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Abstract. The reference evapotranspiration (ETo) is essential for water-consuming in agriculture and land-water cycle 15 

research. The synoptic data from meteorological stations can provide reliable ground data for ETo estimation with the FAO-

56 Penman-Monteith equation. However, the five primary variables this equation needs, including maximum temperature 

(Tmax), minimum temperature (Tmin), sunshine duration (SSD), wind speed (Wind), and relative humidity (RH), often 

experience severe data loss due to force majeure events in synoptic data. The data loss would directly introduce severe data 

gaps to the complex records for ETo. Machine learning algorithms can fill various data gaps with low error rates, however, to 20 

achieve high data quality, the algorithms must be selected properly to deal with the distinct types of data loss and train 

independently. Here, based on the data characters, we investigated and classified data gaps from the synoptic dataset into 2 

major types: the common, minor data loss gaps including Tmax loss/Tmin loss/SSD loss/Wind loss/RH loss/Wind and SSD 

loss/Wind and RH loss, and the other 19 types of data loss which is more severe in information loss but barely occurred. Our 

results show that the XGBoost model achieved the best accuracy in all 3 machine learning models with high statistic levels. 25 

For the other 19 types of data gaps, the LSTM models were trained separately for each site and achieved average R², RMSE, 

and nRMSE at 0.9, 0.5 mm d-1, and 38% for the total 2419 stations. Thus, we propose a high-quality, gap-filled daily ETo 

dataset during 1951-2021 for China with the proportion of large errors (the data with daily ETo errors more than 1.5 mm d-1) 

below 0.2%. Our results also reveal that the entanglement degree between synoptic variables varies a lot from region to region 

in China. Although most research indicates that wind speed is not very important for ETo estimation with machine learning 30 

models, our findings reveal that wind speed played a more significant role in ETo estimation in most areas of China during the 

years before the 21st century. Still, the impact of wind speed on ETo has also been alleviated in recent years. This ETo dataset 

for China is available online at https://doi.org/10.5281/zenodo.11496932 (Zhou et al., 2024). 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



2 
 

1 Introduction 

Evapotranspiration (ET) is the fundamental process of water loss in agricultural fields (Tanner, 1967), and as a crucial 35 

component of the ecosystem health, hydrological cycle, evaporation influence deeply in water resources preservation, crop 

yield irrigation, water management practices (Wanniarachchi & Sarukkalige, 2022). Understanding the impact of various 

factors on ET is crucial, as ETo, or reference evapotranspiration, serves as a standardized benchmark for comparing and 

predicting ET across different regions and conditions. (Chen & Liu, 2020; Elhaddad & Garcia, 2008; Gowda et al., 2008). ETo 

provides a standardized measure that can be adjusted for local conditions and specific crop water consumption (Shiri, 2017). 40 

In the world wild, the FAO-56 PM equation is the benchmark ETo estimation method for crops in various soil conditions (Fan 

& Thomas, 2013; Li et al., 2012). The computation of the FAO-56 PM equation required detailed environmental data, including 

solar radiation (Rs), maximum and minimum temperatures (Tmax/Tmin), relative humidity (RH), and wind speed at a 2-meter 

height (WS) (L. S. Pereira et al., 2015). Based on the different sources of climate data, multiple ETo data products are provided 

in worldwide. 45 

In recent years, both satellite-based and ground-information-based ETo products have been made available globally by 

multiple suppliers, offering ETo datasets at varying temporal and spatial scales. Satellite-based ETo products like the Global 

Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), and the Numerical 

Terradynamic Simulation Group (NTSG) provided daily ETo at spatial resolution ranging from 10km to 0.25° from 1982 (Bai 

& Liu, 2018). The ground-information-based ETo products can offer higher spatial-temporal resolution than the satellite 50 

products, for example, the geographic remote sensing ecological network offered high-resolution ETo products from 1958 to 

recent years based on the climate data spatial interpolation software Anusplin to predict the actual evapotranspiration data for 

China at hourly, daily, monthly, and yearly scale at spatial resolution range from 10m to 1km. But both the satellite and ground-

information-based ETo products have severe limits of error and uncertainty caused by various data collection and recording 

methods (Bormann et al., 1996; Ghilain et al., 2011). Changes in data collection methods and equipment updates over a long 55 

period would also lead to inevitable data loss and fuzzy (Gavilán & Castillo-Llanque, 2009; Paredes & Pereira, 2019). These 

inevitable factors have led to significant data gaps in the synoptic dataset, hindering the further computation and application 

of long-term ETo values, accurate ETo prediction over large regions, and effective agricultural irrigation management in 

certain areas (Z. Hu et al., 2022; Malik et al., 2022; Roy, 2021).  

Although it is hard to fill the synoptic data gaps, the ETo data gaps could be filled by both empirical equations and machine 60 

learning models (Gocic et al., 2016). Empirical ETo estimation models are based on simulating the physical evaporation 

process and energy cycles. The most canonical equations for ETo estimation under limited data are the Hargreaves Equation 

(Hargreaves & Allen, 2003), Thornthwaite Equation (CHANG, 1959), Blaney-Criddle Equation (Allen & Pruitt, 1986), and 

the Priestley-Taylor Equation (LHOMME, 1997). The Hargreaves Equation required mainly temperature, and the 

Thornthwaite Equation calculates ETo based primarily on temperature and day length, while the Blaney-Criddle Equation 65 

achieved more accuracy compared to the Thornthwaite Equation in arid regions. The Priestley-Taylor equation required solar 
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radiation, temperature, and VPD to calculate ETo. Although these equations all request fewer environmental parameters than 

the PM equation, these equations have their limitations in precisions and applicable geographical scope (Kra, 2010; 

Mallikarjuna et al., 2014; Valiantzas, 2018). In all, the Priestley-Taylor equation could replace the FAO-56 PM Equation only 

in arid or semi-arid regions where evaporation is often controlled by moisture rather than energy availability (Shiri, 2017). 70 

These limitations restricted the usage scenarios of empirical methods.  

Compared to the empirical methods, machine learning algorithms could achieve high-quality regression processes under 

sufficient information and simulate different types of data automatically (Kinaneva et al., 2021). These methods are famous 

for their robustness and convenience in computation. Thus, they are wildly used to predict ETo from limited environmental 

data across the world (Mostafa et al., 2023). When the historical climate data are comprehensive enough to encapsulate 75 

environmental changes within a specified location, the regression analysis results will be robust and reliable for these regions 

(Hossein Kazemi et al., 2020; Z. Hu et al., 2022; Mostafa et al., 2023; Santos et al., 2023). Almost all machine learning 

algorithms can model regression relationships between input and output. This capability allows machine learning models to 

extract patterns from limited synoptic variable inputs and subsequently infer the relationship between ETo and constrained 

environmental data. (Granata, 2019). The performance of these machine learning algorithms is significantly influenced by the 80 

completeness and quality of the input data (Huang et al., 2020). The data quality and the algorithm's extraction ability to the 

data features become the two critical points in machine learning approaches (Kim et al., 2022). Data quality is controlled by 

the data provider, a reliable provider could consume the reliability of synoptic data. As for the algorithms, based on the 

underlying algorithm principles, the machine learning algorithm used in evaporation regression could be classified to 6 major 

types: Neural Networks (mainly including Artificial Neural Network short for ANN, Multilayer Perceptron short for MLP, 85 

Radial Basis Function short for RBF, Generalized Regression Neural Network short for GRNN, Long Short-Term Memory 

short for LSTM) (Kisi, 2008), Ensemble Methods (including Random Forests short for RF, Light Gradient Boosting Machine 

short for Light-GBM, Extreme Gradient Boosting short for XGBoost, M5 Model Tree short for M5Tree) (Salahudin et al., 

2023), Fuzzy Systems (Adaptive Neuro-Fuzzy Inference System short for ANFIS) (Ladlani et al., 2014), Genetic Programming 

(Gene Expression Programming short for GEP, Genetic Programming short for GP) (Guven et al., 2008) , Support Vector 90 

Regression short for SVR (Chia et al., 2020) and other learning algorithms like Extreme Learning Machine short for ELM 

(Gocic et al., 2016), Multivariate Adaptive Regression Splines short for MARS (Kisi, 2016), Cuckoo Search Algorithm short 

for CSA (Shamshirband et al., 2016). From research for ETo estimation, all the machine learning models based on the 6 types 

of algorithm principles could achieve high performance, though there is some difference among all algorithms (Granata, 2019). 

When data fluctuations become more severe than usual, particularly in those areas where perception and high temperature are 95 

less relative to the humidity, the GBDT algorithm would perform better because it could handle the outliers and more irregular 

data (Huang et al., 2020). Also, Cubist presented high performance in modeling daily ETo. 

While these algorithms have demonstrated significant potential, their effectiveness is still influenced by various factors 

including prediction time scales and regional data characteristics. It is crucial to evaluate the performance across different time 

scales and regional contexts for machine learning models. Most research focuses on ETo prediction periods of 1-3 days, when 100 
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the prediction period exceeds 3 days, accuracy declines rapidly. For prediction periods longer than 4-7 days, utilizing 

forecasted weather data to predict ETo is a more suitable approach. This method helps maintain the reliability of ETo 

predictions over extended periods, leveraging more accurate and updated weather forecasts to improve the overall prediction 

accuracy. . In the newest research for large climate models, future prediction based on machine learning algorithms could 

forecast the environmental data for up to 10 days or no longer (Bi et al., 2023). As for the time scale of more than a month and 105 

annual prediction, it has been demonstrated that machine learning algorithms can produce results at a monthly scale for 1-3 

months and on an annual scale for 1-3 years. (A. R. Pereira & Pruitt, 2004). Another issue in ETo prediction models is that, 

even with the same data quality and quantity, the performance of a machine learning algorithm also depends on the regional 

characteristics of the data (Salahudin et al., 2023). As the Priestley-Taylor equation simulates ETo more effectively in arid or 

semi-arid regions, the quality of the simulation is also influenced by regional data and data characteristics. Lower frequencies 110 

of extreme values (primarily maximum values) and outliers facilitate model stability. Consequently, models may exhibit less 

precise performance in certain seasons within regions characterized by high precipitation and soil moisture deficiency, where 

data variability is more significant. 

To creat a high precision, complex daily ETo dataset for China, we selected a complex meteorological dataset to provide 

the primary ground information. The data gaps in this meteorological are analysed and classified into 27 types and further 115 

classified into 7 major data loss types and other data loss types for the ETo filling. The MARS, SVR, and XGBoost algorithms, 

which do not account for temporal relationships in the data, are employed to create the machine learning models to fill gaps 

where one or two daily variables are missing, even when these gaps extend over long periods. For data gaps involving more 

than three missing indices, the LSTM algorithm is utilized, as it performs better in cases of extensive data loss, except for 

prolonged continuous data loss. Notably, long-term gaps with more than three missing daily variables occur only in rare 120 

situations. All four machine learning models used in gap-filling tasks—MARS, SVR, XGBoost, and LSTM—are reliable 

according to statistic estimations. By addressing data gaps based on their specific loss types, we established a high-precision 

ETo dataset suitable for practical applications and ETo data analysis tasks. Additionally, we analysed the importance 

distribution for ETo prediction under various parameter loss scenarios across 2419 sites and found that the interdependence of 

different variables varies by region. Among all environmental parameters, Wind is particularly noteworthy; reducing the input 125 

data length for Wind results in improved simulation performance regardless of the machine learning algorithm used. This 

phenomenon may be linked to the decreased independence of the Wind parameter. 

where ∆𝑀! is Ut rutrum, sapien et vulputate molestie, augue velit consectetur lectus, bibendum porta justo odio lobortis ligula. 

In in urna nec arcu iaculis accumsan nec et quam. Integer ut orci mollis, varius justo vitae, pellentesque leo. Ut. 
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2 Dataset and methods 130 

2.1 Dataset 

2.1.1 Meteorological Dataset 

The information source used to calculate the FAO-56 PM equation ETo must provide the following 5 meteorological variables 

simultaneously: maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (Rs), relative humidity (RH), 

and wind speed (Wind). Therefore, the meteorological dataset from the National Climatic Centre of the China Meteorological 135 

Administration (NCC-CMA) is chosen for the computation process. This dataset provides daily atmospheric data collected 

from 2,419 meteorological stations across China during 1951 to 2021. The meteorological dataset demonstrates reliability, 

exhibiting errors within acceptable margins and high precision on a daily scale. This dataset provide eight essential climate 

data metrics for each ETo record including site ID (ID), longitude (Lon), latitude (Lat), altitude (Alt), year (Year), month 

(Month), day (Day), Tmax, Tmin, sunshine duration (SSD), relative humidity (RH), and wind speed at 1 meter above ground 140 

(Wind). Although the meteorological dataset provides comprehensive coverage data for China from 1951 to 2021, it still 

contains gaps that cannot be inferred from remote sensing or other technical methods at either temporal or spatial scales. The 

data loss type, duration, and geographic distribution of these gaps are presented in Sect 2.1.2.  

These essential records are extracted from the original meteorological dataset, they also are cleaned and unified to standard 

data format (Sect 2.3). All the original synoptic data have undergone strict quality controls, including assessing spatiotemporal 145 

consistency, identifying outliers, and correcting suspicious and erroneous data (Du et al., 2020). The spatial distribution in 

different climate regions of China for each site is detailed in Figure 1. The meteorological station is not evenly distributed in 

China. In the marginal tropical humid zone (MTH), north subtropical humid zone (NSH), and the warm temperate semi-humid 

zone (WTSH), the station density is relatively high and distributed evenly. In the other four climate regions, The meteorological 

stations in these areas are mainly distributed in areas with high human activity, such as the eastern part of the Plateau 150 

temperature semi-arid zone (PTSA), The western part of the Mid temperature Arid Zone (MTA), The southwestern part of the 

Mid temperature semi air zone (MTAS) and the areas other than the northern part of the Mid temperature semi air zone (MTSH).  
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Figure 1: Spatial distribution of meteorological sites and climate zones aligns. 

This approach allows us to derive the necessary solar radiation values indirectly, ensuring that the PM formula can still be 155 

applied effectively. By estimating Rs from SSD, we maintain the integrity and continuity of the ETo computations despite the 

absence of direct solar radiation measurements. This estimation incorporated the day of the year, calculated from the date in 

the records, and geographical coordinates, derived from longitude and latitude. Detailed methodologies and conversion 

formulas for this process are provided in Sect. 2.2.1. (Yang et al., 2006). While several datasets offered information on solar 

radiation for China (Tang et al., 2013), the derived solar radiation from the original dataset is more suitable for computation 160 

because it aligns well with the geographical location. 

2.1.2 Data Gap Details 

To quantify and classify these data losses, statics analysis was conducted for the meteorological dataset of the frequency, 

categories, and severity based on data indices' absence types. The spatial distribution of data loss for each site are presented in 

Fig. 2. The numerical analysis related to these observations are presented in Table 1. The analysis shows that 74 sites exhibit 165 

gaps ranging from 1,800 to 3,284 days (approximately 10 years), with 53 of these 74 sites having record gaps exceeding 10 

years. Aside from these 74 outlier sites, data loss is evenly distributed across both temporal and geographic scales for all other 

sites. The average duration of the data loss period is 743 days, with a median of 465 days. These findings indicate that, while 

substantial data gaps exist across the dataset, the overall long-term reliability of the data remains robust. However, the problem 
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of data loss is also severe for a complex dataset because long-time data loss and specific climate variables loss exited and 170 

would hugely affect the ETo estimation quantity by machine learning models. 

 
Figure 2: Spatial distribution of Gap days in each site. 

Table 1: Record days, accumulative gap days, and gap percentage 

 Record Days (d-1) Gap Days (d-1) Gap percentage（%） 

Average 22626 743 3.43 

Median 23128 465 2.17 

Max 25933 12183 99.04 

Std 3200 774 4.48 

25% 22641 385 1.72 

To facilitate machine learning models in learning features from incomplete data and filling the gaps in ETo, all instances of 175 

missing meteorological data were classified. The data gaps were categorized into 26 types (Table 2) based on the combinations 

of missing daily variables. The basic five data loss types (S1-S5) result from the absence of a single variable out of the total 

five, including maximum temperature loss (Tmax, S1), minimum temperature loss (Tmin, S2), sunshine duration loss (SSD, 

S3), wind speed at 1 meter above the ground loss (Wind, S4), and relative humidity loss (RH, S5). These five basic gap types 

account for more than 75% of the total data gaps in the entire dataset (Fig. 3). The detailed volume of each gap type is presented 180 

in Table 3. To simplify the expression, we will use the terms Tmax, Tmin, RH, SSD, Wind, SSD-Wind and Wind-RH to 

represent the data gap type S1-S7, where the referenced index indicates the missing variable. The other 21 gap types (S6-S27) 

are detailed in Table 2. According to Fig. 3, the data gap types S1-S7 cover more than 90% of the total data loss type among 
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all 2419 sites, and the remaining data of S6/S7 is also sufficient for machine learning models. Therefore, we extracted the 

SSD-Wind loss (S6) and RH-Wind loss (S7) for gap-filling and analysis using the same methods as for S1-S5. The quantity 185 

of the other 19 data gap types (S8-S26) is significantly less than that of data loss types S1-S7 (Table 3). Consequently, these 

data gaps are still filled using reliable LSTM models (Sec. 3.4). 
Table 2: Gap type code 

Gap Type of lost data Code 

Tmax loss S1 

Tmin loss S2 

SSD loss S3 

Wind loss S4 

RH loss S5 

SSD&Wind loss S6 

Wind&RH loss S7 

Tmax&Tmin loss S8 

Tmax&SSD loss S9 

Tmax&Wind loss S10 

Tmax&RH loss S11 

Tmax&Tmin&SSD loss S12 

Tmax&Tmin&Wind loss S13 

Tmax&Tmin&RH loss S14 

Tmax&SSD&RH loss S15 

Tmax&Tmin&SSD&RH loss S16 

Tmin&SSD loss S17 

Tmin&Wind loss S18 

Tmin&RH loss S19 

Tmin&SSD&Wind loss S20 

Tmin&SSD&RH loss S21 

Tmin&Wind&RH loss S22 

Tmin&SSD&Wind&RH loss S23 

SSD&RH loss S24 

SSD&Wind&RH loss S25 

Tmax&Tmin&SSD&Wind&RH loss S26 

The distribution of data loss quantity over the period from 1951 to 2021 is presented in Fig. 4(a). Data loss is primarily 

concentrated in three time periods: 1951-1975, 1985-2000, and 2020-2021, with the most severe data loss occurring in 2020-190 

2021. Figure 4 (b) presents the total number of sites that contained a certain type of data gap in a year. As the total site quantity 

quickly increased from 1951 through 1960, this period included a large data gap of Wind loss and SSD loss. From 1960 to 
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1980, with the total loss quantity decreasing soon and reaching a low level in 1975, the SSD loss is more commonly seen in 

nearly half of the meteorological stations. Meanwhile, Wind loss began to increase in about half of the total meteorological 

sites and became the most widely distributed data loss type from 1975 to 2005. Between 2005 and 2019, both the quantity and 195 

the types of data loss decreased quickly. Still, the data loss became severe again in 2020 and 2021 because the SSD loss and 

wind loss appealed in all synoptic stations and the total data loss quantity increased quickly, refer to Fig.4 (b). 

 
Figure 3: Meteorological station quantity for each data gap type. 

 200 
Figure 4: the gap volume of each year(a), the site quantity of each gap type in each year (b). 

  Figure 5 (a-g) displays the spatial distribution and histograms of the 7 major types (S1-S7) of data loss, the size of the dot 

represents the cumulative number of data loss quantity corresponding to each specific data loss type. It could be seen that the 

Wind Speed loss is the most severe of all types. The Wind Speed loss is evenly distributed in each meteorological station, this 

data loss type also produces long-time data loss across China. The numerical statistic results show that wind speed loss become 205 

severe since the 1980s and is the most severe problem for the synoptic data in 2020 and 2021. Other data loss types happened 

relatively less, and severe data loss only occurred in certain regions of China. Severe Tmax loss and SSD loss appealed mostly 
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in northern areas of China, while Tmin loss happened around the middle part of China. The parameters Tmax and SSD both 

offered important information for solar radiation, in arid regions, lacking one variable in these two parameters would not cause 

direct problems in ETo filling models. Severe RH loss occurred in the south-west region of China. SSD-Wind loss and Wind-210 

RH loss distributed less than the original Wind loss, but still widespread across China. 
Table 3 The gap quantity of each gap type 

 
Gap Days（d-

1） 
Gap Percentage
（%） 

Site Mean
（d-1） 

Site std
（d-1） 

Site Percentage 
Mean（%） 

Site Percentage Std 
(%) 

Wind (S4) 896320 1.64 371 159.2 1.75 1.64 

SSD (S3) 626709 1.15 264 663.6 1.21 3.75 

Tmax (S1) 13988 0.03 13.8 50.7 0.02 0.14 

Tmin (S2) 12689 0.02 9.16 37.73 0.02 0.12 

RH (S5) 71822 0.13 46.5 322.6 0.13 1.15 

SSD&Wind (S6) 85915 0.16 35.7 100.5 0.15 0.41 

Wind&RH (S7) 14278 0.03 7.77 93.93 0.03 0.35 
Others 

(S8-S27) 56345 0.1 0.02 0.01 0.08 0.12 

Total 1778066 3.25 747 178.6 3.39 1.1 
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Figure 5: The quantity distribution of gap type Tmax (a), Tmin (b), SSD (c), RH (d), Wind (e), SSD-Wind (f), Wind-RH (g) for 215 
each site. 
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2.2 Methodology 

2.2.1 ETo Calculation 

The FAO-56 Penman-Monteith (PM) formula is used to calculate ETo. In consideration of both energy balance and 

aerodynamic terms, it offers a detailed estimation of the water demand of a well-watered grass field under prevailing 220 

environmental conditions. This formula is recommended by the Food and Agriculture Organization of the United Nations 

(FAO) within the FAO Irrigation and Drainage Paper No. 56. The FAO-56 PM formula is Eq. (1). 

ET! =
!.#!$∆('!())+,

"##
$%&'(-&(.)(.*)

∆+,(/+!.0#-&)
                                                                                                                                             (1) 

Where	∆ is the slope of the vapor pressure curve (kPa/℃), 𝑅1	is the net radiation at the crop surface (MJ m-2 d-1), G is the 

soil heat flux density (MJ m-2 d-1), 𝑟 is the psychrometric constant (kPa/℃), T is the average daily air temperature at 2m height 225 

(℃), 𝑢2 is the wind speed at 2 m height (m s-1), 𝑒3 is the saturation vapor pressure (kPa), 𝑒4 is the actual vapor pressure (kPa), 

(𝑒3 − 𝑒4) is the saturation vapor pressure deficit (kPa). 

Another problem is that the PM formula required Rs, but the meteorological dataset only provided the sunshine duration 

(SSD). So, we use the Angström-Prescott equation in Eq. (2) to convert sunshine duration to solar radiation. 

𝑅3 = 𝑅4(𝑎 + 𝑏
5#
5
)                                                                                                                                                                 (2) 230 

Where the 𝑅3 is the solar radiation (MJ m-2 d-1), 𝑅4 is the standard solar radiation (MJ m-2 d-1), 𝑆! is the monitored sunshine 

duration in a day (h d-1), and 𝑆 is the total daily sunshine hours (h d-1), a and b are empirical coefficients that vary depending 

on the location and are determined from historical solar radiation and sunshine duration data. 

2.2.2 ETo Calculation 

The original meteorological dataset endured several standardization issues, including longitude and latitude changes due to 235 

site relocation or evacuation, the special code blended with the original data records, wrong measurement units, and other 

problems that occurred due to human errors. We deployed an automated program to recalibrate the standardization problems 

to minimize data fluctuations. We updated the geographical information to the newest records (2016) for each site, unified the 

units of data records, and aligned special meteorological information descriptions with the newest standards. This program is 

also used to detect and correct anomalies to change the different units that happened in data records. The data-cleaning process 240 

is essential for the calculation process. 

Figure 6 is the flow chart of the whole ETo prediction and gap-filling process. After the data-cleaning process, the records 

without major index loss would straightly be used to calculate ETo with the FAO-56 PM formula. The data records with 

meteorological data gaps are extracted specifically and classified into the 26 data gap types in Sec. 2.1.2. The program would 

recognize the data loss type automatically and fill the ETo record according to the specific data loss type. To fill the gap data, 245 

the program firstly distinguishes whether the remaining climate data type is more than 3 or not; if there are still 3-4 environment 

parameters remaining, three gap-filling model based on the MARS/SVR/XGBoost algorithm would be trained and employed 
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to fill the ETo data records for the specific site and data loss type. If there are more than 2 parameters lost, the Long-short 

Term Memory algorithm is hired to create the gap-filling model. The gap data would be input to a specific trained LSTM 

model with the true ETo for the 7 previous days. Details of the pros and cons of the two methods are presented in Sect. 4.2 In 250 

short, the XGBoost model is more useful when there are only a few indices loss, and this approach could easily achieve high-

quality prediction when continuous data are missing. The LSTM method could deal with the multiple parameters missing 

scenarios, especially when a whole day of environmental data are missing, and XGBoost could barely work. LSTM would 

give a relatively acceptable ETo prediction result.  

 255 
Figure 6: Flow chart of the gap-filling process. 

Four models are introduced for the regression task for the 2 different data loss scenarios. The regression models could 

perform well in both continuity and discontinuity gaps in such scenarios. So, these models that ignore the relationship between 

data can be used for regression tasks in this scenario. In our research, the MARS (Multivariate Adaptive Regression Splines), 

SVR (Support Vector Regression), and XGBoost (Extreme Gradient Boosting) algorithms are used to simulate the single-day 260 

ETo from the remaining environmental indices.  

MARS is a representative learning algorithm for non-parametric regression tasks because it is an ensemble of linear 

functions. It could be seen as an extension of linear models that automatically model nonlinearities and interactions between 

variables. This algorithm gradually classifies the data into more detailed classes by using a piecewise linear function composed 

of smaller functions like the “right function.” this basic function only determines whether the current value is greater than a 265 
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specific threshold. With the composition of all these basic functions, MARS could achieve good performance in high-

deamination data classifying and regression tasks, and because the basic function part has a linear structure, the calculation of 

MARS is easier than other machine learning algorithms. 

SVR is based on the concept of Support Vector Machines. It is a classical neural network algorithm. In SVR, the idea is to 

find a function that has at most a minus deviation from the obtained targets for all the training data and, at the same time, is as 270 

flat as possible. In regression tasks, this algorithm character could let it jump out of the smaller depression points, thereby 

enhancing the ability to resist outlier interference. This algorithm works well with both linear and non-linear data and is more 

robust against overfitting, especially in high-dimensional space. Compared to MARS, SVR has more advantages in dealing 

with dates that are not standardized enough.  

XGBoost implements gradient-boosted decision trees (GBDT) designed for speed and performance. It is a scalable and 275 

accurate implementation of gradient boosting machines, one of the most powerful techniques for building predictive models. 

By learning from the gradient residual, XGBoost could handle more complicated data when there are large, larger internal 

differences. The metrological data are relatively stable in most regions. However, in regions where the weather changes fast 

and is easily influenced by big weather changes or human activities, the metrological data could be very challenging for 

learning algorithms because the outliner data might occur less regularly. The performance of these three 1-day data prediction 280 

methods is detailed in Sect. 3.2, which furtherly presents the comparison of the results of the three methods. 

For the days that lack more than 2 environmental parameters, even those that lack records of this day, LSTM is a relatively 

reliable method to infer the ETo for the next day based on the previous 7 days' data records. LSTM, short of the Long Short-

Term Memory algorithm, is a type of recurrent neural network (RNN) architecture used in the field of deep learning. Unlike 

standard feedforward neural networks, LSTMs have feedback connections that make them capable of processing not just single 285 

data points but entire sequences of data. The gates (input, output, and forget gates) allow LSTMs to selectively remember or 

forget patterns, which is crucial for understanding long-term dependencies in time series data and gives the LSTM model the 

ability to remember information for long periods. 

LSTMs leverage the data from the previous 7 days to make accurate predictions for the next day, even without complete 

environmental parameters. By learning from the temporal patterns and relationships within the historical data, LSTMs can 290 

infer missing information and provide reliable ETo estimates. This capability is especially valuable when environmental data 

are incomplete or inconsistent. 

2.2.3 Evaluation 

To ensure the gap-filling result is reliable on both the statistical and absolute value levels, both the statistical and absolute 

value evaluation methods are introduced to estimate the prediction ETo. At the statistical level, R² (Coefficient of 295 

Determination), RMSE (Root Mean Squared Error), and nRMSE (Normalized Root Mean Squared Error) are the main 

indicators used to evaluate the reliability of the training data, validation data, and test data. More specific evaluation results 

are presented in Sect. 3.2 and 3.4. R² provides the measure of the strength and direction of the linear relationship between 
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observed and predicted values, indicating how well the independent variables explain the variance in the dependent variable. 

RMSE offers a measure of the differences between values predicted by a model and the values observed from the environment 300 

that is being modeled. It is used to quantify the model's accuracy in predicting the target variable on the same scale as the data. 

nRMSE is the RMSE normalized by the range or standard deviation of observed data, which allows for the comparison of 

models with different scales. The equation for R², RMSE and nRMSE are listed in Eq (3), Eq (4) and Eq (5). 

𝑅2 = 1 − 4
+
,∑ (7-(78-)&

,
-.+

9
5                     (3) 
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:
∑ (𝑦; − 𝑦:;)2:
;</                       (4) 305 
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In Eq (3), Eq (4) and Eq (5)., N represents the total observation sample size, and 𝑦; 	𝑎𝑛𝑑	𝑦:; is the i-th observation value and 

prediction value,	y>	is	the	average	of	y. 

3 Result 

3.1 ETo Dataset 310 

A high-precision ETo evaporation dataset with the gap filled in the period of 195-2021 for mainland China is proposed. Figure 

7 (a) and (b) shows the density distribution of mean daily evapotranspiration for the five statistic lines. The black and green 

lines almost coincided with the black lines, which are the density lines of daily mean ETo with/without the data gaps. The 

distribution is almost the same because the 3.6% data gap didn’t heavily affect the overall trends, but there’s still some 

difference between the two kinds of daily mean ETo (the purple line in Fig. 7 (b)). The average daily ETo with filled data are 315 

slightly lower than the daily ETo without filled data because the filled data tends to be lower than the original data (blue and 

red lines in Fig. 7 (b)). The main reason for the decline in average value is that the missing data didn’t distribute evenly; the 

lower ETo range missed more data than the higher range and thus induced the lower density pick of the gap-filled results. 

Figure 7 (c-i) displays the scatter plots of the predicted PM-56 ETo, and its true values with a dotted line represent the 

strictly equal scenario. When the parameters for the day only lost one of the indices in Tmax/Tmin/SSD/RH, it is clear to see 320 

that these 4 basic gap types were not influenced heavily by the data loss, and the R² for filled data are 0.98, the spatial 

distributions for each data gap type are detailed in Sect. 3.2. The data gaps associated with Wind, including Wind loss, SSD-

wind loss, and RH-wind loss, showed worse simulation results compared to the 4 basic data gaps (Fig. 6 d, e, f). And there’s 

a clear trend that the ETo tends to be overestimated when the parameter Wind is missing. This might indicate that the parameter 

Wind contributes significantly to daily ETo and has more impact in long periods and multiple areas. The same cases could be 325 

found in SSD-Wind missing, with the main range of estimation error being about 2 mm d-1. When the parameter set Wind-RH 

is unavailable, the model tends to make errors in underestimating ETo. The bad results from the wind-associated computations 
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might indicate that although a lot of research proves wind might not be a key parameter for ETo estimation, it still cannot be 

replaced by other parameters in a wide range. 

 330 
Figure 7: Daily ETo of 1951-2021 for each site (a), the daily ETo distribution of all sites (b), the scatter of true data and prediction 

ETo for each gap type including Tmax (c)/Tmin (d)/SSD (e)/RH (f)/Wind (g)/SSD-Wind (h)/Wind-RH (i). 
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3.2 Simulate Results 

 
Figure 8: Daily ETo of 1951-2021 for each site (a), the daily ETo distribution of all sites (b), the scatter of true data and prediction 335 
ETo for each gap type including Tmax (c)/Tmin (d)/SSD (e)/RH (f)/Wind (g)/SSD-Wind (h)/Wind-RH (i). 

Table 4: The statistic table of R², RMSE, and nRMSE for each gap type and machine learning algorithm 

 

MARS 

R2 

XGBoost  

R2 

SVR 

R2 

MARS 

RMSE 

XGBoost 

RMSE 

SVR 

RMSE 

MARS 

nRMSE 

XGBoost 

nRMSE 

SVR 

nRMSE 

Tmax 0.99 0.99 0.9 0.22 0.22 0.45 0.12 0.11 0.24 

Tmin 0.99 1 0.9 0.12 0.11 0.47 0.06 0.06 0.25 

SSD 0.99 0.99 0.9 0.21 0.19 0.52 0.12 0.1 0.28 

Wind 0.73 0.73 0.7 0.93 0.92 0.98 0.51 0.51 0.53 

RH 0.99 0.99 0.9 0.19 0.19 0.66 0.1 0.1 0.36 

Wind&SSD 0.71 0.71 0.7 0.95 0.96 1.02 0.52 0.53 0.56 

Wind&RH 0.69 0.7 0.7 0.99 0.99 1 0.54 0.54 0.55 

Four machine learning algorithms are applied to deal with different kinds of events in the meteorological dataset. We use 

three machine learning algorithms (MARS\SVR\XGBoost) to fill the gaps induced by single parameter loss, including 

Tmax\Tmin\SSD\Wind\RH loss and the two major data loss types associated with wind (SSD-Wind loss, Rh-Wind loss). 340 
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Figure 8 presents the model capability of three machine learning methods for the seven types of environmental factors loss 

data. R², RMSE, and nRMSE are used to evaluate the regression fitting results for different models. Three machine learning 

methods performed well in the main 7 gap types. The R² for the four single parameter-missing types and three algorithms is 

very close. Table 4 shows the R², RMSE, and nRMSE for the MARS/XGBoost/SVR model for the major 7 gap types. Other 

than data gaps associated with the parameter Wind. 345 

It could be seen that solitary parameter loss would not affect machine learning algorithm performance deeply except the 

Wind and the parameters missing associated with wind, including SSD-Wind and Wind-RH, the R², RMSE, and nRMSE are 

all decreased quickly compared to the solitary parameter missing. In most studies, the wind is not an important affective index 

in the input dataset for two main reasons. The first reason is that soil humidity is not enough for storage in arid and semi-arid 

areas, so wind speed is less affected than radiation heat. Another reason is that the relative humidity and solar radiation might 350 

not be enough to describe the true information for the land surface; the usage type of the land surface would also influence the 

evapotranspiration process by affecting wind speed.  

It could be derived that different machine learning models would act differently in regression tasks. However, the 

evapotranspiration regression task might not be complex enough to induce significant differences for MARS, XGBoost, and 

SVR. The comparison result can be seen in Fig. 8. Though there are several differences in prediction results, no significant 355 

performance difference was displayed. A more detailed discussion of the difference between these three algorithms is presented 

in Sect. 4.2. Among these algorithms, XGBoost is the best performing algorithm, so the gap-filled results from XGBoost are 

chosen to be the result for 7 major gap types S1-S7.  

Figure 9 (a-g) is the spatial distribution of the R²/RMSE/nRMSE for all meteorological sites' 7 main gap types. The Marginal 

Tropical Humid Region showed a significant decrease compared to northern regions. It could be found that wind influences 360 

both simulation precision and the numerical value of the prediction result more than other regions. In the Marginal Tropical 

Humid Region of China, wind may be more highly related to both evaporation and perception processes than other regions. 

The commonality of the impact of wind speed on all stations in this climate zone may indicate that some simplified models 

are not entirely applicable in the Marginal Tropical Humid Region. 

3.3 Large error 365 

The precise prediction aims to estimate low numerical error volume results for parameter missing days, so the absolute error 

value must be within an acceptable range in the practical process. Thus, we estimated the amount of data with an absolute error 

greater than 1.5 mm d-1 for each data gap type in the warm temperature semi-humid region (WTSH), marginal tropical Humid 

region (MTH), north subtropical humid region (NSTH), plateau temperate semi-arid region (PTSA), mid temperate semi-

humid region (MTSH), mid temperate semi-arid region (MTSA), mid temperate arid (MTA) as shown in Table 5. The quantity 370 

and type of data loss both affect the large error quantity for each climate zone. 
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Figure 9: (a-g) The spatial distribution of RMSE for each gap type. 
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Except for the temperate and semi-arid areas on the plateau, the large error that the absolute error is greater than 1.5 mm d-1 is 375 

mainly caused by Wind-associated data gaps, and the quantity proportion of large error accounts for approximately 0.18% in 

the total data quantity. This means this dataset is reliable for the data quantity with severe error is few. From the distribution 

of large errors for different data gaps in the 7 climate regions of China, it could be derived that though there are not many large 

error results, there’s still clearly a difference in large error quantity for different regions and gap types. Compared to absolute 

error quantity, in Semi-Arid Mid Temperate regions and Semi-Humidex Mid Temperate regions, there are more large errors 380 

caused by Tmax than in other regions. The large error caused by Tmin lost only is the least in all data gap types. The large 

errors caused by the parameter RH missing are less than SSD missing, but the contribution to the total number of large errors 

of these two data gaps is relatively small compared to the Wind-associated gaps. The data gaps associated with Wind 

contributed the most quantity of large errors due to two reasons; the first is the simulation model of these data gaps didn’t 

return idealistic results, and the other reason is that the data gaps associated with Wind contributed a lot in the total data gap 385 

quantity (Sect. 2.1.2). 
Table 5: Estimation quantity of the absolute error of ETo prediction > 1.5 mm d-1 

CLIMATE 

TMAX 

(%) 

TMIN 

(%) 

SSD 

(%) 

WIND 

(%) 

RH 

(%) 

SSD&WIND 

(%) 

WIND&RH 

(%) 

WTSH 0.00* 0.00* 0.00* 0.18 0.00* 0.02 0.00* 

MTH 0.00* 0.00* 0.00* 0.21 0.00* 0.02 0.00* 

NSTH 0.00* 0.00* 0.00* 0.18 0.00* 0.02 0.00* 

PTSA 0.00* 0.00* 0.00* 0.03 0.00* 0.00* 0.00* 

MTSH 0.00* 0.00* 0.00* 0.14 0.00* 0.01 0.00* 

MTSA 0.00* 0.00* 0.00* 0.15 0.00* 0.01 0.00* 

MTA 0.00* 0.00* 0.00* 0.19 0.00* 0.03 0.00* 

* MEANS ACTUAL VALUE < 0.01 

3.4 Multiple data-loss gaps 

For data loss types S8-S26, we employed the Long Short-Term Memory (LSTM) network to fill gaps resulting from multiple 

data losses. These gaps constitute a minor portion of the total data volume (as detailed in Sect. 2.1.2) buts pose significant 390 

challenges for regression models due to insufficient remaining information for training. To estimate these data gaps, 

information from the preceding and succeeding ETo series should be utilized. The LSTM model uses inputs from the previous 

seven days to infer the ETo for the missing day. To aid the LSTM network in recognizing gaps in the data, we replaced the 

missing parameter with -1 as a placeholder in the input data and subsequently trained the entire neural network to predict the 

ETo for the next day. The data used for training, validation, and prediction at each site is the gap-filled data provided by the 395 

XGBoost model. The training data for each site consists of data excluding the validation and test datasets, where the validation 

data are from the years 2010-2019 and the test data are from the years 2020-2021. Based on the training the model for each 

site, the program fills the data gap by inputting the seven-day data preceding the gap, subsequently predicting the filling result 

for the data gap. 
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 400 
Figure 10: The LSTM algorithm performed well in most meteorological stations, and the gap-replacing methods could be used to 

fill the uncontained data gaps. 

4 Discussion 

4.1 Importance Distribution 

The importance is derived from the model simulation process, and it could demonstrate the most important synoptic variables 405 

for ETo prediction under limited data (T. Hu & Song, 2019). The synoptic variables are highly entangled with each other 

according to the local environment condition, so when one or even more environmental variables are removed from input, the 

model could still predict ETo at high precision (proved in Sect. 3.2), and the importance for the synoptic variable under each 

data loss condition could straightly show the most entanglement with the missing data variable in different regions. 

The geographical distribution of the mainly 7 types of data loss is presented in Fig. 11; the dot scale and colour represent 410 

the value and type for each site’s max influence factor, all showing an importance value of more than 0.1 to exclude the random 

guess scenarios. There’s a demarcation line between the north and south for Tmax loss. The main influence factor values are 

smaller in the South than in the North, which might indicate that the situation of synoptic variables coupling with Tmax is 

more complicated in the South than in the North. In the north of China, Tmax is highly entangled with Rs (Duo et al., 2016), 

and in the southwest region of China, Tmax might be entangled highly with the Wind Speed. The analogous phenomenon 415 

could be observed in the Tmin loss scenarios; in the south region of the North Subtropic Humid regions, Tmin has a strong 

relationship with Wind Speed. For SSD loss, Rs and Tmax take hold of most areas. The SSD is the source of Rs and is thus 

highly entangled with Tmax. For RH loss, the importance distribution is closer to Tmin loss; this might be because both the 

Tmin and RH data are highly influenced by ground information, so there’s a stronger relation between these two synoptic 

variables. The last 3 data loss types associated with Wind, including Wind loss, SSD-Wind loss, and RH-Wind loss, have 420 

similar importance distribution of highly rely on the Rs and Tmax, which might indicate that the Rs and the Tmax change 

induced by Rs change is the most important driven force for evapotranspiration. This phenomenon according to the research 

Rs is the most driving variable for the evaporation process.  
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Nevertheless, at the same time, the huge variance of R² for data lacking Wind also displays the impact of wind speed and 

ground information in most areas of China. It is worth noticing that the influence of Wind is more important and significant in 425 

our paper than the conclusions derived from the other recent studies (Wu et al., 2019; Yin et al., 2020). These experiments 

proved that the Wind Speed is removable from the input indices set when using machine learning algorithms to predict ETo. 

To further address this conflict, we conducted a study to test how the different data years affect the simulation result and found 

that the newer the data year, the closer the fitting results are to the results stated in the current research. It could be found in 

the research that wind trends have continued to decrease across China since 1985, which might be the reason wind speed has 430 

taken a less important part in evaporation in simulation in recent years. This result showed a significant character change in 

the Wind Speed in ETo computation during the past few years. The research from (Liu & Zhang, 2013) showed that the wind 

speed became less important in ETo computation. However, the same phenomenon could not be found in other indices, which 

proved to be more accurate when the training data increased. 

4.2 Comparing and uncertainties 435 

Using the PM-56 formula to estimate ETo has largely proved to be a reliable approach, and machine learning algorithms have 

also proved to be a reliable way to predict ETo under limited data. In the past few years, lots of research has compared the 

different models and different combinations of variant input environment parameters as model input and has proved that 

machine learning algorithms could derive more precise information from huge data records than empirical equations. Our 

research got a homogeneous conclusion but also found out that the data record length and the outliner points might largely 440 

affect the model simulation results under limited data. 

In training, the dataset covered all the scenarios that happened in the test or product area and was relatively flattened; the 

model would perform well, and both Mars\SVR\XGBoost could achieve high performance in predicting ETo. However, when 

dealing with high variance data, MARS tends to classify the data range with the segmentation strategy, resulting in the high 

sensitivity to outrange data, and the outrange data would take a high and useless decision tree to mislead the prediction. The 445 

SVR algorithm performed better in some situations than MARS but also endured the deficits that come with the classifying 

idea of the original algorithm. As an improvement to the classical algorithm, XGBoost does not use the original data to do the 

segmentation but to learn the residual to describe the data change, which directly allows XGBoost to perform well with more 

unreasonable values appealed in the training dataset. Research from multiple regions (Hossein Kazemi et al., 2020) and ours 

all show the XGBoost could deal with the outliner better than other algorithms benefiting from residual learning.  450 
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Figure 11: The spatial distribution of importance for (a) Tmax, (b) Tmin, (c) SSD, (d) RH, (e) Wind, (f) SSD-Wind, (g) Wind-RH 

loss type. 

 455 
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The time length for the input data would also affect the training result. In general, about 3 years would be sufficient for ETo 

prediction of a precise day or even 1-7 days (Yin et al., 2020). However, the discussion for time length about how long and 

how much environmental data should be covered for training is still few. Usually, the training data should contain all the 

synoptic scenarios so it could classify the test data, but the weather not only changes on a small scale but also varies a lot on a 

long-time scale. Our research found that in different indices loss scenarios, the longer temporal length led to better RMSE 460 

performance in the Tmax/Tmin/SSD/RH loss scene, but in parameters associated with Wind, the model quickly deteriorated 

when the year was prolonged. The reason for this phenomenon tends to be the wind speed at 2m could quickly affect the 

evaporation speed, but this variable could also be quickly controlled by the ground usage type or other human activity 

compared to other large-scale environmental indices. The ground usage type is easily changed and largely scale ground usage 

changing would directly lead to the wind speed change at 2m. Wind speed has been coupled strongly with air temperature and 465 

humidity; the results show that the wind variable has become less important in ETo prediction in recent years, which might 

indicate that the relationship between temperature, humidity, and wind speed has become closer than in years before. This 

might be another result of global warming for the ability to regulate climate is weakened, and the wind speed, which originally 

affects temperature and humidity, is instead affected by temperature and humidity. 

In research for the past 10 years, LSTM algorithms have been proven to be a more reliable way to predict ETo under limited 470 

conditions (Rajput et al., 2023). Compared to the machine learning algorithms, LSTM algorithms performed better in deriving 

information from the continued data; thus, with actual ETo data from the previous day and the environmental parameters, the 

algorithms could output precise ETo estimation for the gap day. However, due to this algorithm's character, the LSTM 

algorithm is limited by the continuance of data. Although the gaps could be ignored during the training process, the LSTM 

can’t output long prediction series without large errors. The longer the series is, the huger the errors might be. This problem 475 

couldn’t be overcome by longer input, and the major 7 data gap types (S1-S7) contained long period data gaps, so we didn’t 

use LSTM to fill the gap types S1-S7. 

4.3 Applications of ETo dataset in the future 

By filling the data gaps, we now present a complex ETo dataset for the 2419 synoptic stations of China across 1951-2021 at 

daily scale. Differing from the satellite products, this dataset contained data from 1951-1982 and presented the ETo from the 480 

ground synoptic stations with much more accuracy. 

This ETo dataset has significant potential for various agricultural applications. The FAO-56 PM equation is calculated from 

a hypothetical field with standard grass cover and an ideal soil condition (L. S. Pereira et al., 2015). Still, the concept of 

reference evapotranspiration (ETo) is pivotal in managing and planning for the efficient use of water resources. For example, 

the true evapotranspiration (ET) could be estimated through ETo and easily facilitate the supervising and calibration programs. 485 

In agriculture, ETo is integral for achieving precision farming, identifying water stress areas, optimizing irrigation schedules, 

and adjusting irrigation volumes to the specific needs of crops in different regions around China. Combined with the eddy flux 
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data from flux tower sites, this ETo dataset could also be used to appropriately estimate the water cycle around China and the 

large trends of ET change during the past 70 years. 

Although the programs and models are designed to fill the data gaps around China, they could also be widely used in similar 490 

scenarios. It is worth noticing that although the volume of monitoring data are large, it might still be too sparse for the country 

at both spatial and time scales. In recent years, the 3D neural network, which combined LSTM and the graph neural network, 

holds the most frontier position in the research of synoptic data. The Pangu model developed by Huawei Inc. (Bi et al., 2023) 

and the model from Deep Mind Lab (Lam et al., 2023) that use 3D sphere model to enhance the model performance using both 

spatial and temporal information. A complex dataset could facilitate the training process for these big climate models. 495 

Overall, our dataset filled the data gaps by classifying and interpolating the data using the proper site-suited machine learning 

model. Machine learning and LSTM methods were reasonably used to process the missing data, resulting in a reliable ETo 

database based on the length of time and characteristics of the data gaps. Other studies can use more hydrological datasets with 

our ETo dataset to conduct further research on the long-term and large-scale ETo change, the actual evapotranspiration, the 

land-atmosphere water cycle, the big model for climate and other research directions for China with this dataset. 500 

5 Data availability 

The high precision gap-filled daily ETo data for China is archived and available at https://doi.org/10.5281/zenodo.11496932 

(Zhou et al., 2024). 

6 Conclusion 

Based on the meteorological data provided by the National Climatic Centre of the China Meteorological Administration (NCC-505 

CMA), we derived a high-precision gap-filled ETo dataset for mainland China using the FAO-56 PM formula. This dataset 

contained the meteorological data and the reference evapotranspiration data (ETo) for agriculture of 2419 sites across the 

period of 1951 to 2021, filling the gap in China's historical ETo data and exploring the machine learning algorithm performance 

in ETo prediction under limited data scenarios. To fill the gaps caused by long-period record changes and inevitable equipment 

destruction, we distinguished and classified the gap type by different data missing types, created the program for automatically 510 

extract suitable training data from the original dataset, and then used 3 different machine learning model to generate the suitable 

model for each data-missing less than 2 types in each site of the total 2419. As for the serious climate variable loss of more 

than 3, we employed the LSTM network to fill these types of gaps. The gap-filling methods achieved good gap-filling 

performance. that the XGBoost model achieved the best accuracy in all 3 machine learning models with high statistic levels. 

For the other 19 types of data gaps, the LSTM models were trained separately for each site and achieved average R², RMSE, 515 

and nRMSE at 0.9, 0.5 mm d-1, and 38% for the total 2419 stations, and the absolute error of more than 1.5 mm d-1 are proved 

to be under 1% in the whole dataset.  
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Also, our result indicates that climate variable gaps existing in climate datasets would not directly lead to serious ETo data 

gaps because now the machine learning models could preserve the most data features for ETo change and come out with 

reasonable ETo predictions. This suggests that there’s underlying patterns for ETo in most regions of China. Furtherly, the 520 

analysis of importance for different data gap models also reveals that the entanglement phenomenon between climate factors 

in different regions might could be explored through removing the synoptic variables from the input data series. The importance 

result shows although the Rs and Tmax induced by Rs is the most driving force for ETo, the Wind Speed is also the most 

important ground variables in evapotranspiration process. But combining results from other ETo research, the impact of Wind 

Speed might be continuously diminishing in recent years. 525 

Author contributions 

ZNS and WLF designed the research. ZNS, WLF, YQL, DJH developed the approaches and datasets. ZNS, WLF, YQL, Yang 

L, DJH, Yue L contributed to the analysis of the results and the writing of the paper. 

Competing interests 

The contact author has declared that none of the authors has any competing interests. 530 

Acknowledgements 

This work was financially supported by the Key Projects of Yunnan Provincial Department of Science and Technology 

(N0.202201AS070034), Key Laboratories of Yunnan Provincial Universities (KKPS201923009), and Key Projects of Yunnan 

Provincial Department of Science and Technology (No.202305AM070006). We especially thank all research subjects for their 

assistance participation in this study. 535 

Financial support 

This work was financially supported by the Key Projects of Yunnan Provincial Department of Science and Technology 

(N0.202201AS070034), Key Laboratories of Yunnan Provincial Universities (KKPS201923009), and Key Projects of Yunnan 

Provincial Department of Science and Technology (No.202305AM070006). 

References 540 

Allen, R. G., and Pruitt, W. O.: Rational Use of The FAO Blaney‐Criddle Formula. Journal of Irrigation and Drainage 

Engineering, 112, 139–155, https://doi.org/10.1061/(ASCE)0733-9437(1986)112:2(139), 1986. 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



27 
 

Bai, P., and Liu, X.: Intercomparison and evaluation of three global high-resolution evapotranspiration products across China. 

Journal of Hydrology, 566, 743–755, https://doi.org/10.1016/j.jhydrol.2018.09.065, 2018. 

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q.: Accurate medium-range global weather forecasting with 3D neural 545 

networks. Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. 

Bormann, H., Diekkrüger, B., & Richter, O.: Effects of data availability on estimation of evapotranspiration. Physics and 

Chemistry of the Earth, 21, 171–175, https://doi.org/10.1016/S0079-1946(97)85580-2, 1996. 

CHANG, J.-H.: AN EVALUATION OF THE 1948 THORNTHWAITE CLASSIFICATION. Annals of the Association of 

American Geographers, https://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.1959.tb01594.x, 1959. 550 

Chen, J. M., & Liu, J.: Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote 

sSensing of Environment, 237, 111594, https://doi.org/10.1016/j.rse.2019.111594, 2020. 

Chia, M. Y., Huang, Y. F., & Koo, C. H.: Support vector machine enhanced empirical reference evapotranspiration   estimation 

with limited   meteorological parameters. Computers and Electronics in Agriculture, 175, 105577, 

https://doi.org/10.1016/j.compag.2020.105577, 2020. 555 

Du, J., Wang, K., Cui, B., & Jiang, S.: Correction of Inhomogeneities in Observed Land Surface Temperatures over China. 

Journal of Climate, 33, 8885–8902, https://doi.org/10.1175/JCLI-D-19-0521.1, 2020. 

Duo, A., Zhao, W. J., Qu, X. Y., Ran, J., & Xiong, K.: Spatio-temporal variation of vegetation coverage and its response to 

climate change in North China plain in the last 33 years. International Journal of Applied Earth Observation and 

Geoinformation, 53, 103–117, https://doi.org/10.1016/j.jag.2016.08.008, 2016. 560 

Elhaddad, A., & Garcia, L. A.: Surface Energy Balance-Based Model for Estimating Evapotranspiration Taking into Account 

Spatial Variability in Weather. Journal of Irrigation and Drainage Engineering, 134, 681–689, 

https://doi.org/10.1061/(ASCE)0733-9437(2008)134:6(681), 2008. 

Fan, Z.-X., & Thomas, A.: Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in 

Yunnan Province, SW China, 1961–2004. Climatic Change, 116, 309–325, https://doi.org/10.1007/s10584-012-0479-4, 2013. 565 

Gavilán, P., & Castillo-Llanque, F.: Estimating reference evapotranspiration with atmometers in a semiarid environment. 

Agricultural Water Management, 96, 465–472, https://doi.org/10.1016/j.agwat.2008.09.011, 2009. 

Ghilain, N., Arboleda, A., & Gellens-Meulenberghs, F.: Evapotranspiration modelling at large scale using near-real time MSG 

SEVIRI derived data. Hydrology and Earth System Sciences, 15, 771–786, https://doi.org/10.5194/hess-15-771-2011, 2011. 

Gocic, M., Petković, D., Shamshirband, S., & Kamsin, A.: Comparative analysis of reference evapotranspiration equations 570 

modelling by extreme learning machine. Computers and Electronics in Agriculture, 127, 56–63, 

https://doi.org/10.1016/j.compag.2016.05.017, 2016. 

Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., & Tolk, J. A.: ET mapping for agricultural water 

management: Present status and challenges. Irrigation Science, 26, 223–237, https://doi.org/10.1007/s00271-007-0088-6, 2008. 

Granata, F.: Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural 575 

Water Management, 217, 303–315, https://doi.org/10.1016/j.agwat.2019.03.015, 2019. 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



28 
 

Guven, A., Aytek, A., Yuce, M. I., & Aksoy, H.: Genetic Programming-Based Empirical Model for Daily Reference 

Evapotranspiration Estimation. CLEAN – Soil, Air, Water, 36s, 905–912, https://doi.org/10.1002/clen.200800009, 2008. 

Hargreaves, G. H., & Allen, R. G.: History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation 

and Drainage Engineering, 129, 53–63, https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003. 580 

Hossein Kazemi, M., Shiri, J., Marti, P., & Majnooni-Heris, A.: Assessing temporal data partitioning scenarios for estimating 

reference evapotranspiration with machine learning techniques in arid regions. Journal of Hydrology, 590, 125252, 

https://doi.org/10.1016/j.jhydrol.2020.125252, 2020. 

Hu, T., & Song, T.: Research on XGboost academic forecasting and analysis modelling. Journal of Physics: Conference Series, 

1324, 012091, https://doi.org/10.1088/1742-6596/1324/1/012091, 2019. 585 

Hu, Z., Bashir, R. N., Rehman, A. U., Iqbal, S. I., Shahid, M. M. A., & Xu, T.: Machine Learning Based Prediction of Reference 

Evapotranspiration (ETo ) Using IoT. IEEE Access, 10, 70526–70540, https://doi.org/10.1109/ACCESS.2022.3187528, 2022. 

Huang, J.-C., Ko, K.-M., Shu, M.-H., & Hsu, B.-M.: Application and comparison of several machine learning algorithms and 

their integration models in regression problems. Neural Computing and Applications, 32, 5461–5469, 

https://doi.org/10.1007/s00521-019-04644-5, 2020. 590 

Kim, S.-J., Bae, S.-J., & Jang, M.-W.: Linear Regression Machine Learning Algorithms for Estimating Reference 

Evapotranspiration Using Limited Climate Data. Sustainability, 14, 11674, https://doi.org/10.3390/su141811674, 2022. 

Kinaneva, D., Hristov, G., Kyuchukov, P., Georgiev, G., Zahariev, P., & Daskalov, R.: Machine Learning Algorithms for 

Regression Analysis and Predictions of Numerical Data. 2021 3rd International Congress on Human-Computer Interaction, 

Optimization and Robotic Applications (HORA), 1–6, https://doi.org/10.1109/HORA52670.2021.9461298, 2021. 595 

Kisi, O. : The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes, 22, 2449–2460, 

https://doi.org/10.1002/hyp.6837, 2021. 

Kisi, O.: Modelling reference evapotranspiration using three different heuristic regression approaches. Agricultural Water 

Management, 169, 162–172, https://doi.org/10.1016/j.agwat.2016.02.026, 2016. 

Kra, E. Y.: An Empirical Simplification of the Temperature Penman-Monteith Model for the Tropics. Journal of Agricultural 600 

Science, 2(1), p162, https://doi.org/10.5539/jas.v2n1p162, 2010. 

Ladlani, I., Houichi, L., Djemili, L., Heddam, S., & Belouz, K.: Estimation of Daily Reference Evapotranspiration (ET0) in 

the North of Algeria Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multiple Linear Regression (MLR) Models: 

A Comparative Study. Arabian Journal for Science and Engineering, 39, 5959–5969, https://doi.org/10.1007/s13369-014-

1151-2, 2014. 605 

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, 

Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., & Battaglia, P.: Learning 

skillful medium-range global weather forecasting. Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336, 2023. 

LHOMME, J.-P.: A THEORETICAL BASIS FOR THE PRIESTLEY-TAYLOR COEFFICIENT. Boundary-Layer 

Meteorology, 82, 179–191, https://doi.org/10.1023/A:1000281114105, 1997. 610 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



29 
 

Althoff, D., Dias, S. H. B., Filgueiras, R., & Rodrigues, L. N.: ETo‐Brazil: a daily gridded reference evapotranspiration data 

set for Brazil (2000–2018), Water Resources Research, 56, e2020WR027562, https://doi.org/10.1029/2020WR027562, 2020. 

Li, Z., Zheng, F.-L., & Liu, W.-Z. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its 

projected changes during 2011–2099 on the Loess Plateau of China. Agricultural and Forest Meteorology, 154, 147–155, 

https://doi.org/10.1016/j.agrformet.2011.10.019, 2012. 615 

Liu, X., & Zhang, D. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed 

and surface air temperature. Hydrological Processes, 27, 3941–3948, https://doi.org/10.1002/hyp.9527, 2013. 

Malik, A., Jamei, M., Ali, M., Prasad, R., Karbasi, M., & Yaseen, Z. M.: Multi-step daily forecasting of reference 

evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge 

regression feature selection. Agricultural Water Management, 272, 107812, https://doi.org/10.1016/j.agwat.2022.107812j, 620 

2013. 

Mallikarjuna, P., Jyothy, S. A., Murthy, D. S., & Reddy, K. C.: Performance of Recalibrated Equations for the Estimation of 

Daily Reference Evapotranspiration. Water Resources Management, 28, 4513–4535, https://doi.org/10.1007/s11269-014-

0733-9, 2014. 

Mostafa, R. R., Kisi, O., Adnan, R. M., Sadeghifar, T., & Kuriqi, A.: Modeling Potential Evapotranspiration by Improved 625 

Machine Learning Methods Using Limited Climatic Data. Water, 15, Article 3, https://doi.org/10.3390/w15030486, 2023, 

2023. 

Paredes, P., & Pereira, L. S.: Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on 

solar radiation. Agricultural Water Management, 215, 86–102, https://doi.org/10.1016/j.agwat.2018.12.014, 2018. 

Pereira, A. R., & Pruitt, W. O.: Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. 630 

Agricultural Water Management, 66, 251–257, https://doi.org/10.1016/j.agwat.2003.11.003, 2004. 

Pereira, L. S., Allen, R. G., Smith, M., & Raes, D.: Crop evapotranspiration estimation with FAO56: Past and future. 

Agricultural Water Management, 147, 4–20, https://doi.org/10.1016/j.agwat.2014.07.031, 2015. 

Rajput, J., Singh, M., Lal, K., Khanna, M., Sarangi, A., Mukherjee, J., & Singh, S.: Data-driven reference evapotranspiration 

(ET0) estimation: A comparative study of regression and machine learning techniques. Environment, Development and 635 

Sustainability, https://doi.org/10.1007/s10668-023-03978-4, 2023. 

Roy, D. K.: Long Short-Term Memory Networks to Predict One-Step Ahead Reference Evapotranspiration in a Subtropical 

Climatic Zone. Environmental Processes, 8, 911–941, https://doi.org/10.1007/s40710-021-00512-4. 2021. 

Salahudin, H., Shoaib, M., Albano, R., Inam Baig, M. A., Hammad, M., Raza, A., Akhtar, A., & Ali, M. U.: Using Ensembles 

of Machine Learning Techniques to Predict Reference Evapotranspiration (ET0) Using Limited Meteorological Data. 640 

Hydrology, 10, Article 8, https://doi.org/10.3390/hydrology10080169, 2023. 

Santos, P. A. B. D., Schwerz, F., Carvalho, L. G. D., Baptista, V. B. D. S., Marin, D. B., Ferraz, G. A. E. S., Rossi, G., Conti, 

L., & Bambi, G.: Machine Learning and Conventional Methods for Reference Evapotranspiration Estimation Using Limited-

Climatic-Data Scenarios. Agronomy, 13, 2366, https://doi.org/10.3390/agronomy13092366, 2023. 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



30 
 

Shamshirband, S., Amirmojahedi, M., Gocić, M., Akib, S., Petković, D., Piri, J., & Trajkovic, S.: Estimation of Reference 645 

Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm. Journal of Irrigation and Drainage Engineering, 

142, 04015044, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000949, 2016. 

Shiri, J.: Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating 

daily reference evapotranspiration in hyper-arid regions of Iran. Agricultural Water Management, 188, 101–114, 

https://doi.org/10.1016/j.agwat.2017.04.009, 2017. 650 

Tang, W., Yang, K., Qin, J., & Min, M.: Development of a 50-year daily surface solar radiation dataset over China. Science 

China Earth Sciences, 56, 1555–1565, https://doi.org/10.1007/s11430-012-4542-9, 2013. 

Tanner, C. B.: Measurement of Evapotranspiration. In Irrigation of Agricultural Lands. pp. 534–574, 

https://doi.org/10.2134/agronmonogr11.c30, 1967. 

Valiantzas, J. D.: Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based 655 

Hargreaves-Samani and other methodologies. Agricultural Water Management, 208, 326–334, 

https://doi.org/10.1016/j.agwat.2018.06.028, 2018. 

Wanniarachchi, S., & Sarukkalige, R.: A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, 

Present, and Future. Hydrology, 9(7), 123, https://doi.org/10.3390/hydrology9070123, 2022. 

Wu, L., Peng, Y., Fan, J., & Wang, Y.: Machine learning models for the estimation of monthly mean daily reference 660 

evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50, 1730–1750, 

https://doi.org/10.2166/nh.2019.060, 2019. 

Yang, K., Koike, T., & Ye, B.: Improving estimation of hourly, daily, and monthly solar radiation by importing global data 

sets. Agricultural and Forest Meteorology, 137, 43–55, https://doi.org/10.1016/j.agrformet.2006.02.001, 2006. 

Yin, J., Deng, Z., Ines, A. V. M., Wu, J., & Rasu, E.: Forecast of short-term daily reference evapotranspiration under limited 665 

meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agricultural Water 

Management, 242, 106386, https://doi.org/10.1016/j.agwat.2020.106386, 2020. 

Zhou, N., Wu, L., Yang, Q., Yang, L., Dong, J., & Li, Y.: A high-quality gap-filled daily ETo dataset for China during 1951-

2021 from synoptic stations [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11496932, 2024. 

https://doi.org/10.5194/essd-2024-229
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.


