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ABSTRACT 

Visual augmented reality aims to blend computer-generated graphics with real-world 

scenes to enhance the end users’ perception and interaction with a given environment. 

For those AR applications which require registering the augmentations in the exact 

locations within the real scene, the system must track the user’s camera motion and 

estimate the spatial relationship between the user and the environment. Vision-based 

tracking is one of the more effective tracking methods, and uses relatively low-cost and 

easy-access cameras as input devices and, furthermore, exploits several computer vision 

(CV) techniques to solve the problem. It can typically be divided into marker-based and 

markerless methods. The marker-based AR applications have, in the past, proved 

sufficiently robust and accurate, and the marker-based tracking methods have been 

widely supported by almost every AR software development kit developed and 

marketed to date. However, they always require the introduction of artificial markers 

into the workplace, which may be undesirable in some cases (e.g. outdoors), due to 

deterioration over time as a result of exposure to weather effects, or due to requirements 

not to tamper with objects and sites of historic or religious significance. In contrast, 

markerless tracking methods attempt to make use of the natural features extracted from 

the original environment as their reference. Several CV-based methods, such as 

Structure from Motion (SfM) or visual SLAM, have already been applied for the 

process of unsupervised markerless template training, and many research projects have 

applied markerless tracking methods for solving AR issues within their chosen 

application area. However, a general development framework supporting the higher-

level application designers or developers, supporting the customisation of AR 

applications for different environments and different purposes, is rare.  
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The present research proposes a conceptual markerless AR framework system, the 

process for which is divided into two stages – an offline database training session for 

the designers, and an online AR tracking and display session for the final users. In the 

offline session, two types of 3D reconstruction application, RGBD-SLAM and SfM are 

integrated into the development framework for building the reference template of a 

target environment. The performance and applicable conditions of these two methods 

are presented in the present thesis, and the application developers can choose which 

method to apply for their developmental demands. A general developmental user 

interface is provided to the developer for interaction, including a simple GUI tool for 

augmentation configuration. The present proposal also applies a Bag of Words strategy 

to enable a rapid “loop-closure detection” in the online session, for efficiently querying 

the application user-view from the trained database to locate the user pose. The 

rendering and display process of augmentation is currently implemented within an 

OpenGL window, which is one result of the research that is worthy of future detailed 

investigation and development.  
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Chapter 1 Introduction 

Augmented Reality (AR) is a cutting-edge technology that has been in existence for 

several years, developing in parallel with its so-called “immersive” counterpart, Virtual 

Reality (VR). As described in Milgram et al. (1994), a common view of a VR 

environment is one in which the participant or observer is totally immersed into a 

completely synthetic world, which may exceed the bounds of physical reality and in 

which the physical laws no longer hold. For example, Cheng (2015) developed a virtual 

reality reconstruction – Virtual Wembury – which allows users to take a ‘walk’ along a 

virtual south-west coastal path in Devon from different places in the real world (e.g. in a 

hospital) by using VR headsets and hand controllers, as shown in Figure 1-1 and Figure 

1-2.  

 

 Figure 1-1: The screenshot of Virtual Wembury.
1
 

                                                 

1
 Virtual Wembury 2015: https://www.youtube.com/watch?v=tyH-4IGrPnE 
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Figure 1-2: Virtual Wembury Event. 

(Cheng, 2015) 

 

The virtual environment and the real environment can be viewed as lying at opposite 

ends of a continuum – a Reality-Virtuality (RV) continuum –, as illustrated in Figure 1-3 

below. 

 
Figure 1-3: Simplified representation of an RV Continuum. 

 (Milgram et al., 1994)  

 

The area between the extremities of the RV continuum is considered as a generic Mixed 
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Reality (MR) environment, in which both the real world and the virtual word objects are 

mixed together. Both Augmented Reality (AR) and Augmented Virtuality (AV) are 

considered as subcategories of MR. An AV environment is principally virtual but 

augmented through the use of real objects, such as showing real hands in a virtual 

environment (Figure 1-4). As opposed to AV, an AR environment is principally real 

with added virtual enhancement, such as placing a virtual rabbit on top of the user’s 

hand (Figure 1-5). 

 

Figure 1-4: Real hands in virtual world. 

(Bruder et al.) 

 

 

Figure 1-5: Virtual rabbit on user’s hand with Handy AR. 

(Lee & Hollerer, 2007) 
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The goal of AR, generally speaking, is to enhance the end users’ perception and 

interaction with a given real environment by superimposing computer-generated 

(“virtual”) information upon it (Carmigniani & Furht, 2011). Visual “augmentations”, a 

slight variation on the theme of AR, aim to blend virtual visual information (e.g. 3D 

interactive graphics) with views of real world and to display the synthesised results to 

the end users. Visual AR has been widely used in several application areas which can be 

traced back, as in a survey reported by Azuma (1997), to many research projects and 

studies. For education and training, AR has been adopted into both academic and 

corporate settings (Lee, 2012). Núñez et al. (2008) have introduced an AR system for 

teaching Inorganic Chemistry at the university-level by setting up a collaborative 

environment that supports several groups of students interacting with material and 

compound structures. Their experience shows that the students enjoy the system and 

their motivation for learning Inorganic Chemistry is improved. Construct3D (Kaufmann, 

2004) is another AR system designed for higher education, which provides a natural 

setting for face-to-face collaboration of teachers and students to learn mathematics and 

geometry. The author stated that the main advantage of using AR is that complex spatial 

problems and spatial relationships may be comprehended better and faster than with 

traditional methods by working directly in 3D space. According to Sherstyuk et al. 

(2011), AR and MR technologies significantly expand mannequin functionality in 

medicine and medical education (e.g. Bichlmeier et al. (2008), Kondo et al. (2004)) due 

to the high cost of human error. A variety of AR techniques have been also integrated 

into image-guided surgery system, such as a 3D AR navigation system using 

autostereoscopic images developed by Liao et al. (2010). Their system spatially projects 

3-D images onto the surgical area which is viewed via a half-slivered mirror, increasing 
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the surgical instrument placement accuracy and reducing the procedure time as a result 

of intuitive 3-D viewing. In cultural heritage sites, AR can be used to inform travellers 

of historical stories on-site and even present the original look of buildings or landscapes 

that no longer exist by constructing virtual 3D models and laying them over the ruins 

(e.g. Guo et al. (2009), Kakuta et al. (2008), Papagiannakis et al. (2002)). According to 

Livingston et al. (2011), many AR projects have been proposed to meet various military 

needs and challenges, such as the SuperCockpit (Furness, 1969) system, where flight 

and target data were superimposed onto the pilot’s visual field to assist localisation, and 

the Battlefield Augmented Reality System (Livingston et al., 2002), which dealt with 

similar functions for the dismounted warfighter in both operation and training. Huang et 

al. (2011) also points out that some characteristics of AR, such as a better sense of 

immersion, maintenance of real world understanding, appealing experiences for users 

and an absence of the need to build complicated virtual surroundings, meet many 

requirements of the exhibition and entertainment industry.       

 

A visual AR system generally includes one or more processes by which the host 

computing system has to “learn” about features and structures in the real world or 

“workspace” from a form of “reference template”, which can be one or more objects or 

fiducial markers
2
 located within the workspace, or even the whole workspace scene, so 

that augmented objects can be inserted accurately and meaningfully. This learned 

“knowledge” is then utilised for running the client application of the end users who may 

wish to perceive and interact with the AR view, by estimating the location and 

                                                 

2
 Fiducial marker: an object placed in the field of view of an imaging system which appears in the 

image produced, for use as a point of reference or a measure. 
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orientation of the end users with respect to the reference template, and, thus, registering 

and rendering the augmented content appropriately. Several research projects and 

applications have, in the past, focused on different stages of the AR process by 

exploiting various types of sensors, different training, tracking and image registration 

methods and techniques, and a range of display technologies (wearables, Smartphones, 

tablets, PC “kiosks”, etc.) (Zhou et al., 2008). For an AR application that requires an 

accurate (as opposed to approximate) registration of virtual objects, vision-based 

methods are preferred, for use with or without other techniques, such as fiducial 

markers placed in the environment, or hybrid integration with the GPS location of the 

end user. Vision-based techniques, whereby the available visual information in a scene 

can be collected by an optical sensor (such as a camera), can be used to identify, 

reference and recognise the spatial relationship between the cameras or the AR users 

and the environment.  

 

Two major vision-based methods have typically been considered in the literature. The 

first relates to artificial marker-based methods, which require the introduction of 

fiducial markers or 3D models (with abundant visual features) into the environment, the 

spatial geometry of each of which are known. The second is more of a natural feature-

based method, which requires the learning and training of visual feature information 

from the original target environment. The latter method is less intrusive and more 

flexible than the former since “they function anywhere without the need for special 

labelling or supplemental reference points” (Johnson et al., 2010), and can be applied in 

both indoor and outdoor environments. However, the database creation stage (a.k.a. 

reference template/map training) within natural feature-based AR is more complex, 

since the geometric structure of a workspace may be complicated which is hard for 
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people to restore it with 3D modelling applications precisely and manually. Many 

computer vision (CV)-based methods, such as Structure from Motion (SfM) (Ullman, 

1979) or visual Simultaneous Localisation and Mapping (visual SLAM) (Riisgaard & 

Blas, 2003), have already been applied for unsupervised learning and training of the 

reference template, and for tracking the end users. It can be found that most of the 

recent researchers who have attempted to apply natural feature-based methods for 

solving AR issues within their chosen application area (such as the examples described 

above) have always concentrated on undertaking the database training stage themselves 

(stated as “one off prototypes” in Dünser & Billinghurst (2011)). Alternatively, some 

applications have allowed the end users to create the reference map and inset virtual 

information for a more general purpose, then, to view the augmentation results in the 

same online session (e.g. Klein & Murray (2007)). However, this kind of system has 

assumed that the users who want to create the augmentation and the users who want to 

view the augmentation are the same people. This does not apply to all practical 

applications, many of which will have two kinds of end user – (a) the higher-level 

application designers or developers, who may not have a professional background (in 

such techniques or process as CV, SLAM, etc.) as the lower-level AR researchers, but 

want to apply AR technology to their own developments, and (b) the final users who 

will use the developed application (or product). 

 

The present research concentrates on developing an approach focused on the user-

oriented, markerless visual AR framework. Unlike previous research studies, this 

proposed work is not presented as an AR solution with specific aim but instead sets out 

to provide a general development framework for higher-level developers to create 
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their own applications for a specific place. The motivation is that some AR projects, 

such as heritage sites or exhibitions (e.g. Papagiannakis et al. (2002)’s Ancient Pompeii), 

expect users to visit the sites physically and experience an AR environment specifically 

designed for the place. The proposed development framework allows people to build 

such a customised AR application by providing the visual information of the targeted 

places to augment, and their end users will see the AR view through the AR 

applications only when they visit the place. With regards to user-oriented, both the AR 

application developer and the individual who finally views or experiences the end result 

of the AR application are considered as end users. Hence the proposed AR process is 

divided into two stages – an offline database training session for the application 

developers, and an online AR tracking and display session for the final application 

users. The whole system diagram of the proposed framework is presented in Figure 1-6. 
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Figure 1-6: The system diagram of the proposed user-oriented markerless AR framework. 

 

With consideration given to delivery technologies that will be within the financial reach 

of typical AR application/product users (including Smartphones, tablets, etc.), the 

proposed system is designed to be low-cost and, in the main, purely vision-based. The 

offline session will process RGB or RGBD images which are easily collected by most 

users for the recovery of the spatial structure of the target environment and for the 

creation of a reference map for the online session. Two major 3D reconstruction 

methods known as VisualSfM (Wu, 2011; 2013) and RGBD-SLAM (Endres et al., 2014)  

are applied and tested, and their respective assets and drawbacks are compared and 

analysed.  Moreover, in order to deal with the often-overlooked role of application 
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developers, the proposed framework offers a conceptual development framework for 

such developers. This allows them to interact with the offline process by selecting input 

data sources for template training, and further to define the relative location of 

augmented information from the system-constructed map, inserting this information 

into the database with a simple GUI tool.  The online session requires RGB image 

sequences as an input to locate the end user’s location in relation to the reference map, 

and then projects and renders the defined augmented information onto them.  To find 

the landmarks efficiently, and to retrieve the keyframes with the highest probabilities in 

order to match the initial query frames from the database, the  present proposal also 

applies Fast Appearance-Based Mapping (FAB-MAP) (Cummins & Newman, 2008) 

with training a visual vocabulary of Bag of Words (BoW) (Sivic & Zisserman, 2003) to 

describe image features of each reference keyframe. Several visual features and their 

respective BoW-generating are tested and evaluated on both accuracy and efficiency in 

a “loop-closure detection” task in the online session. The estimated pose of each input 

image is then used for displaying the AR view to the end users. The results are analysed 

statistically and visually using public datasets of different environments.   

 

1.1. Scientific and Novel Contributions 

The major contributions presented in this thesis are studying and comparatively 

evaluating several technologies for the different stages of the proposed markerless AR 

framework described above, which can be summarised as follows: 

1) Study of the user types and requirements through an online AR application 

development and requirement audience survey (Chapter 3). 
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2) Application of low-cost vision-based 3D reconstruction / mapping technologies for 

an offline, maker-less reference template training, which allows both RGB and 

RGBD image datasets as the input source. The evaluation and comparison of two 

existing 3D reconstruction applications, – RGBD-SLAM v2 (Endres et al., 2014) 

for RGBD input and VisualSfM (Wu, 2011; 2013) for RGB input – with several 

public datasets. Different visual feature detection and description methods are used 

for checking their performance, such as SiftGPU (Wu, 2007)  and ORB (Rublee et 

al., 2011). The accuracy of 3D reconstruction results were assessed by comparing 

estimated camera poses with the ground truth of the real camera trajectories 

(Chapter 4).  

3) Application of the BoW and the FAB-MAP (Cummins & Newman, 2008)  

approaches to enable a rapid loop closure detection process for retrieving those 

online input RGB images without prior knowledge from a trained database. Two 

visual vocabulary generating methods are used for both SIFT-like and ORB visual 

descriptors. The retrieval results are used for user tracking and the performance is 

tested and compared with a public dataset in terms of accuracy and processing rate 

(Chapter 5). 

4) Development of a conceptual “black-box” style markerless AR development 

framework exploiting the above technologies and the provision of a general user 

interface to the AR developer for interaction. A simple GUI tool for augmentation 

configuration was also provided. A plan presenting a future user evaluation on the 

development framework with a real use case is also presented (Chapter 6). 
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1.2. Thesis outline 

The logical sequence of the chapters in the thesis is briefly summarised in Figure 1-7. 

 

Figure 1-7: The flow chart of the content of each chapter. 

 

Chapter 2 presents a literature review and background of AR, especially visual AR, 

addressing the related computer vision methods and technologies. The existing 

problems are analysed and the challenges are indicated at the end. 
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Chapter 3 firstly reports a questionnaire analysis of the AR application development and 

requirement based on an online survey. Then the definitions of different reference 

frames used in the present thesis are presented with the frequently used geometric 

transformations in vision-based AR, including 3D-to-3D rigid transformations between 

different spaces, and 3D-to-2D camera projections from space to image plane.  

 

Chapter 4 presents the main process, 3D reconstruction of the offline session in the 

proposed AR framework. The principles and implementations of two reconstruction 

methods, RGBD-SLAM for RGBD data input and SfM for RGB data input, are 

introduced in detail. Two existing applications RGBD-SLAM v2 and VisualSfM for 

each method are applied and evaluated with several public datasets of different 

environments. The effect of making use of the different visual feature detection and 

description methods (e.g. SiftGPU and ORB) is also presented and discussed. 

 

Chapter 5 presents details on how to make use of the 3D reconstruction results for 

training the reference template, and how to perform a rapid loop closure detection to 

retrieve the online input RGB image from the trained database for further user tracking. 

The visual word clustering and BoW encoding approaches for both SIFT-like and ORB 

visual descriptors are introduced. The FAB-MAP approach, which scores the matching 

likelihood between two images due to their BoW signatures, is also presented. The 

performance of online user tracking is tested on a set of public dataset and is evaluated 

statistically and visually at the end. 

 

Chapter 6 presents the conceptual design of user interface for proposed AR 
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development framework with a simple augmentation configuration GUI tool, and a 

basic AR browser for basic augmentation registration and display. The further user 

evaluation of the development framework on a real use case is planned at the end. 

 

Chapter 7 draws conclusions by giving a summary of the proposed work addressing 

some of the pros and cons of the techniques and processes, and suggests future work to 

improve the framework developed in the present thesis.        
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Chapter 2 Literature Review and Background 

This chapter presents a comprehensive review of the previous research and the 

component technologies of AR covered in the present thesis. It starts with the 

introduction of AR, and the process of visual AR with several different tracking 

methods (sensor-based and vision-based) are mainly reviewed in Section 2.1.1. The AR 

application and development framework are analysed from the perspective of two 

different end users (developers and application final users) in Section 2.1.2. The 

evaluation methods of AR system then are discussed in Section 2.1.3.  

 

In Section 2.2, the computer vision technologies used in AR are discussed. The topic 

starts from the cameras which are used to acquire visual information about the 

workspace and their calibrations (Section 2.2.1). The several kinds of visual features 

which can be extracted from the image data to represent an image are reviewed in 

Section 2.2.2. This section includes feature detection, representation and how to make 

use of these processes to compare images for the purpose of camera pose estimation 

within an AR system. 

 

The visual features than are used in the processes for solving the problem of localisation 

and mapping in Section 2.2.3, which can be used for AR system to restore a markerless 

reference template from the original environment. This section includes two 3D 

reconstruction approaches: structure from motion and visual simultaneous localisation 

and mapping. 

 

The process of online user tracking requires finding the input query image quickly from 
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the reconstructed reference model stored in a trained database, known as a loop closure 

detection problem. The image retrieval techniques used to solve this issue are discussed 

in Section 2.2.4. 

 

Subsequently, a survey of hardware devices and software packages that are available for 

system implementations of vision-based AR systems is presented in Section 2.3.1 and 

2.3.2 respectively. Then the available datasets and benchmarks for testing and 

evaluating the performance of each technique inside the proposed system (i.e. 3D 

reconstruction or mapping, image retrieval) are discussed in Section 2.3.3. 

 

This chapter finally concludes with an overview of existing problems and challenges of 

an AR system based on the discussion in the previous sections, and suggests a user-

oriented markerless AR framework to deal with the them (Section 2.4).  

 

2.1. Augmented Reality  

The term “augmented reality (AR)” is believed to have been coined by former Boeing 

researcher Tom Caudell in 1990, although the first AR prototypes appeared earlier than 

the coining of the term in the late 1960s and 1970s (Johnson et al., 2010). AR is 

generally considered as a derivative of Virtual Reality (VR). Immersive VR allows the 

participant to explore and interact in real time in a variety of simulated scenarios of 

varying levels of detail or fidelity. As described by Stone (1996), VR permits intuitive 

interaction with real-time three dimensional databases. A VR system may support 

multi-sensory experiences which can include smell, and touch (‘haptics’), but mostly 
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hearing and sight. The artificial virtual environment can be delivered to the participant 

through a computer monitor, a head-mounted display, large-screen wall display or some 

form of stereo-surface projection. As Wilson (1999) argued, different types of 

technologies, including AR, can provide very different experiences, which one to be 

selected is very dependent on the needs of particular tasks (such as the capabilities 

required of the end user, the task environment and, of course, the finance available for 

hardware and software technologies).  

 

In contrast to the common aim of VR systems that attempt to “immerse” their end users 

into an “enclosed” computerised virtual environment, AR aims to enhance the user’s 

perception and interaction with the real world by superimposing virtual information (i.e. 

sound, video, graphics or any other virtual data generated by computer) onto or within a 

physical real-world environment (Carmigniani & Furht, 2011). AR applications cover a 

wide range of multidisciplinary areas including medical, manufacturing, visualisation, 

path planning, entertainment and military training (Azuma, 1997). A brief introduction 

of several applications has already been given in Chapter 1. Azuma (1997) also 

describes AR systems as possessing three characteristics: 1) they combine real and 

virtual elements; 2) they are interactive in real time; 3) they present fused images that 

are registered in the real world. Although audio information is involved in some 

research studies (e.g. narrative-based audio-only games presented in Roden et al. 

(2007)), the augmentations are mostly associated with vision – thus referring to the 3
rd

 

characteristic mentioned above. The visual augmentation is the goal to be achieved in 

many cases since blending the virtual information with the real world in a visually 
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coherent manner can provide the participant with stronger visual perception
3
. The 

problems and technologies associated with visual augmented reality are the main foci of 

the present thesis.   

 

The relative technologies of building a comprehensive AR system and the usability 

evaluation methods for AR interfaces are described and discussed in the following 

sections. The detail of each method and program used in the present research is 

presented in the remaining chapters. 

 

2.1.1. Visual AR technologies  

According to Krevelen & Poelman (2010), visual AR systems must perform a range of 

typical tasks including sensing (capturing), tracking (measuring), registration (rendering) 

and interaction (API) to support their applications. From the perspective of the final 

users of the AR applications, these tasks can be interpreted as an online loop process 

which firstly acquires information from the environment (a.k.a ‘workspace’) around the 

users (especially the scene the users are looking at), estimates the location and motion 

of the users (particularly their head motion or point of view), generates augmented 

views by superimposing pre-defined virtual objects upon the images of the real world, 

and finally displays them to the users, in some cases supporting additional human-

computer interaction which depends on the specific aim of each AR application. In 

addition to the actual running of the AR application, a system training stage is generally 

                                                 

3
Visual Coherence in Augmented Reality:  

http://ael.gatech.edu/lab/research/technology/visual-coherence/ 



36 

 

inevitable before (offline) or during the process described above. The training stage 

registers the virtual objects to their actual real-world locations, often defined by the 

application designers or developers. It requires the system to identify and learn the 

geometric structure of a “reference”, such as a fiducial marker, or a specific object or 

real-world features, so that the location of the virtual objects to insert can be defined 

with respect to that reference. When the system training stage has been completed, the 

actual running of the application will display the augmentation to the final users as the 

reference is being recognised from the workspace. 

 

Several techniques have been applied to deal with the above tasks, as evidence in the 

literature. Zhou et al. (2008) reviewed a ten-year development of the AR “community”, 

presented at the ISMAR (International Symposium on Mixed and Augmented Reality) 

conference. They concluded that tracking techniques are one of the most popular and 

challenging concerns for most AR researchers. The tracking process enables the 

detection and measurement of changes in the viewer’s position and direction, and these 

can then be properly reflected in the rendered graphics during registration process. 

There are two representative types of tracking methods, known as sensor-based and 

vision-based, which have been applied to various AR systems and applications, in many 

instances based on the hardware used and the tracking accuracy required. 

 

Zhou et al. (2008) describes sensor-based tracking techniques exploiting magnetic, 

acoustic, inertial, optical and/or mechanical sensors. Each of these techniques feature 

different advantages and drawbacks, and these have been reviewed in Rolland et al. 

(2001). The literature describing purely sensor-based tracking is mostly focused on the 
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approaches by using Global Positioning System (GPS) or Global Positioning System / 

Inertial Navigation System  (GPS/INS) integration sensors, which can directly provide 

geographical position and orientation of the sensors’ carrier (e.g. a robot or a human 

end-user) without additional computation. Examples include Roberts et al. (2002), who 

describe a technique which determines the user position with respect to the reference 

frame of the geographical database by using integrated GPS/INS sensors, and allows 

users to “look” into the ground to “see” underground features. Reitmayr & Schmalstieg 

(2004) describe a system for collaborative navigation and information browsing tasks in 

an urban environment. Schall et al. (2009) present a system that uses Kalman filtering 

for fusion of GPS with barometric heights, and also for an inertial measurement unit 

with gyroscopes, magnetometers and accelerometers to estimate the orientation, 

velocities, accelerations and sensor biases. Santana-Fernández et al. (2010) describe a 

GIS (Geographic Information System)-based guidance system that allows the driver of a 

tractor to see the real agricultural plot through eye monitor glasses with the treated 

zones in a different colour. GPS/INS sensors have become lightweight in recent years 

and are, today, embedded in many popular smart-phones and tablet computers (e.g. 

iPhone, iPad and Samsung series, as shown in Figure 2-1), which makes them easier to 

be obtained and used for research applications.  
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Figure 2-1: Contemporary smartphone hardware sensors

4
. 

 

The literatures focusing on mobile GPS/INS-based design and applications includes that 

by Chang & Qing (2010), who present the system design of a Multi-Object Oriented AR 

system for a location-based adaptive mobile learning environment, and a study of the 

scenario. Choi et al. (2011) who describe a system that allows users to create geospatial 

tags for certain sites and propose a way to organise and group such geospatial tags and 

how to efficiently search and find the tag that users be interested in. Lee et al. (2012) 

introduce an application entitled CityViewAR that provides geographical information 

about destroyed buildings and historical sites that have been affected by the earthquakes 

with the geo-located information provided in 2D map views, AR visualisation of 3D 

models of buildings on-site, immersive panorama photographs, and list views. Most of 

the commercial mobile AR Software Development Kits (SDKs) support GPS/INS based 

                                                 

4
 Indoor navigation using smartphones:  

https://connect.innovateuk.org/documents/3347783/3709547/Indoor+Navigation+using+smarthphones.pd

f/ae5a631f-55d3-4ffe-9a13-0ec23cd09287 
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tracking. Figure 2-2 and Figure 2-3 are two custom AR applications for the iPad 

developed with the Wikitude SDK and Metaio SDK respectively. Figure 2-2 shows a 

GIS-based AR campus navigation application developed by the author using the 

Wikitude Software Development Kit. The campus buildings are all tagged and shown 

on a virtual “radar”; the building information will be displayed in the text box on the 

bottom of the screen by pressing corresponding floating button. Figure 2-3 shows 

another conceptual GIS-based AR application for heritage. The geo-tag bubble is 

floating on the direction where the real-world target object (in this case a distant 

shipwreck located in the West of England!) is located; the text information and the 3D 

target model will be displayed by pressing the bubble. Note that the GPS signal is 

usually limited and even blocked when in an indoor environment. Thus in the case of 

indoor situations, as shown in Figure 2-2 (lower) and Figure 2-3, a Wi-Fi Positioning 

System (WiPS) was used instead for indoor localisation. The basic idea is that wireless 

access points are deployed along with Wi-Fi, which enable wireless devices to locate 

the approximate position (Bahl & Padmanabhan (2000) cited in Boonsriwai & 

Apavatjrut (2013)). 
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Figure 2-2: An AR campus navigation app on iPad developed using the Wikitude SDK.  
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Figure 2-3: An AR shipwreck (Maria) app on iPad developed using the Metaio SDK.  

 

Due to the fact that the visual AR experience is embodied in the augmented views, no 
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matter which tracking method is used, the system will make use of the tracking results 

(i.e. the measurement of user motions) to align the virtual information to the view of the 

real world and display them to the users properly, known as registration process. Non-

vision-sensor-measured motions are usually uncoupled to the visual information 

acquired by the system. As reported in Van Krevelen & Poelman (2007), plain GPS was 

accurate to about 10-15 meters; with the Wide Area Augmentation System technology 

the precision might be increased to 3-4 meters. Differential GPS could yield a 1-3 meter 

accuracy but required a local base station to send a differential error-correction signal to 

the roaming unit. The precision could be enhanced further to centimetre-level by 

applying a Real Time Kinematic technique based on carrier-phase positioning, in which 

the phase of the received carrier with respect to the phase of a carrier generated by an 

oscillator in the GPS receiver (Langley, 1998). However Fukuda et al. (2014) indicated 

that the use of GPS-based AR registration could be problematic due to the expensive 

hardware required for highly precise and accurate registration which may not always be 

available for the users. As for the relatively affordable location and orientation sensors 

in smart-phones, Blum et al. (2012) tested several smart-phones at the time and found 

that the GPS sensors exhibited errors with means of 10-30m; the mean errors of 

compass sensors were around 10-30°.The standard deviations around these means could 

be relatively high, mainly depending on the surrounding environment (e.g. the 

surrounding building). A more recent positioning accuracy study of smart-phones 

released by location data company Place IQ demonstrated a very similar result (cited in 

Buczkowski (2016)), in which the average variance within a city is roughly 30 metres 

and the actual range of results was actually very wide (from 1m to 204m). The accuracy 

comes down to interplay of several factors, including signal source (e.g. GPS or Wi-Fi), 
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environment and personal use. In conclusion, if the AR applications do not require a 

very precise registration, such as only viewing a floating planar picture or information 

bubble on a general location, it will be appropriate to acquire an approximate positional 

relation between the user and the real world by using relatively low-cost GPS/WPS 

integration sensors. Otherwise more expensive hardware for location and orientation is 

required.  

 

In order to achieve a more realistic augmented view of perspective 3D models which 

will align to the background environment tightly, accurately and reliably, it becomes 

important to focus more on the use of computer vision-based technologies. In fact, 

vision-based tracking techniques have been one of the most active areas of research in 

the AR domain according to Zhou et al. (2008) and (Bostanci et al., 2013). Vision-

based tracking methods generally determine the relative motions of the users with 

respect to the workspace by finding trained fiducial markers or 3D models through the 

input image data. Hence, vision-based tracking can be categorised in terms of both 

marker-based tracking and marker-less-based tracking (Herling & Broll, 2011). In early 

research studies, many investigators focused on using planar markers with high-contrast 

pattern, such as those made available for ARToolkit (Kato & Billinghurst, 1999) and 

ARTag (Fiala, 2005; Cawood & Fiala, 2008).  
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Figure 2-4: A sample program of ARToolkit with a black and white square fiducial marker. 

 

The simplest form of planar marker can be a black-and-white square fiducial marker, 

such as the one shown in Figure 2-4. The reason for using black and white markers is 

because they deliver a higher contrast target in different luminance conditions, making 

them easier to be detected. The relative motion between the marker plane and the user 
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camera can be calculated by finding 3D-to-2D point correspondences from the 3D 

world to the 2D image, a process which will be described in Sections 3.2.3. DeMenthon 

& Davis (1992) stated that four known correspondences are sufficient to calculate the 

relative pose between the marker and the camera. The four corner points of a 

rectangular (or square) marker just meet the request, which are relatively robust and can 

be estimated by finding intersections of edge lines. The workflow of the black-and-

white square marker detection routine is given in Baggio (2012), which can be summed 

up as follows.  Firstly, the input image should be converted to greyscale and a 

binarisation operation is performed to transform each pixel to black or white – thus it 

will be possible to locate marker candidates by finding closed contour shapes with four 

vertices from the binary image. Then these candidates need to be unwrapped to square 

form by using perspective transformation – thus the pattern inside square can be verified 

by either code-decoding (e.g. ARTag) or template matching (e.g. ARToolkit) (Sun et al., 

2011). The sample marker designed for these two methods are given in Figure 2-5.  

 
Figure 2-5: The sample markers provided by ARToolkit and ARTag. 

(Fiala, 2005) 
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The traditional template matching method provided by ARToolkit involves defining a 

sampling grid inside the pattern, which is sampled to provide a 256 (or 1024) element 

feature vector. Then this feature vector is compared by correlation to a template marker 

library to identify the potential markers. However, Fiala (2005) commented that the use 

of correlation caused high levels of false marker detections where there are none, and 

high inter-marker confusion rates. The uniqueness of each marker also degenerates 

when user trains and adds more templates into the library. Meanwhile, the processing 

time of matching rises as each candidate must be correlated with all templates in the 

library. Moreover, the method stores twelve prototypes for each template marker to 

address the four possible rotations and three different light conditions, which causes 

more time to be consumed. On the other hand, Fiala (2005)’s ARTag improved the 

performance of ARToolkit by  applying a code-decoding technique for marker 

identification and verification. As shown in Figure 2-5 (right), the interior of each 

square border is divided into 6x6 square grids, and each grid can be only black or white 

to carry one bit of digital data. Thus a marker can be translated into a 36-bit word which 

is easier and more robust to verify, and no graphic template training is required to 

construct the library.  

 

Baggio (2012) indicates that the traditional fiducial marker-based tracking methods 

usually benefit from their relatively cheap detection algorithm and robust performance 

against lighting changes. However these methods are also restricted in applications due 

to the following issues: 1) the basic form of markers must be black and white with 

square borders, which cannot provide aesthetic value; 2) the size of supported markers 

is limited (e.g. 2
36

 in ARTag case); and 3) the marker cannot be tracked if partially 



47 

 

overlapped. Therefore, an advanced version of the planar marker utilises free-style 

patterns with naturally occurring visual features has appeared. Here, the visual features, 

including distinct points, lines, edges or textures (see Section 2.2.2 for detail) are going 

to be detected, extracted, and used as the reference for tracking. Natural feature-based 

markers literarily can have any form and texture (with sufficient visual features 

mentioned above). They can be colourful images which are more pleasant to look at 

(certainly more so than the very visually intrusive black and white square form patterns, 

and especially when viewed in real-world scenes of nature), and they can also convey 

specific meaning to the users via the images themselves. Since the visual features within 

a natural feature-based markers are treated as discrete units rather than a whole pattern, 

the marker with partial occlusion can still be used for pose estimation if there are 

sufficient features matched between the query and template, as shown in Figure 2-6 – 

even when the stone marker for tracking in the lower-right was folded in from one 

corner, a valid tracking result was delivered with the AR Spitfire. The computational 

cost largely depends on what kind of feature detection, extraction and matching 

algorithms are used. According to Amin & Govilkar (2015), there are various AR SDKs  

have already supported natural feature-based AR tracking on mobile devices. Figure 2-6 

just shows a natural feature-based AR application on an iPad developed using the 

Vuforia SDK. Many recent media advertisement campaigns prefer to use this kind of 

AR approach for their products, such as the Starbucks’ Cup Magic application and 

Disney's AR billboard (Russell, 2012). 
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Figure 2-6: An AR Spitfire app on iPad developed using the Vuforia SDK: the stone image (shown left) is 

target for tracking. 

 

By tracking trained planar markers in the environment, AR applications retrieve the 

position of the user and provide reasonable robust, rich and convenient AR experiences 

to, for example, exhibition and museum visitors (e.g. White et al., 2007; Kolstee & van 

Eck, 2011; Jevremovic & Petrovski, 2012; Mor et al., 2012) – all at a relatively low 

computational cost. However, individual planar markers do not support wide-angle 

(>180°) rotation of the tracking. In other words, if the users move to the back of the 

pattern plane, the tracking will fail and no augmentation will be performed. To 

overcome this issue, some researchers have exploited 3D model markers, including 

Rabbi & Ullah (2014) who present an application of a cubic marker with six planar 

fiducial markers on its faces, which has shown to deliver a robust form of tracking 

during occlusion or from different angles of view. 
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The marker-based methods generally require introducing man-made reference models 

(2D images or 3D objects) into the workspace for tracking during the AR process. The 

models are normally artificial and designed to be easily recognisable and 

distinguishable from the background environment. However these features restrict 

marker-based system in their use in outdoor field settings since some artificial markers 

(e.g. physical, printed products) are fragile in such environments and can cause aesthetic 

and conservation issues in both urban and rural areas. For this reason, many researchers 

have focused on vision-based tracking, thus shifting more toward a markerless approach 

to AR – or on natural feature-based markerless tracking as opposed to the artificial 

marker-based methods described above. These kinds of AR systems attempt to learn the 

3D geometric structure of a scene, such as a crafted Computer-Aided Design (CAD) 

model (e.g. Comport et al., 2003; Pressigout & Marchand, 2006), or a more complex 

commercial textured 3D model (e.g. Reitmayr & Drummond, 2006) of some objects 

from the original environment with distinguishable features. Similarly to the 2D image 

markers, the systems will track the visual features of the given models to estimate the 

positional relations between the users and the environment, but in this case, setting up 

the reference coordinate system to describe the spatial position of each detected feature 

can become a problem. If the given models were based on an artificial object, such as a 

cuboid furniture or a building which has an explicit and angular polygon structure and 

were relatively easy to create by hand (i.e. using 3D modelling software such as Google 

Sketchup, Autodesk 3dsMax or Blender), then the spatial information of visual features 

can be identified through the model construction. However, a regular polygonal 

structure is not available in all situations, especially in the natural environments, which 

may be devoid of any man-made objects. Most of the structures in the real world are too 
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complex to manually create reference models for them with a high geometric accuracy. 

To identify the spatial position of the features will be very difficult.  

 

In order to deal with the reference model training issue for markerless tracking, 

unsupervised (automatic) 3D reconstruction – techniques to restore the shape and 

appearance of real objects by computer – is introduced to AR systems for creating 

reference models from the original environment. The 3D scanning technologies can be 

divided into two types: contact and non-contact (Curless, 1999). Contact solutions 

require probing the object through physical touch which may modify or damage object 

during the scanning. In contrast non-contact solutions (X-ray, synthetic aperture radar, 

photogrammetry, laser scanning) are preferred in recent reports from the 3D 

reconstruction community. The non-contact solutions can be further divided into active 

methods and passive methods (Remondino & El‐Hakim, 2006). The passive methods 

typically refer to image-based modelling, where the vision sensor, such as monocular or 

stereoscopic camera, is used to provide a set of digital images or video that requires 

further processing to derive the 3D object coordinates (Hassner & Basri, 2006; Wu, 

2013), and is characteristic of portable and low-cost. The methods to recover 3D 

information from 2D images are described in Sections 2.2.3 and 4.2. In contrast, the 

active methods directly provide range data containing the 3D coordinates necessary for 

the model generation. This is based on using quite costly active sensors, but can provide 

a highly detailed and accurate representation of most shapes. The range data can be 

acquired from structured light (Geng, 2011), time-of-flight lasers (Levoy et al., 2000; 

Cui et al., 2010) or even ultrasound (Jordan et al., 2009), which actively scan the object. 

Thus the process is also known as 3D scanning. Since most of the active sensors are 
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costly, heavy and quite complicated to use or modify, the combinations of image- and 

range-based sensors have appeared, such as Microsoft’s Kinect and the Asus Xtion 

(a.k.a. RGBD cameras) which are portable and directly provide both colour images and 

dense depth information at the same time, at a relatively low price point. The RGBD-

based modelling is presented in Henry et al. (2010) and Endres et al. (2014). By taking 

account of the above discussion, the single vision-based (monocular camera) and 

RGBD-based (Kinect) methods are used in the present research for constructing the 

reference spatial structure models of the target environment in which to perform AR. 

Both methods of the reconstruction are presented in Chapter 4, with the utilisations of 

the reconstruction results for reference template (i.e. the reference model or map to 

track) and database training in Chapter 5. 

 

Some AR research projects and applications also developed hybrid tracking methods 

which mainly combined computer vision and other sensing technologies together to 

complement each other. Reitmayr & Drummond (2006) present a good example of a 

hybrid method which is based on several techniques: GPS sensing for initialising an 

approximate range, edge-based tracking for accurate localisation, gyroscope 

measurements for dealing with fast motions, gravity and magnetic field measurements 

for eliminating drift, and previous frame storage to act as a reference with online frame 

selection to re-initialise automatically after dynamic occlusions or failures. Although the 

accuracy of AR user tracking was improved, the hybrid tracking methods required 

specialised hardware and sensors and fuzzy integration of multiple sensors, which also 

requires a significant computing resource to deal with them.   

 



52 

 

2.1.2. AR development frameworks 

Krevelen & Poelman (2010) explain that prototyping frameworks of AR systems is a 

process which supports the supplying easy integration of AR devices and the quick 

creation of user interfaces (UIs) which are developed independently from their final 

applications. From this perspective, one can hypothesise that there are actually two 

types of end user who will be engaged in the development of an AR system. One type 

accounts for the “user” mentioned thus far who will be the ultimate users of the 

developed. The other type is the “developer”, who has clear application design 

objectives and desires to implement them by using AR system frameworks. Many 

research projects reported in the past have specific application foci when attempting to 

solve practical AR problems, such as those AR systems introduced in Chapter 1. The 

developers of these examples usually design and develop the applications directed 

towards the final users, as shown in Figure 2-7, and take no account of designing a 

general user interface of the frameworks for the higher-level developers (since they are 

lower-level developers themselves). 

 

Figure 2-7: The relationships between lower-level developers – end users of an AR system.  

 

Nevertheless, to bring AR technology out of the lab for more people, developing the 
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“user experience” of a system should not only concentrate on the final users but also 

those potentially higher-level developers who may not have a professional background 

(like the computer vision knowledge reviewed in Section 2.2) but wish to apply AR 

technology to their own developments (as shown in Figure 2-8). This is also known as 

end-user development (Lieberman et al., 2006), and is supported by several AR SDKs 

such as above-mentioned Wikitude (Figure 2-2) , Metaio (Figure 2-3), ARToolkit 

(Figure 2-4), Vuforia (Figure 2-6), and so on. Different AR SDKs support development 

of AR applications on different platforms (e.g. iOS, Android for mobile device or 

Windows, Linux for PC) and provide several approaches (i.e. sensor-based, marker-

based and 3D model-based) for the developer’s specific requirements. The developer 

typically interacts with the SDK framework to specify the reference to be identified or 

tracked, and then inserts the desired virtual information to be displayed with respect to 

the chosen reference in the real world. The reference can be the quantised geographical 

position and orientation for geo-based user tracking, the 2D image pattern or barcode 

for planar marker-based user tracking, or the CAD data for 3D model-based user 

tracking. Most of the existing vision-based development frameworks allow developers 

to customise the 2D markers. Some of them (e.g. Vuforia) even support developers to 

scan 3D objects from the real world as the reference, but require relatively harsh 

lighting and clear conditions of the environment for scanning
5
. Metaio also supports an 

easy, instant 3D mapping and tracking online for small workspace. A comparative study 

of AR SDKs are presented by Amin & Govilkar (2015).      

                                                 

5
 Vuforia Object Scanner: https://library.vuforia.com/articles/Training/Vuforia-Object-Scanner-Users-

Guide 
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Figure 2-8: The relationships between lower-level developers – higher-level developers – final users of an 

AR system. 

 

2.1.3. AR system evaluation 

As described above, the implementation of an AR application or system involves 

various internal techniques and several existing research studies have focused on one or 

two such techniques in particular, such as the important tracking issue mentioned in 

Section 2.1.1, in which the accuracy is sometimes considered as a “criterion” for 

measuring the robustness of an AR system (e.g. Reitmayr & Drummond (2006); 

Carozza et al. (2014)). AR tracking is actually a 3D pose estimation problem and can be 

evaluated by comparing to the ground truth map data. Similar evaluation metrics for 3D 

mapping are discussed in Section 2.3.3 below. However, as well as the technique 

adopted, the experience of AR system end users should not be ignored. As a Human-

Computer Interaction (HCI) system, one of the basic questions that needs to be solved 

is exactly who are the users and what are their needs (Fjeld, 2003). Dünser & 

Billinghurst (2011) also point out that, in order to bring the technology out of the 
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research labs and into people’s everyday lives, strong user-centred system designs and 

processes are required, and the AR systems need to be evaluated with actual users. 

Nevertheless, they also indicate that there are only a few suitable formal methods for 

evaluating AR interfaces in comparison to other technologies, since the researchers 

prefer to design and create one-off prototypes for their specific aim instead of a general 

framework for an AR system. In spite of this, Kostaras & Xenos (2009) summarised 

that most of the individual studies on the usability of specific AR applications were 

based on existing methods of Usability Evaluation, which can be divided into the 

following categories:  

1) Inquiry methods (user report): specifically Questionnaires and Interviews, 

which can gather subjective data that relate to the opinions and preferences of 

users on different factors, but are not, on their own, sufficient for obtaining 

secure conclusions. 

2) Inspection methods: the usability of the user interface is inspected by an 

evaluator (expert) instead of the actual end users, which can be less time 

consuming than the other categories (Nielsen, 1994b). The typical inspection 

methods include heuristic evaluation (Nielsen & Molich, 1990) in which the 

evaluators examine the user interface according to 10 standard usability 

principles given in Nielsen (1994a) and cognitive walkthrough, which focuses 

on how well a novice user is able to accomplish pre-defined tasks with the 

interface without prior training (Rieman et al., 1995). 

3) Testing methods: real users are involved in these methods to measure the extent 

to which the interface meets its intended purpose and satisfies the target user 

population. The factors affecting testing methods are presented in Figure 2-9. 
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The typical testing methods include Think Aloud Protocol where the users will 

vocalise their thoughts, feelings, and opinions while interacting with the 

interface (Minati et al., 2009); Co-Discovery Method, where the users will 

attempt to perform tasks together while being observed (Minati et al., 2009); and 

Laboratory Evaluation which is performed in a controlled environment and 

which mimics a real-life scenario(Alshamari & Mayhew, 2008).  

 

Figure 2-9: The factors affecting usability testing methods. 

(Alshamari & Mayhew, 2008) 

 

Martınez & Bandyopadhyay (2014) chose four evaluation methods – cognitive 

walkthrough, heuristic evaluation, laboratory observation and questionnaire 

administration – to evaluate a project called “Augment – 3D Augmented Reality”, to 
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determine which methods would be more suitable in case of AR interfaces based on  

comparing the evaluation results obtained. However, they discovered that a combination 

of methods delivers the best overall results, as not all design problems were found by 

individual methods alone. They suggest that design guidelines for AR evaluation based 

on their results should involve: 

1) Combining one usability inspection method with one usability testing method to 

obtain a reliable outcome. 

2) Using more than one expert in the inspection methods. 

3) Ensuring, in the case where a questionnaire-based method is chosen, that the 

number of users who complete it should be large enough and contain a variety of 

participants, including AR experts. 

 

2.2. Computer vision methods in AR 

As mentioned earlier, there are various technologies involved in visual AR system 

development, particularly with regard to four major processes: sensing, tracking, 

registration and interaction. Most of these technologies are inextricably linked with 

Computer Vision (CV). Vision is one of the most important senses that allow humans to 

perceive and understand the world surrounding them. The eyes will sense light from the 

environment and the brain will interpret the meaning of the stimuli arriving at the retina 

of the eye. The original idea of computer vision technologies was focused on attempts 

to duplicate the effect of human vision. The optical sensors (i.e. cameras) are used to 

obtain the visual information which will be depicted in the form of two-dimensional 

(2D) images, which can then be perceived and understood electronically by computer 
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(Sonka et al., 2014). CV-related research covers a wide range of applications, including 

industrial inspection and control processes (Labudzki & Legutko, 2011), robot guidance 

and autonomous navigation (Courtney et al., 1984; Mattaboni, 1992; DeSouza & Kak, 

2002), detection and recognition of the human face (Hsu et al., 2002; Yang et al., 2002), 

gestures (Wu & Huang, 1999; Patsadu et al., 2012) or other objects (Ullman, 1996; 

Torralba et al., 2003), image indexing and retrieval (Idris & Panchanathan, 1997; Sivic 

& Zisserman, 2003), three-dimensional (3D) reconstruction (Hassner & Basri, 2006; Ma 

et al., 2012), and so on. Most of these applications, including vision-based AR systems, 

achieve the major task of understanding the workspace through the input data and 

identification of the camera state.  

 

Generally, the image processing techniques used in visual AR systems include camera 

calibration, image acquisition and representation, template training and matching, 

spatial information recovery and augmentation registration. Specifically, the proposed 

framework aims to help higher-level developers to create and register perspective AR 

content (e.g. virtual 3D models) accurately based on a specific place. The requirements 

based on a real use case scenario of an indoor aquarium (the UK’s National Marine 

Aquarium
6
, NMA, located in Plymouth) described in Section 6.2 with the proposed AR 

framework are briefly listed in Table 2-1. 

  

                                                 

6
 The National Marine Aquarium: http://www.national-aquarium.co.uk 
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Table 2-1: The requirements of the proposed AR frameworks 

Development framework for higher-level 

developers 

Use case scenario of the National Marine 

Aquarium (developers) 

Input device Low-cost visual sensor or depth camera 

Target environment Both indoor and outdoor Indoors 

Based on specific place Yes  Indoors function zone in front of the Eddystone 

Reef Tank
7
 

Request on accurate AR 

registration  

Yes  Registering 3D marine animal models and 

animations to the specified location inside the 

function zone seamlessly 

Tracking type Markerless-based Marker-based or markerless-based 

Request on real-time 

processing 

No 

Developed application for final end users Use case scenario of the National Marine 

Aquarium (visitors) 

Operating platform Computer or mobile 

devices 

Mobile devices (smartphones or tablet 

computer) 

Input device Integrated RGB camera 

of the platform device or 

webcam  

Integrated camera of the mobile device 

Output device Monitors of the platform 

device 

Display screen of the mobile device 

Request on visiting 

specific place 

Yes The function zone of the Eddystone Reef Tank 

Request on real-time 

processing  

Yes 

   

                                                 

7
 Eddystone Reef Tank: One of the NMA’s largest tank features, based on the ecosystems found near the 

Eddystone Lighthouse Rocks, 19km south of Plymouth – see: 

 http://www.360imagery.co.uk/virtualtour/leisure/nma/ 
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In order to select the appropriate technologies to meet the requirements above, a number 

of typical techniques and algorithms are reviewed and discussed in the following 

subsections, and the design decisions are given at the end of this section. 

 

2.2.1. Camera and camera calibration 

A camera is a form of optical equipment which captures the reflected light from the 

environment to achieve similar functions to those of the human eye. The sensed image 

data can take the form of individual photographs or image sequences constituting videos. 

In computer vision, most single-lens camera devices can be simplified into a monocular 

pinhole camera model (see the dashed box in Figure 2-10) in image processing (Hartley 

& Zisserman, 2003). In contrast to the monocular camera, a stereoscopic camera has 

two or more separate lenses to simulate the binocular vision of human and to capture 3D 

images. However, technologically a stereoscopic camera can also be depicted by a set of 

monocular camera models where each of its lenses is replaced by an individual pinhole 

camera.  
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Figure 2-10: The perspective projection procedure of a pinhole camera model where upper case X,Y,Z 

denote camera coordinates and lower case x, y denote image coordinates. 

 

The ideal pinhole camera model mainly consists of an optical centre (a.k.a. projection 

centre) and an image plane, which defines a 3D reference frame to express the spatial 

relationships between the camera and the objects around it. This local reference frame is 

called camera reference frame. As can be seen in Figure 2-10, the coordinate system 

has its origin at the optical centre, the X-Y plane parallel to the image plane, and the Z-

axis along the optical axis perpendicular to the image plane. The location of the image 

plane can be described with the shortest length to the optical centre – known as focal 

length, and the intersection point where the optical axis joining to the image plane, 

referred as image centre or principal point. Figure 2-10 also presents the projection 

procedure from a 3D object (with respect to the camera coordinate system) to the 2D 

camera image plane: by looking at the 3D point P, the reflected light from P going 

through the image plane and arriving at to the optical centre, and the intersection p on 
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the image plane is the projected image point of the P. 

 

2.2.1.1 Camera calibration 

In practice, real camera devices perform perspective projection to map a 3D scene to 2D 

images, which is controlled by intrinsic camera parameters. As the name indicates, they 

are intrinsic properties of the camera devices. The pictures taken using the same camera 

share the same intrinsic parameters. The intrinsic camera parameters include the focal 

length and the principal point mentioned above, and additionally the lens distortion 

which is caused by lens imperfections or intentionally introduced by a fisheye lens for 

creating a wide panoramic or hemispherical image (Horenstein, 2005).  Camera 

calibration refers to the process of finding these parameters, which is important to the 

visual AR applications in the quest to achieve the best user experience, since the AR 

process will insert the virtual objects to the scene of the input images and project the 

augmentations on the user display screen correctly with these intrinsic camera 

parameters (Baggio, 2012).  

 

The intrinsic camera parameters can be provided by the manufacturer or computed 

through a known target for calibration purpose (e.g. a chessboard pattern plane shown in 

Figure 2-11 (Heikkila & Silvén, 1997; Zhang, 2000)). There are several 

implementations for processing camera calibration , such as the camera calibration 

toolbox in Matlab (Bouguet, 2004) and the camera_calibration sample code provided 

by OpenCV library (Bradski, 2000). The main idea of camera calibration is to take 

several images from different viewports of a set of annotated 3D points to determine 

their projected points on the images. Specifically if OpenCV is used for calibration, then 
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the 3D points will be extracted from each inner corners of the black-white square within 

the chessboard pattern. A pattern reference frame is defined. Since the pattern is flat, the 

Z axis of the reference frame is assumed to be perpendicular to the pattern plane and all 

points on the pattern are located at Z = 0. The X and Y axes are assumed to be aligned 

with the grid of pattern thus the 3D positions of corner points can be identified by 

giving the actual size of the square.  

 

Figure 2-11: Black-white chessboard pattern with size of 9x6 provided by OpenCV library. 

 

The basic principle of camera calibration involves taking known 3D points, measuring 

the 2D image points and finding the intrinsic camera parameters from those 

correspondences. The mathematical details are described in Section 3.2.3.  

 

2.2.1.2 Kinect sensor calibration 

In the present research, the Microsoft Kinect 1.0 is specifically used to obtain RGBD 

input data (unless otherwise noted, all references to the "Kinect" in this section concern 

the Microsoft Kinect 1.0 product). The Kinect combines a monocular colour camera, an 
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Infra-Red (IR) camera and an IR speckle projector to provide traditional colour images 

and depth information for each pixel at a certain frame rate (i.e. 30 fps for Kinect). The 

sensor data are read and stored as colour and depth images by utilising an Open Source 

software framework OpenNI. The calibration of the colour camera is quite similar to the 

approaches described in Section 2.2.1.1. The depth information is determined by using 

the IR camera and speckle projector as pseudo-stereo pair, and it can be calibrated by 

detecting a chessboard in the IR image too, which has described in Burrus (2012) and 

Reimann (2015). In fact it is not necessary to calibrate a Kinect by hand since the 

OpenNI camera driver provides default intrinsic camera models with reasonably 

accurate focal lengths. The lens distortion is ignored due to the low-distortion lenses 

used by Kinect. In addition to the intrinsic parameters calibration mentioned so far, it 

should be noted that the colour camera and the depth camera are generally working 

concurrently, but the acquired videos may slightly out of sync. The asynchronous 

colour-depth frame pairs can be dropped by checking the difference between their 

timestamps (measured in microseconds by OpenNI). It should also be noted that there is 

a space displacement between the lenses of the colour and depth cameras, thus the 

imaging ranges of the cameras are a bit different. An example is given in the upper of 

Figure 2-12. This can be solved by mapping depth pixels with the corresponding colour 

pixels through a registration process which is supported by some devices, like Kinect, 

and the calculations can be performed in hardware and accessed through the OpenNI 

API. The registration result is shown in the lower of Figure 2-12. Alternatively a custom 

calibration of RGBD camera can also be performed for achieving rigorous results. The 

entire set of calibration methods are presented in  Herrera et al. (2011) and Zhang & 

Zhang (2014).   
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Figure 2-12: the unregistered depth image (upper) and the registered depth image (lower) with their 

corresponding colour image captured by Kinect. 

 

2.2.2. Visual features 

In computer vision, visual features refer to the elementary characteristics of the content 

in images, which include colour, texture, shape, and so on. As stated in Dong (2013), 

most image processing systems, such as those underpinning image annotation or 

retrieval systems, use visual features to match and recognise objects from images, and 

the performance of such systems are heavily dependent on the features used for image 

representation. These can be categorised into global features and local features. 

Through the description of  Lisin et al. (2005), the global features describe an image as 

a whole and have the ability to generalise an entire object with a single vector, while the 

local features represent the image patches computed at multiple points in the image. 
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Generally the global features are not very robust for image matching tasks since partial 

changes, such as occlusion and clutter, occur in the images and can affect the global 

description of an image. Instead, the local features extracted from multiple interest 

points of an image will describe the image by segmenting it into several individual 

patterns with no interference with each other. These patterns are very useful in 

determining the similar parts from different images. The following subsections will 

focus on introducing different local features and their corresponding detection, 

representation and matching methods. 

 

2.2.2.1 Feature detection  

Detecting visual features is commonly regarded as a low-level image processing 

operation and is performed as the first processing stage in many vision-based systems, 

especially for image retrieval, classification and object recognition. Since the features 

are numerical representations of images, they can be used for comparing different 

images and calculating the similarity. The standard of comparison depends upon the 

method used for feature representation.  A very basic form of feature representation is 

the colour histogram (Swain & Ballard, 1991). The pixels on images can be represented 

by different amounts on some colour axes (e.g. red, green and blue in RGB space). Each 

colour axis is viewed as a channel, and each channel has a related intensity value. If the 

images are monochromatic, then a pixel can be represented by a single intensity value, 

known as greyscale. The colour histogram represents the distribution of colour in an 

image by accumulating the number of pixels at each different intensity value found in 

that image. For example, an 8-bit RGB image allocates three bits for red (2
3
=8 possible 

intensity values), three bits for green (2
3
=8 possible intensity values), two bits for blue 
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(2
2
=4 possible intensity values), so there are totally 256 (8*8*4) discrete possible colour 

for each pixel on the image. Stricker & Orengo (1995) mention that, although using 

classical colour histogram results in the retrieval of the images whose colour 

compositions are similar to the given query image, due to the lack of texture and 

geometric information contained in images it is difficult to identify a specific object 

from images. For this reason, the representation methods of texture and shape features 

have been considered, including edges, corners and blob.  

 

Edges are defined as sets of pixels in the image that border two homogeneous regions of 

different intensities (Gonzalez & Woods, 2008). Thus, edge points usually have a strong 

gradient (vector denoting the maximum rate of change of image intensity) magnitude, 

which can exhibit various degrees of discontinuities in image intensity dependent on the 

shape of edges in images. The commonly used edge detection algorithms include Canny 

(1986), Roberts (1963), Sobel & Feldman (1968) and Prewitt (1970). These are first-

order derivative methods that rely on the computation of image gradients and searching 

for local directional maxima of the gradient magnitude. Second-order derivatives 

methods, such as Marr & Hildreth (1980), are also used for feature detection by 

searching for zero-crossing (the point where the sign of function changes) in the second 

derivative instead of the peaks of the first derivative, which produce thinner edges 

(fewer edge points). The edge detection methods mentioned above have been classified 

and evaluated in Sharifi et al. (2002). Edge detection aims to determine the location, 

orientation and strength of each edge point such that a two-dimensional image pattern 

can be represented by a set of one-dimensional curves. Thus edge detection is always 

performed as an early stage in image analysis and pattern recognition. However, for 
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researches into processes such as those involving robot navigation, 3D reconstruction 

and the vision-based tracking task in AR systems, there is a desire to obtain an 

understanding of surrounding environment or self-locating the camera and its carrier 

(e.g. a vehicle, a robot or a human) through a sequence of images. For this reason, the 

relationships between the images need to be identified first, and this requires extracting 

robust (i.e. invariant to various changes in environment), distinctive, and repeatable 

local features from each image, which will then be used for image matching. In these 

cases, edge features are not a good choice for tracking. Firstly the homogeneous contour 

of edges is locally ambiguous, which means that the physical motions tangential to edge 

are indistinguishable and cannot be measured. This is known as aperture problem 

(Hildreth & Ullman, 1982). Furthermore, although most edge filters are brightness 

invariant, they are typically variant to other changes, such as colour (Koschan & Abidi, 

2005) and scale (Lindeberg, 1998a).  

 

Corners (a.k.a. interest points) are a more suitable choice for tracking. They are defined 

as the intersection of two edges, or points, for which there are two dominant and 

different edge directions in a local neighbourhood of the point (Muda et al., 2014). Thus, 

corner points will have a strong gradient in two distinct directions. Harris & Pike (1988) 

concentrated on the extraction and tracking of corners in their work, since corner 

features are discrete, reliable and meaningful. However, the lack of connectivity of 

these feature points becomes a limitation for obtaining higher-level descriptions of 

surfaces and objects. Hence the authors decided to introduce a combined corner and 

edge detector, known as Harris Detector (Harris & Stephens, 1988): given an image

),(I yx , assume a “window” ),(w yx located at position ),( yx is being shifted by ),( vu . 
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The difference between the original and the shifted window can be expressed as: 

 
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If ),( yx  is a corner point, it means a significant change when the window is being 

moved in any direction. Hence the locations with large ),(E vu  need to be found out. 

Since ),(I vyux   can be approximated by a Taylor expansion 
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of I , ),(E vu can be approximated in matrix form as: 
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where M is a 2x2 matrix computed form image derivatives, known as Harris matrix. 
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The corner response is measured by eigenvalues 1  and 2  of M. Therefore the 

following inferences can be made based on the magnitudes of the eigenvalues: 

1) If both 1  and 2 are near to zero, it means a “flat” region. 

2) If one of 1  and 2 is near to zero, another has large positive value, it means an 

edge point. 

3) If both 1  and 2 have large positive values, it means a corner point. 

 

Since the eigenvalue decomposition of the matrix M is computationally expensive, 

Harris & Stephens (1988) suggest that the corner response can be defined with the trace 

and determinant of M as following: 
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2))(trace()det( MMR   

(2.4) 
21)det( M  

21)trace(  M  

Therefore the windows that have a response value R greater than a certain value are 

corners.  

 

Another widely used corner detection algorithm is the Smallest Univalue Segment 

Assimilating Nucleus (SUSAN) (Smith & Brady, 1997), which is realized by a circular 

mask with a nucleus. According to Chen et al. (2009), the Harris Detector is superior to 

the SUSAN detector in terms of stability, anti-noise ability, and complexity. But as for 

timing results, Rosten & Drummond (2006) reported that the SUSAN was more 

efficient than the Harris. In addition, Rosten & Drummond (2006) propose a much more 

efficient corner detection algorithm – FAST (Features from Accelerated Segment Test), 

which is based on a relaxed version of the SUSAN corner criterion, namely an 

accelerated segment test which uses a circle of 16 pixels (as shown in Figure 2-13) to 

classify whether a candidate point is actually a corner.  
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Figure 2-13: n point segment test corner detection in an image patch. 

(Rosten & Drummond, 2006) 

 

If there are n contiguous pixels having similar brightness (all brighter than a given 

threshold or all darker than another threshold) to the nucleus within the circle, where the 

suggested value of n is between 9 and 12, then the pixel under the nucleus is considered 

to be a corner. By applying machine learning techniques, the computation time and 

resources of FAST can be more optimal. An improvement detector FAST-ER 

(Enhanced Repeatability) is proposed in Rosten et al. (2010), where they train a 

decision tree with an optimised structure suitable for points with high repeatability to 

compare the pixels and decide whether the point of nucleus is a corner or not. 

 

Corner features are basically invariant to translation, rotation and brightness, and 

relatively efficient (especially the FAST detector is very fast), but they are still not 

invariant to scale and are sensitive to high-level noise. To solve the scaling problem, 

blob features are taken into account. Relative to a corner feature which is considered as 

an individual interest point, a blob feature refers to an interest region, in which some 
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properties are constant or vary within a prescribed range of values (i.e. all the points in a 

blob can be considered in some sense to be similar to each other). Based on this fact, a 

blob feature can be treated as a keypoint to track, which is located at the centre of the 

region.  One major technique for blob detection is based on local extrema (Pandey et al., 

2014), such as Laplacian of Gaussian (LoG) operator which usually results in strong 

positive responses for dark blobs (on a light background) and strong negative responses 

for bright blobs (on a dark background) (Lindeberg, 1998b). Lowe (1999) applied an 

LoG filter within different scale spaces to detect scale-invariant feature candidates in 

their well-known scale-invariant feature transform (SIFT) algorithm, which includes a 

feature detector and descriptor. The SIFT detector searches and identifies stable features 

across multiple scales from the convolution of a Gaussian kernel (at different scales) of 

the input image. Specifically, given an input image ),(I yx , the scale space 

representation of the image at a certain scale  defined by ),,(L yx is obtained by 

convolving the image by a variable scale Gaussian kernel ),,(G yx  where 

),(I),,(G),,(L yxyxyx    (2.5) 

and 
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Since the computation of LoG operators is time consuming, Lowe (2004) improved the 

computational performance of SIFT by an efficient approximated filter – Difference of 

Gaussian (DoG) – which can be computed from the difference of two nearby scales 

separated by a constant multiplicative factor k:  
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Thus an image pyramid scheme is applied to produce the DoG, in which the scale space 

is separated into several octaves. In each octave the original image is repeatedly 

convolved with Gaussians by different scale parameter    to produce a set of scale 

space images and the adjacent smoothed images are subtracted to produce the DoG, as 

shown in Figure 2-14.  

 

Figure 2-14: Lowe (2004)’s Pyramid Scheme. 

 

After that the smoothed images are down-sampled by a factor of 2 to start the next 

octave. The potential keypoints are located by detecting maxima and minima of DoG in 

scale space. Each point is compared to its neighbours in the current image and two 

adjacent images in the scale above and below, as shown in Figure 2-15.  
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Figure 2-15: Maxima and minima of the DOG images are detected by comparing a pixel (marked with X) 

to its 26 neighbours (marked with circles). 

(Lowe, 2004) 

 

More accurate location of extrema is obtained by Taylor series expansion of scale space. 

After that the intensity at this extreme is tested and the points with bad contrast are 

rejected. Since the DoG also has a higher response for edges, the points with strong 

edge responses need to be removed for the reason discussed above. A strong edge 

response in the DoG will have a large principal curvature across the edge but a small 

one in the perpendicular direction. Just like the Harris corner response described in (2.4), 

the trace and determinant of a Hessian matrix, – whose eigenvalues are proportional to 

the principal curvatures of DoG, are used here for filtering. Assume the quantity 

r

r 21）（ 
 is at a minimum when the two eigenvalues are equal and it increase with r . 

Whether the ratio of principal curvatures is below some threshold r , or not, is 

depending on:  
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Thus the points that have a ratio between the principal curvatures greater than r  are 

rejected.  

 

Although the SIFT detector has overcome the scale-variant issue and applied the DoG 

filter for accelerating, it is still far more time-consuming than the corner detectors 

reviewed above (Chen et al., 2009; Miksik & Mikolajczyk, 2012). A faster and more 

improved approach based on SIFT is Speeded-Up Robust Features (SURF) (Bay et al., 

2008). The SURF detector applies a box filter for calculating image convolution to 

approximate LoG in which each pixel after the box filter has a value equal to the 

average value of all pixel values in a given rectangle in the original image. The box 

filter can be computed efficiently with the help of integral images. Each pixel of an 

integral image is the sum of all the pixels that were above it and on its left in the 

original image. For example, the value of the box filter of the rectangle D with integral 

image value on each corner (denoted by ii(corner) below) shown in Figure 2-16 can be 

computed as ii(4) + ii(1) – ii(2) – ii(3).  
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Figure 2-16: the value of the box filter of any rectangle can be computed using integral image 

representation. 

 

The use of integral images allows the up-scaling of the filter at a fixed computational 

cost, and SURF does not down-sample the size of images to build image pyramid which 

saves a considerable amount of time. SURF detection of blobs relies on the Hessian 

matrix. The determinant of the Hessian matrix is used as a measure of local change 

around the point and points are chosen where this determinant is maximal. The SURF 

algorithm also provides descriptor method to represent the keypoints, which will be 

discussed in Section 2.2.2.2. In addition to translation, rotation and scale invariance of 

the feature detectors discussed above, Mikolajczyk & Schmid (2004) indicate the affine-

invariant challenge against changes in viewport and propose a Harris- / Hessian-Laplace 

detector where the Harris measure of the determinant of the Hessian matrix is used to 

select the location of interest points, and the characteristic scale of a local structure is 

indicated by Laplacian. A comparison of affine region detectors is given in Mikolajczyk 

et al. (2005). 
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2.2.2.2 Feature representation and matching 

Once an interest point with robust local feature is detected in images, a distinctive 

signature can be computed using the pixel information around the interest point to 

represent it for subsequent processing (e.g. feature matching). This process is called 

descriptor extraction. The simplest descriptor could be the raw pixel values in a small 

patch around the interest point, also called a template. But consider that the local 

appearance of a feature patch will usually vary from image to image throughout a 

tracking task. Therefore, more complex descriptions are needed for allowing an 

invariant match to orientation, scale and even affine changes within the feature patches 

while still preserving discriminability between non-corresponding patches (Szeliski, 

2010).  

 

Distribution-based descriptors are one of the techniques that can be used for describing 

local image regions, using histograms to represent different characteristic of feature 

appearance. A simple example is the colour or intensity histogram described above. 

Park et al. (2000) and Won et al. (2002) propose a local edge histogram descriptor using 

the global and semi-local edge histograms generated directly from the local histogram 

bins and this can be used to measure the similarity between images. One of the most 

common histogram-based descriptors can be used for corner and region features 

described so far is a SIFT-like descriptor (Lowe, 2004), which is based on the gradient 

distribution in the detected regions and is represented by a 3D histogram of magnitude, 

locations and orientations of the gradient. In this case, the scale of the keypoint is used 

to choose the Gaussian smoothed image ),(L yx  with proper scale. Then the gradient 

magnitude ),( yx  and orientation ),( yx  are computed using pixel differences:  
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(2.9) 

))),1(L),1(L/())1,(L)1,(L((tan),(  1 yxyxyxyxyx    

The gradient histogram has 36 bins covering 360 degrees of orientation and is weighted 

by a gradient magnitude and Gaussian window. The highest peak in the histogram is 

taken and any peak above 80% is also considered to calculate the orientation. Thus the 

orientation is assigned to each keypoint to achieve rotational invariance. The feature 

descriptor is created from a 4x4 gradient window containing a histogram of 4x4 samples 

per window in 8 directions, which finally results in a 128-D SIFT descriptor vector, as 

depicted in Figure 2-17. 

 

Figure 2-17: The generation of a SIFT keypoint descriptor. 

(Lowe, 2004) 

  

Based on the SIFT descriptor, Ke & Sukthankar (2004) developed a PCA-SIFT 

descriptor which uses principal components analysis (PCA) to normalise the gradient 

patch instead of histograms. Similarly, Mikolajczyk & Schmid (2005) propose another 

variant of SIFT descriptor – a gradient location and orientation histogram (GLOH) 

descriptor – which changes the location grid and uses PCA to reduce the size. SURF 
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(Bay et al., 2008) also provides a histogram-based descriptor in which the main 

orientation is obtained from the largest sum value of the Haar wavelet response around 

the keypoint. The neighbourhood is split into 4x4 sub-regions and each sub-region has a 

4-D descriptor vector about the sum of values of the responses and the sum of the 

absolute values of the responses in both x and y orientation. Hence the final SURF 

descriptor is a 64-D vector which has less dimensions and is faster than the SIFT 

descriptor. A comparison and evaluation of SIFT, PCA-SIFT and SURF is given in Juan 

& Gwun (2009) who also point out that choosing the most appropriate method mainly 

depends on the application. Although the comprehensive performance of SIFT seems 

better, it is still hard to consider its use in a real-time system due its high time-

consuming qualities. A more recent development – SiftGPU, implements a fast SIFT 

method to ease this issue by using the GPU’s calculation power. (Wu, 2007).  

  

Binary descriptors are an alternative way to represent features. Binary Robust 

Independent Elementary Features (BRIEF) (Calonder et al., 2010) –,  like SIFT and 

SURF, include a detector and a descriptor. This method creates a bit vector from the test 

responses of pixel intensity on smoothed image patches, and calculates an n-

dimensional bit-string which uniquely defines a set of binary tests (n could be of 

different lengths, e.g. 128, 256, and 512). BRIEF descriptor is efficient to compute but 

does not provide rotation invariance. Rublee et al. (2011) propose a new feature, ORB 

(Oriented Fast and Rotated BRIEF), by using the BRIEF descriptor with the FAST 

detector, and they enhance both techniques by addition of a fast and accurate orientation 

component to FAST, making the BRIEF descriptor rotation invariant. The corner 

orientation is measured by the intensity centroid (Rosin (1999) cited in Rublee et al. 
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(2011)), which defines the moments (a certain particular weighted average) of a patch as: 
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for p,q = 0, 1, 2… the centroid is then determined with these moments: 
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The orientation of the path is then given by: 

)Mo,Mo(2atan 1001  (2.12) 

where atan2 is the quadrant-aware version of arctan. 

 

Similarly, Binary Robust Invariant Scalable Keypoints (BIRSK) (Leutenegger et al., 

2011) also uses a binary descriptor dependent on an extended FAST detector, which 

searches for maxima in a 3D scale-space. Fast Retina Keypoint (FREAK) (Alahi et al., 

2012) is a novel keypoint descriptor inspired by the human retina. The binary string of 

the descriptor is computed by efficiently comparing image intensities over a retinal 

sampling pattern. The applied methods are based on both BRISK (for orientation) and 

ORB (for sampling pairs).  

 

The local feature descriptors described above can be used to match images and to 

understand the spatial changes around the matched features. To match simple template 

descriptors, an error metric such as the sum of squared differences, cross-correlation or 

normalised cross-correlation can be used to directly compare the intensities in small 

patches around feature points (Szeliski, 2010). Then the result is checked against a 

threshold to determine if a match is found. Since a histogram can be represented by a 

multi-dimensional vector and the similarity of two histograms can be measured by 
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calculating the Euclidean distance (see Appendix D for detail) between the vectors, to 

match histogram-based descriptors, the best matching results from a set of descriptors to 

another set can be found by searching the nearest neighbour (known as NN search). To 

reject wrong matches, a ratio test can be performed following a k-NN matching by only 

accepting the first NN if the distance ratio between the first and second NN is less 

enough – because correct matches need to have the closest neighbour significantly 

closer than the closest incorrect match to achieve reliable matching (Lowe, 2004). 

Another mismatch removal methods involve checking geometric consistency, for which 

the detected feature points in one image can be mapped to their point correspondences 

in another image through a geometric (2D-to-2D) transformation, such as epipolar 

geometry, homography and affine (Lowe, 2004). Whether comparing template or 

histogram-based descriptors, the time consumed in calculating the similarity and 

searching the matches between the vectors is closely dependent on the number of vector 

dimensions, and the computational cost of the descriptors with high dimensions (e.g. 

128 for SIFT) will be higher. A popular method for improving this issue is applying 

Fast Library for Approximate Nearest Neighbours (FLANN) (Muja & Lowe, 2009), 

which indexes the feature descriptors by using either randomised – kd-trees or a 

hierarchical k-means tree to reduce the search time. On the other hand, the binary 

nature of the binary descriptor allows use of the Hamming distance for matching, which 

can be implemented efficiently using a bitwise XOR operation followed by a bit count 

on the result. For large binary descriptor datasets, FLANN is not suitable and 

conventional “brute-force” search is used instead. However, alternative approximation 

methods for matching binary features faster have recently been presented in Muja & 

Lowe (2012) and Yan et al. (2015). 
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As previously mentioned, for applications such as robot navigation, 3D reconstruction 

and vision-based AR, the aims of feature matching are to recover the space structure of 

the environment and to estimate the camera motion between the images. The related 

approaches are described in Section 2.2.3. 

 

2.2.3. CV-based localisation and mapping 

2D images are considered as the projections of the 3D real world, which can be used for 

learning the spatial structures of the captured scenes or objects and locating their camera 

sensor with respect to them. This process is usually called localisation and mapping. 

Mapping is a process that attempts to recover the 3D structure of the environment and 

then construct a map to describe the relative position and orientation of each object with 

respect to a chosen reference frame. The process of localisation tracks the motions of 

the camera and recovers the camera model of each image related to the constructed map. 

Note that the phrase ‘camera’ below will not refer to a real camera device, but to the 

pinhole camera model associated with a specific image (see Figure 2-10). Therefore:  

1) for a consecutive image sequence, a spatial transformation (including translation 

and rotation) from any image to another is called camera motion;  

2) for an individual image, the absolute 3D position (i.e. translation) and 

orientation (i.e. rotation) of its camera model with respect to the reference frame 

are called camera pose. 

 

These are described as extrinsic camera parameters. In computer vision, the localisation 
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and mapping problem can be solved by employing Structure from Motion (SfM) 

techniques. Or, alternatively, in the robotics community for example, a similar problem 

is commonly referred to as Simultaneous Localisation and Mapping (SLAM). The 

methods that make use of vision sensors to solve the SLAM problems are known as 

visual SLAM. Both SfM and SLAM techniques are described and discussed below. 

 

2.2.3.1 Structure from motion 

Bolles et al. (1987) state that 2D images have an inherent ambiguity: an image only 

captures two out of three viewing dimensions, and hence an infinity of 3D scenes can 

give rise to the same 2D image. This means that any individual 2D image cannot supply 

enough information to enable the reconstruction of its source 3D scene. However, if 

there are multiple images of the same scene, but these are separated by a distance, 

including the stereo pairs from the stereoscopic camera or the image sequences acquired 

by the moving a monocular camera, then the lost depth information may be recovered. 

The method for recovering structure (i.e. depth information) by observing the motion of 

objects in the image plane is called structure from motion (Ullman, 1979).  Since SfM 

generally takes multiple 2D images as its input, it can be regarded as a monocular 

vision-based process – as opposed to a multi-view or stereoscopic process. Both 

computer stereo vision (Marr & Poggio, 1976) and SfM technologies aim to extract 3D 

information or further reconstruct a 3D representation from a scene or an object through 

digital images. The images used may be acquired simultaneously, as in the case of using 

a stereo rig, or acquired sequentially by moving a camera relative to the scene (Hartley 

& Zisserman, 2003). The discrimination between the calibrated stereo rigs and SfM has 

been interpreted in Baggio (2012): a calibrated rig can be a multi-view camera or a set 
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of two or more monocular cameras, where the relative motions between the 

lens/cameras are already known (i.e. “calibrated”). Meanwhile the SfM uses a set of 

images whose camera motions are totally unknown and need to be solved through the 

process. The SfM algorithms based on multiple images are generally categorised into 

two methods: batch methods and incremental/online methods (Kim & Chung, 2003). 

Batch methods determine the scene structure and the camera poses by using all image 

measurements simultaneously, and this produces the most optimal estimates. The 

advantage is that the reconstruction errors can be distributed meaningfully across all 

measurements. Several batch SfM methods have been summarised in Hartley & 

Zisserman (2003). Some of these are known as factorisation or factorisation-like 

methods, which are linear and based on direct SVD (Singular Value Decomposition) 

factorisation of the image point measurements. One of the limitations is that they 

require every 3D point to be visible in every view hence they are not applicable to 

sparse modelling problems. More recently Crandall et al. (2013) describe factorisation 

methods to obtain a good initialisation and then apply Bundle Adjustment (introduced 

below) as a final nonlinear refinement step to obtain accurate camera parameters and 

scene structure. Since the batch-based methods process all images at once, they cannot 

be used for applications which have strict real-time requirements, such as robot 

navigation system which needs to plan an action based on immediate information being 

acquired immediately. Instead, the incremental SfM algorithms will solve the problem 

progressively with a recursive form. The images are acquired one by one as the process 

is running, and the program will perform real-time updates to the constructed map after 

each image is processed. Owing to the fact that the approaches of these two categories 

share the core techniques of SfM, the reminder of this section will mainly interpreting 
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the processes of incremental SfM methods. 

 

If the images take the form of rigid scenes or objects, to obtain camera motions and 

recover the geometric structure, SfM implementations typically attempt firstly to detect 

robust features from the target scenes. The features need to be observed across multiple 

consecutive images from the input sequences, then the matched feature correspondences 

between the consecutive images – which give a set of images feature trajectories over 

time – will be determined (Dellaert et al., 2000; Corke et al., 2007). The local features 

reviewed in Section 2.2.2 are usually selected for this aim since they are suited for the 

matching task. The recovery of the relative camera motions through feature matches 

between the images and the acquisition of spatial positions of these image points with 

respect to the world reference frame are introduced in Hartley & Zisserman (2003), 

Nistér et al. (2006) and Ma et al. (2012). Generally, for the incremental SfM methods, 

two images with abundant feature correspondences will be selected as an initial two-

view. The camera motion between these two images will be recovered first by using 

methods based on epipolar constraints, or, more specifically, essential matrix – an 

epipolar constraint between each of the correspondences within two calibrated views 

(i.e. the intrinsic camera parameters of both cameras are known) –  is decomposed to 

give the desired camera motion (Longuet-Higgins, 1987). Longuet-Higgins (1987) 

indicated that an essential matrix could be estimated from eight or more point 

correspondences by solving a linear equation. Since the essential matrix is rank-

deficient, it turns out that seven correspondences are enough to estimate this matrix 

whilst enforcing the rank 2 constraint in the matrix (Hartley & Zisserman, 2003). Nistér 

(2004) proposed a more efficient 5-point algorithm that requires finding the roots of a 
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tenth degree polynomial. Consider that not all correspondences being used here are 

correct matches; the raw result needs to be checked by Random Sample Consensus 

(RANSAC) (Fischler & Bolles, 1981).  

 

RANSAC can fit a model to data which containing a significant percentage of gross 

errors. The performance evaluations of several RANSAC implementations are presented 

in Choi et al. (1997). In the case of the essential matrix estimation, RANSAC will 

randomly sample a subset of correspondences with a certain number k (eight, seven or 

five for each algorithm described above) to calculate an initial estimation. Then the 

remaining correspondences will be tested by the initial estimation. The correspondences 

which satisfy the estimation will be called as inliers, otherwise outliers. The process of 

data sampling and fitting will be repeated for several trials, and the sample set with the 

largest number of inliers will be kept. The ultimate estimation will be recalculated by 

using the inliers to find an optimal result. To increase the probability of finding a true 

set of liners from the random sampling, a sufficient number of trials must be undertaken. 

The required number of trials will grow quickly with the number of sample 

correspondences k, and the estimations using fewer correspondences are less sensitive to 

outliers. Therefore the minimum k is preferred (Szeliski, 2010). The well-known 

improved variants of RANSAC include MLESAC (Maximum Likelihood Estimation 

Sample and Consensus, (Torr & Zisserman, 2000)), PROSAC (Progressive Sample 

Consensus, (Chum & Matas, 2005)), and Preemptive RANSAC (Nistér, 2005). 

 

Once the essential matrix is determined, the relative camera translation and rotation 

between the two cameras can be recovered by using SVD, which will be described in 
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Section 4.2.1.1. Returning to the selected initial two-view, one of these two camera 

reference frames is generally selected as the world reference coordinate system in order 

to describe camera poses and the location of spatial points. Then the camera poses of the 

initial two-view are obtained from their relative motion and are used to triangulate their 

inlier correspondences into 3D points, known as triangulation (Hartley & Sturm, 1997). 

In brief, the triangulation problem is to find the intersection of the two lines in space.  

As depicted in Figure 2-10, if a spatial point is visible in an image, there will be a ray in 

space which connects the point, its projection on the image plane and the camera optical 

centre. The ray is defined by the camera model, whose optical centre and image plane 

are defined by the intrinsic camera parameters which have been gained by performing 

camera calibration (see Section 2.2.1.1). The positional relation between the camera 

model and the world reference frame is given by the extrinsic camera parameters, 

namely the camera pose, which have been calculated through the previous methods. 

Thus, if a point is observed by two cameras, there will be two rays starting from the 

respective optical centre, through the corresponding image point and finally meeting in 

the location of the spatial point, forming a “spatial triangle”. With the known pair of 

rays for each correspondence between two images, the intersected point can be 

computed. One of the most common methods is linear triangulation (Hartley et al., 1992) 

which is described in detail in Section 4.2.1.2. The main idea is that from the two views 

to triangulate, a total of four linear equations can be obtained for solving the 3D 

position, P, of each correspondence. However, the back-projected rays of a 

correspondence cannot be guaranteed to intersect due to measurement noise which 

causes the equations to not be satisfied precisely. For this reason , the four linear 

equations are converting into the form AP = 0 for a suitable 4x4 matrix A and the aim 
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then becomes to find a nonzero solution for P to minimise AP  (subject to the 

condition 1P ). Hartley & Sturm (1997) discuss two methods – the Linear-Eigen 

method which uses the SVD or Jaocobi’s method for finding eigenvalues of symmetric 

matrices to solve the problem, and the Linear-LS method which finds a least-squares 

solution to this problem by using a pseudo-inverses method or by using the SVD (the 

numerical analysis methods used here can be found in Atkinson (2008)). Neither of 

these two methods are projective invariant and only the Linear-LS method is affine 

invariant. Hartley & Sturm (1997) describe another kind of method which considers that 

the correct 3D positions could be chosen by minimising the sum of the squared errors 

between the measured image positions and re-projected positions (as shown in Figure 

2-18). The solution can be found by iteratively adjusting two weight values of the 

equations until the process converges, in other words, the best weight 0/1 w and 1/1 w are 

found, where the iw  is the scale factor of each image and depends on the value of P. 

This method can be applied to either the Linear-Eigen or the Linear-LS to refine the 

solution. The disadvantage of this method is that it sometimes fails to converge in 

unstable circumstances, thus Hartley & Sturm (1997) use their non-iterative optimal 

Polynomial method as a backup which requires a sufficiently good initialisation. 
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Figure 2-18: The position of P should be chosen by minimising the sum of squared errors between the 

measured pi and re-projection ip̂ . 

 

After recovering the first two camera poses and the 3D positions of their inlier 

correspondences, the camera poses of other image are gradually recovered with respect 

to the world reference frame by finding 3D-to-2D correspondences between the 

recovered 3D points and their correspondence in the images. The inlier correspondences 

between the new processed image and each previous one will be triangulated 

recursively to recover more 3D points to the world reference frame, which is known as 

incremental reconstruction. The problem of recovering camera pose by using n sets of 

3D-to-2D correspondences is called the Perspective-n-Point (PnP) problem (Szeliski, 

2010). There are several algorithms for solving this, but all of them require that the 

chosen point correspondences should not be coplanar. The minimal amount of 

correspondences, n, needed for solving this problem is 3 (i.e. P3P). Fischler & Bolles 

(1981) noticed that four possible solutions can be found through a P3P equation system. 

Thus a fourth 3D-to-2D correspondence is required to remove ambiguity and find the 
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best solution among the four (Gao et al., 2003). Consider the impact of noisy data (i.e. 

outliers), – more correspondences are expected to be involved for solving PnP to make 

the solution robust. Thus, more preferable methods use a 6-point Direct Linear 

Transformation (DLT) algorithm (Hartley & Zisserman, 2003)  to guess an initial pose, 

subsequently optimising it with the iterative technique which directly minimises the 

squared re-projection error for the 2D points as a function of the unknown pose 

parameters by using non-linear least squares (Szeliski, 2010). However, the 

computational complexity of these methods is relatively high – so much so that it is 

unlikely to achieve an acceptable real-time performance. Alternatively, there is a faster, 

non-iterative solution, known as Efficient PnP (E-PnP), which can be used for the 

general cases of n≥3. The computational complexity grows linearly with n, but is 

somewhat less accurate than that for the iterative solutions (Lu et al., 2000). In addition, 

the RANSAC methods mentioned above are also commonly used with a PnP method to 

filter out the outliers. Apart from being used in SfM, PnP is also a core technique used 

in markerless AR tracking which makes use of the correspondences between the trained 

3D template points and the matched 2D image points to estimate user pose in respect of 

the real world.  

 

As mentioned in the triangulation stage, by considering the noise effect, the best 3D 

position solutions of the correspondences between the images are selected based on re-

projection error minimisation. In that case, only recovered 3D points are taken account 

of. However, the process of incremental SfM is recursive. The camera pose estimation 

is dependent on both observed 2D image features and their 3D correspondences, which 

have already been recovered by triangulating the correspondences from previous images 
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with their estimated camera pose. Therefore any error instances will be accumulated 

during the process. Bundle Adjustment (BA) (Triggs et al., 1999) is commonly used in 

the SfM reconstruction refinement for producing jointly optimal 3D point coordinates 

and camera poses. As the name indicates, all of the structure and camera parameters are 

adjusted ‘in one bundle’ simultaneously by minimizing some cost function that 

quantifies the model fitting error. BA is always used as the last step of every feature-

based 3D reconstruction algorithm, in effect to “polish” a rough reconstruction, as well 

as for use as an intermediate process in incremental SfM reconstructions to avoid an 

accumulation of errors (Byröd & Åström, 2010). It is classically expressed as a non-

linear least squares problem where the cost function is assumed to be quadratic in the 

feature re-projection errors, and Lourakis & Argyros (2005) state that Levenberg-

Marquardt (LM) (Levenberg, 1944; Marquardt, 1963) has become a very popular 

approach to solve this issue. This is because LM is relative easy to implement and it 

makes use of an effective damping strategy for quick convergence from a wide range of 

initial guesses. The LM algorithms involve the normal equations which iteratively 

linearise the function to be minimised in the neighbourhood of the current estimate, but 

for a dense linear system with a large number of unknown parameters, the 

computational costs could be very demanding. However, the normal equations matrix 

used in SfM has a sparse block structure owing to the lack of interaction among 

parameters for different 3D points and cameras (because the projection of a certain 

point on a certain image does not depend on any other 3D points and camera). Based on 

this, Lourakis & Argyros (2009) develops a BA package with a tailored, sparse variant 

of the LM algorithm, called Sparse Bundle Adjustment (SBA), which takes advantage of 

the zeroes pattern in the normal equations of avoiding storing and operating on zero-
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elements, thus gaining tremendous computational benefits. Konolige & Garage (2010) 

implements an efficient version of SBA, called sparse SBA (sSBA), in which the 

secondary structure (i.e. relations among cameras) is also sparse. By making use of 

multi-core CPU as well as multi-core GPUs, Wu et al. (2011) propose a new inexact 

Newton type bundle adjustment algorithm that exploit hardware parallelism for 

efficiently solving large scale 3D scene reconstruction problems. This BA algorithm is 

then used in an incremental SfM-based 3D reconstruction application, called VisualSfM 

(Wu, 2011; 2013), with their previous work SiftGPU mentioned in Section 2.2.2.2 as 

well.  

 

Although there is no additional requirement for SfM input data except 2D images, there 

is a well-known inherent ambiguity problem of monocular vision – an absolute scale of 

recovered results cannot be determined without appropriate additional sensors. Actually 

the absolute scale factor is not so important for many applications, but if it is needed 

(e.g. robot autonomous navigation or multi-area SLAM), then it can be solved by 

manual calibration or in cooperation with other sensors. For example, Kim & Chung 

(2003) proposed an omni-directional stereo vision sensor where SFM and stereo 

functioned in cooperation to remove the disadvantage of each algorithm. 

 

2.2.3.2 Visual simultaneous localisation and mapping 

Simultaneous localisation and mapping (SLAM) is a fundamental computational 

problem in the robotics community where it is necessary to describe a scenario in which 

a robot is required to move through a previously unknown, mostly static environment, 

incrementally constructing and updating a map of that environment whilst 
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simultaneously localising itself with respect to that map. Developments in this field 

have been applied to both indoor and outdoor robot navigation (Temeltas & Kayak, 

2008),  unmanned aerial/underwater vehicles (e.g. Bryson & Sukkarieh, 2008; Ferreira 

et al., 2012), and planetary rovers (e.g. Ingrand et al., 2007).  

 

SLAM is more of a concept than a specific algorithm, and, thus, the two main tasks 

involved – localisation and mapping – can be implemented using different methods. A 

SLAM system should solve the following problems: landmark extraction, data 

association, state estimation, state update and landmark update (Riisgaard & Blas, 2003). 

There is no fixed method for each step, and “landmarks” and their extraction methods 

are depending upon the type of sensor in use, such as laser, sonar, vision. These are very 

similar to the 3D reconstruction methods referred to in Section 2.1. However, no matter 

what type of sensor is being used, the SLAM process can be described in a general form: 

if robot is moving around, the sensor mounted on robot will acquire data from the 

environment at a certain sampling rate. The landmarks are distinctive and easily 

recognisable features in the environment, which can be sensed by the sensor as 

observations. By re-observing landmarks, the robot will associate the newly acquired 

data with the old data to further achieve an odometry measurement between the 

different states (i.e. the change of the robot’s positions over time). The landmarks which 

have not previously been seen will also be updated to the map and be used for re-

observation in next move of the robot. This process is quite similar to the SfM methods 

described in Section 2.2.3.1. Actually, incremental SfM can be considered as an 

approach of visual SLAM – a sub-branch of SLAM which mainly makes use of vision 

(e.g. a portable and low-cost camera as a sensor to acquire image data). So-called 
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landmarks refer to stable image features and data association is performed by feature 

matching and 3D position recovery of found correspondences. The camera pose of 

images can be estimated due to 3D-to-2D correspondences and then more feature points 

can be recovered in space. 

 

Besides monocular images used in SfM, visual SLAM also uses a stereovision approach 

to solve the SLAM problem (Lemaire et al., 2007). Stereovision uses sequences of 

stereo frames captured by multi-view stereoscopic cameras or calibrated stereo rigs. The 

stereovision-based SLAM is presented in Mallet et al. (2000), Sola et al. (2008) and 

(Schleicher et al., 2009). Alternatively, the recent emergence of RGBD cameras (such 

as Microsoft’s Kinect) can directly provide colour images and associated dense depth 

information simultaneously. There are several literatures of RGBD-based SLAM 

(Henry et al., 2010; Endres et al., 2012; Sturm et al., 2012; Endres et al., 2014), but 

these have mostly been confined to projects in an indoor environment. This is due to the 

operational limitations of the IR projector and sensor when deployed in outdoor 

environments, as listed in Abbas & Muhammad (2012):  

1) Limited field of view preventing an agile operation.  

2) Short range, not providing the scale for typical outdoor applications.   

3) Infrared saturation in direct sunlight.  

 

Despite these, Abbas & Muhammad (2012) attempt to push the limits on the Kinect’s 

capabilities to obtain a minimally acceptable performance on an outdoor mine detection 

application by taking advantage of the slow nature of mine detection tasks and by 

designing the robot to operate in indirect sunlight when lighting does not saturate 
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Kinect’s IR sensor. 

 

In practice, during a state estimation process, errors can be caused by both estimation 

models and measurement tools. Performing a full bundle adjustment to all undetermined 

variables after all state estimation processes have been finished, can definitely sort out 

this issue. However, the refinement in “the last step” for real-time applications is not so 

important because most of their operations require that accurate estimations should be 

updated instantly for each time step. Not only that, as the number of cameras and 

landmark observations increases, a full bundle adjustment can be quite time-consuming, 

hence it is unlikely to be used for intermediate refinement. Therefore, sequential 

optimal methods, which are suitable for real-time processes and will approximate the 

global BA to fit within fixed computational bounds, are preferable. There are two 

approaches that have been used in visual SLAM and have proved to be successful: 

filtering methods and keyframe-based methods (Strasdat et al., 2012). Filtering will 

marginalise out the past poses and retain the observations to summarise the information 

gained over time with a probability distribution. One of the most common filtering 

methods is extended Kalman filter (EKF) (Haykin, 2001) which uses Gaussian 

probability distributions. The detailed information of EKF and many other Bayesian 

filtering techniques (e.g. particle filters) are reviewed in Chen (2003). Keyframe-based 

methods will retain the optimisation approach of a global BA, but, computationally, will 

select only a small number of past frames to process. Strasdat et al. (2010) compared 

filtering versus keyframe BA for monocular SLAM in terms of accuracy and 

computational costs. They concluded that, in order to increase the accuracy, it is usually 

more profitable to increase the number of observations than the number of frames to 



96 

 

process. Thus keyframe BA is more efficient than filtering to achieve an identical level 

of accuracy.  

 

The SLAM problem can also be intuitively represented by a graph whose nodes 

correspond to camera poses or landmarks, and in which an edge between two nodes 

encodes a sensor measurement if a certain landmark can be observed from a certain 

pose. The graph-based SLAM problem was first proposed by Lu & Milios (1997). The 

optimal map can be computed by finding a configuration of the nodes that is maximally 

consistent with the measurements (Grisetti et al., 2010). Keyframe-based methods apply 

a sparse version of this graph whose nodes represent poses of selected keyframes and 

are connected by pose-to-pose constraints obtained from odometry measurements. 

Generally, for sequential processes, each new camera pose can be estimated by 

matching the current image data to the last node, but the measurement errors in such 

recursive system accumulate fast when robot has been travelling for a long time. 

Therefore, the constraints between current pose and much older keyframe nodes are 

expected to be constructed, known as loop closure detection. Loop closures can be 

found by using the topological structure of the constructed graph (Engel et al., 2014), or 

by using image retrieval approaches such as visual bag of words described in Section 

2.2.4. Once the new pose node and its links connected to old nodes are added to the 

graph, the graph can be optimised using a generic graph optimisation framework (e.g. 

Kümmerle et al., 2011). 
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2.2.4. Image retrieval for loop closing 

Image retrieval techniques aim to search and retrieve images from a large database of 

digital images (Del Bimbo, 1999). Alternatively, this can be interpreted as an 

appearance-based information retrieval process. In a visual SLAM system, image 

retrieval techniques are one of the effective ways to recognise already-mapped areas, 

known as loop closure detection (Angeli et al., 2008). Specifically, some input images 

are saved at regular intervals during the map construction to represent visual 

information of different locations. Detecting a loop closure to a visited place can be 

used for the data association problem. This would be easy for most SLAM systems, 

owing on the continuity of their input, which means each new image will have a high 

probability is being able to close loops with its immediate predecessors. Moreover, 

detecting large loop closures to those much older pose nodes (i.e. non-adjacent nodes in 

a sequence) can establish more constraints for the current pose node to make graph-

based optimisation more robust. In addition, loop closing can also help to re-localise a 

robot when lost. This issue is similar to AR user tracking when starting from a random 

place: has this place been mapped in the trained database? If so where is this place 

relative to the constructed map? For batch-based SfM, the image collection is usually 

unordered. The simplest way to determine whether a pair of images matches is by 

performing a full comparison, namely a brute-force/exhaustive test. Despite the fact that 

the same linear search method can also be used for querying an image from a database, 

the cost is proportional to the number of all candidates to compare and becomes 

unacceptable expensive when the database becomes large. To reduce the times of 

comparing, the images in the dataset should be organised and indexed by their own 

feature descriptions(Rui et al., 1999). The main idea here is to use global features – a 
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single descriptor to represent an entire image – and so a numeric similarity between 

query and each object in the database can be computed and ranked (Jansen & Rieh, 

2010). These global descriptors can be derived from edge and colour histograms 

(Starner et al., 1998; Lamon et al., 2001), sets of texture features (Torralba et al., 2003), 

or edge map and gradient orientation histograms (Kosecka et al., 2003). However, such 

global features are not very robust to portion changes between images, such as lighting, 

perspective change and occlusion. Therefore use of the score schemes based on local 

features is preferable, as described in Košecká et al. (2005) who characterises each 

location by a set of representative images, and then finds matched robust local features 

(i.e. SIFT) between the query and each model view. The likelihood of the matching is 

computed by employing a voting approach to assess the amount of similarity. Another 

representation methodology is bag of words (BoW)  (Sivic & Zisserman, 2003),  which 

treats each image as a set of visual words. Visual word is a data structure that carries the 

feature information amongst the training data in an image retrieval system (Baeza-Yates 

& Ribeiro-Neto, 1999). Specifically, each visual word corresponds to a descriptor 

vector of an invariant local feature, taken from a visual vocabulary which is built from a 

training database. Therefore an image can be represented by a binary vector whose 

length is equivalent to the size of the vocabulary and each element indicates the 

presence or absence of a corresponding word (Cummins & Newman, 2007). The 

‘distance’ between such two vectors can be used to assess the similarity between their 

respective images, and then the retrieval results can be ranked by a NN search (Newman 

et al., 2006; Wang et al., 2006). Based on BoW scheme, Cummins & Newman (2007) 

propose a probabilistic framework which performs location-matching between places 

that have been visited within the world, as well as providing a measure of the 
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probability of being at a new, previously unvisited location. They explicitly account for 

perceptual aliasing in the environment – identical but indistinctive observations receive 

a low probability of having come from the same place. An Open Source appearance-

based navigation system FAB-MAP (Fast Appearance-Based Mapping) (Cummins & 

Newman, 2008) is based on this work, and its advanced version is proposed in 

Cummins & Newman (2011) which is capable of  dealing with a very large scale place 

recognition. 

 

Contrary to the offline training needed in the methods described so far, Angeli et al. 

(2008) presents an incremental real-time method with BoW to detect loop-closures in a 

Bayesian filtering scheme, computing the probability that the current image comes from 

an already-perceived scene. The system is able to work indoors and outdoors without 

prior information on the environment type, but unlike FAB-MAP, this system cannot 

perform evaluation of the distinctiveness of visual words and may be affected by 

perceptual aliasing.  

 

The proposed AR framework in the present thesis for higher-level developers aims to 

implement a markerless AR application based on a specific place specified by the 

developers. As shown in Table 2-1, due to the request of markerless tracking and 

accurate registration, the development system needs to learn the appearance and spatial 

structure of the target environment to augment. The developers can only provide the 

environment information (e.g. the visual information of the Eddystone Reef Tank of the 

National Marine Aquarium) obtained by a low-cost sensor – i.e. RGBD data for 

indoor environment or RGB data for both indoor and outdoor – thus the environment 
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learning procedure is actually a vision-based 3D reconstruction / mapping problem 

which can be solved by SfM or visual SLAM systems reviewed above. Of relevance 

here, two applications which have been reported with reasonable high accuracy on 3D 

reconstruction (see Section 2.3.3) – VisualSfM (Wu, 2011; 2013) taking RGB input and 

RGBD-SLAM v2 (Endres et al., 2014) taking RGBD input – are utilised in the 

proposed development framework for training the reference map of the targeted place. 

The detail and performance of these two methods is described further in Chapter 4. One 

should notice that these two methods are not the only ones that can be used in the 

proposed framework; any open source vision-based 3D mapping approaches with high 

accuracy can be used as an alternative selection. 

 

With regard to the AR application, the procedure can be described as follows: when 

application end users (e.g. visitors to the National Marine Aquarium) capture some 

visual information via their input devices, the application needs to determine whether 

the input is taken at the targeted place which has been registered with AR content by 

developers before (e.g. superimposing animated 3D marine animal models onto the 

specific locations within the Eddystone Reef Tank). This is basically a loop closure 

detection problem inside SLAM, but requesting high processing rate for meet the real-

time requirement as well as high accuracy for accurate AR registration. Thus an 

efficient image retrieval technology is expected in this stage to locate the data with the 

closest appearance to the input from the trained reference map. The FAB-MAP 

(Cummins & Newman, 2008; 2011) with BoW approach – which has been reported 

with robust performance on handling loop closing problem inside large area and real-

time SLAM problem – is selected in the proposed framework for serving the application 
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online tracking. The detail and performance is described in Chapter 5. 

 

2.3. Hardware, software supports and datasets for evaluation  

There are several hardware devices and software available to support the system 

implementations of vision-based AR discussed above, including the camera used for 

imputing image data, the GPU used for assisting with the general purpose calculation, 

and the software and methods supporting 3D reconstruction for AR template training. 

After implementation, the performance of system needs to be tested and assessed. 

According to the discussion in Section 2.1.3, the system can be evaluated from both a 

subjective (qualitative data-based) and objective (quantitative date-based). Several 

datasets and evaluation benchmarks are created and developed in the past for the two 

major non-user based CV technologies – 3D reconstruction/mapping and image 

retrieval – used in the proposed framework. The following subsections will describe and 

evaluate some of the hardware, software and CV datasets used for supporting and 

evaluating a vision-based AR system.  

 

2.3.1. Hardware 

As mentioned in Section 2.1.1, a visual AR application performs sensing, tracking, 

registration and interaction during system time. This can be described as input-process-

output model and each stage of the model is associated with particular hardware support. 

This section focuses on those non-exclusive hardware devices used in AR which means 

they should be relatively easy to access by most people (including researchers, 
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developers and the general public).   

 

Input / camera devices 

 

Figure 2-19: Some affordable input camera devices that can be used for vision-based AR. 

 

The major input sensor used for vision-based AR is camera, whose task is capturing the 

source data for both 3D template training offline and AR user tracking online. Particular 

for 3D reconstruct procedure, a performance comparison of several cameras for 3D 

reconstruction is presented in Thoeni et al. (2014). This input camera can be a common 

monocular camera, a stereoscopic camera or an RGBD camera, as shown in Figure 2-19. 
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The monocular camera is ideal for AR applications since it has already been integrated 

into several general-purpose devices, such as the personal computers, laptops or 

smartphones, thus the owners of these devices can make use of the camera directly. At 

the time of writing, the frame rates and capture resolutions of laptop webcams are 

around 30 fps at 640 x 480 or even higher (sometimes higher resolutions are 

accompanied by a lower frame rate), and smartphones such as iPhone5 provide a 

resolution of 3264 x 2448 for single capture and 1080p (note that "p" here is short for 

"progressive scanning", although 1080p usually refers to 1920x1080 pixels) for 30 fps 

video recording
8
. In addition to the computer-integrated camera, recent add-on webcams, 

such as lightweight and portable Logitech Webcam series (e.g. the Logitech HD Pro 

Webcam C920 in Figure 2-19 ①), can be connected to a computer or a laptop easily by 

using a standard USB or a firewire cable which often allows for faster data transference 

than USB, with better video quality. An independent camera device, like the popular 

light action camera GoPro Hero series (e.g. the GoPro Hero4 Black in Figure 2-19 ②), 

can also be used for providing high quality image data for 3D reconstruction offline.  

 

Stereo webcams have also appeared recently, such as the Minoru 3D Webcam (Figure 

2-19 ③), which supports a maximum resolution of 800 x 600 and a maximum frame 

rate of 30 fps with two discrete webcams integrated together. Stereo images are 

generated in anaglyph form (i.e. 3D video)
9
. Another recently appeared lightweight 

stereo camera with relatively cheap price is StereoLabs ZED (Figure 2-19 ④), 

                                                 

8
 iPhone 5 - Technical Specifications: https://support.apple.com/kb/SP655?locale=en_GB  

9
 Say Hi to the Minoru 3D Webcam! : http://www.minoru3d.com/ 



104 

 

supporting a maximum resolution of 2208 x 1242 and a maximum frame rate of 15 fps. 

This device allows a long range measurement (1.5 to 20m) for both indoors or outdoors. 

However, the depth map computation is performed using GPU and the actual depth 

calculation speed is heavily depends on the graphics card used.  

 

An RGBD camera is an alternative to obtain the associated depth information of the 

RGB images. Typical and affordable RGBD cameras include the Asus Xtion Pro Live 

(Figure 2-19: ⑤), the Microsoft Kinect 1.0 (Figure 2-19: ⑥) and its successor 

Microsoft Kinect 2.0 (Figure 2-19: ⑦). The Xtion and the Kinect 1.0 are structured 

light-based sensors, performing a triangulation process between an infrared camera and 

an infrared projector embedded in the devices. The projector produces a pattern of dots 

which are projected onto the entire field of view, and then the camera internal process 

receives the reflected pattern and computes the corresponding depth for each image 

pixel. The internal structures of these two devices are basically similar and both provide 

30fps 3D video. However, they have their own advantages and disadvantages. Kinect 

1.0 has a bigger size and is of a greater weight than the Xtion; it also requires an 

external power supply which makes it inconvenient for moving. The depth range of the 

Kinect is between 0.8m to 4.0m against the range of 0.8m to 3.5m for the Xtion. They 

both support a higher RGB resolution at 1280 x 1024, although the depth resolution is 

still only 640 x 480. On the other hand, the Kinect 1.0 features a motor that can be 

controlled remotely by a particular application, whilst the Xtion only allows manual 

positioning. The Xtion only supports a USB 2.0 interface which is a considerable 

disadvantage for users with more recent laptops or PCs which may only support USB 

3.0.   
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On the other hand, the Kinect 2.0 – an advanced time-of-flight-based Kinect sensor that 

indirectly measures the time it takes for IR light pulses from a projector to a surface, 

and back to the sensor – provides a somewhat lower depth resolution (512 x 424), but 

higher RGB resolution (1920 x 1080) and wider depth range (0.5m to 4.5m). A 

comparison between two generations of the Kinect is conducted in Pagliari & Pinto 

(2015). They state that the structured light approach is not always robust enough to 

provide a high level of completeness of the framed scene, meaning that, regardless of 

the actual resolution of the IR sensor, the actual depth readings may only cover a small 

percentage of this resolution, The tiny areas that fall between dots is considered as 

ambiguities which cannot achieve a depth estimate. On the other hand, the time-of-flight 

sensor spills each pixel in two accumulators and a clock regulates which one of the 

pixel side is the one currently active. The Kinect 2.0 relies on measuring the differences 

between two accumulators to obtain depth information, each one containing a portion of 

the returning IR light. In order to eliminate the depth ambiguity issue of the Kinect 1.0, 

the Kinect 2.0 acquires images at multiple frequencies (i.e. 120MHz, 80MHz and 

16MHz). Longer wavelengths allow for measuring longer distances with low resolution, 

while shorter wavelengths give higher resolution. The precision can then be improved 

by using the two measurements together. Furthermore, as mentioned in Section 2.2.3.2, 

Kinect 1.0 cannot be used under infrared light sources, but the Kinect 2.0 can remedy 

this issue with its built-in ambient light rejection, where each pixel individually detects 

when that pixel is over-saturated with incoming ambient light (Lau, 2013). Pagliari & 

Pinto (2015) also comment that the Kinect 2.0 can even work properly outdoors when 

the scene has low ambient IR light, but it is still difficult for scenes that exist under 
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direct sunlight. 

 

Computer processor and GPU 

The main tasks of an AR system, such as template training, tracking and augmentation 

registration mentioned above, are all processed within a computer, which can be a 

desktop or laptop PC (e.g. Simões et al., 2013; Kurihara & Sagawa, 2014), a handheld 

tablet computer (e.g. Zoellner et al., 2009; Haugstvedt & Krogstie, 2012) or even a 

high-powered smartphone(e.g. Klein & Murray, 2009; Lee et al., 2012). The 

performance of the system depends upon the processing capacity of the device and the 

computational costs of the implemented methods. In general, the computing power of 

mobile device is much limited due to typical market demands for smaller sizes and 

lower cost, but most of them can deal with the tasks which do not require expensive 

computational overheads to achieve (such as marker-based tracking described in Section 

2.1.1). However, the more complex processes such as SLAM and 3D reconstruction 

described in Section 2.2.3, or for investigations underpinning experimental research still 

require implementation using a computer with powerful processor (also referred to as 

CPU). One of the crucial but hardest requirements of AR applications is achieving real-

time (or near real-time) registration and image display/update. In order to accelerate the 

computing process, some computers employ a multi-core processor which was 

originally provided for manipulating computer graphics and image processing (i.e. a 

graphics processing unit (GPU)) together with a CPU to solve large blocks of data in 

parallel. GPUs are more efficient than general-purpose CPUs since its massively 

parallel architecture, consisting of thousands of smaller, more efficient cores, has been 

designed for handling multiple tasks simultaneously. One use for GPU-accelerated 
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computing in AR technologies is VisualSfM (Wu, 2011) with SiftGPU (Wu, 2007) and 

Multicore Bundle Adjustment (Wu et al., 2011), which will be described in Section 

4.2.2. The graphics cards of most computers are produced by Intel, ATI/AMD or Nvidia. 

Most modern versions of GPU support to be accessed with the graphics APIs, such as 

Direct3D for Windows platform and OpenGL for cross-platform. They allow user to 

enable GPU for general purpose processing but they also require skills in graphics 

programming. Nvidia has created another parallel computing platform and API called 

CUDA
10

, which is designed to work with programming languages such as C and C++ 

and does not require skills in graphics programming (in contrast to Direct3D and 

OpenGL). Actually, The ZED stereo camera mentioned above requires a CUDA-

capable computer with a Nvidia graphics card for full capability. 

 

Output / display devices 

The output of a visual AR application refers to the augmented visual information to 

display, whereas the output device usually refers to the display monitor/screen of a 

stationary computer or mobile device. However, due to the aims of AR applications, the 

display devices can be a little different, such as the Magic Mirror system or Cisco’s AR 

commercial application cited in – Carmigniani & Furht (2011). Here the output screen 

is used as a fake mirror, allowing users to try on virtual clothes before buying them. 

Another example is the driver guidance system of Santana-Fernández et al. (2010), 

where the output device takes the form of eye monitor glasses. This example belongs to 

                                                 

10
 CUDA – Parallel Programming and Computing Platform: 

http://www.nvidia.com/object/cuda_home_new.html 
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the prevalent class in VR and AR of head mounted display (HMD), designed to take 

advantage of the movements of the user’s head (in contrast to handheld displays or 

computer monitor which are not, in the main, wearable) and, thus, enhance the reality of 

the augmentation. The latest generations of HMD include Oculus Rift and HTC’s Vive, 

but technically they are VR-centric devices which require additional front-facing input 

camera and setups for generating AR view. The HMDs designed for AR includes Immy 

Mark I featuring Natural Eye Optics with 60 degree field of view and 1024 x 768 

display resolutions, 3 forward facing cameras and integrated Inertial Measurement Unit 

(IMU)
11

; Meta 2 AR headset supporting 90 degree field of view and 2560 x 1440 

display resolution, 720p front-facing camera and sensor array for hand interactions and 

positional tracking
12

; and the Microsoft‘s HoloLens — a high-definition stereoscopic 

3D optical smartglasses. In fact, the HoloLens is not only a display device, but mostly a 

platform, as discussed in the next subsection.  

 

AR platforms 

An AR platform can be understood as a device specifically designed for supporting AR 

implementations from both aspects of hardware and software. The hardware design is 

generally very comprehensive to support whole input-process-output work cycle within 

AR applications. The built-in software may produce some useful indirect data – such as 

determining the user pose or mapping the environment – automatically through the 

hardware by applying one or more technologies, such as those mentioned in Section 2.2. 

                                                 

11
Immy Inc.:  http://www.immyinc.com/ 

12
 Meta Company: https://www.metavision.com/ 
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The data can be assessed by users using the provided SDKs and APIs, allowing for 

further AR application development. Specifically, the Microsoft’s Next Generation 

Devices Team (Holmdahl, 2015) declared that their MR smartglasses HoloLens features 

an IMU for tracking head motion, several sensors (which includes a depth and a 

photographic video camera) for understanding surrounding environment, spatial sound 

and microphone for audio augmentation and communication, and a custom-made 

Microsoft Holographic Processing Unit along with the traditional CPU and GPU for 

computing and processing. This device was announced as a part of Microsoft’s 

Windows Mixed Reality project featuring an AR operating environment in which any 

universal application can run. Other AR platforms with similar concept include Intel 

RealSense and Google Tango. The Intel RealSense technology consists of series of 3D 

cameras (R200 and SR300, mainly structured light-based) together with multi-platform 

support SDKs and APIs for “achieving depth perception, 3D imaging, interior mapping, 

and feature tracking”
13

. Actually the RealSense technology is not so much dedicated to 

improve the human/computer interaction for supporting a user-based system, 

commented in Shilov (2016), but has quickly evolved into a more general CV 

technology that will eventually be used for robots and drones. In contrast, although 

Google Tango uses approximately similar hardware to Intel RealSense (except Tango 

devices use fisheye motion cameras and different computing devices), it is a human-

centred design aiming to give computers a human-like perception of space and motion. 

Google Tango chiefly targets mobile devices, focus on determining their position and 

orientation in real-time. The major types of functionality include motion-tracking, area 

                                                 

13
Intel® RealSense™ Technology: 

 http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html 
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learning and depth perception, which allow application developers to create several user 

experiences including AR.  

 

Although these new (at the time of writing) technologies promise the potentials for 

future AR development, there is no literature (again at the time of writing) that provides 

an evaluation or even evaluation metrics for these AR platforms.  

 

2.3.2. Software 

There are many AR SDKs that allow higher-level developers (shown in Figure 2-8) to 

create AR applications directly without the knowledge of the inner “functioning” of AR 

techniques. These AR frameworks are available as free or Open Source software 

toolkits, as well as those products targeting commercial organisations and include 

various key functions, such as tracking methods and virtual image rendering techniques. 

A recent comparative study of several popular AR SDKs is given in Amin & Govilkar 

(2015). It can be found that the system based on 2D artificial marker-based tracking 

have been widely supported by each SDK, thanks to the maturity of this particular 

approach and the reasonably impressive results it has demonstrated over the past few 

years (also discussed in Section 2.1.1). The application developer can design and 

customise the 2D pattern as a reference to track. Other supporting tracking methods 

include GPS/WPS -based, human face-based and 3D object-based. Most of the 3D 

models supported for use of tracking are a general 3D object such as cuboid and 

cylinder, or a calibrated model provided with the SDKs. Vuforia has also provided a 3D 

object scanner for users to create their own 3D models from the real world, but this 
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requires relatively harsh lighting and clear conditions of the environment. On the other 

hand, natural scene-based tracking is rarely supported, although note that Metaio has 

provided a function of instantly 3D mapping and tracking of small workspace.  

 

The present thesis aimed to use 3D reconstruction technology to support system 

learning features and the creation of maps for each specific AR target environment. 

Except for using the selected VisualSfM for handling RGB-input and RGBDSLAM v2 

for handling RGBD-input, there are several potential alternatives for the 3D 

reconstruction task of the proposed markerless development framework. For multi-view 

3D reconstruction (i.e. RGB-input), Kersten & Lindstaedt (2012) investigated the 

following software for archaeological 3D reconstruction: 1) open-source software 

packages – VisualSfM and Bundler (Snavely et al., 2008) (estimating camera poses and 

generating sparse point clouds) along with PMVS2 (Patch based Multi View Stereo 

Software) (Furukawa & Ponce, 2010) (generating dense point clouds through the output 

results of Bundler or VisualSfM); 2) free web service – Autodesk 123D Catch
14

; and 3) 

low-cost commercial software – Agisoft PhotoScan
15

. According to their various test 

results, they recommended VisualSfM as best solution, due to the balance between 

efficiency and geometric quality. Schöning & Heidemann (2015) propose a benchmark 

which ranked four most common multi-view 3D reconstruction software solutions – 

VisualSfM, Autodesk 123D Catch, Agisoft PhotoScan and ARC 3D
16

 – by comparing 

their produced 3D models qualitatively and quantitatively. VisualSfM ranked first again 

                                                 

14
 Autodesk 123D: http://www.123dapp.com/ 

15
Agisoft PhotoScan:  http://www.agisoft.com/ 

16
 ARC 3D: http://www.arc3d.be/ 
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through their comprehensive consideration of quality, academic licensing and runtime.  

 

For RGBD sensor-based 3D reconstruction and mapping, the alternatives of 

RGBDSLAM include KinectFusion (Newcombe et al., 2011) and RTAB-Map (Real-

Time Appearance-Based Mapping) (Labbe & Michaud, 2014).  Zhu et al. (2016) report 

that KinectFusion has a higher accuracy and real-time performance than RGBDSLAM – 

RGBDSLAM usually runs at 2 FPS while KinectFusion runs at 15 FPS. However they 

also point out that the biggest disadvantage of KinectFusion is that it can only build a 

limited size of map, since this method is memory-consuming and it uses a GPU memory. 

Consider that the 3D reconstruction process proposed in this thesis does not require a 

real-time performance, RGBDSLAM could be acceptable and its performance 

evaluation against VisualSfM is presented in Section 4.3. 

 

2.3.3. CV datasets for evaluation 

The proposed vision-based AR system consists of several CV-based technologies, as set 

out in Section 2.2. There are plenty of image databases for various CV research 

problems, and each of these problems requires particular evaluation metrics for 

assessing the performance of applied algorithms. Some of these databases are 

categorised and archived online, available for public use (e.g. CV Datasets on the web
17

 

and CVonline: Image Databases
18

). In this section, the datasets for evaluating 3D 

reconstruction/mapping and loop closure detection methods are reviewed. 

                                                 

17
 CV Datasets on the web : http://www.cvpapers.com/datasets.html  

18
 CVonline: Image Databases: http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm 
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3D reconstruction / mapping 

Two kinds of 3D reconstruction or localisation and mapping method are available in 

this proposed work for learning a specific target environment: one is SfM, taking a set 

of RGB images as input; another is RGBD-based SLAM, taking RGBD data as input. 

3D reconstruction and 3D localisation/mapping are not the same task. Visual SLAM 

applications – as the name implies – focus on learning the environment from the 

obtained visual information and locating the sensor with respect to the map they have 

built. Meanwhile, SfM-based applications put more focus on 3D reconstruction, which 

estimates 3D geometric information from the images for creation of virtual 3D model – 

either a meshed model or a set of point cloud. Thus the accuracy of data produced by 

CV-based methods for 3D reconstruction is generally evaluated by comparing the 

created models against the ground truth. Schöning & Heidemann (2015) state that, the 

ground truth data in most benchmarks or evaluations on multi-image 3D reconstruction 

is acquired by traditional terrestrial 3D laser scanners and light detection and ranging 

(LIDAR) systems, such as Zoller+ Fröhlich’s IMAGER 5003 laser scanner in Strecha et 

al. (2008), Zoller + Fröhlich’s IMAGER 5006h and IMAGER 5010 terrestrial laser 

scanners in Kersten & Lindstaedt (2012) and ATOS Compact Scan 2M 3D scanner in 

Mousavi et al. (2015). Further, Schöning & Heidemann (2015)’s benchmark require 

two criteria: 1) including real scene photographs as well as photographs taken in a 

controlled indoor environment; 2) the availability of a ground truth. They examined 

several multi-view datasets and finally chose the datasets fountain-P11 and Herz-

JesuP8 (with integrated LIDAR 3D triangle meshes as ground truth, as shown in Figure 

2-20) (Strecha et al., 2008) as a real scene, and the dataset Oxford Dinosaur (Visual 
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Geometry Group, 2004) for a controlled indoor environment. Schöning & Heidemann 

(2015) then make use of an iterative closest point algorithm (Besl & McKay, 1992), 

aligning and registering the model with the ground truth. The minimal distance between 

every point of registered ground truth model to any triangular face of the reconstructed 

mesh is computed. The mean value and the standard deviation of all these distances 

are used for accuracy comparison between different reconstruction methods, and the 

computation time is also considered. 
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Figure 2-20: Diffuse rendering of the integrated LIDAR 3-D triangle meshes for the datasets fountain-P11 

(upper) and Herz-Jesu-P8 (lower). 

(Strecha et al., 2008) 

 

However, a good reconstructed meshed model is not necessary in the present thesis. The 

basic task of markerless AR tracking is closer to a SLAM problem, in which the 

accurate pose of user viewport is in demand and what need to be “reconstructed” is a 

reference map of the target environment which consists of both geometric information 

and recognisable visual features, i.e. the point cloud of keypoints. In this case, a meshed 

model of ground truth cannot match the requirement. In fact, the visual information can 

only be extracted by CV methods and it is hard to obtain so-called “real values” by 

other types of sensors as ground truth. However, as introduced in Section 2.2.3, both 
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SfM and SLAM methods contain the processes of camera pose estimation and map 

creation with 3D point clouds (which further becomes a dense model in SfM-based 

applications), and the resultant accuracy of these two processes are highly dependent on 

each other. Therefore the evaluation criterion designed for SLAM system which usually 

uses associated camera pose of each image as ground truth is considered instead, and 

Strecha et al. (2008)’s dataset also provide the ground truth of camera pose along with 

the model.  

 

Since RGBD data  can also be used as input in this proposal, Sturm et al. (2012)’s  

benchmark for the evaluation of RGBD SLAM systems is one of the options. 39 RGBD 

image sequences of an office environment and an industrial hall are provided, which are 

recorded from a Microsoft Kinect with highly accurate and time-synchronised ground 

truth camera poses from a motion capture system. The authors declared that this dataset 

is the first RGBD dataset suitable for the evaluation of visual SLAM systems and 

propose two evaluation metrics: 1) evaluate the end-to-end performance of the whole 

system by comparing its output (map or trajectory) with the ground truth; 2) compare 

the estimated camera motion against the true trajectory. The accuracy is then measured 

with relative pose error and absolute trajectory error. Assume SE(3),...,1 nPP  is a 

sequence of poses from the estimation and SE(3),...,1 nQQ is the sequence from the 

ground truth. The relative pose error at time step i is defined as   

)(:
111







 iiiii P(P)QQRPE  (2.13) 

  where   is fixed time interval. The absolute trajectory error at time step i is defined as 

11
:


 iii SPQATE  (2.14) 
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where the rigid-body transformation S  corresponds to the least-squares solution that 

maps the estimated trajectory n:1P  onto the ground truth trajectory n:1Q . The errors over 

all time indices then are evaluated by computing root mean squared error (RMSE), 

which gives less influence to outliers than computing mean error. 

  

An alternative benchmark for RGBD SLAM is given in Handa et al. (2014). Their 

dataset is collected from two different environments: the living room and the office 

room. Just like Sturm et al. (2012), all RGBD image sequences are associated with 

ground truth trajectory, but moreover the sequences from the living room scene have 

camera pose information associated with a 3D polygonal model. Thus, these sequences 

can be used to benchmark both camera trajectory estimation and 3D reconstruction. One 

of the latest surveys of RGBD datasets – Cai et al. (2017) – compared Sturm et al. 

(2012)’s  benchmark dataset with Handa et al. (2014)’s dataset, commenting that  the 

latter “is more challenging and realistic since it covers large areas of office space and 

the camera motions are not restricted”. 

 

Loop closure detection 

Another CV-based key technique applied in the present work is visual loop closure 

detection. From a visual perspective, finding a loop closure can be expressed as if there 

is sufficient similarity between the current image and a map image (Liu & Zhang, 2013). 

In general the datasets collected for studying algorithm performance on navigation and 

mapping (i.e. SLAM) can also be used on loop closure detection, such as some 

sequences inside Sturm et al. (2012) RGBD dataset (e.g. [freiburg1_room]). More 

specifically, several loop closing-targeted researches made use of the SLAM datasets 
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for evaluating their methods which are described below. Cummins & Newman (2008) 

have tested their FAB-MAP system on their New College and City Centre image 

collections
19

 which are composed of images of outdoor urban environment collected by 

mobile robot, the corresponding coordinates of each image derived from interpolated 

GPS, the ground truth “mask” used for measuring the image-to-image correspondence 

matrix generated by the loop closing algorithm, aerial photo for visualising results and 

camera calibration information. Another dataset
20

 for loop closing problem are provided 

in Angeli et al. (2008) as supplemental material, which includes an indoor image 

sequence with strong perceptual aliasing and a long outdoor image sequence. The 

dataset also contains the ground truth image-to-image correspondence matrix and 

camera calibration information. Glover et al. (2010) introduced an appearance-based 

SLAM for multiple times of day and they collected their dataset
21

 from a selection of 

streets in the suburb of St. Lucia with corresponding GPS data for experiment. The 

visual data were collected by traversing a route at five different times during the day to 

capture the difference in appearance between early morning and late afternoon. The 

route was traversed again, another five times, two weeks later for a total of ten datasets. 

 

As mentioned in Section 2.2.4, visual loop closure detection can be considered as an 

                                                 

19
 FAB-MAP – dataset:  

http://www.robots.ox.ac.uk/~mobile/IJRR_2008_Dataset/data.html 

20
 Cognitive Robotics at ENSTA:: Loop Closure Detection – dataset: 

http://cogrob.ensta-paristech.fr/loopclosure.html 

21
 St Lucia Multiple Times of Day dataset – dataset: 

https://wiki.qut.edu.au/display/cyphy/St+Lucia+Multiple+Times+of+Day 
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image retrieval problem. Therefore the evaluation metrics designed for information 

retrieval system are usually used for assessing the algorithm for loop closing. One of the 

most commonly used metrics is precision-recall curve, which has been presented in 

several loop closing-related works for performance evaluation, such as Cummins & 

Newman (2008) and (Liu & Zhang, 2013). Precision is a measure of result relevancy, 

while recall is a measure of how many truly relevant results are returned (Pedregosa et 

al., 2011). They can be defined with true positive rate and positive predictive value 

respectively, as shown below: 

fptp

tp
 precision 


  

(2.15) 

fntp

tp
 recall 


  

Where tp refers to true positives, fp to false positives and fn to false negatives, defined 

as follows: 

 Prediction: positive Prediction: negative 

Truth: positive true positive (tp) false negative (fn) 

Truth: negative false positive (fp) true negative (tn) 

 

Precision and recall are typically inversely related, A system with high recall but low 

precision returns many results of predication, but most of the results are incorrect when 

compared to the truth; a system with high precision but low recall returns very few 

results, but most of them are correct when compared to the truth. Hence the precision-

recall curves can be used to find an appropriate trade-off between precision and recall, 

assisting on selecting algorithms for different requirements (e.g. high precision at the 
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lower recall or high recall at the lower precision). An example of the precision-recall 

curves are given in Pedregosa et al. (2011) , as shown in Figure 2-21. 

 
Figure 2-21: An example of Precision-Recall curves to multi-class. 

Pedregosa et al. (2011) 

 

In loop closure detection problem, the recall means the capacity of a system to detect a 

loop closure correctly when revisiting a mapped place while the precision means the 

proportion of the system detected loop closures are real loop closures. Whether a loop 

closure occurs or not is generally judged by the similarity between the images, which 

can form an image-to-image correspondence matrix. Entry (i,j) of this correspondence 

matrix will set to 1 if image i and image j were determined to be taken at the same place, 

or 0 otherwise. Thus the ground truth correspondence matrix provided in Angeli et al. 

(2008) and Cummins & Newman (2008)’ datasets can be used to inspect the 
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performance of the algorithms. 

 

2.4. Problems and Challenges 

As discussed above, the choice of method to be adopted for tracking in an AR 

application is always one of the most challenging, yet essential problems to be 

overcome. Compared to exclusive sensor-based approaches, vision-based tracking 

methods seem to represent a more straightforward choice for the development and 

implementation of AR systems, since they will sense visual information instantly, and, 

as they do not require further data association between the sensors, the computed result 

can be directly used in registration process. Moreover, the camera images and videos 

are relatively low-cost and easy to obtain by people, including non-technical users. 

Vision-based AR systems attempt to recognise the pre-defined reference templates from 

the environment via the appearance of objects or other features, and further identify the 

position and orientation of the vision sensor (camera pose) with respect to these 

reference templates. This process is known as user tracking. An ideal AR user tracking 

system should result in accurate and efficient camera pose estimations, for enabling a 

refined registration of visual augmentation in real-time.  

 

Vision-based AR tracking methods can be divided into several classes. As reviewed in 

Section 2.1.1, the results of artificial marker-based tracking, especially those of planar 

forms, are considered reasonably stable and robust. Marker-based tracking has been 

widely supported by many AR SDKs. In general, application developers are allowed to 

customise the appearance of a 2D planar marker, but for 3D markers, it is preferable to 
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use a general 3D polyhedron (e.g. cuboid) instead an arbitrary geometric structure. This 

is because the spatial positions of the visual features on the surfaces of a general 3D 

polyhedron are relatively easy to calculate due to its explicit geometric structure. Thus, 

it is possible to find the 3D-to-2D correspondences between the reference markers and 

the AR input images to perform camera pose estimations. However, the marker-based 

methods always require the introduction of artificial markers into the workspace. They 

are feasible for most flat media and some man-made situations, but are still unwanted in 

many other cases for aesthetic and conservation reasons, especially in preserved natural 

or historic environments. Even if they were accepted in such environment, it would be 

hard to maintain these markers in natural, outdoor settings. To take advantage of vision-

based AR tracking and overcome the limitations of marker-based methods, the natural 

features of the original environment are extracted and used for tracking as marker-

less/natural feature-based tracking. In contrast to the marker-based methods which 

create and introduce additional artificial markers into the workspace deliberately, 

markerless methods attempt to make use of the visual information and the geometric 

structure of the original environment to create a reference map, and further estimate the 

user camera pose via this map. Markerless methods are relatively less intrusive and 

more flexible. However, one of the major difficulties is that the simple, general 

geometric structure described above rarely appears in a natural environment – whether it 

is a man-made environment or a completely rural setting. It is not appropriate to allow 

developers to create the reference model themselves, since to manually model a precise 

real-world scene with complex structures is quite difficult and highly time-consuming. 

For this reason, the results of the unsupervised 3D reconstructions implemented with 

CV-based technologies, such as visual SLAM and SfM, are considered to be used as the 
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reference for a markerless tracking process. The accuracy of the 3D reconstruction 

results to a large extent determines the performance of the AR registration.  

 

On the other hand, and from an application development perspective, most of the recent 

research project reported in the literature concentrated on undertaking the template 

training stage themselves, or, alternatively, allowed the end users to create the reference 

map and then, in the same session, to view the augmentation results. However, this does 

not apply to all practical AR applications as discussed in Section 2.1.2. The higher-level 

designers and developers, who do not have a professional background (such as CV, 

SLAM, etc.) may intend to apply AR technology to develop their own applications with 

specific aims, – just like those who have made use of the existing marker-based AR 

SDKs for their development. This requires a markerless (e.g. 3D reconstruction-based) 

AR framework. The framework should provide an acceptable style of user interface to 

the higher-level developers, allowing them to restore the desired scene for tracking and 

to configure the augmented content for display. The framework should also provide an 

AR application interface to the application users, allowing them to interact with the 

application built by the developers.  

 

Based on the problems described above, a user-oriented markerless AR framework has 

been suggested and the present research represents an attempt to implement it.  
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Chapter 3 Preparatory Studies 

This chapter will present some preparatory studies of the proposed AR framework, 

which are divided into two parts: 1) the analysis of online survey results to identify the 

potential AR user types and their requirements (Section 3.1); and 2) the basic principle 

of geometric transformations frequently used in vision-based AR system (Section 3.2).  

 

3.1. AR application development and requirement audience 

survey 

Most of the AR-related projects and research studies, as mentioned in Section 2.1.2, 

were designed to be directed to the AR application end users. It is very common to 

perform questionnaires on application users in order to obtain their subjective opinions 

of the system. However, the motivation of this proposed framework represents a major 

focus on the potentially higher-level developers who may not be an AR “expert” but 

wish to apply AR technologies to their own developments. In order to identify who the 

target audiences of an AR system development framework are, and what are their 

requirements, a questionnaire was designed and displayed online to collect volunteer 

opinions of AR application development and requirement from different professions. A 

total of 80 responses were obtained and the analysis based on the results is performed in 

the following sections. A copy of the questionnaire is attached as Appendix A.  
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3.1.1. Questionnaire analysis 

Profession distribution and understanding of AR  

The respondents first specified their occupations. The answers can be roughly divided 

into Academic Profession, including researchers, research assistants, school instructors 

and students; High-Tech Industry Profession, including technical directors, advisors, 

computer-related developers and engineers; Business and Management, including 

production and marketing managers, founders, and managing directors;  and “Other”, 

such as pewterers, compositors and unemployed. The percentage of each of these 

categories is shown in Figure 3-1.  

 

Figure 3-1: The profession of the respondents. 

 

It can be seen that nearly half of these respondents pursue high-tech industry 

professions.  Specifically, 8% of all the respondents declared that they are engaging in 

AR-related work. 

 

24% 

42% 

25% 

9% 

Profession 
Academic 

High-Tech  
Industry 

Business and 
Management 

Other 
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Basic understanding of AR 

 

Figure 3-2: The respondents’ understanding of AR. 

 

For questions “Do you know what AR is?” and “Have you ever used any AR 

applications?”, the overwhelming majority of the respondents thought they knew what 

AR is (before a brief definition of AR was given after their answer to this question). 

After reading the definition, 69% respondents believed they had used AR applications 

before. Most of the AR applications used were AR games, especially the location-based 

markerless mobile game Nintendo’s Pokémon GO. Other applications can be divided 

into association tools, including navigation tools, collaboration tools and applications 

for the Internet of Things (e.g. ThingWorx Studio
22

); education and training applications, 

including applications for school teaching, 3D flashcards for children, and various 

                                                 

22
 ThingWorx Studio: https://www.thingworx.com/platforms/thingworx-studio/ 
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training simulators (e.g. medical, defence, driving and flight); and “Other”, which 

mainly refers to various AR demos provided by some AR SDKs mentioned in Section 

2.1.2. The statistics are shown in Figure 3-3. 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: The categories of the AR applications used declared by the respondents. 
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AR application development intentions 

 

Figure 3-4: The intentions of the respondents to apply AR in their own works. 

 

Figure 3-4 shows the results to the question asking whether the respondents had ever 

thought of applying AR in their own work or project. 64% of respondents declared 

having such a thought and more than half of them had already built an AR application 

or system before. 36% respondents never had such a thought before but most of them 

still expressed an interest in applying AR. Only 6% (five people) said they are not 

interested at all – two were working in the High-Tech Industry Profession, two in 

Business and Management, and the other one belonged to the “Other” category. The 

people who are not interested at all were not required to answer the following questions 

in the survey, but were invited to answer the final optional question: “If you have any 

other thoughts about AR, please write it below”. However, none of them gave an 

opinion. The remaining 75 respondents were asked which area they would like to 

develop AR for. The available options involved: Education or Training, Research, Tour 

guide for exhibitions or tourist attractions, Retail or Advertisement, and Entertainment. 
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The respondents were allowed to select more than one option and add other areas if they 

wished. The results are shown in Figure 3-5. 

 

Figure 3-5: The areas that the respondents would like to develop AR for. 

 

Most of the respondents indicated they would like to develop AR for Education or 

Training applications. The Entertainment category came second and there were also 

quite a number of people expressed a desire to develop AR for Research, Tour Guide, 

Retail or Advertisement. In the “Other” areas, there were four respondents who 

responded they would like to apply AR for defence, situational awareness (also a 

military/defence area of interest), three for medical, and one for each of manufacturing, 

data visualisation, telecommunications, collaboration, on-set cinematic, forensic 

security and interior design. 

 

AR application development experiences 

75 respondents who were interested in AR then progressed to the question of “Have you 
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ever developed an AR Application/System?” The answers are shown in Figure 3-6. 

 

Figure 3-6: The AR development experience of the respondents. 

 

There were 7% (four people) respondents who had asked other people to develop AR 

applications for them. Two of their applications were conducted in the military domain, 

and the other two focused on education and exhibition guide respectively. Then they 

were asked to rate the degree of satisfaction about their applications with 5 for Very 

Satisfied and 1 for Very Dissatisfied, as shown in Table 3-1.  

Table 3-1: The satisfaction degree of the respondents on their applications. 

Scores 1 2 3 4 5 

Number of 

respondents 

  1 3  

Mean score 

(Variance) 

3.75 (0.25) 

 

The reasons for satisfaction include “Immersive and engaging” and “new technology 

(was used)”. The reasons for dissatisfaction include “not quite what the client needed” 

and the quality of AR registration or display was “not very ideal”.  
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For 28% (21 people) of the respondents who had experience with AR application 

development, they described their applications as following: PhD research projects 

(three people), children-orientated Android application, system pod monitoring for mass 

transit, military, augmented marketing, mine site geological data assessment, emergency 

service situation management, showcasing the unique selling points of a product (two 

people), exhibition guide (two people), live home staging, medical and education (two 

people), AR wearable devices (two people), 3D reconstruction, fire control simulation, 

and machinery maintenance.  Their satisfaction degrees on the developed applications 

are shown in Table 3-2.  

 

Table 3-2: The satisfaction degree of the respondents on their applications. 

Scores 1 2 3 4 5 

Number of 

respondents 

 1 8 8 4 

Mean score 

(Variance) 

3.71 (0.71) 

 

The major reasons for satisfaction were cited as follows:  

 AR just meets the requirement of the application 

 The development tools were intuitive 

 Good teamwork experience 

 Technology breakthrough 

On the other hand, the major reasons for dissatisfaction were cited as follows: 

 The poor performance of the application caused by technological difficulties 

(such as unreliable tracking, hardware limitation) 



132 

 

 The development tools did not support the requirement 

 The documentation of SDK was “messy” 

 It was hard to craft a proper user interface for the application  

 

Furthermore, these 21 respondents - with experience on AR application development - 

were asked to rate the importance of the factors influencing them in their evaluation of 

an AR SDK, as presented in Figure 3-7, They were also asked to select and rate the 

difficulty of the unfavourable situations they had encountered during the AR 

development, as presented in  Figure 3-8. 

  



 

 

Figure 3-7: The importance of the factors that affect the respondents’ evaluation of an AR SDK. 
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Figure 3-8: The difficulty of the unfavourable situations that impede the respondents on their AR development. 



Some respondents also commented that -- 

 the SDK should easy to integrate into routine site actives; 

 the SDK should have an open and generic data interface which does not  rely 

on a specific tracking technology or render/graphics engine; 

 the price of SDK changes due to new release version, and the lack of support 

for the latest game engine release and device OS. 

 

For each factor listed in Figure 3-7 and Figure 3-8, the mean values (and variances) of 

the scores on importance (5 for Very important and 1 for Not at all important) and 

difficulty (4 for Extreme barrier and 1 for Not a barrier) are calculated respectively and 

presented in Table 3-3. Note that Importance scores I does not consider the 

respondents who selected “no opinion”, while Importance scores II treats “no opinion” 

as score 0. Similarly, Difficulty scores I does not consider the respondents who selected 

“I have never encountered this situation.”, while Difficulty scores II treats them as score 

0.  
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Table 3-3: The importance and difficulty scores on the factors that affect the respondents AR 

development experience. 

Mean score 

(Variance) 

Importance 

scores I 

Importance 

scores II 

Difficulty 

scores I 

Difficulty 

scores II 

Documentation 

support 

4.21 

(0.95) 

3.81 

(2.46) 

2.75 

(1.14) 

2.62 

(1.45) 

User interface 3.89 

(1.10) 

3.5 

(2.36) 

2.95 

(0.68) 

2.81 

(1.06) 

Multiple platforms 

support 

3.94 

(1.05) 

3.57 

(2.36) 

2.90 

(0.94) 

2.76 

(1.29) 

Suitable 

functions 

4.60 

(0.57) 

4.38 

(1.58) 

3.15 

(0.55) 

3.00 

(1.00) 

Performance stability 4.55 

(0.47) 

4.33 

(1.43) 

3.5 

(0.47) 

3.33 

(1.03) 

Open source support 2.94 

(2.52) 

2.52 

(3.26) 

2.94 

(1.18) 

2.38 

(2.35) 

Price 3.58 

(2.15) 

3.24 

(3.09) 

3.06 

(1.11) 

2.62 

(2.15) 

 

It can be seen that the respondents considered the extent to which an AR SDK could 

support the functions of meeting user goals as the most important factor, followed 

closely by performance stability. Open Source support was less important than other 

factors. The respondents encountered more difficulties with application performance 

and fewer difficulties with SDK documentation and Open Source support than other 

factors. 

 

Use case requirements 

In this section, 75 respondents were asked to think about their needs and requirements 

in their specific case when applying AR. The questions and the responses are given in 

Figure 3-9. Most of the respondents required that their application could be used in both 
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indoor and outdoor environments. Indoor-centred came second, followed by outdoor-

centred. 27% respondents would like to design their application for a specific place 

while 52% respondents would not. 21% respondents were unsure about this question. 

With regard to the tracking method, most of the respondents had no idea about it, 

followed by 29% respondents who required markerless tracking based on natural 

features of the original environment. There were also quite a number of respondents 

who decided to use marker-based tracking, followed closely by geo-based markerless 

tracking and hybrid tracking. One respondent selected “Other” and expected to use 

“flexible user anchor” for tracking. 42% respondents required accurate AR registration 

in their application, while 19% did not. However there were also 39% of respondents 

who were uncertain. Overall, there were a considerable number of respondents who 

were still not very clear with their use case requirement at the time the questionnaire 

was completed. 
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Figure 3-9: The AR use case requirements of the respondents. 

 

Supplemental references 

The final part of the questionnaire asked respondents to give their optional opinions on 

the importance of the factors that appear in Figure 3-7 relating to general SDK 

evaluation. The importance scores similar to Table 3-3 are given below as a 

comparative reference for AR SDK. 
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  Table 3-4: The importance scores on the factors that affect the respondents evaluating a SDK. 

Mean score 

(Variance) 

Number of the 

responds 

Importance scores I Importance scores II 

Documentation 

support 

73 3.41 

(0.65) 

3.27 

(1.09) 

User interface 73 3.86 

(1.54) 

3.70 

(2.07) 

Multiple platform support 72 3.62 

(1.89) 

3.47 

(2.34) 

Suitable 

functions 

73 4.22 

(1.35) 

3.99 

(2.21) 

Performance stability 73 4.36 

(1.02) 

4.18 

(1.73) 

Open source support 74 3.21 

(2.23) 

2.95 

(2.82) 

Price 73 3.77 

(1.72) 

3.62 

(2.22) 

 

Slightly different from Table 3-3, respondents considered performance stability as the 

most important factor when evaluating an SDK, although the importance of providing 

suitable functions to meet the end user goals scored well too. Generally speaking, Open 

Source support was still rated as less important than other factors. 

 

3.1.2. Conclusion 

80 volunteers from different professions answered an online questionnaire about their 

subjective opinions on AR application development and requirements. Most of them 

were shown to possess a basic understanding of AR and AR applications/systems. For 

75 respondents who showed their interest in applying AR in their own works or projects, 

they were asked about their development intentions. The first two areas they expressed a 
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desire to apply AR were Education or Training and Entertainment. The respondents 

who had been involved in AR projects directly or indirectly described their applications, 

and showed a reasonable degree of contentment with their experience. 21 respondents 

who had experience of AR application development were asked to rate the importance 

and difficulty of several factors that might affect their AR development and evaluation 

of AR SDKs. They considered that an AR SDK’s support for the functions of meeting 

user goals and robust performance as the most important factors, whilst they also 

encountered more difficulty on these two factors during actual development examples. 

With regard to the use case requirements, most of the respondents expected that their 

particular type of AR system could be used in both indoor and outdoor environments, 

not for a specific location, making use of markerless tracking based on natural features 

of the target environment, and requiring accurate AR registration. However, it should 

also be noticed that there were a quite number of the respondents who were not very 

clear when expressing their specific use case requirements 

 

3.2. Geometric transformations 

Geometric transformations are very frequently used operations in the vision-based AR 

process: in the sensing stage, the camera device will map the observed 3D objects to 2D 

image planes by using perspective projection transformation. The displacement of the 

camera between each two images is expressed by a 3D rigid transformation (also called 

isometry or Euclidean transformation since it forms the basis of Euclidean geometry 

(Galarza & Seade, 2007)). This camera motion consists of a rotation and a translation. 

In order to represent the camera location and the recovered spatial position of the image 
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features in a unified reference frame, a transformation with rotation and translation 

components between each camera reference frame and a pre-defined world reference 

frame needs to be established and applied. This can be obtained from its corresponding 

camera pose. The transformation within camera pose plays a particularly important role 

in both the offline training and online running stages. For offline 3D reconstruction 

described in Chapter 4, each input image is associated with a camera model. The camera 

pose of such a model is used to back-project 2D information from an image to the 3D 

space, restoring the spatial structure of the scene captured in the image. For online 

vision-based user tracking described in Chapter 5, the camera poses are used to register 

pre-defined virtual information into the world coordinate system. Then the 

augmentation can be rendered over the real-world view and subsequently projected onto 

the display screen. The specific methods used for pose estimation in the offline and 

online sessions are stated and discussed in Chapter 4 and Chapter 5 respectively.   

 

In the present chapter, the basic knowledge of geometric transformations used 

throughout the thesis is introduced, including the definition of several reference frames 

(Section 3.2.1), the generic mathematical models of 3D rigid transformations (Section 

3.2.2) and camera projections (Section 3.2.3).  

 

3.2.1. Reference frames and coordinate systems 

In order to describe the positions and orientations of objects in the 3D real world, it is 

important to define a world reference frame at the very beginning, in order to unify 

coordinate representation. One of the most common coordinate systems used in 
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computer graphics and image processing is the Cartesian Coordinate System, a.k.a 

rectangular coordinate system. The axes in the coordinate system are defined with two 

or three orthogonal vectors for 2D surface or 3D space respectively, and the unit lengths 

on each axis are equal (Heare & Baker, 1998). Unless stated, all coordinate systems 

mentioned below refer to the Cartesian Coordinate Systems. The world reference frame 

used in an AR system can be customised, which means it could be a geographic 

coordinate system (a common choice is latitude, longitude and altitude system 

(Crossley, 2015)) or an arbitrary 3D Cartesian coordinate system, depending on the 

specific aim of the different applications. For example, GPS / INS-based AR 

applications tend to use geographic coordinate systems as the reference frame, since 

GPS sensors can directly obtain their rough coordinates in latitude, longitude and 

altitude. In contrast, as mentioned in Section 2.1.1, developers of planar marker-based 

AR applications tend to select a reference frame with one of its axes perpendicular to 

the marker plane, as shown in Figure 3-10, in which the red-coloured axis is 

perpendicular to the marker plane (it became a red point at the centre of the right 

marker). In that way, the spatial coordinates of the points on the marker will have the 

same value on that axis, and other two-dimensional values are relatively easy to define 

by their image coordinates.  
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Figure 3-10: A reference coordinate system based on a rectangle fiducial marker. 

 

In the present research, a world reference frame is needed to define the camera pose of 

each image and the global geometric structure. Again, as emphasised previously, the 

‘camera’ refers to the pinhole camera model. Each camera model is associated with an 

individual image and can be defined with extrinsic and intrinsic camera parameters. The 

camera reference frame has been previously depicted in Figure 2-10, which is also a 3D 

Cartesian coordinate system that uses the optical centre as its origin and the optic axis as 

the Z-axis. The locations in images can be specified by using various coordinate 

systems and the pixel coordinate system is one of the most common choices, where the 

image is treated as a grid and each discrete unit represents a pixel. Since there are 

several different reference frames that exist in the workspace, an arbitrary 3D point P 

may have different coordinates in respect of different frame respectively. As depicted in 

Figure 3-11, the space point P can be described in either world coordinates PW or 

camera coordinates PC. 
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Figure 3-11: The transformations between world coordinate system, camera coordinate system and image 

pixel coordinate system. 

 

Similarly if certain points in space are visible in multiple images, they may have 

different pixel coordinates in each image and their spatial positions in respect of each 

camera reference frame may also be different. The different coordinate representations 

of the same point can be treated as 3D-to-3D correspondences among the different 

cameras. These can be used to calculate the rigid displacement/motions between the 

camera models, and can further determine the camera pose of each individual image 

with respect to the world reference frame. Therefore, any given coordinates in the world 

coordinate system can be transformed to the camera coordinate systems with known 

camera poses. These are 3D-to-3D rigid transformations as described in Section 3.2.2 

below. If the intrinsic camera parameters are known, then the projection transformation 
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can be performed between the camera coordinates and the image pixel coordinates, 

which are 3D-to-2D projections described in Section 3.2.3.  

 

3.2.2. 3D-to-3D rigid transformations 

3D rigid transformations can be applied to both objects and coordinate systems. For the 

former, the transformation is moving and rotating an object, like a camera, from one 

pose to another with respect to the fixed world reference frames. For the latter, the 

object is fixed, but for different reference frames it may has a different position and 

orientation, which can be calculated by using the transformation relations between the 

reference frames. In these cases, so-called 3D rigid transformations include rotations 

with a format of 3x3 matrices and translations with a format of 3D vectors. When such a 

transformation is applied to an object, the rotation matrix will change the orientation of 

the object’s local frame and the translation vector will move the object with respect to 

its local frame. Rotations and translations can be combined into a 3x4 transformation 

matrix  1333 xx tR  or a 4x4 homogeneous transformation matrix 








1000

1333 xx tR

which represents a rotation followed by a translation. 

 

The original 3D Cartesian coordinates (X, Y, Z) of space points, then, are represented by 

a 4D vector in homogenous coordinates by adding a fourth coordinate of 1 at the end: 

(X, Y, Z, 1). This enables the use of a product operator for matrices to evaluate a 

sequence of translations and rotations (Chen, 2004). Therefore the arbitrary 3D point P 

in Figure 3-11 can be denoted by  TWWWW 1ZYXP   in the world coordinate 
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system and is being observed by a camera C. The alternative camera coordinates of this 

point are denoted by  TCCCC 1ZYXP   and can be obtained by left-multiplying a 

4x4 homogeneous transformation matrix TWC to world coordinates WP : 

WWCC PP T  

(3.1) 
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where R is the 3x3 rotation matrix and t is the 3D translation vector contained in the 

transformation TWC between the world space and the camera space, which also implies 

the position and orientation of the camera with respect to the world reference frame (i.e. 

camera pose). The camera pose of each individual image can be calculated indirectly by 

chain-multiplying a serious of relative transformations matrices together. An example is 

depicted in Figure 3-12: 
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Figure 3-12: Space point P has four different coordinates with respect to the world reference frame and 

three different camera reference frames. 

 

Suppose cameras C0, C1, and C2 are observing a space point P which can be represented 

with world coordinates PW or three different camera coordinates
0CP , 

1CP  and 
2CP . 

Assume the transformation matrices from World to C0, C0 to C1, and C1 to C2 are 

known as
0WCT , 

10CCT and
21CCT , and then the transformations matrices from World to 

C1, C0 to C2, and World to C2 can be calculated by using the matrix product. It can be 

seen that the matrix multiplication allows transformations to be concatenated.  

0101 WCCCWC   TTT   (3.2) 

102120
  CCCCCC TTT   (3.3) 
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 (3.4) 

 

3.2.3. 3D-to-2D camera projections 

2D images are planar representations of the real world that can normally be obtained 

from a pinhole camera projection model. A 3D coordinate P can be mapped to a 2D 

pixel p in an image plane by using (3.5).   

P p KT  (3.5) 

where K denotes a 3x3 (or 3x4 in homogeneous coordinates by adding a zero vector 

column in the right-most, as shown in (3.6)) projection matrix (a.k.a. camera intrinsic 

matrix) and T denotes a view matrix (a.k.a. camera extrinsic matrix) which is identical 

to the 3x4 or 4x4 homogeneous transformation matrix mentioned in Section 3.2.2.  

Specifically, two necessary transformations are performed here by multiplying these 

matrices, as shown in Figure 3-13. 

 

Figure 3-13: The process of mapping a 3D point from world coordinates to pixel coordinates. 

 

Firstly the transformation matrix TWC brings the world coordinates PW from the world 

to the camera reference frame as camera coordinates PC shown in (3.1). Then the 
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projection matrix K, which contains camera’s intrinsic parameters determined by the 

actual camera device, projects the PC to the image plane in pixel coordinates, as shown 

in (3.6). 
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(3.6) 

where w is scaling factor (and it can seen that CZw  ), γ represents the skew coefficient 

between the x and the y axis, often be 0. An ideal pinhole camera model is affected by 

the focal length f, the shortest distance from the optical centre to the image plane, and 

the principle point (cx, cy) which is the point where the optic axis intersects the image 

plane. Since the aspect ratio of the pixel patterns may be uneven, focal length f is scaled 

by additional scale factors mx and my in the x and the y direction respectively as 

fmf  xx and fmf  yy . But in most cases the camera pixels are square and thus

fff  yx . 

 

Moreover, as mentioned in Section 2.2.1, real camera devices may produce lens 

distortion which should be taken into account. For distorted projection, the output pixel 

point can be corrected by applying Brown’s distortion model (Brown, 1966) and five 

intrinsic distortion coefficients (comprising three radial factors d1, d2, d3 and two 

tangential factors d4, d5) of the camera device, as shown below: 
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where (xu, yu) represents the undistorted pixel point directly calculated from (3.6). Its 

eventual position on the corrected output image should be (xc, yc). Vice versa, the 

undistorted image can be calculated from a distorted image also (Figure 3-14). 

 

Figure 3-14: An image with fisheye lens distortion before distortion correction (left) and after correction 

(right).  
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Chapter 4 3D Reconstruction for Template 

Training 

The AR framework proposed in the present research takes the form of a two-stage 

development, or “delivery” for two kinds of end-users: An offline training stage within 

a development framework is proposed for developers who wish to develop a particular 

AR application. An online AR running stage is proposed for final application users who 

wish to experience or exploit an AR experience. This chapter focuses on a 3D map 

reconstruction procedure inside the development framework.  

 

According to the use case scenarios presented in the preceding chapters, the “particular 

AR application” created with this development framework is expected to be dedicated 

to a very specific place. Most of the existing visual SLAM-based AR applications do 

not focus on a specific workspace. They can learn visual information from a random 

place and start user tracking immediately for displaying AR content at runtime. 

However, this design is unnecessary in the present proposed framework because the 

users who will add augmentation and the user who will see augmentation are assumed 

to be different people. The concept here is quite like those location-based AR 

applications mentioned in Section 2.1.2, – especially those heritage site-related setups, 

in which the augmented content should be tightly coupled on the site location. However, 

those “one-off” application designs were starting at the bottom by lower-level 

developers who were engaged in AR-related research. They may seem elusive for 

people who expect to make use of their methods but have no knowledge of the inner 

techniques of AR. Hence the proposed development framework attempts to build an 
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easier interface between those higher-level developers and the markerless AR 

techniques. The higher-level developers who desire to add AR content relevant to a 

specific place with distinguishable visual features, such as the real use case relating to 

the National Marine Aquarium described earlier and in more detail in Section 6.2, only 

need to collect required image data (RGB or alternatively RGBD images or video-

streams) from the target environment, and then allow the proposed offline system to 

learn and create the reference map (i.e. template). The developers then can set up 

customised virtual information (AR content) with respect to the template through 

another graphical user interface (GUI), as described in Section 6.1. Therefore, when the 

application end users visit this "specific place", the coupled AR content will be 

delivered to them. Since there is no special real-time requirement during the 

development – in fact, the accuracy of the template to the real world is deemed to be a 

more essential feature than processing time -the template training will be performed 

offline in this proposal, and will be referred to as Offline Session.  

 

The template stores the visual and geometric information extracted from the user-

specified workspace, which will be used for user tracking task during runtime of the AR 

application. The natural feature-based methods are chosen in the present proposal since 

the vision-based approaches basically only use RGB images as an input source. These 

are of relative low-cost and can be easily accessed by general public. Moreover, 

compared with the marker-based methods which require introduce artificial markers 

into the environment, the natural feature-based methods are less intrusive and more 

flexible. Without introducing an additional object, the training process has to learn 

visual features from target environment as a template and identify their spatial 
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information qualities (i.e. the 3D location) to construct a reference map, enabling the 

application developers to set up the augmented information with respect to this virtual 

map. The present research proposes a semi-automatic template training strategy 

based on vision-based 3D reconstruction/mapping techniques. Instead of 3D mesh 

surface models, the sparse 3D point clouds will be reconstructed from the input image 

data as a reference map. These cloud points are provided by feature correspondences of 

the matched images and are represented by the same descriptors which make them 

distinguishable landmarks for identifying and tracking.  

 

Two effective vision-based 3D reconstruction methods are discussed in the remainder of 

this Chapter – known as RGBD-SLAM (Section 4.1) and SfM (Section 4.2). The main 

difference between these two methods is the requirement of the input data and the 

applied environment. RGBD-SLAM requires a continuous ordered RGBD dataset as 

input and the recent low-cost RGBD camera (i.e. Kinect 1.0) only works reliably 

indoors; SfM uses a general RGB image dataset as input, which is unnecessarily 

ordered but the baseline (the distance between the camera’s centres of projection) 

between images should be big enough. It can also deal with both an indoor and outdoor 

environment. Two representative applications of these two methods respectively, 

RGBDSLAM v2 (Endres et al., 2014) and VisualSfM (Wu, 2011; 2013) are applied in 

this proposal. Their performance of 3D reconstruction with different configurations (e.g. 

the visual features used) is tested and evaluated with public datasets in Section 4.3. The 

output will then be further used for AR application template training. The details on 

how to use them for user tracking will be introduced and discussed in Chapter 5.  
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4.1. RGBD-SLAM 

RGBD-SLAM is one the two approaches used in the present research for 3D 

reconstruction in the offline session. This kind of SLAM is based on a sequence of 

continuous RGB images or video stream with synchronously associated depth 

information (a.k.a. RGBD data). The RGBD-SLAM process can be described as 

moving a handheld / robot mounted RGBD sensor (e.g. Kinect) around an unknown 

workspace, creating the map, and locating the sensor by analysing the acquired RGBD 

data from the sensor at a certain time step. The sampling rate of most RGBD cameras 

can actually reach 30 frames per second, but the practical time step will depend upon 

the speed of the camera motion and the processing rate of the SLAM system, which 

should ensure an overlap between adjacent frames. A frame of RGBD data consists of a 

colour image captured by a common pinhole camera and a depth image in which each 

pixel contains a depth value and is associated with a pixel in the colour image. With 

these two associated images and intrinsic camera parameters, the visual and geometric 

information contained in a RGBD frame can be recovered to 3D space with respect to 

its local camera reference frame. The RGBD-SLAM process will determine the camera 

motions between frames, thus the local reconstruction of each RGBD frame can be 

brought to a unified world reference frame to develop a global reconstruction. The basic 

flow of a graph-based RGBD-SLAM is shown in Figure 4-1, and the detailed process is 

given below. 
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Figure 4-1: The flowchart of graph-based RGBD-SLAM. 

 

Basically RGBD-SLAM belongs to the visual SLAM process referred in Section 2.2.3.2 

which uses the visual features within the colour images as landmarks. The matchable 
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visual features of processed images are firstly recovered to 3D space (this is generally 

triangulated from the correspondences of first two input images if this is a monocular 

SLAM, but for RGBD data the depth of each image pixel is already known). If there are 

enough landmarks can be observed in the new input image, the system will make use 

of 3D-to-3D correspondences to estimate the new camera pose with respect to the old 

ones, and then the 3D feature points of the new image that have not appeared before 

will be transformed to the same coordinate as new landmarks. The procedure of visual 

SLAM is depicted in Figure 4-2: the initial camera model and the observed visual 

features in the image are put into a pre-defined world reference frame. These 3D feature 

points become landmarks. The pose of the following camera models with respect to the 

world can be estimated by observing enough existing landmarks, and their own features 

will also be reconstructed into the world reference frame to be used as landmarks.  

 

 

Figure 4-2: An ideal (without noise and error) procedure of visual SLAM.  

 

If a large area (e.g. several rooms or a long street) is covered by the input image data, 

the number of landmarks can become very large as well. Instead to compare all 
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landmarks one by one, the visual features of a new input image will only compare with 

a portion of them. For example, that portion may include the features in the image’s 

immediate predecessors, since there are overlaps between adjacent frames and, thus, 

there is a relatively high possibility that some identical visual features will be observed. 

The RGBD frame can provide 3D coordinates of each feature with respect to its own 

camera system. Thus a set of 3D-to-3D correspondences can be established by 

performing feature matching between two visual images, and this will be used to 

estimate their relative camera motions. Since the camera poses of the old images have 

already been estimated, the new camera pose can be obtained by multiplying their 

relative camera motions to the older one’s camera pose (see expressions (3.2 – 3.4)). 

 

Although comparing with an immediate predecessor in the sequence will result in a 

relatively high possibility to find feature correspondences, noise and other inaccuracies 

are usually contained in the observed measurements (i.e. the feature points and their 

depth). If the pose estimation of each camera only relies on its predecessor, the errors 

will accumulate rapidly and lead to failure of SLAM. In order to avoid accumulation of 

error, a graph-based approach is applied where SLAM is formulated into an intuitive 

graph form (a.k.a. pose graph) whose nodes correspond to the camera poses of input 

frames and whose edges represent constraints between the poses. The core aim of using 

a pose graph is to find the spatial configuration of the nodes in order to keep them 

consistent with the measurements modelled by the edges (Grisetti et al., 2010). In this 

case, the node of new input data will not only rely on its immediate predecessors, but 

will compare with a series of selected candidates which may potentially match. If the 

relative transformation between two nodes can be determined, this transformation will 
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be used as a constraint edge linking the nodes. The optimal pose is estimated due to the 

configuration which minimise the error of all those constraints on that pose node, 

referred to as graph optimisation. The related mathematical models are introduced in 

Section4.1.1. 

 

Based on the above approaches, an ROS system RGBDSLAM v2, which implements a 

graph-based RGBD-SLAM, is applied to achieve a robust 3D reconstruction in this 

section. In order to be used in later online sessions, the output data and parts of the 

processing procedures of this system have been customised and modified. The design 

and implementation of RGBD-SLAM used in the present research is described in 

Section4.1.2. The form of the generated results is presented in Section 4.1.3. 

 

4.1.1. Graph-based SLAM 

Grisetti et al. (2010) state that the SLAM problem is usually described by probabilistic 

formulation with a consideration of the noise inherent in the sensor measurement. The 

camera pose along the moving trajectory can be denoted by an arbitrary initial position 

x0 and a sequence of random variables } ,..., { 1:1 TT xxx  , conditioned by odometry 

measurements } ,..., { 1:1 TT uuu   which indicate the relative 3D transformations between 

camera models. The transition model )u,x|(x tt-t 1p represents the probability that the 

camera pose at time t is in xt given that the camera pose at time t-1 was in xt-1 and the 

odometry measurement between them is ut. If the SLAM process is only based on 

vision sensors, the measurements of T:1u  cannot be acquired directly but can be 



159 

 

estimated based on the sensor’s data of environment, denoted by } ,..., { 1:1 TT sss  , 

which represents the observations (i.e. captured images) of the workspace. The 

probability of performing the observation st only depends on the camera pose xt and the 

constructed map mt (constituted by landmarks) up to time t; thus the observation model 

is )m,x|(s tttp . The eventual aim here is solving the conditional probability of each 

camera pose xt given all the measurements and constructing the whole map of the 

environment. This problem can be abstracted to a graph-based SLAM where the camera 

poses are represented by nodes xi and the raw sensor measurements are replaced by 

“virtual measurements” edges zij which connect the nodes xi and xj in a graph and 

contains a probability distribution over the relative locations of the two poses, 

conditioned to their mutual measurements, as shown in Figure 4-3 where each circle 

represents a camera pose node xi and the edges connect the nodes are spatial constraints 

arising from observations s. 

 

Figure 4-3: A pose-graph representation of a SLAM process. 
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The virtual measurement is a transformation that makes the observations acquired from 

xi maximally overlap with the observation acquired from xj. Assume the predicted 

measurement which meets the observations of xi and xj is ijẑ . The error function of this 

edge can be defined as 

),(ˆ),( jiijijjiij xxzzxxe 
 

(4.1) 

where ijz is the real measurement of transformation between xi and xj. The edges also 

have another property – information matrix ijΩ , which interprets the strength of the 

link/constraint (i.e. the weight of this edge). Then the negative log-likelihood (x)F of all 

the observations is defined as: 
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(4.2) 

where x is a vectors with all camera poses as its parameters, C is a set of pairs of indices 

<i, j> for which a constraint/edge ijz  exists. Therefore the configuration of the nodes x

that minimises (x)F is found by solving the following equation: 

(x)x
x

Fminarg

 
(4.3) 

The goal here is configuring all camera poses together to meet the observations as much 

as possible. Because noise and error always exist within the virtual measurement, some 

observations may lead to ambiguities of resulting in wrong edges between different 

poses which do not really exist. Trying to identify more constraints between the nodes 

from their observations can effectively reduce the side effect caused by the wrong edges, 

thus making the estimation result more reliable. This process is also known as a graph 

optimisation problem. In the present proposed system, this problem is dealt with by g2o 
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(Kümmerle et al., 2011) – an Open Source framework for optimizing graph-based 

nonlinear error functions. Further detail is given in Section 4.1.2.4. 

 

4.1.2. System implementation 

RGBDSLAM v2 is implemented an ROS system for mobile robot applications, as well 

as being launched on Ubuntu Linux system with an ROS client. The GUI of 

RGBDSLAM v2 is shown in Figure 4-4: the application is trying to reconstruct an 

office scene from a set of RGBD data. The first row of the window is visualising the 

reconstructed dense point cloud and the 3D trajectory of the RGBD camera movement. 

The four sub-windows in the second row from left to right illustrate the current 

processing of the RGB image; the associated depth image; the representation of detected 

features and their responses; the representation of optical flow of the features against the 

last processed image (the red arrows represent inliers and the blue represents outliers).   

 

Figure 4-4: The GUI of RGBDSLAM v2.  
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One of the ROS packages openni_launch / freenect_launch, is used to launch the 

OpenNI driver and publishes the topics of the Kinect data in real time. These topics – 

colour images, depth images and camera information (including intrinsic camera 

parameters) – are being subscribed by another ROS node rgbdslam – the main process 

of this system. Alternatively the published messages can also be recorded into a ROS 

bag for later play back. The sequence diagram of the whole session is depicted in Figure 

4-5.  

 

Figure 4-5: The sequence diagram of RGBDSLAM v2. 

 

The rgbdslam node will create the instances of class OpenNIListener (hereinafter 

referred to as listener) and GraphManager (hereinafter referred to as graph manager) 

once it launches. The listener will track the specific topics published by a real device or 

the recorded ROS bag, as mentioned above. At each step of time (labelled by the 

timestamp of ROS), the synchronous messages are picked up from the topics of colour 
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images, depth images and camera information and bounding together for creating an 

instance of class Node. Each instance of Node (hereinafter referred to as node) 

encapsulates an RGBD input frame, which will be described in Subsection 4.1.2.1.  

 

The nodes created by the listener are then delivered to the graph manager to generate a 

graph representation of the map which contains the corresponding camera pose of each 

input node. A world reference coordinate system will be defined first. In order to 

simplify the process somewhat, the camera reference frame of the first node  0x is 

usually taken as the (world) reference; otherwise the relative transformation between the 

world and the first node should be given in advance. To estimate the camera pose of the 

new incoming node, the graph manager compares it with some previous nodes that have 

already been added to the graph, to decide if the new node will be added or not. The 

candidates with which the comparison is undertaken are selected via the strategy 

defined in Subsection 4.1.2.2. 

 

The system will compare the colour image of the new node with the selected old ones. 

If there are enough inlier correspondences between two frames, a set of 3D-to-3D 

coordinate correspondences can be determined. These correspondences are used to 

calculate the relative transformation between the nodes for data association, which is 

described in Subsection 4.1.2.3. 

 

The ultimate pose estimation of the new node relies on graph optimisation, where the 

estimated transformations to other nodes are used as constraints. Here RGBDSLAM v2 

employs the g2o framework to solve the problem, introduced in Subsection 4.1.2.4. 



164 

 

 

4.1.2.1 Node construction 

The node is created from a synchronised pair comprising of a RGB image and a depth 

image with known intrinsic camera parameters. It contains the spatial structure of the 

view being observed with respect to a local camera coordinate system described in 

Section 2.2.1. When a new node is being constructed, visual features are extracted from 

the colour image by using one of the feature detection methods (e.g. SIFT, SURF, ORB 

and so on; the detail of feature detection and matching will be discussed in Section 

4.3.1). Then their corresponding 3D positions to the own-camera coordinate system can 

be calculated from the associated depth image and the intrinsic parameters. Assume the 

3D coordinate (X, Y, Z) corresponds the image point (u, v), then: 
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(4.4) 

where dep(u, v) is the corresponding depth value of the pixel (u, v), and Sd is the depth 

scaling factor – for Kinect it returns the real distance and hence the value of Sd is 1. The 

intrinsic camera parameters, which include principle point (cx, cy) and focal length fx, fy 

introduced in Section 2.2.1.1, are provided by the topic of camera information which 

can be previously set through camera calibration. In fact, (4.4) can be considered as an 

inverse of the expression (3.6).  Therefore a node will store the 2D image coordinates 

and the 3D camera coordinates of extracted features with the descriptors used for 

matching. After being added to the graph, each node structure will be correlated to the 
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g2o data structure Vertex and Edge which will represent the camera pose estimation and 

the relative transformations between nodes respectively, described in Section 4.1.2.4. 

 

4.1.2.2 Neighbour and loop closure search 

Individual estimation of a node is generally noisy. Thus, for increasing the robustness of 

map construction and reducing drift errors, it is desirable to establish a reasonable 

number of constraint edges between nodes. In theory, all possible edges can be 

identified by applying brute-force comparison to all nodes to produce a dense graph. 

However this linearly increases the computational expense of both feature matching and 

graph optimisation with the number of comparisons, and the costing will become 

unacceptable as the graph becomes larger. In practice a sparse graph is preferred, which 

only adds necessary edges to the graph to ensure accuracy and efficiency. As discussed 

above, the nearest predecessors have a relatively high possibility of matching the new 

node, but can be more easily affected by accumulating error. For this reason, it is 

desirable to find the virtual measurements (i.e. the relative spatial transformation) from 

the current processing node to earlier nodes (i.e. loop closures). Loop closure detection 

is a classical problem in SLAM when attempting to recognise a previously-visited 

known place. In this case, if the new node can match a previous node, which means 

there is sufficient overlap between their observations (images), a loop closure is 

considered found.  

 

RGBDSLAM v2 employs a strategy for selecting three different types of candidate 

nodes to compare, called Predecessors, Neighbours and Random Samples. Predecessors 

refer the immediate predecessors of the new node, and the other two are used for 
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determining much older loop closures. The kP last added nodes will firstly be selected 

into the set of Predecessors. Neighbours refer to the geodesic/graph neighbourhood of 

the last added node (i.e. the direct predecessor of the new node), which means that the 

nodes under the set of Neighbours should be able to be visited from the last nodes 

through the established edges in limited depth. This is attained by computing a minimal 

spanning tree of the limited depth of the graph where the last added node is used as the 

root. The kN nodes from the neighbourhood will be drawn randomly into Neighbours 

with a bias towards earlier frames for finding older loop closures. Other kRS candidates 

of the last type were randomly sampled from the reminder nodes in the original version 

of RGBDSLAM v2. However, if the image sequence is sampled at a high rate and the 

speed of camera motion is relatively slow, it will be not very effective to randomly 

select candidates among all nodes for loop closing, due to the duplicated content 

existing among the adjacent images. Instead, s set of keyframe nodes is selected for 

sampling. In the present proposal, the keyframes are selected during the graph 

construction. Once the pose of new added node is estimated, the system will calculate 

the displacement distance and the rotation magnitude between the new node and the last 

keyframe. Assume the transformation matrix between two nodes is
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. If the camera motion changes over a given threshold (e.g. 

0.2m for translation or 60° for rotation), or there is no valid transformation can be 

estimated between the new node and any old keyframe, the new node cannot match any 
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old keyframes, the new node will be selected as a new keyframe. By sampling from the 

subset of keyframes, it can avoid comparing the new node with a set of similar nodes, 

and increase the possibility to detect unknown loop closures. All three types of 

candidates have been shown in Figure 4-6. 
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Figure 4-6: The strategy of RGBDSLAM v2 for loop closure detection by selecting three types of 

candidates from older Nodes. 
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4.1.2.3 3D-to-3D transformation 

In order to estimate the camera pose, the new node will compare with the candidates 

selected in Section 4.1.2.2 one by one. A feature correspondence is related to same 3D 

point in space, but with different 3D coordinates with respect to their camera coordinate 

systems respectively, as shown in Figure 4-7. Note that space points do not change the 

position, but the camera coordinate system was rotating and translating along the 

camera motion with respect to the world. 

 

Figure 4-7: The coordinates of same space points are changed due to the different reference frames. 

 

There is a rigid transformation between these 3D coordinate correspondences as stated 

in expression (3.1), which also indicates the relative transformation between these two 

camera coordinate systems. The rigid transformation can be estimated from 3D-to-3D 

correspondences as follows: assume the feature points of the i-th match between the old 

node and the new node are denoted by ipold  and ipnew  respectively, and their 

corresponding 3D point coordinates are denoted by iPold  and iPnew  respectively. The rigid 

transformation stated in (3.1) can be decomposed into a rotation component R and a 

translation component t. Thus in this case, (3.1) is expressed as (4.5). 
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tRPP ii  newold

 

 

(4.5) 

where the 3x3 matrix R and 3-vector t need to be determined. A common way to solve 

this is using SVD (Besl & McKay, 1992; Eggert et al., 1997). To implement this, two 

centroids of n matched coordinates oldP  and newP are calculated first: 
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Then the translation component is removed by bringing both centroids to the origin. The 

re-centred coordinates are defined in (4.7).  
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In order to solve the optimal rotation component between oldP  and newP , the least squares 

error criterion given by (4.8) should be minimised. 
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(4.8) 

This equation is minimised when the last term is maximised, which can be represented 

as trace(R M). The 3x3 correlation matrix M is defined by: 
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(4.9) 

Applying SVD to M as 

T  USVM   
(4.10) 
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where U and V are 3x3 unitary matrix and S is a 3x3 real positive matrix. The optimal 

rotation that maximises the trace(R M) can be obtained from U and V, as shown below: 

T  VUR   (4.11) 

With optimal R, the optimal t can be calculated from (4.5), and then the desire 

transformation matrix between the old node and new node is obtained.  

 

Consider that the mismatch errors may exist and affect the accuracy of transformation, 

RANSAC referred in Section 2.2.3.1 is used here to remove the outlier correspondences. 

First a subset of correspondences is randomly selected and used to estimate an initial 

transformation. Then this transformation will be used to test the remaining 

correspondences. If enough correspondences satisfy the transformation, these 

correspondences will be involved in estimating a new transformation which will be used 

to test other correspondences. Otherwise another subset of correspondences will be 

randomly selected and the above steps will be repeated. This will be performed 

iteratively until the number of inliers no longer changes or a pre-defined maximum 

iteration times have been arrived at. 

 

The graph manager will add the new node into the graph if any valid transformation is 

established. There may be several transformations from the new node to different old 

nodes. An initial camera pose estimation related to the world coordinate is estimated by 

multiplying the relative transformation to the known old camera pose (see equation 

(3.4)). Furthermore, RGBDSLAM v2 employs g2o framework to decide the ultimate 

pose of each nodes, known as graph optimisation. 
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4.1.2.4 Graph optimisation 

RGBDSLAM v2 employs a g2o framework which provides Vertex and Edge data 

structure to handle the pose graph. The graph manager tries to establish the edges 

between the nodes, passing them to the g2o optimiser to generate a globally consistent 

map. The association relation between Vertex, Edge and the custom class Node 

mentioned above is given in Figure 4-8. 

 

Figure 4-8: The class graph between the custom class Node of RGBDSLAM v2 and the class of Vertex 

and Edge used for graph-based optimisation within g2o framework. 

 

The poses of camera nodes are stored in the instances of Vertex, and are restrained by 

virtual measurements (i.e. the estimated transformations to other nodes), which are held 

by Edge instances. The graph representation here is identical with the form in Section 

4.2.1, where the edge ijz connects the nodes  ix and  jx . Therefore the g2o optimiser 

performs a minimisation of the non-linear error function which has been shown in (4.2) 

and (4.3). It should be noted that the estimations with large errors may impede the 

accuracy of the created graph. These edges are pruned after the initial convergence and 

then the optimisation is restarted once again. When a node is added, the optimisation 

process is called to process the new graph. Considering the efficiency, all old nodes are 

set as fixed. Thus the optimiser only adjusts the pose of new one to satisfy the 

constraints from others. At the end of the SLAM process, global optimisation is called 

to manage the final form of map reconstruction. 
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4.1.3. Output data 

The work period of the original version of RGBDSLAM v2 application has been 

finished after the final global graph optimisation. It supports the export of the estimated 

camera trajectory as a text file and the reconstructed dense 3D point cloud as a PCD file. 

The former is particularly important for building the reference template, since in an 

online tracking session the query images will be compared with a portion of the colour 

images used in 3D reconstruction to locate them with respect to the reference. The file 

format of trajectory file is given in Appendix F. The reconstructed dense 3D point cloud 

involves the geometric information of the target environment. The world cloud points 

are calculated via the RGBD frames and their estimated camera poses, which can 

transform 3D coordinates of each local camera reference frame to a unified world 

reference frame. The dense point cloud will be used as a virtual environment for 

assisting the application developer to understand the scene structure – thus they can 

insert augmentation in respect of the scene. However, in order to be used as the 

reference for an online tracking session, the 3D points that have been correlated with 

recognisable visual features and descriptors should be specified (i.e. the 3D-to-2D 

correspondences of detected visual features and their corresponding descriptors 

contained within the images used for reconstruction, as shown in Figure 4-8). Therefore 

the additional information that will be used for template training is stored as several 

customised XML files. These are human-readable and simple to use for the cases that 

only require one-time read/write. The present proposal only saves all the nodes at the 

end of the reconstruction session. These files include the summary of graph and all 

camera nodes (see Appendix F for detail). All these output files will further be used for 

template training, the detail will be presented in Chapter 5. 
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4.2. Structure from motion 

When compared with SLAM which normally follows a “real-time” recursive 

improvement, making use of adjacent relation of images in the sequence, SfM can 

handle unordered and uncontrolled image collection (e.g. the images captured by 

various camera devices with different intrinsic parameters) by applying either batch or 

incremental solutions (as mentioned in Section 2.2.3.1) for geometric structure 

reconstruction. Since the incremental SfM methods are more flexible for both online 

and offline situations, Subsection 4.2.1 describes a basic workflow of an incremental 

reconstruction method. The case studies of SfM-based 3D reconstruction application 

VisualSfM are introduced in Subsection 4.2.2. Other related discussions and evaluations 

are given in Subsection 4.2.3. 
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4.2.1. Incremental SfM 

 

Figure 4-9: The flowchart of monocular SfM-based sparse 3D reconstruction. 
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The basic flow of a monocular SfM is shown in Figure 4-9. A monocular SfM system 

usually takes a set of images with multiple overlaps as input data. The images are 

assumed to be captured by calibrated camera devices, thus the intrinsic parameters 

should be provided by users. From the outset, the incremental SfM system will perform 

feature detections and extractions to all images in the input dataset, and then the images 

will undergo pair-wise for feature matching. To build an initial geometric structure 

reconstruction, two images are selected from the dataset as initial two-view. Snavely et 

al. (2008) stated that the choice of initial image pair is necessary to establish a robust 

3D reconstruction, and the selected two images should have a large number of 

correspondences and a reasonably large baseline to perform triangulation – this is 

because a small baseline will cause high depth ambiguity, and the erroneous 3D points 

will corrupt the map and ruin tracking (Herrera et al., 2014). The baseline can be 

obtained from the motion between two camera models, but the camera motions in 

monocular SfM are unknown and they also need to be estimated through the image data. 

The specific process of two-view motion estimation based on epipolar geometry is 

presented in Subsection 4.2.1.1 and a linear triangulation method is presented in 

Subsection 4.2.1.2. Then the initial reconstruction with a form of sparse point cloud can 

be built. The point cloud is constituted of the 3D points obtained by back-projecting the 

feature points from the matched images to the world reference coordinate system. The 

system then sets out to find visual feature correspondences between each of the 

remaining images in the dataset and the recovered point cloud to estimate camera 

motions, and further camera poses in respect of the world. Hence the new 3D points 

recovered from these correspondences can be gradually added to the cloud. This 
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incremental reconstruction process is presented in Subsection 4.2.1.3. Since errors may 

exist during the camera motion/pose estimation, an SfM system usually applies bundle 

adjustment to refine the 3D reconstructed result. This optimisation adjusts the back-

projected position of the recovered cloud points and the camera pose of processed 

images to minimise the sum of re-projection errors; this is presented in Subsection 

4.2.1.4.  Bundle adjustment is usually performed after a new image and its contributions 

(i.e. new recovered cloud points) are added to ensure the robustness and stability of the 

reconstruction process.  

 

4.2.1.1 Epipolar geometry and camera motion estimation 

Epipolar geometry is usually used for estimate the camera motions between the images 

by using 2D-to-2D correspondences. It describes a setting where two pinhole cameras 

are looking at a same object or scene from two distinct positions, and is similar to the 

configuration of the human eyes when fixating on an object. In Figure 4-10, the two 

cameras, C0 and C1, are observing same 3D world point PW from different views and an 

epipolar constraint can be found between them.  
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Figure 4-10: Epipolar geometry constraints between two pinhole camera models. 

 

Since there is a displacement between the cameras C0 and C1, their optical centres can 

be projected onto a point within each other’s image plane. These projected points are 

called epipolar points and are denoted by 
0Ce and 

1Ce respectively. The line segment 

00 CC -ep is the epipolar line of the camera C0 and is denoted by
0Cl . It is actually the 

projection of the space line which connects the 3D point PW and the optical centre of C1 

on the C0’s image planes. Symmetrically, the line
11 CC - ep is the epipolar line of the 

camera C1 as well as the projection of the space line from PW to C0’s optical centre, 

denoted by
1Cl . 

 

Assume an arbitrary space point PW has 2D projections
0Cp and

1Cp  on C0 and C1 

respectively. These two projective points can be represented with same homogeneous 

coordinates form expressed in expression (3.6), i.e.    1 =
T

CCCCC 00000
vuw pw 
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and    1 =
T

CCCCC 11111
vuw pw  respectively. Through epipolar constraints, the 

corresponding points
0Cp and

1Cp should satisfies the condition given in (4.12). 

0
01

T
  pp CC F

 
(4.12) 

where F is a unique 3x3 rank 2 homogeneous fundamental matrix (Hartley & Zisserman, 

2003). This equation implies that 
0CpF defines the corresponding epipolar line

1Cl , and

1Cp should lie on it. The fundamental matrix between images only depends on their 

point correspondences and thus it can be calculated from them. Being of a rank two 

matrix, F can be estimated given at least seven correspondences by several methods (e.g. 

the 7-point algorithm (Hartley & Zisserman, 2003), RANSAC,  or Least Median of 

Squares (Rousseeuw, 1984)). In the practice programme process with the OpenCV 

library, the fundamental matrix can be obtained by passing raw matched 

correspondences to the function findFundamentalMat. The valid F will ensure that most 

of the correspondences meet the condition in (4.12), and the remainder which do not 

satisfy the epipolar constraints are considered as outliers. 

 

Suppose the camera models of selected initial two-view in SfM process are denoted by 

C0 and C1, the visual feature correspondences between them are already computed (the 

detail of feature detection and matching will be given in Section 4.3.1), and the 

fundamental matrix between them can be estimated by using their matched 

correspondences. But in order to obtain the camera motion, another useful matrix – the 

essential matrix is introduced. Similar to the fundamental matrix, the essential matrix 

imposes a geometry constraint between the matched homogeneous normalised 

coordinates in two images, and also implies the position and orientation information of 
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both cameras in space. In fact, the essential matrix is the specialisation of the 

fundamental matrix to the case of normalised image coordinates, and it can be obtained 

from the fundamental matrix by using the intrinsic matrices of the cameras: 

01 C
T

C =  FKKE
 

(4.13) 

where 
0CK  and 

1CK  denote the 3x3 camera intrinsic matrices of two images respectively. 

If the images are captured by same camera device, they will share same intrinsic matrix. 

 

Assume the initial image pair has normalised 3x4 camera extrinsic matrices 

  0| I    
0C T and   |     

1C tRT , which indicates the camera poses and can be used to 

map world coordinates to camera coordinates as shown in equation (3.1). Since the first 

camera matrix 
0CT is assumed to be fixed and canonical (i.e. no rotation and no 

translation), the desired camera motion between them is equivalent to
1CT , the rotation 

component R and translation component t of which are included in the corresponding 

3x3 essential matrix E: 

Rt ×][ =  E  (4.14) 

where ×][t represents the skew-symmetric matrix of 3D translation vector t (see 

Appendix E) . The R and t can be extracted from E by using singular value 

decomposition: 

  T
× 1,1,0diag][ =  VURt E  

(4.15) 

where U and V are 3x3 unitary matrix. Hartley & Zisserman (2003) indicates that there 

are 4 possible solutions for
1CT : 
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W , u3 is the third column of U. There is only one solution that can 

make the recovered 3D point exist in front of both cameras, and the real
1CT can be found 

by testing all solutions with an arbitrary single point. Since the first camera is set to the 

fixed one in this case, its camera reference frame is the equal of the world reference 

frame, and the camera matrix
1CT and the coordinates of recovered space points will be 

all based on this coordinate system. Alternatively if another world reference frame is 

desired to be used, the relative transformation from the first camera frame to it should 

be given. 

 

4.2.1.2 Linear triangulation 

Linear triangulation is one of the most common triangulation methods and is based on 

Hartley et al. (1992). Note that the equations presented below can only define a space 

point up to an indeterminate scale factor due to the inherent scale factor ambiguity of 

SfM. Assume a 3D world point PW is being projected to two pixel coordinates 
0Cp and

1Cp on the image planes of C0 and C1 respectively by using expression (3.5) (i.e. the 

setup shown in Figure 4-10). Let KTA    in (3.5) where A takes a form of a 3x4 
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camera matrix, and it can denoted by  TT
2

T
1

T
0 AAAA , where Ai

T
 represents the i-

th row vector of A. Then the relationships between PW and
0Cp , 

1Cp can be depicted in 

the following equations: 
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Substituting 
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It can be found that (4.19) is a four linear inhomogeneous system and PW only has three 

unknowns. Thus ideally the PW can be solved when its correspondence measurements 

from two images and the related camera matrices are available. These are supplied by 

finding feature correspondences and camera motion estimations as described in the 

previous section. Note that the linear triangulation described here is a very basic one 

which does not consider the effect of noisy data mentioned in Section 2.2.3.1. In 

practice, the errors caused by the mismatch will be compensated in the optimisation 

stage by using bundle adjustment, which will be described in Section 4.2.1.4. 
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4.2.1.3 Incremental reconstruction 

Once the geometric structure of the scene in the initial two-view has been recovered, 

other images in the input dataset can be processed based on the initial reconstruction. 

Their camera poses and more geometry information of the targets can also be recovered. 

The next image to add should share enough matched features to the recovered cloud 

points, then these 3D-to-2D coordinated correspondences between them can be used to 

estimate the new camera pose by solving the PnP problem. In the practice programme 

process, the OpenCV library provides a solvePnP function which supports solving the 

PnP problem by using the Levenberg-Marquardt iterative method, P3P or E-PnP 

methods, which have been reviewed in Section 2.2.3.1. After the camera pose has been 

found, the correspondences (which do not yet exist in the current point cloud) between 

the new image and the old processed images will be triangulated and back-projected to 

the world coordinates by using the same approach described in Section 4.1.2.2. Since 

not every point on the images will be back-projected to the reference frame (this makes 

sense because in the tracking session, only feature points are able to be tracked), the 

final result of the reconstruction is a sparse point cloud.  

 

4.2.1.4 Reconstruction optimisation 

As mentioned in Section 2.2.3.1, SfM usually applies a bundle adjustment to produce 

optimal solutions for recovered cloud point coordinates and the estimated pose of added 

cameras. If the approximated 3D coordinates are re-projected onto the images, the 

projections should be very close to their original 2D coordinates. Moreover, a 3D point 

is not restricted by only one 2D image point, but two or more from different images 

with the respective estimated camera matrices. A local optimal solution of point 



184 

 

positions and camera poses may lead to a large global error, and bundle adjustment tries 

to find a best set-up for all data being fitted to a global optimisation.  

 

More specifically, a bundle adjustment makes use of the constraints between the 3D 

points and the camera matrices to minimise the sum of re-projection errors. Assume 

there are total m 3D points and n cameras. Ti represents the camera extrinsic matrix of 

the i-th camera and Pj represents the j-th 3D point. If Pj is visible in the i-th camera, 

then its originating point is denoted by pij, and the re-projected point with Ti is denoted 

by RP(Pj, Ti). Then the re-projected error of Pj to the i-th camera is defined as: 

),( ijijij Pp TRPe
 

(4.20) 

And the objective function to minimise can be written as: 
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where ij is an indicator variable, it equals 1 when Pj is visible in the i-th camera, 

otherwise it equals 0. The parameters for attaining this minimum include a 3-vector of 

each 3D point and 6DOF for each camera matrix; the total number of parameters 

involved is 3m+6n. Theoretically this could inflate to a huge problem with the 

increasing of the parameters, where the general complexity of bundle adjustment for 

SfM will be  3nm . However, this case has a block-sparse structure because the 

projection of 3D point on a certain camera is independent to the other points and 

cameras. Accordingly, there is a sparse version bundle adjustment – SBA (Lourakis & 

Argyros, 2009) which is capable of dealing with this kind of problem efficiently and 

reduces the complexity to  3nmn . 
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4.2.2. VisualSfM 

VisualSfM is a comprehensive command-line/GUI application for incremental 3D 

reconstruction which features SiftGPU for feature detection and matching and Multicore 

Bundle Adjustment for refinement. The application provides a good balance of process 

between speed and accuracy, and has been used in several AR related research projects 

to generate 3D reference models (such as Simões et al. (2013) and Kurihara & Sagawa 

(2014) who utilise VisualSfM for 3D reconstruction of industrial facilities). Although 

VisualSfM is not totally open-sourced, it stores the intermediate data and results in files 

which contain camera parameters, image features, descriptors and matching list, 

together with the final result of restored sparse point clouds. These output files can 

provide sufficient visual and geometric information of the target environment and is 

used for template/database training of AR applications in the presented proposal. 

Specifically, the following steps can be performed by using VisualSfM for 3D 

reconstruction:   

1) Let the user select a set of images (with or without detected visual features) from 

files as input. If the image features are not given, VisualSfM will perform 

feature detections by using default SiftGPU for each image and save the results 

in SIFT files (the detail of a SIFT file is given in Appendix G). 

2) Let VisualSfM perform pair-wise matching for all images if the default feature 

descriptors (i.e. SIFT-like descriptors) are used. The results will be saved in 

several MAT files (the detail of a MAT file is given in Appendix G). Otherwise 

the similar format MAT files with the list of feature correspondences of each 
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image should be imported by user.  

3) Let VisualSfM incrementally recover sparse point clouds (the process of bundle 

adjustment is integrated) from the input images by using the features saved in 

step (1) and correspondences saved in step (2). The intermediate parameters and 

final results will be saved in a NVM file (the detail of an NVM file is given in 

Appendix G). The reconstructed dense model will be saved in a PLY file 

(Bourke, 2009). 

 

The default feature detector and extractor used in VisualSfM is based on SiftGPU – an 

implementation of the SIFT algorithm which can detect SIFT features and process SIFT 

descriptors efficiently by utilising GPU computation. Once the input image dataset has 

been specified by user, VisualSfM will automatically perform feature detection to all 

images and save these features separately to several SIFT files by each image. Each 

SIFT file contains a list of detected features of one image and the corresponding 

descriptor vectors. These feature information sets will be used by VisualSfM for 

matching keypoints between each pair of images to select the best initial two-view for 

subsequent 3D reconstruction, as mentioned previously in Section 4.2.1. Alternatively, 

if the user wishes to make use of customised feature detection and representation 

algorithms, VisualSfM can still perform feature matching to those SIFT-like descriptors 

if they have been stored in the required SIFT format. Otherwise, the user should specify 

the feature matching results for each image in the required MAT format by using an 

API provided by Wu (2011). Actually the MAT file only contains the indices of 

matched feature – it does not matter what kind of feature or descriptor is used. With the 

input images and their feature correspondences, VisualSfM will build a sparse point 
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cloud model. In practice, some images may not be successfully registered to the 

constructed model due to the absence of features or matched correspondences with other 

images.  

 

VisualSfM generates an NVM file which contains the list of camera parameters (both 

intrinsic and extrinsic), the reconstructed sparse 3D cloud points and their originating 

2D measurements. The approaches of how to utilise the output data of VisualSfM to 

generate template and reference database for an online tracking session will be 

described in Chapter 5. VisualSfM also supports the population of a dense point cloud 

model by using multi-view stereo techniques on sparse reconstruction results (as shown 

in Figure 4-11), which will be used as visual reference for developer to set up the 

augmented scene in the proposed development framework, as described in Chapter 6. 
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Figure 4-11: The sparse point cloud reconstruction of a car generated by VisualSfM (upper) and the dense 

point cloud reconstruction based on the VisualSfM result (lower). 
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4.3. Reconstruction evaluations  

Since the reconstructed 3D structure information of target environment and the camera 

pose of each engaged colour image will be used as templates (reference map) in the 

online AR application for user tracking, The results should be strictly consistent with 

the real world (i.e. the ground truth data which defines the real location of each object in 

space) as much as possible. As mentioned at the beginning of this Chapter, the 3D 

reconstruction process here refers to creating a set of sparse 3D cloud points from the 

2D images, and each cloud point is associated with a distinguishable visual feature. The 

real values of these keypoints (associated spatial positions and visual features) are not 

easy to measure and collect by other kinds of sensor as mentioned in Section 2.3.3, 

which is why the vision-based 3D reconstruction approaches are applied for this aim. 

Furthermore, to compare the ground truth points with their reconstruction results, they 

need to be tightly coupled with the visual information (e.g. feature description) in the 

first instance. Then it will be possible to find their corresponding cloud points to 

compare, but during the process of association and matching, mismatch noise may 

occur, which cannot be used for evaluation. Therefore, the estimated camera pose 

which is independent of the visual information, is compared to ground truth 

instead here for evaluating the accuracy of the reconstruction results. As reviewed 

in Section 2.3.3, the ground truth camera trajectory can be obtained from a non-visual 

motion-capture system ground truth. The accuracy of pose estimation can also reflect 

the performance of the 3D reconstruction due to the fact that the estimations of cloud 

points and camera pose are interdependent during the reconstruction process.  

 

Two public datasets containing ground truth camera trajectory and calibrated intrinsic 
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parameters  were tested in this stage for accuracy evaluation – four RGBD sequences of 

indoor environment published by Sturm et al. (2012) and two RGB image sets of 

outdoor environment published by Strecha et al. (2008). An outdoor RGBD dataset is 

not available since, in the main, Kinect RGBD data can only be collected under indoor 

environment al conditions due to the limitation of RGBD camera mentioned in Section 

2.2.3.2. Thus the RGBD-SLAM based approach will only be tested on indoor RGBD 

datasets. In contrast, the SfM-based approaches can deal with the colour images 

contained within both RGBD and RGB datasets. The information of public datasets 

used for test is shown in Table 4-1. 

 

Table 4-1: The public datasets used in the present research. 

RGBD 

datasets 

(indoor, 640 

x 480) 

Sequence 

'freiburg1_desk' 

 

 

Duration: 23.40s (577 frames) 

Duration with ground-truth: 23.35s 

Ground-truth trajectory length: 

9.263m 

Avg. translational velocity: 0.413m/s 

Avg. angular velocity: 23.327deg/s 

Trajectory dim.: 2.42m x 1.34m x 

0.66m 

Sequence 

'freiburg1_floor' 

 

 

Duration: 49.87s (1242 frames) 

Duration with ground-truth: 44.27s 

Ground truth trajectory length: 

12.569m 

Avg. translational velocity: 0.258m/s 

Avg. angular velocity: 15.071deg/s 

Trajectory dim.: 2.30m x 1.31m x 

0.58m 
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Sequence 

'freiburg1_360' 

 

Duration: 28.69s (756 frames) 

Duration with ground-truth: 28.70s 

Ground-truth trajectory length: 

5.818m 

Avg. translational velocity: 0.210m/s 

Avg. angular velocity: 41.600deg/s 

Trajectory dim.: 0.54m x 0.46m x 

0.47m 

Sequence 

'freiburg3_long_

office_ 

household' 

 

Duration: 87.09s (2585 frames) 

Duration with ground-truth: 87.10s 

Ground-truth trajectory length: 

21.455m 

Avg. translational velocity: 0.249m/s 

Avg. angular velocity: 10.188deg/s 

Trajectory dim.: 5.12m x 4.89m x 

0.54m 

RGB 

datasets 

(outdoor, 

3072 x 

2048) 

fountain-P11 

 

Size: 11 

Avg. translational displacement: 

1.695m 

Avg. rotation angle: 61.231 deg 

castle-P30 

 

Size: 30 

Avg. translational displacement:  

4.762m 

(excluded the huge first leap of 

24.012m) 

Avg. rotation angle: 63.020 deg 
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Since both RGBDSLAM v2 and VisualSfM allow users to set which methods to use for 

feature detection, description and matching methods, the performance of several visual 

features reviewed in Section 2.2.2 are firstly tested and evaluated in Subsection 4.3.1. 

Then two of the best-performing methods SiftGPU and ORB features are selected to be 

used for offline 3D reconstruction with both approaches on the public datasets 

mentioned above. The results are presented in Subsection 4.3.2. All the tests were 

carried on a laptop powered by an Intel® i7-4510 CPU at 2.00GHz x 4, with 16GB of 

RAM and Nvidia GeForce GT 750M Graphics Card.   

 

4.3.1. A small study on visual features 

The quality of 3D reconstruction and the user-tracking stage described in Chapter 5 

strongly depends on the performance of visual feature detection and matching. 

Intuitively the system detects the distinguishable local visual features within an image, 

refers to them as feature points or keypoints, and abstracts them into quantitative 

descriptions (i.e. feature descriptors). Thus Keypoints from different images with 

similar descriptors are considered to be matched and referred to as ‘correspondences’ 

above. In fact, feature matching is a nearest descriptor retrieval problem and whichever 

method is chosen only impacts the execution time. The accuracy of matching is based 

on robust feature detection and representation. Robust features should be distinctive, 

repeatable and invariant to various changes – in particular scale and rotation. With the 

exception of the robustness, performance speed also needs attention. Although a real-

time performance is not required in the offline session, the similar features will be used 

as templates in the time-constrained AR application which demand real-time operation. 
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A trade-off between accuracy and speed should be considered. Several feature detectors 

and extractors have been reviewed in Section 2.2.2. The most representative blob-like 

feature methods – SIFT and SURF; the corner detector with binary descriptor method – 

ORB and a fast implementation of SIFT with GPU computation – SIFTGPU are tested 

and discussed below. The test is carried out with the RGB dataset [fountain-P11] of 

Strecha et al. (2008) which consists of 11, 3072 x 2048 high resolution images of the 

same fountain captured from different angles. The test is also carried out with a set of 

the down-sampled images of [fountain-P11] with a 720 x 480 resolution as comparison 

by considering that normal webcams and the Kinect sensor can provide images at this 

level. The SIFT, SURF and ORB methods tested here are OpenCV 2.4.9 

implementation with default parameters (for the SURF detector the recommend Hessian 

threshold in OpenCV documentation is 300~500, thus 400 is used; 64-D and 128-D 

SURF descriptors are both tested).  

 

The first experiment focuses on the processing time of feature detection and extraction. 

Without limiting the maximum number of features to detect, the average number of 

detected keypoints and the average processing time for feature detection and extraction 

with each method for 11 full-size and down-sampled images are summarised in Table 

4-2. Note the qualities of all average values below were expressed with relative 

standard deviations (RSD), i.e. the ratio of standard deviation to mean value. 

  



194 

 

Table 4-2: A performance test on different feature detector – extractors (bracketed are %RSD). 

11 images of 

 [fountain-P11] 

OpenCV SiftGPU 

(GLSL,  

128-D) 

SIFT 

(128-D) 

SURF 

(64-D) 

SURF 

(128-D) 

ORB(256 bits 

= 32-D) 

3072 

x 

2048 

pixels 

(full-

size) 

Avg. No.  

features 

4968 

(±22%) 

6357 

(±16%) 

12224 

(±43%) 

16511 

(±5%) 

Avg. 

detection 

time (ms) 

1894 

(±2%) 

594 

(±5%) 

616 

(±6%) 

53 

(±13%) 
Avg. detection 

& extraction 

(ms): 

302 

(±5%) 

Avg. 

extraction 

time (ms) 

 

1634 

(±3%) 

748 

(±19%) 

726 

(±18%) 

122 

(±13%) 

 

720 

x 

480 

pixels 

(down-

sampled) 

Avg. No.  

features 

1620 

(±20%) 

825 

(±25%) 

5225 

(±19%) 

3679 

(±11%) 

Avg. 

detection 

time (ms) 

147 

(±7%) 

53 

(±11%) 

50 

(±12%) 

12 

(±25%) 

Avg. detection 

& extraction 

(ms): 

64 

 (±10%)  

Avg. 

extraction 

time (ms) 

167 

(±11%) 

81 

(±30%) 

82 

(±27%) 

27 

(±15%) 

 

Consider that to same image the processing time will depend on some degree of the 

number of detected features, it can be found that ORB detector – descriptor extracted 

relatively more features with less time, and SiftGPU comes second. These two 

performed significantly faster than SURF and SIFT. The original SIFT is the slowest, 

and its processing time with both full-size and down-sampled images are unacceptable 
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for real-time application. The choice of the number of dimensions for the SURF 

descriptor has little effect on processing time. It also can be found that the largest 

numbers of keypoints are detected by using ORB and SiftGPU detectors. SURF and 

SIFT also provide sufficient keypoints.  

 

Then the robustness of each kind of descriptor extracted above will be measured via the 

accuracy when using them for feature matching. The images in [fountain-P11] are 

compared with each other in a pair-wise fashion to find keypoint correspondences 

(which makes sense since it is actually performed at the beginning of SfM system 

described in Section 4.2). For 11 images in [fountain-P11] there will be 55 comparisons 

to perform. When two images are being compared, the sets of descriptors from two 

images are referred to as query data and train data respectively. For histogram-based 

SIFT-like descriptors, FLANN introduced in Section 2.2.2.2 is the preferred technique. 

The main idea involves structuring the descriptor vectors of train image, and then the 

descriptors of query image will only compare with a partition of the descriptors on train 

image to efficiently find the one with the nearest distance as a match. However, this 

kind of structuring does not fit to the binary descriptor since there is a binary value on 

each bit of vector and it is unnecessary to cluster them into different groups. Thus, for 

ORB descriptors, the simplest brute-force search is much more efficient and will be 

used. The FLANN and brute-force matching methods have already been implemented in 

OpenCV and will be used here. For the SiftGPU, both the FLANN matcher supported 

by OpenCV and its own encapsulated matching methods – SiftMatchGPU – will be 

tested. The OpenCV FLANN matcher does not really judge which two descriptors from 

these two sets are matched, but does a k-NN search to find the nearest k=2 descriptor in 
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train for each query. Then a ratio test will make sure that a match is kept only if the 

distance ratio 
NN2

NN1 
d

d
ratio  between the closest neighbour ( NN1 d ) and the second 

closest neighbour ( NN2d ) is below a certain threshold. For SIFT style feature matching 

0.6 – 0.8 is suggested in Lowe (2004) hence 0.7 was used here for SIFT and SURF 

descriptors. Moreover, cross-matching was also applied, which will match train 

descriptors with the query set and vice versa –, and only common matches are kept as 

the raw matching results. The cross-check test can be enabled for OpenCV brute-force 

matcher also by setting the related argument to true, but in this case k-NN search is not 

available and it should be noted that the distance metric used in SIFT-like and binary 

descriptors are very different. Much refined results can be achieved by removing the 

mismatches by checking geometric consistency with RANSAC. The main idea is 

estimating a transformation (epipolar or homography) between the matched keypoints 

to filter out the outliers. The homography estimation only works with the features on a 

planar object as shown in Figure 4-12, which is often used in plane marker-based AR 

systems.  
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Figure 4-12: Homography correspondences between two images. 

 

In this case, epipolar is more suitable. For the purpose of evaluating the different 

descriptors used in feature matching, the fundamental matrices between each pair of 

images are extracted from the ground truth camera projection matrices A = KT where K 

and T has the same definitions as in expression (3.5). The fundamental matrix between 

two 3x4 camera projection matrices A and A’ can be calculated as:  


 AAAF ']'[ c  (4.22) 

where c is the camera centre of A, defined by Ac = 0; A
+
 is the 4x3 pseudo-inverse 

matrix of A that A A
+
 equals to identity matrix I. The match of two images coordinates 

which meets the formula (4.12) will be considered as a good match.  

 

The matches pass the cross-check and ratio test will be considered as initial matching 

results. Here the accuracy will be assessed by a good match rate –, i.e. the ratio 

between the number of good matches and initial matches in which the good matches are 

kept by ground truth fundamental matrices (provided along with the dataset in Strecha 
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et al. (2008)). Another factor to consider is the ratio between the number of good 

matches and the minimum number of features detected in the pair of images to compare 

–, i.e. the repeatability of detected features (Canclini et al., 2013). The processing time 

of matching is also considered. The average processing time of each comparison, the 

good match ratio and the repeatability for each feature descriptor are given in Table 4-3. 

Since the ground truth fundamental matrices cannot be used for down-sampled images, 

only full-size images were evaluated in this experiment.   

 

Table 4-3: A performance test on different matching methods for different types of feature (bracketed 

are %RSD). 

55 pair-wise 

comparisons of 

[fountain-P11]  

OpenCV SiftGPU 

SIFT 

(FLANN) 

SURF 

(64-D, 

FLANN) 

SURF 

(128-D, 

FLANN) 

ORB 

(Brute-

force) 

FLANN 
SiftMatch  

GPU  

Avg. matching time of 

per comparison (ms) 

327 

(±32%) 

371 

(±37%) 

408 

(±26%) 

1902 

(±59%) 

2186 

(±60%) 

111 

(±10%) 

Avg. good match ratio 

0.88 

(±18%) 

0.79 

(±32%) 

0.74 

(±36%) 

0.21 

(±82%) 

0.90 

(±17%) 

0.54 

(±64%) 

Avg. repeatability 

0.12 

(±114%) 

0.09 

(±128%) 

0.06 

(±138%) 

0.12 

(±82%) 

0.14 

(±112%) 

0.03 

(±110%) 

 

The good match ratio reflects how well the descriptor represents a feature. The 

repeatability of detected features implies the distinctiveness and robustness of the 

descriptor. It can be found that SiftGPU and OpenCV SIFT descriptors have the 

relatively higher performance than other methods. However, consider that SiftGPU 

using default settings detected much more features than OpenCV SIFT (as shown in 
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Table 4-2). It took more processing time for matching each pair of images when 

OpenCV FLANN matcher was used, but with regard to average good match ratio and 

repeatability, these two are very close. On the other hand, if SiftGPU made use of its 

integrated matching function SiftMatchGPU, it could process feature matching in very 

efficient way. Nevertheless, the relatively lower good match ratio and the lowest 

repeatability of this method indicate that a lot of good matches kept by FLANN matcher 

were eliminated here. This may suggest that the slower OpenCV FLANN matcher, 

providing plenty of reliable correspondences, is more applicable to the offline 3D 

reconstruction in the present proposed system; in contrast, the efficient SiftGPU 

matcher can be used in the online stage.   

 

The performance of OpenCV SURF descriptor followed the SIFT methods. It is 

interesting to see that the 64-D descriptor performs better than the 128-D, not only on 

processing time, but also on good match ratio and repeatability. The good match ratio of 

OpenCV ORB descriptor with brute-force matcher seems like the worst. However the 

repeatability of detected features was at the same level as SIFT, which might imply that 

the high mismatch rate was caused by OpenCV brute-force matcher rather than ORB 

descriptor. The major cause of slower processing time is because that the brute-force 

method was applied for ORB descriptor matching, which has the complexity of  mn  

when searching m query data through n train data.  

 

In practice, too many keypoints contribute little to the improvement of the system 

performance but will increase the computational costs of detection, matching and 

particularly the RANSAC approximation of estimating transformation via 
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correspondences. Although there is no request of time limit in the offline stage, a lower 

cost solution with the same accuracy is preferred. Therefore by considering that both 

ORB and SiftGPU detectors detected a mass of keypoints in last two experiments,  the 

maximum number of features to detect was limited to 5750 (the average number of 

features detected by OpenCV SIFT and SURF detectors) in the next experiment. The 

matching methods applied were same to the last experiment and the performance of 

each approach was still evaluated with good match ratio, repeatability of detected 

features and processing time. The results are shown in Table 4-4.  

  

Table 4-4: The performance test on ORB and SiftGPU which has limited the number of features to detect 

(bracketed are %RSD). 

55 pair-wise comparisons of 

[fountain-P11]  

Limited maximum number of detected features = 5750 

OpenCV ORB 

(Brute-force) 

SiftGPU 

FLANN SiftMatchGPU 

Avg. matching time of 

per comparison (ms) 

324 

(±6%) 

399 

(±40%) 

116 

(±16%) 

Avg. good match ratio 

0.19 

(±86%) 

0.89 

(±16%) 

0.61 

(±51%) 

Avg. repeatability 

0.10 

(±93%) 

0.13 

(±109%) 

0.12 

(±103%) 

 

It can be seen that, although the performance of ORB and SiftGPU with FLANN 

matcher on good match ratio and repeatability has decreased marginally than the result 

shown in Table 4-3, the average matching time was improved significantly by limiting 

the number of detected features. The processing time of ORB was even slightly better 

than OpenCV SIFT and SURF. With regard to SiftMatchGPU, the processing time was 
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nearly unaffected and the average good match ratio increased somewhat, but due to the 

reduction of detected features, the repeatability of detected features arrived to the 

similar level to the other methods.   

 

Overall, the present research will take a balance by testing SiftGPU, which is as robust 

as the original SIFT and faster than SURF, and ORB, which is implemented with a 

totally different mechanism to the SIFT-like algorithms, but capable of achieving an 

efficient and reasonable performance without GPU computation. The 3D reconstruction 

results and related discussion are shown in next section. 

 

4.3.2. The evaluation of 3D sparse reconstruction based on camera pose 

estimation 

Two 3D reconstruction/mapping methods described above were tested for their 

performance when creating reference templates for AR tracking and registration from 

two perspectives: 1) evaluating the accuracy of the estimated camera pose/trajectory of 

the input images by comparing them to the ground truth, i.e. the evaluation metrics 

regularly used for SLAM system; 2) testing if the accuracy of estimated camera pose is 

qualified for a precise AR registration – thus the reconstructed result can be a qualified 

reference for the following online AR tracking.   

 

The two methods were firstly tested on indoor RGBD sequences [freiburg1_desk], 

[freiburg1_floor], [freiburg1_360] and [freiburg3_long_office_household] provided by 

Sturm et al. (2012) and evaluated mainly through their benchmark described in Section 
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2.3.3. Each sequence consists of a continuous set of 640 x 480 synchronous RGB and 

depth image pairs collected within an office-like indoor environment with a sampling 

rate at 30 frames per second and the related camera information (intrinsic camera 

parameters). The property of each sequence is given below:  

 [freiburg1_desk] is a short sequence which contains several sweeps over a 

number of desks in a typical office environment; 

 [freiburg1_floor] represents a sweep over the planar floor which contains several 

salient knotholes and is considered easy to track by authors; 

 the camera motion of [freiburg1_360] was moved quickly up and down 

vertically with a 360° turn in the horizontal plane, and most of the colour images 

are blurred as a result of fast camera motion;  

 [freiburg3_long_office_household] has the longest duration, as the camera was 

moved slowly and steadily around an office desk with many textural and 

structural features, and the end of the trajectory overlaps with the beginning.  

 

Sturm et al. (2012) provide the camera ground truth trajectory of each seuqence, thus 

the accuracy of reconstructied template can be assessed by comparing the camera pose 

estimation of each frame inside the seqence to the coressponding ground truth. The 

RMSE (Root Mean Squared Error) was used here to measure the absolute trajectory 

error between estimation and ground truth in quantity as Sturm et al. (2012) suggested 

in their benchmark. The RMSE is also known as root mean squared deviation which 

assesses the quality of an estimator by measuring the average of the deviations between 

the estimator and what is estimated, and has the same units as the quantity being 

estimated. In order to calculate the RMSE between the reconstructed result and ground 
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truth, the estimated camera poses were firstly associated with the ground truth trajectory 

by matching the timestamps (which are involved in the output file specified in 

Appendix F). Since the reference frame of the ground truth is different from the world 

reference frame used during the reconstruction, the estimation should align to the 

ground truth by finding translation and rotation transformation between two frames. The 

camera centre contained within pose can be considered as a 3D coordinate, thus there is 

set of 3D-to-3D correspondences between the estimation and ground truth, which can be 

used with the SVD method introduced in Section 4.1.2.3 to solve the transformation and 

align the estimated data to the ground truth frame. The difference between the aligned 

estimation and ground truth is computed as a vector of translational error, where the i-th 

element is calculated as: 

2
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and the translational RMSE can be obtained as: 
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The smaller RMSE is the better accuracy of the reconstruction achieves. Here the 

RMSE is measured in meters. 

 

Since the method of SiftGPU detector – descriptor with FLANN matcher is believed to 

possess the optimum comprehensive performance (through the test discussed in the 

previous section), this combination was applied for both reconstruction methods along 

with the efficient OpenCV ORB detector – descriptor and  brute-force matcher. These 



204 

 

two approaches were tested under the same conditions – the maximum number of 

features to detect was limited to 600 for both approaches on 640 x 480 image sets since 

it has been found in Section 4.3.1 that detecting more features did not contribute more 

to the performance. On the contrary, it took more processing time and the result was not 

superior to those with fewer features (see Table 4-3 and Table 4-4 for comparison). 

RGBDSLAM v2 was firstly tested on the RGBD dataset. The total processing time and 

the RMSE on each sequence with both SiftGPU and ORB approaches are recorded in 

Table 4-5. The RMSE was divided into ‘before and after final optimisation’ to see 

whether applying a global g2o optimisation would improve the reconstruction results. 

As mentioned in Section 4.1.2.4, a g2o optimiser was called every time after adding a 

new node for performing optimisation and it allows user to choose which nodes should 

be set as fixed during the optimisation. Only setting the first node as fixed will perform 

a global optimisation which ideally gives the optimal result, but when there are so many 

nodes and constraint edges in graph, the system time becomes really costly. Therefore, 

all added nodes except the latest one would be set fixed to perform local optimisation 

during the reconstruction, and a global optimisation would only be performed at the 

final stage of the process for efficiency. Actually, the strategy of performing global 

optimisation on each new added frame was tested on a sequence [freiburg1_desk] to 

compare with the case of using local optimisation.  It cost 5274s for the whole 

reconstruction whilst applying local optimisation to the same condition only took 711s 

(see total processing time with SiftGPU on [freiburg1_desk] in Table 4-5). However the 

RMSE of results were the same, to 0.022m well.  

.  

 



Table 4-5: The performance test of RGBDSLAM v2 on different RGBD sequences. 

RGBD sequence 

(640 x 480) 

No. RGBD 

frames 

(full 30fps) 

Feature detectors and matchers 

SiftGPU  +  OpenCV FLANN OpenCV ORB + Brute-force 

Total 

processing 

time (s) 

RMSE 

(m) 

RMSE (m) 

after final 

global 

optimisation 

Max. error 

(m) 

Total 

processing 

time (s) 

RMSE 

(m) 

RMSE (m) 

after final 

global 

optimisation 

Max. error 

(m) 

[freiburg1_desk] 577 711 0.022 0.022 0.075 467 0.027 0.024 0.08 

[freiburg1_floor] 1222 1528 0.032 0.028 0.108 1210 0.040 0.030 0.108 

[freiburg1_360] 745 797 0.071 0.057 0.122 566 0.071 0.060 0.155 

[freiburg3_long_of

fice_household] 

2487  3681 0.024 0.033 0.07 3084 0.055 0.032 0.06 

 

  



It can be found that the accuracy of results with SiftGPU method was, in general, better 

than those with the ORB method through the value of RMSE before final optimisation. 

But by performing final global optimisation, the RMSE with ORB can be improved to 

the same level of those with SiftGPU. On the other hand, the processing time of ORB 

was still more efficient than SiftGPU. 

 

VisualSfM was tested on the colour images contained within the above RGBD dataset. 

In order to compare with RGBDSLAM v2 in similar condition, the same configurations 

of feature detectors and descriptors were used in VisualSfM. For SiftGPU, the 

descriptors extracted during the process of RGBDSLAM v2 were exported to .sift files 

(see Appendix G) and imported to VisualSfM for further feature matching and sparse 

reconstruction.  For ORB which is not supported by VisualSfM natively, the pair-wise 

matching results by OpenCV brute-force matcher were exported and used by VisualSfM 

for performing reconstruction. However, it should notice that there was extra processing 

time shown in Table 4-6 for exporting and importing the features or matching results for 

VisualSfM.  

 

In contrast to RGBSLAM v2, which requires sequence frames as input, the input data of 

VisualSfM is considered as unordered and each image in the dataset will be compared 

with the others to select the best initial two-view, based on a large number of 

correspondences and a reasonable large baseline (as mentioned in Section 4.2.1). The 

successive images with small camera movement between the adjacent frames are to be 

avoided, since the system will take too much time execute pair-wise matching, but the 

baseline between these adjacent frames are too small for use during triangulation. For 
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this reason, some adjacent frames with small differences inside the sequences were 

skipped. This step should have been automatically processed by system but the present 

VisualSfM does not support this function. Therefore how many frames should be 

selected to skip is depending on the baseline distance, average camera translational 

velocity and angular velocity of each sequence indicated in Table 4-1. The baseline 

distance was chosen based on the RGB sensor’s intrinsic parameter and the depth range 

of the Kinect. The relationship between them is given in Navab & Unger (2010) as 

below:  

Disparity

length Focal*Baseline
 Depth   (4.25) 

 

where the disparity measures the displacement of a point between the two images. 

Consider that all Sturm et al. (2012) RGBD sequences are about indoors office-like 

environment, the baseline distance should have been 0.18 for measureing the 

maxinmum depth of 2m (with the smallest disparity 1 pixel) and thus the skip step of 

each sequence was ranging from 10 to 20. However, the reconstruction results of some 

sequences were not very ideal with selected data skip step due to the effect of non-

uniform motion and big angular velocity. A ‘gap’ might appear between the selected 

frames and VisualSfM would create a couple of separated models –, which cannot be 

used as the reference map for AR tracking. In order to solve the problem, the smaller 

data skip steps were tested and skipping 5 frames (i.e. 6fps relative to the original 30 fps 

sequence) was found to be able to produce relatively proper reconstruction for most of 

the sequences with the exception of the [freiburg1_360], which completely failed in the 

reconstruction by Visual SfM.  The reconstruction result of each sequence is displayed 

in Table 4-6. It is also important to notice that due to the ambiguity of the scale in SfM, 
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a scale factor should be specified to align the estimation with the ground truth, which is 

totally random and can be calculated through the alignment.  



Table 4-6: The performance test of VisualSfM on RGB data contained within the RGBD dataset (bracketed are total processing time without extra time for exporting & 

importing files). 

RGBD sequence 

(640 x 480) 

No. RGB frames 

(data skip step = 

5) 

 

Feature detectors and matchers: SiftGPU  +  VisualSfM matcher  

Feature 

detection (s) 

Exporting & 

Importing feature 

descriptors (s) 

Pair-wise matching & 

Sparse reconstruction 

(s) 

Total processing 

time (s) 

Scale RMSE 

(m) 

Max. error 

(m) 

[freiburg1_desk] 123/613 4 42 742 788 (746) 0.36 0.028 0.065 

[freiburg1_floor] 249/1242 8 84 2150 2242 (2158) 0.60 0.032 0.089 

[freiburg3_long_of

fice_household] 

517 / 2585  

 

18 185 4383 4586 (4401) 1.06 0.017 0.049 

 

RGBD sequence 

(640 x 480) 

No. RGB frames 

(data skip step = 

5) 

 

Feature detectors and matchers: OpenCV ORB + Brute-force 

Feature detection & 

pair-wise matching 

(s) 

Exporting & 

Importing matches 

(s) 

Sparse 

reconstruction (s) 

Total processing 

time (s) 

Scale RMSE 

(m) 

Max. error 

(m) 

[freiburg1_desk] 123/613 161 903 1243 2307 (1404) 0.21 0.120 0.962 

[freiburg1_floor] 249/1242 618 2812 3413 6843 (4031) 0.37 0.100 0.641 

[freiburg3_long_of

fice_household] 

517 / 2585  

 

2813 9329 3942 16084 (6755) 0.10 0.824 3.125 



 

From the perspective of processing time, RGBDSLAM v2 with both SiftGPU and ORB 

approaches was significantly faster than VisualSfM even the extra time of importing 

and exporting files for VisualSfM was not taken into account. Besides, it can be found 

that exporting and importing SiftGPU descriptors took ten times longer than feature 

detection and extraction. Moreover, the time spent on VisualSfM for importing ORB 

matching results has increased significantly over the number of frames, which was 

unacceptably costly. From the perspective of RMSE, the results of VisualSfM with 

SiftGPU method were close or even better than the results of RGBDSLAM v2 with the 

same configuration, but with ORB, the RMSE values were too large to be considered as 

good results.  

 

Outdoor RGB dataset [fountain-P11] which features a short path around a fountain, and 

[castle-P11] – a larger area surrounded by a castle building, were also tested on 

VisualSfM. The images are of high resolution (3072 x 2048) and captured discretely. 

The results are shown in Table 4-7. 



Table 4-7: The performance test of VisualSfM on outdoor RGB sequences. 

RGB sequence 

(3072x2048) 

No. RGB images 

 

Feature detectors and matchers: SiftGPU  +  VisualSfM matcher  

Feature detection (s) 

 

Pair-wise matching & Sparse 

reconstruction (s) 

Total processing 

time (s) 

Scale RMSE 

(m) 

Max. error 

(m) 

[fountain-P11] 11 45 98 143 10.37 0.011 0.02 

[castle-P30] 30 89 782 871 6.45 0.342 0.895 

 

RGB sequence 

(3072x2048) 

No. RGB images 

 

Feature detectors and matchers: OpenCV ORB + Brute-force 

Feature detection & pair-

wise matching (s) 

Sparse reconstruction (s) Total processing 

time (s) 

Scale RMSE 

(m) 

Max. error 

(m) 

[fountain-P11] 11 133 27 160 5.4 0.009 0.015 

[castle-P30] 30 1557 677 2234 3.5 51.578 173.510 



It can be found that the processing time with the SiftGPU approach was still faster than 

that with the ORB approach. VisualSfM could handle both relatively smaller areas 

[fountain-P11] and larger areas [castle-P11] with the SiftGPU approach. However, with 

ORB approach it only worked well with [fountain-P11] but failed to perform with 

[castle-P11] (see Figure 4-17 below).  

 

Consider that only the value of RMSE cannot visually reflects the quality of 

reconstructed map, the trajectory comparison diagrams between the estimations and 

ground truth are presented below for each sequence with different methods. The 

trajectories were presented from a top view by looking down along the axis of z, y, and 

x for each row. The black lines represented the ground truth trajectories; the green 

lines represented the estimations; and the difference between two trajectories was 

represented by some red line segments linking the estimation and ground truth camera 

locations with same timestamps.  

 

Figure 4-13 shows the trajectory comparison diagrams of RGBD sequence 

[freiburg1_desk]. The map generated by each method is very close to the ground truth 

except VisualSfM (ORB), which also had a higher RMSE value. 

 

Figure 4-14 shows the trajectory comparison diagrams of RGBD sequence 

[freiburg1_floor]. The estimated camera poses of each method (except VisualSfM 

(ORB)) were basically close to the ground truth until an obvious ‘gap’ appeared on the 

y-z trajectory alignment diagrams at the end. In fact, the last few frames inside 

[freiburg1_floor] were captured at high speed and these colour images are more blur 
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than others, which may cause the poor mapping results.  

 

Figure 4-15 shows the trajectory comparison diagrams of RGBD sequence 

[freiburg1_360]. VisualSfM was failed to generate a valid model in this case. With 

regard to RGBDSLAM v2, the diagrams show that both approaches represented a 

complete failure although the RMSE values might not seem big in comparison to that of 

other RGBD sequences. This is most likely caused by the poor quality of the colour 

images which have so much blur, resulting in that the low confidence of detected 

keypoints and their 2D locations.  

 

Figure 4-16 shows the trajectory comparison diagrams of RGBD sequence 

[freiburg3_long_office_household]. Similar to the result of [freiburg1_desk], all 

methods produced an accurate map except VisualSfM (ORB). 

 

Figure 4-17 shows the trajectory comparison diagrams of RGB image sets [fountain-

P11] and [castle-P11]. It can be found from the 3D trajectory comparison diagrams that 

there were few displacements along the z axis in these two cases, so only the x-y 

trajectory alignment diagrams are presented. The reconstruction was performed by 

VisualSfM. For small set [fountain-P11], both SiftGPU and ORB approaches worked 

well. But for [castle-P11], only the SiftGPU approach could reconstruct an accurate map 

whilst the ORB approach failed again. 
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Figure 4-13: The trajectory comparison diagrams for the results of [freiburg1_desk]. 
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Figure 4-14: The trajectory comparison diagrams for the results of [freiburg1_floor]. 

 



216 

 

 

 

Figure 4-15: The trajectory comparison diagrams for the results of [freiburg1_360]. 

 

  



 

Figure 4-16: The trajectory comparison diagrams for the results of [freiburg3_long_office_household]. 

 

 



 

 

Figure 4-17: The trajectory comparison diagrams for the results of [fountain-P11] and [castle-P11]. 
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In order to ensure that the reconstructed map can be used for AR registration, a simple 

AR browser implemented with OpenCV (see Section 6.2.1 for detail) was used for 

displaying pose estimation visually. Objectively, the overlapping ratio between the AR 

boarding box projected by ground truth and estimation camera poses could be calculated 

as reference for evaluation. However this method requires the boarding box always be 

seen in the viewport, but it is unavailable in most tested sequences except 

[freiburg3_long_office_household] in which the camera always focused on an office 

desk in the middle. For example, the reconstructed results of 

[freiburg3_long_office_household] generated by RGBD with SiftGPU shown in Table 

4-5 had a mean overlapping rate of 82% with a variance of 0.03, but without 

comparison and the subjectively measurement opinions from real user, it does not make 

sense.  

   

4.4. Conclusion  

In this chapter, two 3D reconstruction methods – RGBD-SLAM and SfM – are 

described and applied in the offline session of the present proposal, to create references 

for the AR user tracking process. These two methods can handle different types of input 

data (i.e. continuous ordered RGBD dataset, or unsorted, discrete RGB datasets). The 

developers can choose one of them by considering which types of device they wish to 

use. In the present proposed system, use of the existing applications RGBDSLAM v2 

(Endres et al., 2014) and VisualSfM (Wu, 2011; 2013) has been described. Their 

performance with two representative visual features – SiftGPU (Wu, 2007)  and ORB 

(Rublee et al., 2011) – is tested on several RGBD and RGB public datasets. The 
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performance of RGBDSLAM v2 with SiftGPU and ORB methods is almost the same, 

although the SiftGPU method performed a slightly better than the ORB method. The 

results reflect that the input dataset used for vision-based 3D reconstruction should 

avoid involving poor-quality images, such as blurred images caused by drastic camera 

motions. The precision of VisualSfM with SiftGPU method is superior to the same 

configuration of RGBDSLAM v2, although it takes more time for processing, but with 

the ORB method the situation is quite different. VisualSfM only supports SiftGPU 

methods natively, thus the ORB features need to be detected and matched separately. 

Although VisualSfM allows users to import the feature matches themselves, the 

expensive time-consuming of file importing is unacceptable. Moreover, most results of 

VisualSfM using ORB feature matches are not ideal to restore a reliable reference for 

the subsequent AR online session. In fact, the acceptable accuracy for 3D 

reconstruction/mapping in AR is still unclear. The subjective visual evaluation requires 

real users to be involved to draw a conclusion using general quantitative criteria (such 

as mean opinion scores (Knoche et al., 1999)). This may also suggest that the objective 

visual evaluation metrics and benchmark datasets for 3D reconstruction/mapping on AR 

reference template use need to be designed and created in the future. 
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Chapter 5 Vision-based Template Training and 

User Tracking 

Following the offline 3D reconstruction process presented in the last chapter, the 

proposed system will convert the output results to reference models which will be used 

for user tracking in AR application, namely template training. The actual purpose of the 

training stage is to let the system ‘learn’ and ‘remember’ the scene to augment. Thus, 

when the application user is “re-visiting” the places which have been previously stored 

in database, the system will recognise the places based on their appearance. This is also 

known as loop closing in SLAM. Then the system can estimate the direction in which 

the user camera is looking and how the AR content should be displayed to the user. This 

process is expected to be performed during the AR application running time and is 

referred to as the Online Session hereinafter.  

 

The main task in the online session, in brief, is retrieving an image from the trained 

database which has the closest appearance to the online input, and attempting to 

estimate the user pose with respect to the reference map based on it. The work flow of 

this retrieval procedure is depicted in Figure 5-1, and more detail is discussed in the 

following paragraphs.  
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Figure 5-1: The work flow of the proposed online session to query input images from the trained database.  

 

In current proposal, only a standard, off-the-shelf monocular camera is used as the 

input sensor, although an option of using RGBD data for 3D reconstruction has been 

offered to the application developers in the offline session. From a practical standpoint, 

the price of some RGBD cameras is not too high for ordinary people to afford, but it is 

still an optional accessory for potential application users who may not want to buy one. 

In addition, the usage of the RGBD camera is generally limited to indoor environments 

and some of the devices even require an external power supply to work (such as the 

Microsoft Kinect 1.0). In contrast, the monocular cameras have been integrated into 

many smaller, portable devices (such as smartphones) and are, therefore, more likely to 

be accepted by the general public. In the proposed framework, no matter which 

approaches presented above are used in the offline session for 3D reconstruction, their 

output data will be trained and unified to purely vision-based templates, and, by only 
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using 2D colour images as the input to the AR runtime. This will be sufficient for the 

system to deal with the user tracking task. Specifically, the system will try to find 

several 3D-to-2D coordinate correspondences between the sparse cloud points 

recovered in the offline session and the image points extracted in the online session. 

These 3D points share the same feature descriptors with their originated 2D keypoints. 

Thus, in principle, the desired 3D-to-2D correspondences during the online tracking 

process can be obtained by matching the feature descriptors between the restored cloud 

point and the input image keypoints. However, some keypoints possess very similar 

feature descriptions (appearance), but actually do not come from a same place in the 

real world, leading to the wrong correspondences. This kind of mismatch errors can be 

properly avoided by considering the nature of the spatial distribution of the 3D points: 

some of features are more likely to be observed together because they are generated by 

common objects, others are not. Some of these relations have already been indicated in 

the train image data of the 3D reconstruction. Hence, the application input images will 

be compared with a selected subset of the train images from the training database 

instead of the unorganised point cloud. The 3D points are grouped and associated with 

the train images which have their observations. From the above, the training stage will 

associate three properties with each train images in database: 1) a list of detected 

keypoints and their feature descriptors; 2) the mapping between the 2D image 

coordinates and the 3D world coordinates of the keypoints; 3) the estimated camera 

pose. When the AR application is processing an input image as query, the system will 

firstly retrieve a subset of train images from the database which have the closest 

appearance to the query, then it will attempt to identify the 2D-to-2D correspondences 

between the query and these images, and further to establish the 3D-to-2D 
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correspondences. However, how to efficiently retrieve the candidates that have the 

closest appearance to the real-time input image of the application becomes another 

problem. 

 

Some of the train images used for the 3D reconstruction may contain a large body of 

repetitive content, especially when continuous images are used. It makes no sense to 

undertake comparison with all of them one by one to find a close match one as this is 

very inefficient too. Therefore, a set of keyframes was selected during the offline 

session as the representatives which covers the most features of the 3D reconstruction 

but with less overlap between each other, as defined in Section 4.1.2.2. The online 

session will use these keyframes as templates for loop closure detection. Due to the 

continuity of input data where the adjacent images usually have similar appearances, the 

loop of following-up input images can usually be closed by conducting comparison with 

their predecessors’ matching results. However, there are two cases requiring the system 

to perform a full search through all keyframes. Firstly, when an AR application is 

started up, the first few images acquired should always compare with all keyframes 

until the first loop closure is detected, due to the lack of the knowledge of the initial 

pose of the user camera. Secondly, when the user tracking has failed, the following-up 

images acquired should be compared with all keyframes until the system re-locates 

them again. Although the images with too many repetitive contents have already been 

removed from the set of keyframes, the reconstruction of wide areas will generate 

plenty of keyframes for representing different places. The comparisons based on local 

feature matching are still very time-consuming, which is unacceptable in real-time AR 

applications. It is necessary to avoid performing precise feature matching between query 
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and keyframes in the image retrieval stage. A coarse but more efficient comparative 

method is desired to find the candidates with the highest likelihood to match the query, 

and then the feature matching will be performed to check if there are sufficient 

correspondences between the query and the selected candidates to establish valid 

transformations. 

 

For these reasons, a bag of words (BoW) based approach has been adopted in the 

present research for encoding each image into a global descriptor vector – or signature. 

Each element of the signature vector is associated with a visual word, specifying how 

important this word is to the image. The visual words are obtained by clustering several 

selected local visual features and these will have same format as the feature descriptor 

used. The collection of all visual words forms a vocabulary and any image can look up 

the visual features via the vocabulary to encode itself as a one-dimensional BoW 

signature. The process of vocabulary training and the image signature coding will be 

described in Section 5.1, which takes account of both the histogram-based descriptors 

(SIFT-like) and the binary descriptors (ORB). After encoding the image data, 

openFABMAP (Glover et al., 2012) will be applied to quickly select the keyframes with 

the highest likelihood to match the query image acquired in the online session. This will 

be introduced in Section 5.2. The complete real-time camera pose estimation process of 

image sequences with the above methods will be presented in Section 5.3 and the 

evaluation and commentary on the results are given in Section 5.4.  
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5.1. Bag of words and vocabulary 

For vision-based AR applications, a crucial task is tracking the user with respect to a 

pre-built reference map by using the image sequence acquired from the user’s camera 

and the offline trained database. This is known as a loop closure detection problem in 

SLAM which engages to identify an old place from the new input based on the built 

map. As mentioned in Section 4.1.2.2, in order to perform a graph-based optimisation 

for 3D reconstruction robustly, the loops to old nodes need to be found as constraints 

for each new added node. The candidates to compare are basically selected from the 

direct predecessors and their neighbours due to the topological structure of the graph. In 

addition, the keyframes which are used as appearance-based thumbnails of different 

locations in the reference map are also considered. However, the initial state of the end 

user who initiates the application in the online session is totally random, thus only 

keyframes can be used for detecting loop closure. This can be considered as an image 

retrieval problem where the system is attempting to search the user query images 

amongst the keyframes. The simplest technique for this is to compare the query with all 

of the representative thumbnail images one by one, but the cost of performing feature 

matching can be really expensive and inefficient, as mentioned above. Suppose each 

image contains an average of n features, and there are m keyframes in a database to 

compare for searching for a query. In such as case, the total cost of feature comparisons 

will be m * n
2
. Unlike the offline session, the online session expects to achieve real-time 

processing so that the time to process each image should be near to the time to acquire it. 

Therefore the one-to-one feature matching should be avoided. In order to improve the 

efficiency of image retrieval, the bag of words method is used in the present research. A 

visual vocabulary is trained based on a set of local virtual features selected from a 
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specific environment (such as an office-like indoor environment or an urban outdoor 

environment). All detected features in the training data are grouped in different clusters 

due to the distance measurement used in feature matching between the descriptor 

vectors. Each cluster is represented by its central vector with the mean value of the 

clustered descriptors, referred to as a visual word. All of these visual words make up the 

vocabulary, which can be used to abstract an image to a single signature vector S, the 

length of which equals the vocabulary size |v|. In order to encode an image with n 

features to a signature, at most |v| * n feature comparisons will be performed. Then, to 

rank the amount of the similarities between the query and the m keyframes, another m 

comparisons based on signature are required. Since the size of the vocabulary |v| is 

typically far less than the total number of features m * n contained within the keyframes, 

the required times of feature matching during the image retrieval are effectively reduced.  

 

The detail of the visual word clustering for two kinds of local visual features – SIFT-

like and ORB is described in Subsection 5.1.1, and the generation of the signatures of 

images based on visual vocabulary is presented in Subsection 5.1.2.  

 

5.1.1. Visual word clustering 

One of the most common used clustering algorithms is k-means clustering (Steinbach et 

al., 2000). Assume each feature descriptor used for vocabulary training is denoted by a 

data point. The k-means clustering aims to partition these data points into k clusters, 

where each point will be grouped into the cluster with the nearest cluster centroid. Once 

all points are assigned to the respective clusters, the mean value of the data points in a 



228 

 

cluster will be calculated and used as the new cluster centroid. Then all data points will 

be re-partitioned to the new clusters to calculate their respective mean values for 

updating another set of new centroids. This process will be performed iteratively until 

the assignments of each point no longer change, which means the algorithm has 

converged. The speed of convergence in k-means clustering is mainly based on the 

choice of the initial cluster centroids. An effective approach, k-means++ (Arthur & 

Vassilvitskii, 2007), is applied to deal with the initial values of the cluster centroids as 

follows:  

1) Choose the first cluster centroid uniformly at random from the data points.  

2) For each data point, compute the distance between it and the nearest centroid, 

which has already been chosen. 

3) Choose a new cluster centroid from the remaining data points with a 

probability proportional to the squared distance from the nearest existing cluster 

centroid of each point. 

4) Repeat 2) and 3) until k centres have been chosen. 

 

Although the initial selection in the k-means++ takes extra time, the following process 

of k-means will converge quickly which actually lowers the computation time. 

 

Theoretically, the max size of vocabulary equals the total number of the features 

contained within the keyframes when each different feature descriptor forms a cluster 

by itself. The more visual words (clusters) are generated, the more precise signature 

vector (with more elements) can be used to represent images. But it also takes more 

time for encoding. Although there is no mandatory requirement for choosing the 
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number of cluster, the time of encoding input images during the online session should 

meet the real-time requirement. It mainly depends on what type of visual feature is used 

and how long the matching method will take to compare feature descriptors. 

 

In order to generate the visual words through a set of feature descriptors by using k-

means clustering, the distance and mean values of the feature descriptors used must be 

defined first. There are two feature extraction methods tested in the present research: 

SIFTGPU with 128-dimensional histogram-based SIFT-like descriptors and ORB with 

256 bits binary descriptors. 

 

In actual programming, the 128-D SIFT-like descriptor vectors can be represented 

simply by using a floating point array. The distance between two vectors is defined by 

Euclidean distance (see Appendix D), and the mean value is literally the average of a set 

of vectors. On the other hand, the Hamming distance is used to measure the difference 

between the binary descriptors. The 256 binary bitset is usually stored as an Unsigned 

Char data array of length 32 in the computer, and the Hamming distance between two 

bitsets can be calculated by using bitwise XOR, and counting the bits that differ. An 

example of the Hamming distance is given in Figure 5-2. 

 

Figure 5-2: an example of the Hamming distance between two 8 binary bitsets. The hamming distance 

equals to the number of total differences between the two bitsets. 
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The mean value of a set of binary bitsets is determined by testing each bit value 

amongst the whole set: if more than half of the members have ‘1’ on a bit, the mean 

value will set the corresponding bit to ‘1’, otherwise the bit will be set to ‘0’.  

 

An alternative vocabulary generation method for SIFT-like descriptors is recommended 

by Cummins & Newman (2011) who use a fixed Euclidean distance threshold for 

cluster partition. This method will randomly pick a descriptor first as one of the initial 

cluster centres. The Euclidean distance between this first initial cluster centre and each 

of the other descriptors will be inspected sequentially. If the distance exceeds the 

threshold, this descriptor will be considered as another initial cluster centres, and the 

following descriptors will be compared with all these selected initial cluster centres to 

determine if they can be an initial cluster centre or not. Once all initial cluster centres 

are determined, the rest of the descriptors will be assigned to the centre with the nearest 

distance to them respectively. The mean value of each cluster will be calculated as the 

final cluster centre used as visual word. The pseudo codes of this algorithm are 

presented in Table 5-1. 

 

Table 5-1: The BoW cluster algorithm for SIFT-like descriptors suggested by Cummins & Newman 

(2011) 

// Suppose descriptors_[] is an unsorted array of the feature descriptor to cluster. The first descriptor is 

picked up as the first initial cluster centre and pushed onto a stack initial_centres_. 

initial_centres_.push(descriptors_[0]); 

For each d_ in descriptors_: 

 min_distance = MAX_DISTANCE; 
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 For each ic_ in initial_centres_: 

  min_distance = max(min_distance, distance (d_, ic_)); 

 End for (initial_centres_) 

 

 // If all distances between a descriptor and existing initial cluster centres exceed the pre-defined 

threshold value cluster_threshold_, this descriptor will be treated as a new initial cluster centre and 

pushed onto initial_centres_.  

 If  min_distance > cluster_threshold_: 

  initial_centres_.push(d_); 

 End if 

End for (descriptors_) 

 

// Assign the descriptors d_ to its nearest initial cluster centre c_. 

For each d_ in descriptors_: 

 For each ic_ in initial_centres_: 

  If ic_ is the nearest initial cluster to d_: 

   clusters_ [ic_].push(d_);  

  End if 

 End for (initial_centres_) 

End for (descriptors_) 

 

// Recalculate the average of each cluster as the new cluster centre (i.e. visual word) and push them onto 

vocabulary_ as final output.  

For each c_ in clusters_: 

 visual_word = average(c_); 
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 vocabulary_.push(visual_word); 

End for (clusters_) 

 

Cummins & Newman (2011) argue that the randomly chosen cluster centres of k-mean 

tend to lie largely within the densest region of the feature space due to the fixed number 

of partitions (i.e. ‘k’ clusters), but the metric distances between the clusters are variant, 

which may cause tiny variations between generated words through the dense region. 

 

5.1.2. BoW signatures 

The visual vocabulary is used for abstracting images to signature vectors S = (w1,…,w|v|), 

where |v| is the number of visual words in the vocabulary and the variable wq 

corresponds to the q-th word of the vocabulary, reflecting the importance (a.k.a weight) 

of this word to the image. Thus an image can be represented by a one-dimensional array 

instead of a set of high-dimensional feature descriptors.  In order to generate a signature, 

the image should look up the vocabulary for assigning the detected local features to the 

visual words with the nearest distance. This requires at most |v| * n comparisons 

between the image features and the visual words if the vocabulary is unstructured. A 

reasonably large vocabulary size can ensure the accuracy of the signatures for 

interpreting the images with different contents. Although the comparison times are 

superior to the one-to-one direct feature matching between the images, it would still 

take a long time for coding the image signatures when a mass of words is involved. In 

order to further reduce the time of looking-up a word, the vocabulary is organised to a 

hierarchical k-means tree. The original k-means clustering has a flat structure and each 
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partition is independent of each other. In contrast, the hierarchical k-means tree 

represents the partitions using a tree structure, as shown in Figure 5-3.  

 

Figure 5-3: K-means clustering (upper) and a 3-level depth hierarchical k-means tree (lower). 

 

Each level of the tree divides the data points contained within their parent node into k 

subsets by using standard k-means clustering. The recursion terminates when the dataset 

is divided into single data points or a given depth level has been reached. There are two 

arguments that should be carefully considered in hierarchical k-means clustering: the 

number of the cluster centroids k and the depth level of the tree l. A total of 
1-

1-1)

k

k l(

 

nodes are used to represent the centroids of each sub cluster, and the k
l
 leaf nodes, 

which, at the deepest level, represent the visual words. Although it will take extra time 

to build the hierarchical tree during the offline training session, the comparison times of 

searching a word has reduced from comparing all k
l
 words to traversing  k * l branch 
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nodes. 

 

After assigning all image features to the respective visual words, the weight of each 

word to the image can be assessed. A common weighting method in image retrieval is 

term frequency-inverted document frequency (tf-idf) (Sivic & Zisserman, 2003). For 

BoW, the term frequency indicates the number of times a word occurs in an image as a 

simple proportional representation, and the inverted document frequency is an inverse 

function of the number of the training image data in which a word occurs, which 

quantifies the specificity of a word. A standard tf-idf weight value wi of the i-th word in 

the vocabulary is calculated as: 

i

i
i

m

M

N

n
w log  

 

(5.1) 

where ni is the number of occurrences of the i-th word in the query image, N is the total 

number of features (assigned to the visual words) in the query image, M is the total 

number of training images, and mi is the number of the training images where the i-th 

word appears. The tf-idf weight value of each word to the encoding image is held by the 

corresponding element in the signature vector. 

 

5.2. Image retrieval and loop closing 

The aim of image retrieval is to determine whether there are some template images in 

database that have similar appearance to the query image. In the present proposal, image 

retrieval is used to decide if the new observation of the user camera in the online session 
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originates from places within the reference map, or from unknown places. However, the 

decision of whether loop closures have been found may be misled by perceptual aliasing, 

which refers to different places having similar appearance in the environment. As stated 

in Cummins & Newman (2008), even though two images share many features, they still 

can be false matches due to perceptual aliasing. Cummins & Newman (2008) deals with 

the issue by proposing a Fast Appearance-Based Mapping (FAB-MAP) system, which 

utilises BoW and extends the approach by learning a generative model offline from a set 

of training data, capturing the fact that certain combinations of visual words tend to co-

occur (as mentioned above). They have proved that the FAB-MAP approach can 

effectively recognise places and reject the mismatch errors, which also has a reasonable 

computational cost for online loop closure where the map contains several thousand 

places. Based on these features, the FAB-MAP will be applied in the online session to 

decide whether the input images are captured from a known place in database. Glover et 

al. (2012) implement an Open Source toolbox openFABMAP integrated into OpenCV 

which will be used in the proposed system. The relative algorithms and detailed process 

are described below. 

 

5.2.1. Chow-Liu tree 

A key feature of FAB-MAP is that it models the dependence of feature co-occurrence in 

the environment. Because the visual words of the same object are likely to appear or 

disappear together, when matching queries to the templates with these words, the 

likelihood will be higher when all words are observed, as opposed to only a partial set. 

The full distribution of visual word co-occurrence is learned by using a Chow-Liu 
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dependency tree which is calculated from a training dataset (e.g. a collection of the 

images which have similar visual features with the reconstructed scene but are not 

completely identical). Consider a distribution P(S) of |v| discrete variables of signature 

vectors S = (w1,…,w|v|), the parameters of which are expected to be learned from the 

training data. If P(S) is a general distribution without a special structure, the space 

needed to represent the distribution increasing exponentially in |v|, which quickly 

becomes intractable when the size of |v| increases. To deal with it, another distribution 

Q(S) is generally used to approximate P(S) which possesses some special structure that 

makes it tractable to work with, such as an extreme structural constraint – naive Bayes 

approximation, restricting each variable must be independent of all others. The 

similarity between P(S) and Q(S) is defined by the Kullback–Leibler (KL) divergence: 
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(5.2) 

where the summation is carried out over all possible states in the distribution. The KL 

divergence is zero when P(S) and Q(S) are identical and strictly larger otherwise. The 

Chow-Liu algorithm approximates P(S) by the closest tree-structured Bayesian network 

Q(S)opt in the sense of minimising the KL divergence, requiring less severe constraint 

than the naive Bayes approximation. Bayesian networks are probabilistic graphical 

models that represent a set of random variables and their conditional dependencies via a 

directed acyclic graph. The graphical model of naive Bayes approximation only has |v| 

nodes and does not have any edges between them. In contrast, the tree-structured Q(S)opt 

is determined by considering the complete graph with |v| nodes and 
2

）（ 1 || ||  vv
 

edges, where the edge (wi, wj) between the node wi and wj has mutual information I(wi, 

wj) as its weight:  
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(5.3) 

where the summation is carried out over all possible states of w, i.e. w > 0 if the word 

occurs or w = 0 otherwise. )( iwp  and ),( ji wwp  can be calculated from the frequency of 

word occurrence and co-occurrence in training data. Mutual information measures the 

degree to which knowledge of the value of one variable predicts the value of another. It 

is zero if two variables are independent and strictly larger otherwise. The Chow-Liu 

algorithm forms a minimum spanning tree which maximises information entropy and 

will have the same structure as Q(S)opt, where the dependencies between variables with 

little mutual information are omitted and the corresponding variables are approximated 

as independent. The joint distribution over word occurrence is contained within the 

Chow-Liu tree. 

 

The openFABMAP package supports the build of a Chow-Liu tree from the set of 

signatures of training data with Class ChowLiuTree. The structure of the tree produced 

is stored in a 4 x |v| matrix held by cv::Mat structure of the OpenCV. The q-th column 

corresponds to the q-th word node wq, where the first row stores the parent node index 

of the word pq; the second row stores the unconditional probability of the word 

occurrence )0( qwp ; the third and fourth rows store the conditional probabilities of the 

word occurrence, given its parent )|0( pq
wwq p . The Chow-Liu tree then will be used 

in the main process of FAB-MAP for estimating observation likelihood, in other words, 

the probability distribution over the observation of BoW signature given the possible 

locations.  
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5.2.2. Location representation and likelihood 

The 3D reconstruction in the Offline Session can be divided to several discrete locations 

based on selected keyframes. Assume there are m keyframes. The reference map can be 

denoted by L = (L1, …, Lm). Each keyframe is associated with a BoW signature and its 

camera pose with respect to the world reference frame. Theoretically, this signature 

indicates the appearance representation of the observation that can be acquired in a 

corresponding pose. However the word observation wq on the keyframes are actually 

noisy measurements of the existence of the underlying scene element eq, which may or 

may not exist at that location. It is easy to find that each word does not make an equal 

contribution to recognise a location, which means the similarity between two images 

should not be measured via a simple distance metric between their signature vectors. 

FAB-MAP associates each location with an appearance model which indicates the 

belief about the existence of each scene element at the location: 

 )L|1( ..., ),L|1( :L 1 ivii ee  pp 
 

(5.4) 

where each individual observation probability )L|1( kqe p  is estimated by modelling 

the reliability of visual word detection )|( qq ewp  and the prior knowledge of how 

common a scene element eq is in the environment: 
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(5.5) 

The core Class FabMap of openFABMAP will ask for detector model recall 

( )1|0(  ewp ) and detector model precision ( )0|0(  ewp ) as input parameters 

PzGe and PzGNe used to account for detector noise and precision. 
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FAB-MAP calculates observation likelihood via word co-occurrence model stored in 

the offline produced Chow-Liu tree. The probability distribution of signature S given 

the location Li can be calculated as: 
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where rw  is the root of the tree, 
q

wp is the parent of qw in the tree and 
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Specifically consider the binary states of qw and
q

wp as qs  and
q

sp , then 

),L|  ( pp iqq qq
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(5.8) 

 

Actually the only quantified appearance representation of locations in the present 

proposal are keyframes. Thus suppose every detected word in the keyframes exactly 

corresponds to a real feature in the scene (i.e. 0)L0|0(  iew ，p ). The localisation 

likelihood )L|( query iSp  is equivalent to the comparison likelihood between query and 



240 

 

the i-th keyframe. FABMAP applies a vote strategy based on BoW for calculating the 

match probability between each query and the keyframes. The term ),L|( p iq q
wwp in 

equation (5.6) represents the likelihood that the q-th word existing in the i-th keyframe. 

),L|( p iq q
wwp  was replaced with a restricted model for enabling an efficient 

implementation using inverted index (i.e. the inverse mapping from words to images). If 

the q-th word was not previously observed in some locations, the related probability is 

denoted by 0p L)|,|(
q

wwqp  which shares a single common value for all these locations. 

Then, converting them to log-likelihoods, where if the q-th word was observed in Li, the 

weights of the votes this word casts for the i-th keyframe is )
|L),|(

),L|(
log(
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otherwise it equals 0. For each observed word on query, the inverted index is used to 

retrieve the list of the keyframes in which it occurs and the corresponding likelihood 

will be updated by adding up the word log-likelihoods. 

 

One more thing to note is that it is entirely possible for the application user to move out 

of the range of 3D reconstruction, which means the user camera pose at that moment 

cannot be recovered through the reference map in database, but the acquired image may 

have similar features with some keyframes. In order to avoid false matching, 

openFABMAP utilises the set of training data to evaluate a likelihood of the query 

observation from an unknown location. It firstly calculates the comparison likelihood 

between query and each image used for training then generates an ‘average likelihood’ 

which represents the probability of the query matching a virtual location with average 

appearance.  If the average likelihood is high, it means that most of the words in the 
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query image are very common in the environment which may cause perceptual aliasing. 

If no other likelihood is higher than the average likelihood, the retrieval of query image 

is considered to have failed. The subsequent input images will reset to “initial” state 

with no prior knowledge. 

 

For the subsequent input after a successful matching, it will have a high probability to 

match the same keyframe with its predecessor as discussed in Section 4.1.2.2. If 

RGBDSLAM v2 was used for 3D reconstruction, it would select and store keyframe 

information sequentially from the input image sequence. Thus the adjacent keyframes 

represent the adjacent places of the reconstructed environment, which means if the best 

match of the query image acquired at time t is considered as the i-th keyframe, then the 

query image acquired at time t + 1 is likely to match one of the keyframes｛i - 1, i, i + 

1｝. Therefore the proposed system will try to match the subsequent with these three 

candidates first, if no valid estimation can be found then the system will apply FAB-

MAP. This is more efficient than encoding the signature of each query and computing 

the match probabilities between it and all keyframes. VisualSfM does not select 

keyframes during the 3D reconstruction, so an additional keyframes selection needs to 

be carries out offline by using the estimated camera pose of each input source image. 

The images are sorted by their position and orientation and the sequential keyframes of 

adjacent places are selected based on the same rule defined in Section 4.1.2.2.    

5.3. Implementation 

The whole template training process and the usage of the database data are shown in 

Figure 5-4.   



 

 

Figure 5-4: The whole process of offline template training and how the online session makes use of the data contained within the trained database for user camera pose 

estimation. 

 



A visual vocabulary should be generated and a set of train images needs to be used to 

study the co-occurrence law of these words to some specific environments. For a 

complete online SLAM process which does not rely on any pre-known template in the 

environment, the selection of the training data should be very careful, since both 

keyframes and query input are acquired from an unknown environment online. The 

training data used must be general enough and cover many different cases to deal with a 

similar but unknown environment. However, the proposed case is focusing on a 

template-based AR system, where the 3D reconstruction provides the geometric 

information and the selected keyframes provide the visual information of the target 

environment. The source images used for 3D reconstruction can be directly used as the 

training data to make the studying stage focus more on this specific environment, and 

generally their visual features will be used to generate vocabulary. But in order to 

further improve the precision of the generated visual words, the unreliable features are 

not expected to be involved thus only those features which have been successfully 

matched for finding the relative transformation and were considered as inliers (i.e. the 

inlier features generated by RGBDSLAM v2 and the sparse cloud points generated by 

VisualSfM) are used. 

 

The offline training encodes the training data and the selected keyframes as sequences 

of signatures with their feature descriptors and the visual vocabulary. The training 

signatures are used to build a Chow-Liu tree as described in Section 5.2.1. All of these 

data will be loaded onto the system when online stage starts. The system will perform 

feature detection and extraction on each input image with the same detector – descriptor 

used for 3D reconstruction. Due to the unknown location of the first input image, the 
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system will encode it as a BoW signature and apply FAB-MAP method described in 

Section 5.2.2 to look for the keyframe which has the highest probability to match the 

query. The keyframe with the second highest probability is also selected in the case that 

a valid transformation cannot be found between the query and the highest one. The 

precise feature matching is performed between the query and the selected candidates to 

establish 3D-to-2D coordinate correspondences. If there are enough remaining inliers 

after solving the PnP problem mentioned in Section 4.2.1.3, a valid transformation is 

considered to have been found. Since the output of RGBDSLAM v2 provides the 3D 

feature points with respect to each local camera reference frame, so the estimated 

transformation needs to be multiplied with the camera pose of the matched keyframe 

from the database to obtain the pose of user viewport with respect to the world reference 

frame. On the other hand, VisualSfM provides the mapping between the world 3D 

coordinates and the 2D keypoints, thus the camera pose of query can be directly 

obtained. Once the system successfully locates the user camera to the reference map, the 

last matched keyframe and its adjacency (i.e. the previous and the next keyframes in 

sequence) will be considered as the candidates to match for the following input images. 

If the subsequent image cannot find any valid transformation to these candidates, the 

system will repeat the same steps which have applied to the first query. If still no valid 

transformation can be found or FAB-MAP judges this query as a new place with the 

highest probability, the system will consider that the user has been moving out of the 

scope of the constructed reference map and it will move to processing the next input as 

a first unknown query until the system re-locates the user.  
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5.4. Results and evaluations 

The results and evaluations presented here focus on two parts: a small study on the 

effects of using SiftGPU and ORB BoW with different parameter settings inside FAB-

MAP for image retrieval; and applying those techniques in the proposed framework for 

template training, and then inspecting the performance by the accuracy of online 

tracking result.  

 

The first experiment made use of a selection of Glover et al. (2010)’s St. Lucia suburb 

streets dataset. As shown in Figure 5-5, 25 frames were selected from one of the 640 x 

480 video sequences collected at 08:45am as test data, and another 25 corresponding 

frames captured from the similar locations of the test data at 08:45 but 3 weeks later, 

were used as query data. The aim was to retrieve the correct corresponding image of 

each query image from the test data, and both frame-to-frame local feature matching 

and FAB-MAP with different BoW described above were tested for performance 

comparison on processing time and precision.  
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Figure 5-5: first row: 3 (out of 25) frames in test data; second row: the corresponding frames of the first 

row in query data which were token at same place, same time but 3 weeks later.  

 

As mentioned in Section 2.3.3, two regularly used evaluation metrics for information 

retrieval are precision and recall. However in this experiment, there was only one 

matched frame for each query in the test data, thus only the precision rates will be 

presented. The so-called frame-to-frame local feature matching method was just 

performing an exhaustive search by comparing query with each frame in the test data, 

and selected the one with the largest number of matches. The processing time and 

precision with SiftMatchGPU (which has been proven more efficient than the FLANN 

matcher in Section 4.3.1) for SiftGPU descriptors and the brute-force matcher for ORB 

descriptors are shown in Table 5-2. 
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Table 5-2: The processing time and retrieval precision of frame-to-frame local feature matching method 

by using SiftGPU and ORB features (bracketed are %RSD). 

625 frame-to frame comparisons between query and 

test data (640 x 480) 

SiftGPU 

(SiftMatchGPU) 

ORB (Brute-force) 

Total processing time (ms) 3085 3375 

Avg. matching time of per comparison (ms) 5 (±18%) 5 (±11%) 

Avg. time on per query (ms) 123  135 

Retrieval precision rate 96% 44% 

 

It can be found that both matchers cost about 5ms for each frame-to-frame feature 

matching. The retrieval precision with SiftMatchGPU was much higher than that with 

the brute-force matcher, which also implies the lower good match ratio of the brute-

force matcher for ORB in Table 4-3. Consider the proposed online session, assume the 

standard sampling rate of a real-time input video is 30 fps, there are only 0.03 seconds 

processing time available for each input frame. If the frame-to-frame feature matching 

methods presented above are used to search the closet keyframes in the database, it will 

only allow 6 comparisons between the frames – which are not enough for larger 

reference maps with more keyframe. In fact, the reconstructed map of [freiburg1_desk] 

in Section 4.3.2 – a small scene around an office desk – even contained 21 keyframes. 

Besides, finding the keyframe with the closest appearance to the input is just a 

preparatory work for estimating the camera pose, which also requires more processing 

time. Therefore FAB-MAP with BoW was applied for an efficient retrieval. For 

SiftGPU descriptors, the OpenCV 2.4.9 implementation of Cummins & Newman 

(2011)’s vocabulary generation method with a fixed distance threshold was used (see 

Table 5-1). A smaller threshold value will generate a larger vocabulary, and three 

different threshold values were tested here for generating vocabularies with different 
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size. On the other hand, the hierarchical k-means clustering (see Figure 5-3) with 

different k was used for generating vocabularies for ORB descriptors. The vocabularies 

and Chow Liu tree were trained on 127 non-overlapping frames selected from other 

video sequences inside the St. Lucia dataset. Both test and query data were encoded into 

signatures for FAB-MAP to calculate the similarity. The processing time and precision 

with different feature descriptors and vocabularies are shown in Table 5-3. 
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Table 5-3: The processing time and retrieval precision of FAB-MAP with different feature descriptors 

and vocabularies. 

25 query from 25 test data  

(640 x 480) 

SiftGPU 

Threshold 0.7 0.75  0.8 

Vocabulary size 5382 2183 891 

Processing 

time (ms) 

Encoding 300 180 10 

FAB-MAP 50 100 30 

Avg. time on per 

query 

14 11 2 

Retrieval precision rate 52% 56% 32% 

 

25 query from 25 test data  

(640 x 480) 

ORB 

k 8 7 6 

Vocabulary size 4096 2401 1296 

Processing 

time (ms) 

Encoding 390 330 270 

FAB-MAP 20 20 20 

Avg. time on per 

query 

16 14 12 

Retrieval precision rate 56% 68% 52% 

 

For both feature descriptors, the larger vocabulary took more time for encoding the 

signatures. However, even with the largest vocabularies (5382 for SiftGPU and 4096 for 

ORB) that have been tested, the averaged processing time on each query was much less 
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than that of the frame-to-frame methods in Table 5-2. The precision might be affected 

by vocabulary size and the train data. It can be found that the larger vocabulary did not 

guarantee a better precision. With regard to the effect of the train data, it is still unclear 

according to the present research and is considered as a future work. 

 

In order to further inspect whether the performance of FAB-MAP with BoW can satisfy 

the proposed online AR tracking, the results generated in Section 4.3.2 are used in the 

next experiment. The test was mainly performed on indoor RGBD datasets 

[freiburg1_desk] which has achieved a relatively high accuracy on 3D reconstruction 

procedure. Sturm et al. (2012) provide another sequence [freiburg1_desk2] centred on 

the same desk scene but recorded at different time, and a further sequence 

[freiburg1_room], which starts with the desk scene but continues around the wall of the 

room and finally close the loop with the desk scene. The vocabulary is generated via the 

inlier features of [freiburg1_desk] which were detected and stored during the 3D 

reconstruction stage. The Chow Liu tree was trained on 20 non-overlapping frames 

selected from [freiburg1_room]. The keyframes of [freiburg1_desk] selected during the 

3D reconstruction were used as test data, and the whole sequences of [freiburg1_desk] 

and [freiburg1_desk2] were used as query in online session. The purpose was trying to 

perform pose estimation of each query frame in near real-time through the reference 

map by matching the keyframes. In addition, to check if the vocabulary and the train 

data generated from a specific environment (e.g. office-like in this case) can be 

generically used for other similar environment, the sequence 

[freiburg3_long_office_household] – which focuses on a different office desk – was 

also tested. In this case, the vocabulary and train data of [freiburg1_desk] was used with 
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test data of the keyframes of [freiburg3_long_office_household] to query other images 

inside the sequence. The results with different feature descriptors are presented in Table 

5-4 below, the parameters with the highest precision reflected in Table 5-3 were used 

for generating vocabularies. 

 

Table 5-4: The test results of the proposed online tracking stage on two office-like environments, 

[freiburg1_desk] and [freiburg3_long_office_household], which have been restored in the offline session 

as presented in Section 4.3.2 (bracketed are %RSD). 

Detector – 

descriptor  
SiftGPU 

Vocabulary 

size 

1385 

(BoW distance threshold = 0.75) 

Test data freiburg1_desk freiburg3_long_office_household 

No. 

keyframes 

21 35 

Query data freiburg1_desk freiburg1_desk2 freiburg3_long_office_household 

No. frames 613 640 2585 

No. pose 

estimations 

605 403 2581 

Avg. time 

on per 

frame (ms) 

65(±20%) 85 (±28%) 74 (±22%) 

RMSE (m) 0.035 0.051 0.076 

 

Detector – 

descriptor 
ORB 

Vocabulary 

size 

2401 

(k = 7) 
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Test data freiburg1_desk freiburg3_long_office_household 

No. 

keyframes 

25 38 

Query data freiburg1_desk freiburg1_desk2 freiburg3_long_office_household 

No. frames 613 640 2585 

No. pose 

estimations 
610 404 2577 

Avg. time 

per frame 

(s) 

58 (±36%) 85 (±51%) 62 (±26%) 

RMSE (m) 0.057 0.079 0.073 

 

The trajectory comparison diagrams between the estimations and ground truth which 

have been used in Section 4.3.2 are also shown here, as shown in Figure 5-6, Figure 5-7 

and Figure 5-8. 
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Figure 5-6: The trajectory comparison diagrams for the online tracking results of [freiburg1_desk]. 
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Figure 5-7: The trajectory comparison diagrams for the online tracking results of [freiburg1_desk2]. 
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Figure 5-8: The trajectory comparison diagrams for the online tracking results of 

[freiburg3_long_office_household]. 

 

In the first case, the original [freiburg1_desk] dataset, which had been used for creating 

the reference template of the scene, was used for performing the AR tracking test. When 

SiftGPU-based approaches were used, the estimated trajectory is relatively accurate and 

stable, although a few frames were failed to be retrieved. Statistically, when ORB-based 

methods were used, the number of pose estimations and their RMSE value are similar to 

those with SiftGPU. However, the trajectory comparison diagrams show more slight 

displacements between the estimation and ground truth. In the second case, the 

[freiburg1_desk2] dataset was captured from the same environment of the 
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[freiburg1_desk] but with somewhat different shooting angles and settings. The 

majority of camera poses of the frames can be recovered via the trained database. No 

matter which method (with SiftGPU or with ORB) was used, the trajectory comparison 

diagrams show many inconsistencies between the estimation and ground truth. The 

failed frames can be divided into the following conditions: 1) the images are blurry 

(primarily caused by rapid camera motions); 2) the settings of the workspace were 

changed; 3) the camera was moving out of the scope of the reference map. The results 

of [freiburg3_long_office_household] are more or less same to the [freiburg1_desk]. 

The proposed rapid image retrieval method worked well in this case, proving that the 

vocabulary and training data of a certain environment can be applied to another 

environment with similar appearance. Therefore from the perspective of the application 

developers, they should not be required to train visual vocabulary and training data for 

use of FAB-MAP themselves. The vocabulary and training data of different 

environment should be supported within the development framework. 

 

The best processing rates were 15 fps with SiftGPU and 17 fps with ORB on retrieving 

[freiburg1_desk],  where was  almost no “lost” condition that demands a reset during 

the tracking. Generally, the proposed rapid image retrieval method with SiftGPU can 

retrieve the query image from the trained database effectively, but the tracking results 

with ORB were not always good. The pose estimation results in the online session are 

not as accurate as those in the offline session, since there are no optimisation methods 

applied by considering the limitation of the processing time in a real-time application.  
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5.5. Conclusion  

In this chapter, a pure vision-based online AR tracking session, based itself on the 

reconstruction results generated in Chapter 4, is presented. The present research mainly 

focuses on rapidly retrieving the online input images of an AR application from the 

trained database to meet the real-time requirement. The BoW (Sivic & Zisserman, 2003) 

methods are used for abstracting an image to a single signature vector with a visual 

vocabulary, which can be generated from either SIFT-like feature descriptors or ORB 

descriptors. Then, the vocabulary and a pre-trained dataset of a certain environment are 

used with the FAB-MAP (Cummins & Newman, 2008)  approach to score the matching 

likelihood between the query and a set of keyframes contained within the database. It 

has been shown that this method with both SiftGPU and ORB approaches can retrieve 

the query image from the trained database effectively in near real-time, but the accuracy 

is still less than satisfactory. The optimisation methods applied in the offline session are 

not performed in this online session due to the limitation of the processing time, causing 

unstable and less accurate pose estimation results. Even so, it can be learned from the 

test results that blurred input image and the relatively small change to the original scene 

will result in failure of the present proposed tracking method. Similar to the 

reconstruction results in Chapter 4, what accuracy for AR tracking is acceptable is 

unclear, which is also considered as a future work to be solved with involving real users. 
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Chapter 6 Conceptual User Interface and Use Case 

Scenario  

This chapter will firstly describe the conceptual user interface for the proposed 

markerless AR development framework (Section 6.1). The basic process of how 

application developers would interact with the framework is described. Since the 

proposed UIs are still at a conceptual stage of development, the usability evaluations of 

the AR system mentioned in Section 2.1.3 have not been carried out, but are considered 

as suitable for future study. However, an AR project being planned at the time of 

writing for an AR exhibit at the National Marine Aquarium is discussed. It will give an 

overview of applying the proposed work as part of a real use case scenario and to gain 

feedback from real users. An analysis of how the proposed system will fit to the use 

case followed by an initial plan of user-centred usability evaluation is given in Section 

6.2. 

 

6.1. Conceptual user interface    

The design of the user interfaces within the proposed framework focuses on two kinds 

of end users: the developer who will interact with the application development 

framework and the final user who will interact with the developed application. The 

application developer will execute the offline session of 3D reconstruction and template 

training, described in the corresponding sections of Chapters 4 and 5, but they are not 

required to have any understanding of how internal process worked. Essentially, this is a 

black-box style system in which the developer only needs to provide source input data 
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(i.e. the RGB or RGBD dataset of a target environment) and to set up the augmentation 

information with the system output (i.e. the 3D reconstructed reference map of the 

target environment). The system will automatically generate the database for subsequent 

application use. In terms of the AR application user, the present proposal has not 

considered what kind of human-interaction experience the developer can provide to 

their user. This will be a future aim for any ongoing research. The effort described in 

this chapter mainly focuses on the technical implementation of an AR development 

framework with a GUI tool for setting up virtual information (particularly the 3D model) 

with respect to the reconstructed environment (Section 6.1.1), and the augmentation 

registration and display processes of AR browsers (Section 6.1.2).  

6.1.1. Development framework 

The development framework described here, and shown in Figure 6-1, is targeted at the 

higher-level developer who desires to implement a simple markerless AR application 

for a specific environment. The developer needs to provide the visual information 

(images or videos) to the system for offline 3D reconstruction and template training. 

The RGBD sequential dataset will be processed by RGBDSLAM v2 and the RGB 

dataset will be processed by VisualSfM. The internal techniques have been expressed in 

Chapter 4. Since RGBDSLAM v2 and VisualSfM are independent software packages, a 

shell script file, in essence a text file with a sequence of command which can be 

interpreted and executed in UNIX-like system, is used as a universal launcher to start 

the desired program and pass the corresponding arguments (e.g. the source file of input 

dataset and the file path of output). Consider that the process of vocabulary training 

expressed in Section 5.1 requires a dozen of general but representative image sets of 
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various types of environments, such as an indoor office or outdoor urban environment 

as input, but the input dataset provided by the developer is focused on a specific place 

and it is not reasonable to let them collect more images from other places for generating 

vocabulary. Therefore, the trained visual vocabulary is trained by the lower-level 

developer and provided together with this proposed framework together. The complete 

3D reconstruction and template training session is executed automatically and does not 

require any developer intervention.  

 

Figure 6-1: The input-process-output diagram of a 3D reconstruction-based AR development framework, 

equates to the offline session mentioned previously. 

 

Both RGBDSLAM v2 and VisualSfM support the generation of dense colour point 

cloud models from images, although this is not altogether necessary for the AR tracking 
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aim which only requires the spatial positions of feature points in the world as reference. 

A successful 3D reconstruction will result in a dense point cloud model very similar to 

the real scene, which is more intuitive and meaningful than the sparse model from the 

perspective of a human viewer (for an example see Figure 4-11). Thus the dense model 

is used as reference in an augmentation configuration process for the developer to insert 

virtual information (3D objects in particular). This process allows the developer to set 

up the pose and scale of the virtual models with respect to the world reference frame in 

which the dense model is located. This can be undertaken with a simple GUI tool 

contained in the proposed development framework. The GUI tool is mainly 

implemented with the QtGui module of the Qt software framework (Blanchette & 

Summerfield, 2006) which provides a set of GUI elements such as windows, buttons, 

and sliders to create GUI-based application, and OpenGL which is used for drawing the 

3D display window. As shown in Figure 6-2, this GUI tool includes a menu bar, a 

display window and a 3D object control panel. The menu item ‘I/O’ allows developer to:  

 select a reconstructed dense point cloud from file (with the format of PCD or 

PLY, which can be handled through the Point Cloud Library (see Appendix B) 

as a visual reference;  

 insert a custom 3D object (typically a mesh model within a OBJ file supported 

by various 3D graphics application, such as 3ds Max, Blender and SketchUp) to 

the same coordinate system of the dense model as augmentation; 

 save the configuration result (the pose and the scale of inserted 3D model after 

configuring) to a text file. 

  



 

Figure 6-2: The simple GUI tool contained within the AR development framework. 



The display window allows the developer to view a virtual space of the environment to 

augment, which includes 3D axes (red for ‘X’, green for ‘Y’, blue for ‘Z’) of the 

reference frame, the loaded dense reconstruction and the inserted object. Using a mouse, 

the developer can scale, rotate, or move the viewport of the display window to observe 

this virtual space and any model from different perspectives. The dense reconstruction 

with respect to the reference frame (i.e. 3D axes) is fixed, which is equivalent to the 

relation between the sparse reconstruction and the world reference frame. In order to 

display augmentation during the online session, the relative position and orientation of 

the virtual object with respect to the world reference frame should be defined. Thus the 

3D object control panel allows the developer to adjust the pose and scale of the inserted 

object in the reference frame by using the dense reconstruction as visual reference. For 

example, as shown in Figure 6-2, the screenshot ① presents the dense point cloud of an 

office desk scene (generated from the VisualSfM reconstruction result of the 

[freiburg3_long_office_household] dataset). The tricolour axes represent the origin of 

the reference frame. The inserted 3D model ‘earth’ was initially located at the origin. In 

the screenshot ②, the position, orientation and scale of the ‘earth’ with respect to the 

reference frame has been manually adjusted with the 3D object control panel, making 

the ‘earth’ model overlap the ‘real earth model’ in the dense reconstruction. It can be 

seen from the viewport of the display window shown in the screenshot ③, which was 

changed to the same perspective with one of the RGB image of the source dataset 

shown in the ④, the inserted ‘earth’ model and the real earth model locate in the same 

location with same orientation and scale. These configuration parameters were then 

stored to the database and would be used to set up the augmentation with respect to the 

reference map when the AR application is running. The generating process of the AR 
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view is described in next section.  

 

6.1.2. AR registration and display 

The user camera pose is calculated at the frequency of the online processing rate of each 

input frame, determined by the methods to be used, which have been described in 

Chapters 4 and 5. They are used to register AR objects onto the input image, and these 

synthetic scenes will finally be displayed in front of the application user. For the 

displays of the desired virtual information, the 3D position and orientation with respect 

to the reference map should be given so that it can be hypothetically put into the real 

world, as the function of the GUI tool described in Section 6.1. The registration process 

utilising the camera parameters include the camera pose, which implies the relative 

position between the virtual things and the camera, and the intrinsic parameters which 

can be used to project the virtual items with a correct perspective onto the image plane 

and to render and display the final augmented images. The practice methods used in 

applications for AR registration and display are described in the following paragraphs. 

 

In order to register augmentation to the original image, the intrinsic camera parameters, 

the estimated camera poses, and the pose of virtual objects with respect to the world 

reference frame are required to perform the 3D-to-2D projection which has been 

described in Section 3.2.3 (see expression (3.5)). The intrinsic camera parameters of the 

camera device are pre-defined in the system; the camera pose of each query image is 

solved through the approaches introduced in previous chapters, and the framework 

should allow the developer to define the inserted virtual information and its pose with 
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respect to the training map, which will be described in Section 6.2. In this section, a 

simplified AR browser implemented with OpenCV library is demonstrated. This simple 

browser will deliver an intuitive appreciation of the camera pose estimation results and 

how they can be used for AR registration. 

 

Figure 6-3: The OpenCV augmented views of part of the RGB frames contained within the dataset 

[freiburg3_long_office_household]. 

 

As an example, shown in Figure 6-3, the colour sequence within 

[freiburg3_long_office_household] and its pose estimation generated by RGBDSLAM 

v2 (see Section 4.3) are used here to simulate the AR registration. Assume the inserted 

information is a bounding box (wireframe) aligned to the border of the outside face of 

the white box. The pose and scale of this planar bounding box with respect to the world 

reference frame can be identified first by using the augmentation configuration GUI tool 

described in Section 6.1. It can then be transformed into the different camera reference 

frames from the world through the estimated camera poses, and finally be projected to 

the corresponding 2D image planes. To hold the coordinate vectors and transformation 

matrices, cv::Mat is used. The coordinate transformation presented in expression (3.5) is 
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implemented by matrix multiplication supported by cv::Mat. It can be seen in Figure 

6-3 that the bounding box was projected and drawn on the proper position on the 

different images with correct perspectives. 

 

It is feasible for OpenCV to draw the contours or wireframes of simple polygons on the 

background images by linking up the projected points. However, the limitation is that 

OpenCV does not really support the functions of rendering 3D graphical models with 

complex shape, structure and texture, which are required by some visual AR 

applications where there is an expectation that 3D models can be merged into the real 

environment as seamlessly as possible. For this reason, an alternative OpenGL AR 

browser is also implemented. 

 

OpenGL provides all the basic functions to create the required rendering mentioned 

above. It has also been used in the proposed GUI tool for the developer to set up the 

pose and scale of the virtual object with respect to the reference frame. In fact, the view 

display in the GUI tool’s display window, as shown in Figure 6-2, and used here for 

creating an AR browser is quite the same, except that the GUI tool’s display window 

allows developers to change the perspective of observation themselves, where the field 

of view of AR browser depends on the current user camera pose estimation. This 

process can be described simply as follows. The AR application firstly acquires a view 

of the environment from the user camera. The system compares this view with the 

reference map within the database and decides if the current user camera pose with 

respect to the reference map can be identified. If it can be, the system will calculate if 

the augmentation object defined by the application developer can be observed from the 
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current camera’s view by performing 2D projection. If it can be, the projection will be 

merged to the original input view as the augmented view which would then be 

displayed to user. The specific implementation process of this OpenGL AR browser is 

given in Appendix B. The OpenGL AR views based on the AR configuration example 

shown in Figure 6-2 are shown in Figure 6-4 below. It can be seen, the real earth model 

in the original scene is overlapped with a virtual earth model. 

 

Figure 6-4: The OpenGL augmented views of part of the RGB frames contained within the dataset 

[freiburg3_long_office_household]. 
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6.2. Use case scenario 

As mentioned in Section 2.1.3, a system can be evaluated from both a technical 

perspective and an end user perspective. The former can refer to the stability of the 

system performance and the latter can be assessed from the capability of the system to 

meet the end user’s goal(s).  Both perspectives are also considered to be the most 

important factors for the AR application developers in the evaluation of a development 

tool (see questionnaire results reported in Section 3.1). The technologies used in this 

proposed work have been tested with their corresponding evaluation metrics, as 

presented in Chapter 4 and Chapter 5. However, for a proper usability evaluation of the 

system or the user interface of the system which connects human and computer for 

interaction, real users must, of course, be involved. Therefore, an AR project in 

collaboration with the National Marine Aquarium in Plymouth is, at the time of writing, 

being planned, and is presented here as a potential use case. The background and 

requirement analysis of this use case, and how it would be used for the future usability 

evaluation of the proposed framework is discussed in the following sections.  
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6.2.1. Background and requirements 

 

Figure 6-5: The National Marine Aquarium. 

 

The National Marine Aquarium is the largest public aquarium in the UK welcoming 

300,000 visitors per year. Recently (2017), they have been cooperating with the Human 

Interface Technologies (HIT) Team of the University of Birmingham to address how 

to apply AR technology on mobile platforms to improve the experience of their visitors. 

The basic idea involves the superimposition of a number of animated virtual models of 

a selection of cetacean marine mammals over the main public function zone in front of 

the Eddystone Reef Tank (Figure 6-6; see also Footnote 7). As shown in Figure 6-7, the 

target area is of a two-tier architectural style. The tank and function zone are located at 

the lower floor with an upstairs passage around them. The cetacean models, as shown in 

Figure 6-8, are hung from the ceiling, over the public function zone, and can be 

observed by the visitors from both downstairs and upstairs. 
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Figure 6-6: The Eddystone Reef Tank and its function zone. 

 

 

Figure 6-7: Two-tier architecture of the Eddystone Reef Tank area. 
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Figure 6-8: The upstairs passage and physical marine animal models hung from the ceiling. 

 

It is intended to display the AR versions of the mammals in place of these physical 

models, and to make them accessible to visitors as applications on their own mobile 

devices (smartphones or tablets). Thus, as previously presented in Table 2-1, this case 

relates to a specific location-based exhibit and requires accurate registration for the 

display of AR models correctly onto and within features of the environment. Therefore 

the proposed framework presented in this thesis offers a potential solution for use in this 

project. The HIT Team application developers can make use of either RGB or RGBD 

cameras to collect the visual information around the physical models hung over the 

function zone. It would be useful to capture the data from both upstairs and downstairs, 

enabling the created reference map to be used for user tracking on both floors. Then the 

developers can deliver these data to the development framework described in Section 

6.1 above. One of the 3D reconstruction methods applied in Chapter 4 will create the 
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reference template and the dense model of the target environment based on the input 

data. The keyframes generated during the reconstruction will be trained and encoded 

into BoW signatures and be stored in an application database for efficient online AR 

tracking. After generating the database, the GUI tool shown in Figure 6-2 will allow the 

developers to insert the 3D marine animal models with respect to the reconstructed 

model of the target environment. Then an AR application will recognise the NMA 

Eddystone Reef area based on the appearance of the physical models hung from the 

ceiling and display the AR marine animals and animations superimposed within the area 

and the results can be published to the application final users.     

 

 However, more specific requirements of the application – in other words, the 

educational aims it expects to achieve and how the application should interact with the 

visitors to support such an educational aim – are still (at this stage) unclear. This is a 

task that needs to be solved by the application designers and developers, which is very 

necessary to the proposed framework to create further functions and UI features to 

support their development. For this reason, the development process of this project will 

be tracked in the near-term future for getting the direct opinions and feedback from the 

developers in time. 

 

6.2.2. Usability evaluation plans 

The usability evaluations of the proposed framework first focus on the higher-level 

developers – in this case, the developers of the desired aquarium application from the 

HIT team. In order to support their development, it needs to communicate with them 
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frequently to determine their design and goal. The proposed framework may be 

modified and improved several times during their development to meet their 

requirements. Another potential solution of this project is to use Vuforia’s multiple-

marker SDK, which is now considered as an alternative selection of application 

development by the HIT developers. Thus it will be useful to ask them to compare the 

usability of these two development tools. The objective evaluation metrics to evaluate 

these two methods on processing rate, performance and capacity of handling the target 

environment will also be designed as future study aims. 

 

 The completed application then will be tested and evaluated by the visitors of the NMA 

with a questionnaire relating to several system performance criteria, such as the quality 

and stability of the AR view, the practicality of the user interface and the interaction 

experience. 

 

6.3. Conclusion 

In this chapter, the techniques and implementations of the conceptual user interfaces are 

presented. The entire offline database training session described in the previous chapters 

is integrated into a black-box style system and the application developer can interact 

with it by using a general user interface in the form of shell script. A simple GUI tool 

based on QtGUI and OpenGL is provided for developers to insert virtual 3D objects and 

to set up their pose and scale with respect to a previous reconstructed dense model. 

Further functionality is expected to be provided within this framework in the future to 

support developers in customising the GUI and user interaction of their AR applications. 
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The augmentation configuration will then be stored in the database and used in an AR 

application for rendering and displaying the virtual objects in their proper locations. 

OpenGL is mainly used for AR registration and display, with the camera pose 

estimations generated in the online session. It produces a reasonable visual result, but 

more complex situations of the scene should be considered in future research, such as 

the effect of occlusion, lighting or shadow. 

 

In order to evaluate the usability of the proposed framework, real use case scenarios 

with real users are expected to be involved in the future. Currently an AR project based 

on cooperation between the National Marine Aquarium and the Human Interface 

Technologies Team of the University of Birmingham is being planned as a use case in 

which to apply the proposed framework. Technically, the framework is quite capable of 

handling the case, but future work needs to focus on the developers’ requirements and 

feedback during the development. Meanwhile, an alternative AR SDK will be applied 

by the developers to solve the same problem. The evaluation metrics will be designed 

for evaluation and these two methods will be compared both subjectively and 

objectively. The final application user feedback will also be used to evaluate the 

usability of the proposed framework and subsequent development of the application.  
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Chapter 7 Conclusions and Future Work 

The present research set out to propose and demonstrate a conceptual markerless AR 

framework system by taking account both of the needs of the application developers 

who wish to apply AR techniques for general development, and those of the traditional 

users who experience and interact with the end results of the AR application. The 

proposed framework system is divided into two process sessions: an offline session for 

reference template training, based on the 3D reconstruction techniques, and an online 

session for AR registration and display by tracking the user camera through the trained 

database. The techniques and implementations of this system are mainly discussed in 

Chapters 4, 5 and 6. The performance of the system and its component processes were 

tested and evaluated with several public datasets of different environments. The overall 

conclusions of the research are presented in Section 7.1 and suggestions for further 

research are suggested in Section 7.2.  

 

7.1. Conclusions 

The recent use of marker-less, natural feature-based tracking methods in AR research 

projects and in the development of application SDKs generally fall into two cases. In 

the first case, the lower-level developers (i.e. researchers) tend to apply different 

methods to design and implement AR applications for solving specific issues, which 

cannot be directly used by the higher-level (i.e. non-specialist) developers for general 

purposes. In the second case, some of the recent AR SDKs started to support markerless 

tracking for higher-level development, but, to the author’s knowledge, most of them 

only allow the user to create the reference map of a small workspace and to set up the 
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augmentation in an online session, which is not convenient for the developer, who may 

wish to implement some more complicated functions (such as designing a GUI) for their 

applications. 

 

The present research attempted to solve the above problems by proposing a markerless 

AR framework system for both the higher-level developers and the final users of their 

applications. In order to provide a robust and reliable reference template for the online 

application system to track the user’s viewport and to perform an accurate AR 

registration, two effective offline 3D reconstruction applications – RGBD-SLAM v2 

(Endres et al., 2014)  and VisualSfM (Wu, 2011; 2013) – were integrated into the 

proposed system. The former accepts the continuous ordered RGBD dataset which can 

be obtained from a RGBD camera, such as Microsoft’s Kinect, but only works for 

indoor environment. The latter can handle the unsorted, discrete RGB datasets which 

can be captured by an ordinary camera and can be applied in both indoor and outdoor 

environments. Both two types of input sensor are portable and reasonably low-cost, 

allowing the developer to choose which one they prefer. Since there is no limitation of 

processing time in an offline session, both applications feature relatively expensive 

optimisation methods to refine the reconstruction results. The performance of these two 

applications with two visual features – SiftGPU (Wu, 2007)   and ORB  (Rublee et al., 

2011) – was tested on several RGBD and RGB public datasets (Strecha et al., 2008; 

Sturm et al., 2012). If the colour frames contained within the source dataset were of a 

good quality (without too much blur), both RGBD-SLAM v2 and VisualSfM with 

SiftGPU were found to generate a robust map of the target scene. However, with ORB, 

the results of RGBD-SLAM v2 were similar to those found with SiftGPU, whilst the 
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results of VisualSfM all failed, except in the case of [fountain-P11], which only 

included 11 frames captured along a short path. The test results also suggested that the 

datasets with a lot of blurred images were not ideal for use in creating the reference map. 

This is because the necessary coordinates and feature descriptions of these images are 

not clear and reliable, which may cause mismatch errors and wrong reconstructions. 

From the perspective of the developers, when they are collecting the source data from 

the target scene, they should avoid rapid camera motions.  

 

Following the reconstruction process, whether the results are generated by RGBD-

SLAM v2 or VisualSfM, they are unified into the same format and stored into database. 

By considering the real-time requirement of the AR application, if the user is viewing a 

scene restored previously and stored in the database, the system should rapidly locate 

the user’s viewport with respect to the reference map stored within the database. Since 

the 3D reconstruction methods used in the present proposal can handle a large space 

(with many source images used), a rapid image retrieval strategy is applied to find the 

keyframe with the highest likelihood of matching the query image from the database, 

exploiting the BoW (Sivic & Zisserman, 2003)  and FAB-MAP (Cummins & Newman, 

2008) methods. Two types of visual vocabulary for SIFT-like and ORB feature 

descriptors were tested. Both SiftGPU and ORB approaches can retrieve the query 

image from the trained database effectively in near real-time, but the stability and 

accuracy of the online estimations were not very ideal although the similar camera pose 

estimation method of the offline session was used in the online session. This is because 

the expensive optimisation methods cannot be applied here for the requirement of real-

time performance. Currently, if the application users can maintain a stable camera view, 
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with a relatively slow movement around the restored scene, the system can still generate 

a reasonably AR view, although drift and vibration was still found to occur on occasions. 

Even when they moved the camera out of the reference map and returned shortly 

thereafter, the system could relocate them. However, the performance of the online 

session has only been tested on a few datasets with similar environmental qualities. The 

robustness of the online pose estimation process needs to be improved and tested on 

different environments and situations. 

 

The user interfaces proposed as part of the present research mainly focused on the 

development framework, which provides a general user interface in the form of a shell 

script for the application developers to apply their chosen methods with their input 

dataset. The dense point cloud model generated in the 3D reconstruction process is 

presented in a simple GUI tool, used as the visual reference for the developers to set up 

the augmentation (i.e. 3D objects). This GUI tool allows the developer to insert virtual 

3D models, and to configure their pose and scale with respect to the restored 

environment. The augmentation configuration is saved into the trained database and 

used in the online application for AR registration. For the application users, the present 

proposal provides an OpenGL AR browser to view the augmentation via the developers’ 

configuration and online pose estimations. The 3D models can be rendered and 

displayed correctly with all methods described above, but the effects of occlusion, 

lighting and shadow have not been dealt with as yet. Moreover, more complex functions 

and interaction are expected to be supported as part of the future plans for the 

development framework, enabling the developers to design and customise their 

application for different aims. 
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Currently, the biggest problem facing both 3D reconstruction-based template training 

and online user tracking is that the accuracy for acceptable visual performance of AR 

cannot be measured without real users. Similarly, the usability of user interfaces also 

needs to be evaluated with end users. Therefore, applying the proposed work in real use 

cases and involving end users for further system evaluation are considered as the most 

important goals to achieve in the future. 

 

7.2. Future research and development 

Further improvements on the achievements of the present research mainly focus on 

three directions of effort: 1) improve the performance of the online vision-based user-

tracking; 2) apply the proposed framework in a real use case described in Section 6.2 

and refine the functions of the development framework based on the developers’ 

feedback; and 3) design the visual performance and usability evaluation parameters for 

the proposed framework based on real users.  

 

Without the optimisation methods used in the offline session, the performance of the 

online pose estimation is currently neither suitably robust nor stable. An inexpensive 

approach needs to be developed to refine the online pose estimation without increasing 

the processing time. In addition, most of the CV techniques used in the present proposal 

were designed for the SIFT-like feature. It will be useful to explore their applications 

for the ORB feature, enabling developers to benefit from its lower-computational-cost 

and totally open-soured nature.  
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The current proposal has presented a conceptual design of an offline development 

framework. Although at the current stage of development, it only allows the developers 

to input the source data for creating the reference map of a target environment and 

configure a simple augmentation to display, it can, potentially, involve more functions 

(e.g. customising the GUI for their application, designing the forms of interaction for 

their application users, or adding animated AR content) for meeting the developers’ 

demands, which will be further exploited by tracking and communicating on the 

development process of the developers and designers of the real use case being planned 

in Section 6.2. The real users (both higher-level developers and application end users) 

need to be involved for determining the evaluation metrics on AR visual performance 

and system usability of the proposed framework.   
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APPENDICES 

A. AR application development & requirement audience 

survey 

The aim of this survey is to identify the requirements and concerned factors of 

developers (and potential developers) for Augmented Reality (AR) application 

development. 

 

* Required  

 

1. Please state your occupation: * 

_____________________________________________ 

 

2. Do you know what Augmented Reality (AR) is? * 

(Mark only one oval) 

o Yes 

o Uncertain 

o No 

 

 

Explanation: Augmented Reality (AR) refers to a live view of the physical, real 

world environment which is augmented by using computer generated information 

(i.e. sound, video, graphics or text information). Recent popular AR applications 
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include Nintendo’s Pokémon GO. 

 

 

3. Have you ever used any AR applications? * 

(Mark only one oval) 

o Yes 

o Uncertain – (skip to question 5) 

o No – (skip to question 5) 

 

4. Please name or describe one or two of the AR applications you have used: * 

_____________________________________________ 

 

5. Have you ever had a thought to apply AR in your own work or project? * 

(Mark only one oval) 

o Yes, I have already made an AR application/system. 

o Yes, but it’s still just a thought or idea at the moment. 

o No, but it may interest me later. 

o No, I’m not interested at all. – (skip to question 24) 

 

6. Which areas would you like to develop AR for? * 

(Tick all that apply) 

□ Education or training 

□ Research 

□ Tour guide for exhibitions or tourist attractions 

□ Retail or advertisement 
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□ Entertainment (e.g. mobile game) 

□ Other: ________________________________ 

 

7. Have you ever developed an AR Application/System? * 

(Mark only one oval) 

o Yes, I have developed an application for my own use. 

o Yes, I have developed an AR application for a third party. 

o No, but I have asked other people to develop one for use by me.  – (skip to 

question 11) 

o No. – (skip to question 18) 

 

 

8. Please describe your AR Application/System (for developer): * 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

 

9. How satisfied were you with your AR development experience? * 

(Mark only one) 

 1 2 3 4 5  

Very 

dissatisfied 

     Very 

satisfied 

 

10. Please specify why you were satisfied or dissatisfied: * 
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_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

 

– (skip to question 14) 

 

11. Please describe your AR Application/System: * 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

 

12. How satisfied were you with your AR application? * 

(Mark only one) 

 1 2 3 4 5  

Very 

dissatisfied 

     Very 

satisfied 

 

13. Please specify why you were satisfied or dissatisfied:* 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 
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– (skip to question 18) 

 

14. During the development, what factors do you consider the most important when 

evaluating an AR development toolkit? Please rate the importance of the 

following factors. * 

(Mark only one per row) 

 Not at all 

important 

Slightly 

important 
Important 

Fairly 

important 

Very 

important 

No 

opinion 

Proper 

documentation 

support 

      

Simple and 

intuitive 

user interface 

      

Cross-platform       

The provided 

functions (e.g. 

tracking, 

rendering 

methods) meet 

the 

end users’ goals 

      

Robust 

performance 

      

Open source       

Reasonable 

price 

      

 

15. If you have other considerations, please specify below and rate the importance 

(5 for Very important and 1 for Not at all important): 

_____________________________________________ 

_____________________________________________ 
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_____________________________________________ 

_____________________________________________ 

 

16. During the development, have you had experience with the following situations? 

Did you consider them as barriers of development? * 

(Mark only one per row) 

 Not a barrier Somewhat 

of 

a barrier 

Moderate 

barrier 

Extreme 

barrier 

I have never 

encountered 

this 

situation. 

Poor documentation 

support 

     

Difficult-to-use user 

interface 

     

No support for 

multiple platforms 

     

The provided 

functions (e.g. 

tracking, rendering 

methods) did not 

meet the end users’ 

goals 

     

Unstable 

performance 

     

Totally closed      

Unacceptable price      

 

17. If you have encountered other unfavourable situations, please specify below and 

rate the level of difficulty (4 for Extreme barrier and 1 for Not a barrier): 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 
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Please consider the following factors, select the options that best describes the needs 

of your (expected/realised) AR case. 

 

18. The general environment of your AR application is * 

(Mark only one oval) 

o Indoor 

o Outdoor 

o Both 

o Uncertain 

  

19. Is your application designed for a specific location (e.g. a heritage site)? * 

(Mark only one oval) 

o Yes 

o Uncertain 

o No 

 

20. The tracking method used in your application is * 

(Mark only one oval) 

o Marker-based Tracking, based on artificial image markers or models. 

o Markerless-based Tracking, based on natural features of the original 

environment (e.g. SLAM-based). 
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o Markerless-based Tracking, based on geographic information (e.g. 

GPS/INS-based). 

o Hybrid Tracking. 

o Uncertain. 

o Other: ________________________________ 

 

21. Does your application require an accurate AR registration (i.e. the AR contents 

always align to the background environment tightly in proper perspective)? * 

(Mark only one oval) 

o Yes 

o Uncertain 

o No 

 

 

22. Aside from AR tool kits, what factors do you consider most important when 

evaluating a software development toolkit in general? If applicable, please rate 

the importance of the following factors. 

(Mark only one per row) 

 Not at all 

important 

Slightly 

important 
Important 

Fairly 

important 

Very 

important 

No 

opinion 

Proper 

documentation 

support 

      

Simple and 

intuitive 

user interface 

      

Cross-platform       
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The provided 

functions (e.g. 

tracking, 

rendering 

methods) meet 

the 

end users’ goals 

      

Robust 

performance 

      

Open source       

Reasonable 

price 

      

 

23. If you have other considerations, please specify below and rate the importance 

(5 for Very important and 1 for Not at all important): 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

 

24. If you have any other thoughts about AR, please write it below: 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 
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B. Software and development supports 

An AR system can be developed with the assistance of several existing software 

frameworks and development tools. Lower-level development libraries and tools make 

it easier for researchers to program and realise AR frameworks with their own methods. 

Some popular and powerful software libraries are given below. 

 

ROS  

Robot Operating System (ROS) is a set of software libraries and tools for robot software 

development, although it has been more generally used in many other domains. The 

goals of ROS include solving the code reuse issues resulting from the growing number 

of robot types and their widely varying hardware, and managing complexity and 

facilitating rapid prototyping of software for experiments (Quigley et al., 2009). To that 

end, ROS contains many Open Source implementations of common robotics 

functionality and algorithms, referred to as ROS packages. Many CV-relevant packages 

are available for ROS due to the close connection between the CV and robotics 

community (e.g. CV-based SLAM). Another useful feature of ROS is providing 

standard operating system services like package management and passing message 

between nodes/processes (the running processes of ROS are represented in a graphical 

architecture, thus each executable file within an ROS package is treated as a node). ROS 

nodes use an ROS client library (e.g. roscpp for c++ language and rospy for Python 

scripting language) to communicate with other nodes by publishing or subscribing to a 

topic, as well as writing and calling a service. An example of the implementation of an 

ROS application RGBDSLAM v2 is described in Section 4.1.2. 
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OpenCV 

OpenCV is a library of programming functions aimed at providing the tools needed to 

solve CV problems (Pulli et al., 2012). It is written in C++ and its primary interface is 

in C++, but also provides interfaces or wrappers for many other languages, such as 

Python and C#. It contains a mixture of low-level image-processing functions and high-

level algorithms which are very useful for vision-based AR processing such as camera 

calibration, described in Section 2.2.1.1. Many popular feature extraction and matching 

methods are also described in Section 2.2.2. OpenCV also provides useful functions for 

dealing with epipolar geometry, the PnP problem, and many Open Source works 

provided by third parties. The detailed use of OpenCV for building the AR system in 

the present research will be presented in the following chapters. OpenCV is also used as 

the primary vision package in ROS. 

 

PCL 

Point Cloud Library (PCL) is an open-source library of algorithms for point cloud 

processing tasks and 3D geometry processing. It is written in C++. The library contains 

state-of-the-art algorithms for: filtering, feature estimation, surface reconstruction, 

registration, model fitting and segmentation(Rusu & Cousins, 2011). It is used to hold 

the 3D points measured (by 3D camera) or recovered (by 3D reconstruction) with point 

cloud datasets, and the library offers a few general purpose tools for the user to interact 

with or visualise these point clouds. The point cloud data can be stored within a PCD 

file used inside PCL. 
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OpenGL 

Open Graphics Library (OpenGL) is a cross-language, cross-platform API to graphics 

hardware (Neider & Davis, 1993). As mentioned in the last section, it can be used to 

interact with the GPU and enable GPU-accelerated computing. But it also can be used 

for rendering 2D and 3D vector graphics. Baggio (2012) notes that, although there are 

several commercial and Open Source 3D-engines (such as Unreal Engine, Ogre and 

Unity 3D) which are well qualified for the rendering task, they are all based on either 

OpenGL or Microsoft Direct3D. However, Direct3D is only supported on the Windows 

platform, thus OpenGL is more appropriate for building cross-platform rendering 

systems. OpenGL is usually used for creating a display window (viewport) for 

rendering and visualising 3D objects in many systems. The implementation of an 

OpenGL AR browser used in the proposed framework mentioned in Section 6.1.2 is 

described below. 

 

 2D background mapping 

To render an AR scene, the original input image is used as the background, and the 

virtual 3D models are projected onto it. To set up the background plane, OpenGL 

generates a 2D texture with the image and linearly maps it onto the whole quad 

viewport of the AR browser. Since the background plane does not have depth, an 

orthographic projection shown in 6.1 is used to project it onto the screen.   
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 3D graphics display 

The process with OpenGL to produce a 3D scene on the screen is very similar to taking 

a photograph with a camera (Neider & Davis, 1993), and involves several 

transformations quite like those of 3D-to-2D process depicted in Figure 3-13. The most 

important relationship that needs to be identified is the relative position between the 

camera and the scene or models to capture. More specifically, OpenGL has a fixed 

right-handed coordinate system (RHS) as world reference frame to describe them. The 

viewport of an OpenGL window is equivalent to the camera view which is referred as 

eye space, and the local space of the models in the world is referred as object space. The 

definition of axes and origins of these two spaces are the same as those of the world 

space by default, which means that, when the viewer is looking at the viewport, the 

positive X-axis is pointing right, the positive Y-axis is pointing up and the positive Z-

axis is pointing out of the screen. In the case of the OpenGL display window of the GUI 

tool shown in Figure 6-2, it seems that developer was adjusting the viewpoint to observe 

the scene from different perspectives in screenshots ② and ③, but actually the eye 

space of viewer was never moved. The identical visual perception of moving a camera 

in one direction with respect to the world can be generated by moving the so-called 

‘fixed’ dense reconstruction (with the reference axes) and the inserted object in the 

opposite direction. Similarly when the proposed AR application system is creating the 

content for its browser, the viewport is set fixed while the augmentation object (referred 

as ‘model’ below) is being moved according to the corresponding pose estimation. This 

takes benefit from the matrix-manipulation command provided by OpenGL to directly 

operate the model by using the estimated pose matrix produced in the tracking stage. 
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Although OpenGL also allows the user to move the viewpoint by using gluLookAt 

command, it is more superfluous, since the pose matrix needs to be decomposed into 

three required vectors for describing where the camera centre is, which direction the 

camera is looking at and which direction is up (i.e. the positive Y-axis of eye space).  

 

As described in expression (3.5), in order to perform 3D-to-2D camera projection, two 

matrices are needed. With the exception of the view matrix (i.e. camera pose matrix), 

which is loaded to the Model-View matrix of OpenGL to operate the pose of model 

from the world space to the eye space, the projection matrix is also loaded to the 

Projection matrix of OpenGL to determine the final view for display on the screen. The 

format of the projection matrix used by OpenGL is a somewhat different with that 

shown in (3.6). OpenGL perspectively will project the model to a clip space to simulate 

the limited field of view of camera device, which specifics a view frustum as shown 

below. 

 

The clip space of OpenGL. 
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The view frustum is defined by a near plane and a far plane, which is perpendicular to 

the negative Z-axis of the eye space. Only the vertices located on the inside of the 

frustum will be rendered. Otherwise anything that falls outside this range is clipped and 

cannot be seen. Thus the projection matrix is given by:  
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(B.2) 

where fx and fy are focal length, (cx, cy) is the principle point, width and height are 

related to the screen size, and zNear and zFar are the inverted z coordinates of the near and 

far clipping planes. The focal length and the principle point here are identical to the 

intrinsic camera parameters of the input camera sensor, thus the 2D projection of the 

virtual object can be created as well as the input image. The final transform maps the 

projections from the clip space to the viewport, which defines the size and shape of the 

display area on the screen. This can be set up with glViewport function which is 

managed by OpenGL automatically. The basic flow of AR view display with OpenGL 

commands is presented below. 

// Since the input image should be drawn as background in the viewport, the depth test need to be 

disabled for the moment. 

glDisable(GL_DEPTH_TEST); 

// Draw the background image 

…… 

glEnable(GL_DEPTH_TEST); 

// Load the projection matrix 



308 

 

glMatrixMode(GL_PROJECTION); 

glLoadMatrixf(projection_matrix); 

// Load the pose matrix (transform from the world space to the eye space) 

glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); 

glMultMatrixd(pose_matrix); 

// render the 3D models 

……. 
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C. Conversions between rotation matrices and quaternions 

Three dimensional rotations can be represented by 3x3 orthogonal matrices:   
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which are similar to the component R shown in expression (3.1). Although the form of 

matrix is very convenient to perform any transformation to points denoted by a column 

vectors in Euclidean space, the nine entries contained in R are redundant for output 

storage referred in Section 4.1.3. Since there are only 3 rotational DOFs, essentially 

three parameters are required to represent a 3D rotation. Except 3x3 matrixes, another 

two common ways are euler angles and quaternions. Euler angles use three angle 

values -- roll, pitch and yaw related to three axes to describe the rotation. There is no 

redundancy but it has gimbal lock problem, which loses one DOF when the axes of two 

are driven into a parallel configuration. By contrast, quaternion representation is based 

on complex numbers which is composed of one real element and three complex 

elements (i.e. four parameters in total), given in (A.2).  

kjiq zyxw qqqq  
 

(C.2) 

where i, j and k are imaginary numbers that meet the following conditions: 

-1222  ijkkji
 

(C.3) 

Quaternions are less intuitive than euler angles but they avoid the problem of gimbal 

lock. In this research, to store the camera poses estimated in the 3D reconstruction 

session described in Chapter 4. The 4x4 transformation matrices are converted into 7-

vectors, which are composed of translational 3-vector and 4-vector  zyxw qqqq 
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of rotation quaternion, and then they are written into the data files. In turn, in online 

session described in Chapter 5, the system will read the reference map from the data 

files and interpret the 7-vectors into 4x4 transformation matrices again. The conversions 

between the matrices and quaternions are given below. 

  

A pure rotation matrix R should be special orthogonal, i.e. det(R) = 1. Then the matrix 

R can be converted to a quaternion q using this basic form: 
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The equivalent matrix of a quaternion can be obtained as follow: 
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D. Distance metrics 

Consider two vectors  naaa ,...,, 21a and  nbbb ,...,, 21b in an n-dimensional real 

vector space ℝn
. 

Euclidean distance 

The Euclidean distance is the straight-line distance between two points in Euclidean 

space. The associated norm is called the Euclidean norm, also known as L2 norm or L2 

distance, defined in (B.1). 
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(D.1) 

 

Manhattan distance 

The Manhattan distance is the sum of lengths on each coordinate axis. It is also known 

as L1 norm or L1 distance, defined in (B.2).  
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E. Skew-symmetric matrix representation of cross product 

3x3 skew symmetric matrices can be used to represent cross products as matrix 

multiplications. Consider vectors a = (a1 a2 a3)
 T

, then the cross product matrix of a is 

defined as: 
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F. RGBD-SLAM output files 

Camera trajectory file 

Each line of the generated trajectory file contains the translation and orientation of the 

camera in the world reference frame at a certain time. The format of each line is 

'timestamp tx ty tz qx qy qz qw' where the [timestamp] denotes the time of Kinect data 

being published, the [tx ty tz] gives the estimated camera centre and the [qx qy qz qw] 

gives the estimated orientation in form of a unit quaternion of the optical centre of the 

colour camera with respect to the world. The conversion between quaternion and 3x3 

rotation matrix is given in Appendix C. The translation vector t can be calculated from 

camera centre c by using t = -Rc. 

 

XML files of graph summary and nodes 

 The summary file of generated graph contains:  

 the number of camera nodes: how many RGBD frames have been used as nodes 

during the reconstruction;  

 the list of node pairs restrained by edges: which node pairs have enough feature 

correspondences for estimating a valid transformation between them (stored as 

<Node_id1, Node_id2>); 

 the list of keyframes and their associated nodes: which nodes are selected as 

representative keyframes due to the rule described in Section 4.1.2.2 and which 

nodes are associated (have edges) with them (stored as <Keyframe_node_id, 

<Associated_node_ids> >);  

 the list of inlier features and their originating feature points: so-called inlier 
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features come from the RANSAC inlier correspondences used for estimating 

transformations between nodes (as mentioned in Section 4.1.2.3), which can be 

also interpreted as 3D space points and their originating 2D-to-2D 

correspondences can be considered as the projections on different images (stored 

as <Inlier_id, <Node_id, Feature_id> >);    

 

Nodes are stored separately. Each node file contains: node_id, vertex_id, 2D 

coordinates of features, 3D coordinates of features and visual descriptors, as shown in 

Figure 4-8. In addition, a reverse-index from each visual feature to an inlier feature 

stored in the summary file is also recorded, as <Feature_id, Inlier_id>.   
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G. VisualSfM file formats 

SIFT 

The default feature detector and extractor used in VisualSfM is SiftGPU. The API of 

SiftGPU supports to save the detected feature measurements and their 128-D SIFT 

descriptor vectors to a Lowe's ASCII format SIFT files (Wu; Lowe, 2005) for each 

processed image and using the extension ‘.sift’. VisualSfM always generates binary 

format SIFT files as intermediates which are not human readable but much more time 

and space-saving than ASCII format in file writing and reading.  If the ASCII format 

SIFT files are imported to VisualSfM, they will be converted to binary format SIFT 

files automatically. 

# .sift (Lowe's ASCII format)  

<Number of features> < Dimensionality of descriptor vectors > 

# <List of features> 

#<Feature> 

<Row> <Column> <Scale> <Orientation> 

< Descriptor vector > 

#</ Feature > 

…… 

#< Feature >……#</ Feature > 

# </List of features> 

 

MAT 

VisualSfM performs pair-wise matching between all input images and stores the feature 
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matches in binary format MAT files for each processed image and using the extension 

‘.mat’. The MAT format file of each image only contain a list of the indices of its 

matching images, match counts and the correspondences of matched feature indices, 

which means it is irrelevant to what kind of features and descriptors were used for 

matching. It can be custom generated by using "SfM->Pairwise Matching->Import 

Feature Matches" in VisualSfM. The input txt file that contains all the feature matches 

should follow the format below: 

# match file (*.txt)  

Match file = <List of Image-Match> 

Image-Match = <image1_path> <image2_path> <# of matches>  

              <List of 0-based feature indices in image1>  

              <List of 0-based feature indices in image2> 

  

NVM 

VisualSfM saves intermediate parameters during the sparse reconstruction as N-View 

Match (NVM) files, which contain camera list, 3D point list and the associate PLY files. 

The format description is given below: 

# .nvm  

NVM_V3    # file version header 

 

# <Reconstructed model> 

<Number of cameras (Integer)> 

# <List of cameras> 
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#<Camera> 

<Image path (String)> 

<Focal length (Float)> 

<Rotation quaternion WXYZ (Float[4])> # or <Rotation matrix (Float[9])> 

<Camera Centre (Float[3])> 

<Radial distortion (Float)> 

0     # 0 indicate the end 

#</Camera> 

…… 

#<Camera>……#</Camera> 

# </List of cameras> 

 

<Number of 3D points (Integer)> 

# <List of points > 

#<Point> 

<3D position XYZ(Float[3])> 

<Point colour RGB (Integer[3])> 

<Number of 2D measurements (Integer)> 

# <List of measurements> 

# <Measurement> 

<Image index (Integer)>   # start from 0 

<Feature index (Integer)>   # start from 0 

<2D position xy(Float[3])> 

# </Measurement> 
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…… 

# <Measurement>……# </Measurement> 

# </List of measurements> 

#</ Point > 

…… 

#<Point>……#</ Point > 

# </List of points > 

 

# <Empty Model> 

<Number of unregistered images> 

# <List of unregistered images> 

<Image path (String)> <Focal length (Float)> 1 0 0 0 0 0 0 0 0 

…… 

<Image path (String)> <Focal length (Float)> 1 0 0 0 0 0 0 0 0 

# </List of unregistered images> 

 

# 0 camera and 0 point to indicate the end 

0 

0 

 

#the last part of NVM file points to the PLY files 

< Number of associated PLY files> 

< Model-index that has PLY> 

 


