezala, polinomioak ere faktorizatu daitezke, "oinarrizko" polinomio batzuen biderkadura modura idatziz. Hala ere, badaude polinomio batzuk (zenbakien kasuan "zenbaki lehenak"), ezin daitezkeenak faktorizatu eta horiei, irreduzibleak deritze.
Polinomio osoek faktore polinomial osoetan faktorizatu behar direnez, eta balio osoen polinomio osoen ebaluazioak zenbaki osoak sortu behar dituztenez, polinomio baten balio osoak, kopuru finituan soilik hartu behar dira kontuan, eta ondorioz, faktore polinomiko posibleen kopuru mugatu bat baino ez dute sortzen.
Adibidez, kontsideratu dezagun hau:
Faktore polinomiko hauek gorputzaren gainean badaude, orduan gutxienez batek bigarren mailakoa edo bajuagokoa izan beharra du. 3 balio besterik ez dira behar bigarren mailako polinomioa aurkitzeko. Beraz, ,. Kontuan izan, hauetako balioren batek 0 ematen badu, lortu dugula polinomio honen erro bat (eta beraz faktore bat). Baina aukeratutakoek ez badute 0 ematen emaitza bezala, emaitza bakoitzak zatitzaile kopuru finitu bat du. Adibidez 2 zenbakia, horrela faktoriza dezakegu:
Hortaz, bigarren mailako faktore polinomiko bat existituz gero, balioak hauexek hartu ditzake:
, eta -en kasuan.
Zortzi modu desberdin daude 6 zenbakia faktorizatzeko (modu bat duen zatitzaile bakoitzarekiko), orduan
konbinazio posible daude. Erdiak negatiboak direnez konbinazio posibleetatik kendu ditzakegu, eta beraz konbinazio probatzea geratzen zaigu bigarren mailako polinomio zuzena aurkitu arte.
Probak egin ondoren konklusio honetara iristen gara, bigarren mailako polinomioen faktorizazio modu bakarra dagoela -n, eta hauxe da:
emaitza hauetatik eraikia .
Azkenik, -ren gatik zatituz beste polinomioa lortzen dugu eta ondorioz, . Eta orain, eta -rentzat hasi gaitezke bilatzen faktoreak, baina kasualitatez bi polinomio hauek irreduzibleak direla gorputzean, orduan -ren faktorizazio irreduziblea hauxe da: