Articles | Volume 6, issue 2
https://doi.org/10.5194/esd-6-541-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/esd-6-541-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe
M. Messmer
CORRESPONDING AUTHOR
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
J. J. Gómez-Navarro
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
C. C. Raible
Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Related authors
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Peter Stucki, Paul Froidevaux, Marcelo Zamuriano, Francesco Alessandro Isotta, Martina Messmer, and Andrey Martynov
Nat. Hazards Earth Syst. Sci., 20, 35–57, https://doi.org/10.5194/nhess-20-35-2020, https://doi.org/10.5194/nhess-20-35-2020, 2020
Short summary
Short summary
In 1876, 1910, and 2005, Switzerland was impacted by extreme rainfall and floods. All events were linked to a Vb cyclone. We test a range of weather model setups (short spinup and standard physics are best) to understand the sensitivity of atmospheric dynamics. The simulated Vb cyclones are (not) well defined for 2005 and 1910 (1876). To reproduce the events, intense moisture flux from the right direction is needed. Storms that slightly deviate from an ideal path produce erroneous precipitation.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Martina Messmer, Juan José Gómez-Navarro, and Christoph C. Raible
Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, https://doi.org/10.5194/esd-8-477-2017, 2017
Short summary
Short summary
Low-pressure systems of type Vb may trigger heavy rainfall events over central Europe. This study aims at analysing the relative role of their moisture sources. For this, a set of sensitivity experiments encompassing changes in soil moisture and Atlantic Ocean and Mediterranean Sea SSTs are carried out with WRF. The latter moisture source stands out as the most relevant one. Furthermore, the regions most affected by Vb events in the future might be shifted from the Alps to the Balkan Peninsula.
Onno Doensen, Martina Messmer, Christoph C. Raible, and Woon Mi Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-2731, https://doi.org/10.5194/egusphere-2024-2731, 2024
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Extratropical cyclones are crucial systems in the Mediterranean. While extensively studied, their late Holocene variability is poorly understood. Using a climate model spanning 3350-years, we find Mediterranean cyclones show significant multi-decadal variability. Extreme cyclones tend to be more extreme in the central Mediterranean in terms of wind speed. Our work creates a reference baseline to better understand the impact of climate change on Mediterranean cyclones.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Eric Samakinwa, Christoph C. Raible, Ralf Hand, Andrew R. Friedman, and Stefan Brönnimann
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-67, https://doi.org/10.5194/cp-2023-67, 2023
Publication in CP not foreseen
Short summary
Short summary
In this study, we nudged a stand-alone ocean model MPI-OM to proxy-reconstructed SST. Based on these model simulations, we introduce new estimates of the AMOC variations during the period 1450–1780 through a 10-member ensemble simulation with a novel nudging technique. Our approach reaffirms the known mechanisms of AMOC variability and also improves existing knowledge of the interplay between the AMOC and the NAO during the AMOC's weak and strong phases.
Jonathan Robert Buzan, Emmanuele Russo, Woon Mi Kim, and Christoph C. Raible
EGUsphere, https://doi.org/10.5194/egusphere-2023-324, https://doi.org/10.5194/egusphere-2023-324, 2023
Preprint archived
Short summary
Short summary
Paleoclimate is used to test climate models to verify that simulations accurately project both future and past climate states. We present fully coupled climate sensitivity simulations of Preindustrial, Last Glacial Maximum, and the Quaternary climate periods. We show distinct climate states derived from non-linear responses to ice sheet heights and orbits. The implication is that as paleo proxy data become more reliable, they may constrain the specific climate states produced by climate models.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, https://doi.org/10.5194/cp-18-1579-2022, 2022
Short summary
Short summary
We investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. We perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for glacial periods. The findings demonstrate that northern hemispheric and local ice-sheet topography are important role in regulating the Alpine hydro-climate and permits a better understanding of the Alpine precipitation patterns at glacial times.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Emmanuele Russo, Bijan Fallah, Patrick Ludwig, Melanie Karremann, and Christoph C. Raible
Clim. Past, 18, 895–909, https://doi.org/10.5194/cp-18-895-2022, https://doi.org/10.5194/cp-18-895-2022, 2022
Short summary
Short summary
In this study a set of simulations are performed with the regional climate model COSMO-CLM for Europe, for the mid-Holocene and pre-industrial periods. The main aim is to better understand the drivers of differences between models and pollen-based summer temperatures. Results show that a fundamental role is played by spring soil moisture availability. Additionally, results suggest that model bias is not stationary, and an optimal configuration could not be the best under different forcing.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Patricio Velasquez, Jed O. Kaplan, Martina Messmer, Patrick Ludwig, and Christoph C. Raible
Clim. Past, 17, 1161–1180, https://doi.org/10.5194/cp-17-1161-2021, https://doi.org/10.5194/cp-17-1161-2021, 2021
Short summary
Short summary
This study assesses the importance of resolution and land–atmosphere feedbacks for European climate. We performed an asynchronously coupled experiment that combined a global climate model (~ 100 km), a regional climate model (18 km), and a dynamic vegetation model (18 km). Modelled climate and land cover agree reasonably well with independent reconstructions based on pollen and other paleoenvironmental proxies. The regional climate is significantly influenced by land cover.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Woon Mi Kim and Christoph C. Raible
Clim. Past, 17, 887–911, https://doi.org/10.5194/cp-17-887-2021, https://doi.org/10.5194/cp-17-887-2021, 2021
Short summary
Short summary
The analysis of the dynamics of western central Mediterranean droughts for 850–2099 CE in the Community Earth System Model indicates that past Mediterranean droughts were driven by the internal variability. This internal variability is more important during the initial years of droughts. During the transition years, the longevity of droughts is defined by the land–atmosphere feedbacks. In the future, this land–atmosphere feedbacks are intensified, causing a constant dryness over the region.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Thomas L. Frölicher, Luca Ramseyer, Christoph C. Raible, Keith B. Rodgers, and John Dunne
Biogeosciences, 17, 2061–2083, https://doi.org/10.5194/bg-17-2061-2020, https://doi.org/10.5194/bg-17-2061-2020, 2020
Short summary
Short summary
Climate variations can have profound impacts on marine ecosystems. Here we show that on global scales marine ecosystem drivers such as temperature, pH, O2 and NPP are potentially predictable 3 (at the surface) and more than 10 years (subsurface) in advance. However, there are distinct regional differences in the potential predictability of these drivers. Our study suggests that physical–biogeochemical forecast systems have considerable potential for use in marine resource management.
Peter Stucki, Paul Froidevaux, Marcelo Zamuriano, Francesco Alessandro Isotta, Martina Messmer, and Andrey Martynov
Nat. Hazards Earth Syst. Sci., 20, 35–57, https://doi.org/10.5194/nhess-20-35-2020, https://doi.org/10.5194/nhess-20-35-2020, 2020
Short summary
Short summary
In 1876, 1910, and 2005, Switzerland was impacted by extreme rainfall and floods. All events were linked to a Vb cyclone. We test a range of weather model setups (short spinup and standard physics are best) to understand the sensitivity of atmospheric dynamics. The simulated Vb cyclones are (not) well defined for 2005 and 1910 (1876). To reproduce the events, intense moisture flux from the right direction is needed. Storms that slightly deviate from an ideal path produce erroneous precipitation.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Stefan Brönnimann, Jan Rajczak, Erich M. Fischer, Christoph C. Raible, Marco Rohrer, and Christoph Schär
Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, https://doi.org/10.5194/nhess-18-2047-2018, 2018
Short summary
Short summary
Heavy precipitation events in Switzerland are expected to become more intense, but the seasonality also changes. Analysing a large set of model simulations, we find that annual maximum rainfall events become less frequent in late summer and more frequent in early summer and early autumn. The seasonality shift is arguably related to summer drying. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events.
Juan José Gómez-Navarro, Christoph C. Raible, Denica Bozhinova, Olivia Martius, Juan Andrés García Valero, and Juan Pedro Montávez
Geosci. Model Dev., 11, 2231–2247, https://doi.org/10.5194/gmd-11-2231-2018, https://doi.org/10.5194/gmd-11-2231-2018, 2018
Short summary
Short summary
We carry out and compare two high-resolution simulations of the Alpine region in the period 1979–2005. We aim to improve the understanding of the local mechanisms leading to extreme events in this complex region. We compare both simulations to precipitation observations to assess the model performance, and attribute major biases to either model or boundary conditions. Further, we develop a new bias correction technique to remove systematic errors in simulated precipitation for impact studies.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Martina Messmer, Juan José Gómez-Navarro, and Christoph C. Raible
Earth Syst. Dynam., 8, 477–493, https://doi.org/10.5194/esd-8-477-2017, https://doi.org/10.5194/esd-8-477-2017, 2017
Short summary
Short summary
Low-pressure systems of type Vb may trigger heavy rainfall events over central Europe. This study aims at analysing the relative role of their moisture sources. For this, a set of sensitivity experiments encompassing changes in soil moisture and Atlantic Ocean and Mediterranean Sea SSTs are carried out with WRF. The latter moisture source stands out as the most relevant one. Furthermore, the regions most affected by Vb events in the future might be shifted from the Alps to the Balkan Peninsula.
Juan José Gómez-Navarro, Eduardo Zorita, Christoph C. Raible, and Raphael Neukom
Clim. Past, 13, 629–648, https://doi.org/10.5194/cp-13-629-2017, https://doi.org/10.5194/cp-13-629-2017, 2017
Short summary
Short summary
This contribution aims at assessing to what extent the analogue method, a classic technique used in other branches of meteorology and climatology, can be used to perform gridded reconstructions of annual temperature based on the limited information from available but un-calibrated proxies spread across different locations of the world. We conclude that it is indeed possible, albeit with certain limitations that render the method comparable to more classic techniques.
Stefan Brönnimann, Abdul Malik, Alexander Stickler, Martin Wegmann, Christoph C. Raible, Stefan Muthers, Julien Anet, Eugene Rozanov, and Werner Schmutz
Atmos. Chem. Phys., 16, 15529–15543, https://doi.org/10.5194/acp-16-15529-2016, https://doi.org/10.5194/acp-16-15529-2016, 2016
Short summary
Short summary
The Quasi-Biennial Oscillation is a wind oscillation in the equatorial stratosphere. Effects on climate have been found, which is relevant for seasonal forecasts. However, up to now only relatively short records were available, and even within these the climate imprints were intermittent. Here we analyze a 108-year long reconstruction as well as four 405-year long simulations. We confirm most of the claimed QBO effects on climate, but they are small, which explains apparently variable effects.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Stefan Muthers, Christoph C. Raible, Eugene Rozanov, and Thomas F. Stocker
Earth Syst. Dynam., 7, 877–892, https://doi.org/10.5194/esd-7-877-2016, https://doi.org/10.5194/esd-7-877-2016, 2016
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important oceanic circulation system which transports large amounts of heat from the tropics to the north. This circulation is strengthened when less solar irradiance reaches the Earth, e.g. due to reduced solar activity or geoengineering techniques. In climate models, however, this response is overestimated when chemistry–climate interactions and the following shift in the atmospheric circulation systems are not considered.
Niklaus Merz, Andreas Born, Christoph C. Raible, and Thomas F. Stocker
Clim. Past, 12, 2011–2031, https://doi.org/10.5194/cp-12-2011-2016, https://doi.org/10.5194/cp-12-2011-2016, 2016
Short summary
Short summary
The last (Eemian) interglacial is studied with a global climate model focusing on Greenland and the adjacent high latitudes. A set of model experiments demonstrates the crucial role of changes in sea ice and sea surface temperatures for the magnitude of Eemian atmospheric warming. Greenland temperatures are found highly sensitive to sea ice changes in the Nordic Seas but rather insensitive to changes in the Labrador Sea. This behavior has important implications for Greenland ice core signals.
Amaelle Landais, Valérie Masson-Delmotte, Emilie Capron, Petra M. Langebroek, Pepijn Bakker, Emma J. Stone, Niklaus Merz, Christoph C. Raible, Hubertus Fischer, Anaïs Orsi, Frédéric Prié, Bo Vinther, and Dorthe Dahl-Jensen
Clim. Past, 12, 1933–1948, https://doi.org/10.5194/cp-12-1933-2016, https://doi.org/10.5194/cp-12-1933-2016, 2016
Short summary
Short summary
The last lnterglacial (LIG; 116 000 to 129 000 years before present) surface temperature at the upstream Greenland NEEM deposition site is estimated to be warmer by +7 to +11 °C compared to the preindustrial period. We show that under such warm temperatures, melting of snow probably led to a significant surface melting. There is a paradox between the extent of the Greenland ice sheet during the LIG and the strong warming during this period that models cannot solve.
J. J. Gómez-Navarro, C. C. Raible, and S. Dierer
Geosci. Model Dev., 8, 3349–3363, https://doi.org/10.5194/gmd-8-3349-2015, https://doi.org/10.5194/gmd-8-3349-2015, 2015
S. Muthers, F. Arfeuille, C. C. Raible, and E. Rozanov
Atmos. Chem. Phys., 15, 11461–11476, https://doi.org/10.5194/acp-15-11461-2015, https://doi.org/10.5194/acp-15-11461-2015, 2015
Short summary
Short summary
After volcanic eruptions different radiative and chemical processes take place in the stratosphere which perturb the ozone layer and cause pronounced dynamical changes. In idealized chemistry-climate model simulations the importance of these processes and the modulating role of the climate state is analysed. The chemical effect strongly differs between a preindustrial and present-day climate, but the effect on the dynamics is weak. Radiative processes dominate the dynamics in all climate states.
J. J. Gómez-Navarro, O. Bothe, S. Wagner, E. Zorita, J. P. Werner, J. Luterbacher, C. C. Raible, and J. P Montávez
Clim. Past, 11, 1077–1095, https://doi.org/10.5194/cp-11-1077-2015, https://doi.org/10.5194/cp-11-1077-2015, 2015
F. Lehner, F. Joos, C. C. Raible, J. Mignot, A. Born, K. M. Keller, and T. F. Stocker
Earth Syst. Dynam., 6, 411–434, https://doi.org/10.5194/esd-6-411-2015, https://doi.org/10.5194/esd-6-411-2015, 2015
Short summary
Short summary
We present the first last-millennium simulation with the Community Earth System Model (CESM) including an interactive carbon cycle in both ocean and land component. Volcanic eruptions emerge as the strongest forcing factor for the preindustrial climate and carbon cycle. We estimate the climate-carbon-cycle feedback in CESM to be at the lower bounds of empirical estimates (1.3ppm/°C). The time of emergence for interannual global land and ocean carbon uptake rates are 1947 and 1877, respectively.
D. Zanchettin, O. Bothe, F. Lehner, P. Ortega, C. C. Raible, and D. Swingedouw
Clim. Past, 11, 939–958, https://doi.org/10.5194/cp-11-939-2015, https://doi.org/10.5194/cp-11-939-2015, 2015
Short summary
Short summary
A discrepancy exists between reconstructed and simulated Pacific North American pattern (PNA) features during the early 19th century. Pseudo-reconstructions demonstrate that the available PNA reconstruction is potentially skillful but also potentially affected by a number of sources of uncertainty and deficiencies especially at multidecadal and centennial timescales. Simulations and reconstructions can be reconciled by attributing the reconstructed PNA features to internal variability.
S. Muthers, J. G. Anet, A. Stenke, C. C. Raible, E. Rozanov, S. Brönnimann, T. Peter, F. X. Arfeuille, A. I. Shapiro, J. Beer, F. Steinhilber, Y. Brugnara, and W. Schmutz
Geosci. Model Dev., 7, 2157–2179, https://doi.org/10.5194/gmd-7-2157-2014, https://doi.org/10.5194/gmd-7-2157-2014, 2014
K. M. Keller, F. Joos, and C. C. Raible
Biogeosciences, 11, 3647–3659, https://doi.org/10.5194/bg-11-3647-2014, https://doi.org/10.5194/bg-11-3647-2014, 2014
N. Merz, A. Born, C. C. Raible, H. Fischer, and T. F. Stocker
Clim. Past, 10, 1221–1238, https://doi.org/10.5194/cp-10-1221-2014, https://doi.org/10.5194/cp-10-1221-2014, 2014
J. G. Anet, S. Muthers, E. V. Rozanov, C. C. Raible, A. Stenke, A. I. Shapiro, S. Brönnimann, F. Arfeuille, Y. Brugnara, J. Beer, F. Steinhilber, W. Schmutz, and T. Peter
Clim. Past, 10, 921–938, https://doi.org/10.5194/cp-10-921-2014, https://doi.org/10.5194/cp-10-921-2014, 2014
C. C. Raible, F. Lehner, J. F. González-Rouco, and L. Fernández-Donado
Clim. Past, 10, 537–550, https://doi.org/10.5194/cp-10-537-2014, https://doi.org/10.5194/cp-10-537-2014, 2014
J. G. Anet, S. Muthers, E. Rozanov, C. C. Raible, T. Peter, A. Stenke, A. I. Shapiro, J. Beer, F. Steinhilber, S. Brönnimann, F. Arfeuille, Y. Brugnara, and W. Schmutz
Atmos. Chem. Phys., 13, 10951–10967, https://doi.org/10.5194/acp-13-10951-2013, https://doi.org/10.5194/acp-13-10951-2013, 2013
N. Merz, C. C. Raible, H. Fischer, V. Varma, M. Prange, and T. F. Stocker
Clim. Past, 9, 2433–2450, https://doi.org/10.5194/cp-9-2433-2013, https://doi.org/10.5194/cp-9-2433-2013, 2013
Related subject area
Dynamics of the Earth system: interactions
Continental heat storage: contributions from the ground, inland waters, and permafrost thawing
The rate of information transfer as a measure of ocean–atmosphere interactions
Evaluation of global teleconnections in CMIP6 climate projections using complex networks
On the additivity of climate responses to the volcanic and solar forcing in the early 19th century
Exploring the relationship between temperature forecast errors and Earth system variables
Trends and uncertainties of mass-driven sea-level change in the satellite altimetry era
The biogeophysical effects of idealized land cover and land management changes in Earth system models
Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks
Complex network analysis of fine particulate matter (PM2.5): transport and clustering
CO2 surface variability: from the stratosphere or not?
Quantifying memory and persistence in the atmosphere–land and ocean carbon system
Salinity dynamics of the Baltic Sea
Impact of urbanization on the thermal environment of the Chengdu–Chongqing urban agglomeration under complex terrain
Sensitivity of land–atmosphere coupling strength to changing atmospheric temperature and moisture over Europe
Human impacts and their interactions in the Baltic Sea region
Exploring the coupled ocean and atmosphere system with a data science approach applied to observations from the Antarctic Circumnavigation Expedition
Accounting for surface waves improves gas flux estimation at high wind speed in a large lake
Multiscale fractal dimension analysis of a reduced order model of coupled ocean–atmosphere dynamics
Modelling sea-level fingerprints of glaciated regions with low mantle viscosity
Jarzynski equality and Crooks relation for local models of air–sea interaction
Interacting tipping elements increase risk of climate domino effects under global warming
A climate network perspective on the intertropical convergence zone
Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season
Rankings of extreme and widespread dry and wet events in the Iberian Peninsula between 1901 and 2016
Stratospheric ozone and quasi-biennial oscillation (QBO) interaction with the tropical troposphere on intraseasonal and interannual timescales: a normal-mode perspective
Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation
Water transport among the world ocean basins within the water cycle
Economic impacts of a glacial period: a thought experiment to assess the disconnect between econometrics and climate sciences
Semi-equilibrated global sea-level change projections for the next 10 000 years
The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and climate simulations – an information theory perspective
Climate change as an incentive for future human migration
Compound warm–dry and cold–wet events over the Mediterranean
Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory
Mesoscale atmospheric circulation controls of local meteorological elevation gradients on Kersten Glacier near Kilimanjaro summit
On the interconnections among major climate modes and their common driving factors
Eurasian autumn snow link to winter North Atlantic Oscillation is strongest for Arctic warming periods
Back to the future II: tidal evolution of four supercontinent scenarios
Concurrent wet and dry hydrological extremes at the global scale
Synthesis and evaluation of historical meridional heat transport from midlatitudes towards the Arctic
Amplified warming of seasonal cold extremes relative to the mean in the Northern Hemisphere extratropics
Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: a theory-guided causal effect network approach
Analysis of the position and strength of westerlies and trades with implications for Agulhas leakage and South Benguela upwelling
Organization of dust storms and synoptic-scale transport of dust by Kelvin waves
ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation
North Pacific subtropical sea surface temperature frontogenesis and its connection with the atmosphere above
The multi-scale structure of atmospheric energetic constraints on globally averaged precipitation
Potential of global land water recycling to mitigate local temperature extremes
Pipes to Earth's subsurface: the role of atmospheric conditions in controlling air transport through boreholes and shafts
Causal dependences between the coupled ocean–atmosphere dynamics over the tropical Pacific, the North Pacific and the North Atlantic
Moisture transport and Antarctic sea ice: austral spring 2016 event
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023, https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Short summary
The climate system is strongly regulated by interactions between the ocean and atmosphere. However, many uncertainties remain in the understanding of these interactions. Our analysis uses a relatively novel approach to quantify causal links between the ocean surface and lower atmosphere based on satellite observations. We find that both the ocean and atmosphere influence each other but with varying intensity depending on the region, demonstrating the power of causal methods.
Clementine Dalelane, Kristina Winderlich, and Andreas Walter
Earth Syst. Dynam., 14, 17–37, https://doi.org/10.5194/esd-14-17-2023, https://doi.org/10.5194/esd-14-17-2023, 2023
Short summary
Short summary
The realistic representation of global teleconnections is an indispensable requirement for the reliable simulation of low-frequency climate variability and climate change. We present an application of the complex network framework to quantify and evaluate large-scale interactions within and between ocean and atmosphere in 22 historical CMIP6 climate projections with respect to two century-long reanalyses.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Steven J. De Hertog, Felix Havermann, Inne Vanderkelen, Suqi Guo, Fei Luo, Iris Manola, Dim Coumou, Edouard L. Davin, Gregory Duveiller, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 13, 1305–1350, https://doi.org/10.5194/esd-13-1305-2022, https://doi.org/10.5194/esd-13-1305-2022, 2022
Short summary
Short summary
Land cover and land management changes are important strategies for future land-based mitigation. We investigate the climate effects of cropland expansion, afforestation, irrigation, and wood harvesting using three Earth system models. Results show that these have important implications for surface temperature where the land cover and/or management change occurs and in remote areas. Idealized afforestation causes global warming, which might offset the cooling effect from enhanced carbon uptake.
Maria Zeitz, Jan M. Haacker, Jonathan F. Donges, Torsten Albrecht, and Ricarda Winkelmann
Earth Syst. Dynam., 13, 1077–1096, https://doi.org/10.5194/esd-13-1077-2022, https://doi.org/10.5194/esd-13-1077-2022, 2022
Short summary
Short summary
The stability of the Greenland Ice Sheet under global warming is crucial. Here, using PISM, we study how the interplay of feedbacks between the ice sheet, the atmosphere and solid Earth affects the long-term response of the Greenland Ice Sheet under constant warming. Our findings suggest four distinct dynamic regimes of the Greenland Ice Sheet on the route to destabilization under global warming – from recovery via quasi-periodic oscillations in ice volume to ice sheet collapse.
Na Ying, Wansuo Duan, Zhidan Zhao, and Jingfang Fan
Earth Syst. Dynam., 13, 1029–1039, https://doi.org/10.5194/esd-13-1029-2022, https://doi.org/10.5194/esd-13-1029-2022, 2022
Short summary
Short summary
A complex PM2.5 measurement network has been built to investigate transport patterns and cooperative regions in China. Network-based degree measurements are used to reveal the spatial transport pattern of PM2.5. The study also attempts to investigate the seasonal transport path of PM2.5. In addition, the cooperation regions of PM2.5 are quantified according to their synchronicity characteristics. The proposed study can be applied to other air pollutant data, such as ozone and NOx.
Michael J. Prather
Earth Syst. Dynam., 13, 703–709, https://doi.org/10.5194/esd-13-703-2022, https://doi.org/10.5194/esd-13-703-2022, 2022
Short summary
Short summary
Atmospheric CO2 fluctuations point to changes in fossil fuel emissions plus natural and perturbed variations in the natural carbon cycle. One unstudied source of variability is the stratosphere, where the influx of aged CO2-depleted air can cause surface fluctuations. Using modeling and, separately, scaling the observed N2O variability, I find that stratosphere-driven surface variability in CO2 is not a significant uncertainty (at most 10 % of the observed interannual variability).
Matthias Jonas, Rostyslav Bun, Iryna Ryzha, and Piotr Żebrowski
Earth Syst. Dynam., 13, 439–455, https://doi.org/10.5194/esd-13-439-2022, https://doi.org/10.5194/esd-13-439-2022, 2022
Short summary
Short summary
We interpret carbon dioxide emissions from fossil fuel burning and land use as a global stress–strain experiment to reflect the overall behavior of the atmosphere–land and ocean system in response to increasing CO2 emissions since 1850. The system has been trapped progressively in terms of persistence, while its ability to build up memory has been reduced. We expect system failures globally well before 2050 if the current trend in emissions is not reversed immediately and sustainably.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Si Chen, Zhenghui Xie, Jinbo Xie, Bin Liu, Binghao Jia, Peihua Qin, Longhuan Wang, Yan Wang, and Ruichao Li
Earth Syst. Dynam., 13, 341–356, https://doi.org/10.5194/esd-13-341-2022, https://doi.org/10.5194/esd-13-341-2022, 2022
Short summary
Short summary
This study discusses the changes in the summer thermal environment in the Chengdu–Chongqing urban agglomeration due to urban expansion in complex terrain conditions in the recent 40 years, using high-resolution simulations with the WRF model. We quantify the influence of a single urban expansion factor and a single complex terrain factor on the urban thermal environment. Under the joint influence of complex terrain and urban expansion, the heat island effect caused by urbanization was enhanced.
Lisa Jach, Thomas Schwitalla, Oliver Branch, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 13, 109–132, https://doi.org/10.5194/esd-13-109-2022, https://doi.org/10.5194/esd-13-109-2022, 2022
Short summary
Short summary
The land surface can influence the occurrence of local rainfall through different feedback mechanisms. In Europe, this happens most frequently in summer. Here, we examine how differences in atmospheric temperature and moisture change where and how often the land surface can influence rainfall. The results show that the differences barely move the region of strong surface influence over Scandinavia and eastern Europe, but they can change the frequency of coupling events.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Alan Bartholet, Glenn A. Milne, and Konstantin Latychev
Earth Syst. Dynam., 12, 783–795, https://doi.org/10.5194/esd-12-783-2021, https://doi.org/10.5194/esd-12-783-2021, 2021
Short summary
Short summary
Improving the accuracy of regional sea-level projections is an important aim that will impact estimates of sea-level hazard around the globe. The computation of sea-level fingerprints is a key component of any such projection, and to date these computations have been based on the assumption that elastic deformation accurately describes the solid Earth response on century timescales. We show here that this assumption is inaccurate in some glaciated regions characterized by low mantle viscosity.
Achim Wirth and Florian Lemarié
Earth Syst. Dynam., 12, 689–708, https://doi.org/10.5194/esd-12-689-2021, https://doi.org/10.5194/esd-12-689-2021, 2021
Short summary
Short summary
We show that modern concepts of non-equilibrium statistical mechanics can be applied to large-scale environmental fluid dynamics, where fluctuations are not thermal but come from turbulence. The work theorems developed by Jarzynski and Crooks are applied to air–sea interaction. Rather than looking at the average values of thermodynamic variables, their probability density functions are considered, which allows us to replace the inequalities of equilibrium statistical mechanics with equalities.
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Frederik Wolf, Aiko Voigt, and Reik V. Donner
Earth Syst. Dynam., 12, 353–366, https://doi.org/10.5194/esd-12-353-2021, https://doi.org/10.5194/esd-12-353-2021, 2021
Short summary
Short summary
In our work, we employ complex networks to study the relation between the time mean position of the intertropical convergence zone (ITCZ) and sea surface temperature (SST) variability. We show that the information hidden in different spatial SST correlation patterns, which we access utilizing complex networks, is strongly correlated with the time mean position of the ITCZ. This research contributes to the ongoing discussion on drivers of the annual migration of the ITCZ.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Breno Raphaldini, André S. W. Teruya, Pedro Leite da Silva Dias, Lucas Massaroppe, and Daniel Yasumasa Takahashi
Earth Syst. Dynam., 12, 83–101, https://doi.org/10.5194/esd-12-83-2021, https://doi.org/10.5194/esd-12-83-2021, 2021
Short summary
Short summary
Several recent studies suggest a modulation of the Madden–Julian oscillation (MJO) by the quasi-biennial oscillation (QBO). The physics behind this interaction, however, remain poorly understood. In this study, we investigated the QBO–MJO interaction and the role of stratospheric ozone as a forcing mechanism. A normal-mode decomposition procedure combined with causality analysis reveals significant interactions between MJO-related modes and QBO-related modes.
Derrick K. Danso, Sandrine Anquetin, Arona Diedhiou, Kouakou Kouadio, and Arsène T. Kobea
Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, https://doi.org/10.5194/esd-11-1133-2020, 2020
Short summary
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
David García-García, Isabel Vigo, and Mario Trottini
Earth Syst. Dynam., 11, 1089–1106, https://doi.org/10.5194/esd-11-1089-2020, https://doi.org/10.5194/esd-11-1089-2020, 2020
Short summary
Short summary
The global water cycle involves water-mass transport on land, in the atmosphere, in the ocean, and among them. The GRACE mission has allowed for the quantification of water-mass variations. It was a revolution in the understanding of Earth dynamics. Here, we develop and apply a novel method, based on GRACE data and atmospheric models, that allows systematic estimation of water-mass exchange among ocean basins. This is valuable for understanding the role of the ocean within the water cycle.
Marie-Noëlle Woillez, Gaël Giraud, and Antoine Godin
Earth Syst. Dynam., 11, 1073–1087, https://doi.org/10.5194/esd-11-1073-2020, https://doi.org/10.5194/esd-11-1073-2020, 2020
Short summary
Short summary
To illustrate the fact that future economic damage from global warming is often highly underestimated, we applied two different statistically based damage functions available in the literature to a global cooling of 4 °C. We show that the gross domestic product (GDP) projections obtained are at odds with the state of the planet during an ice age. We conclude that such functions do not provide relevant information on potential damage from a large climate change, be it cooling or warming.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Praveen Kumar Pothapakula, Cristina Primo, Silje Sørland, and Bodo Ahrens
Earth Syst. Dynam., 11, 903–923, https://doi.org/10.5194/esd-11-903-2020, https://doi.org/10.5194/esd-11-903-2020, 2020
Short summary
Short summary
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) to Indian summer monsoon rainfall (ISMR) is investigated. Observational data show that IOD and ENSO synergistically exchange information on ISMR variability over central India. IE patterns observed in three global climate models (GCMs) differ from observations. Our study highlights new perspectives that IE metrics could bring to climate science.
Min Chen and Ken Caldeira
Earth Syst. Dynam., 11, 875–883, https://doi.org/10.5194/esd-11-875-2020, https://doi.org/10.5194/esd-11-875-2020, 2020
Short summary
Short summary
We examine the implications of future motivation for humans to migrate by analyzing today’s relationships between climatic factors and population density, with all other factors held constant. Such analyses are unlikely to make accurate predictions but can still be useful for informing discussions about the broad range of incentives that might influence migration decisions. Areas with the highest projected population growth rates tend to be the areas most adversely affected by climate change.
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
Simon Opie, Richard G. Taylor, Chris M. Brierley, Mohammad Shamsudduha, and Mark O. Cuthbert
Earth Syst. Dynam., 11, 775–791, https://doi.org/10.5194/esd-11-775-2020, https://doi.org/10.5194/esd-11-775-2020, 2020
Short summary
Short summary
Knowledge of the relationship between climate and groundwater is limited and typically undermined by the scale, duration and accessibility of observations. Using monthly satellite measurements newly compiled over 14 years in the tropics and sub-tropics, we show that the imprint of precipitation history on groundwater, i.e. hydraulic memory, is longer in drylands than humid environments with important implications for the understanding and management of groundwater resources under climate change.
Thomas Mölg, Douglas R. Hardy, Emily Collier, Elena Kropač, Christina Schmid, Nicolas J. Cullen, Georg Kaser, Rainer Prinz, and Michael Winkler
Earth Syst. Dynam., 11, 653–672, https://doi.org/10.5194/esd-11-653-2020, https://doi.org/10.5194/esd-11-653-2020, 2020
Short summary
Short summary
The glaciers on Kilimanjaro summit are like sample spots of the climate in the tropical mid-troposphere. Measurements of air temperature, air humidity, and precipitation with automated weather stations show that the differences in these meteorological elements between two altitudes (~ 5600 and ~ 5900 m) vary significantly over the day and the seasons, in concert with airflow dynamics around the mountain. Knowledge of these variations will improve atmosphere and cryosphere models.
Xinnong Pan, Geli Wang, Peicai Yang, Jun Wang, and Anastasios A. Tsonis
Earth Syst. Dynam., 11, 525–535, https://doi.org/10.5194/esd-11-525-2020, https://doi.org/10.5194/esd-11-525-2020, 2020
Short summary
Short summary
The variations in oceanic and atmospheric modes play important roles in global and regional climate variability. The relationships between their variations and regional climate variability have been extensively examined, but the interconnections among these climate modes remain unclear. We show that the base periods and their harmonic oscillations that appear to be related to QBO, ENSO, and solar activities act as key connections among the climatic modes with synchronous behaviors.
Martin Wegmann, Marco Rohrer, María Santolaria-Otín, and Gerrit Lohmann
Earth Syst. Dynam., 11, 509–524, https://doi.org/10.5194/esd-11-509-2020, https://doi.org/10.5194/esd-11-509-2020, 2020
Short summary
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Hannah S. Davies, J. A. Mattias Green, and Joao C. Duarte
Earth Syst. Dynam., 11, 291–299, https://doi.org/10.5194/esd-11-291-2020, https://doi.org/10.5194/esd-11-291-2020, 2020
Short summary
Short summary
We have confirmed that there is a supertidal cycle associated with the supercontinent cycle. As continents drift due to plate tectonics, oceans also change size, controlling the strength of the tides and causing periods of supertides. In this work, we used a coupled tectonic–tidal model of Earth's future to test four different scenarios that undergo different styles of ocean closure and periods of supertides. This has implications for the Earth system and for other planets with liquid oceans.
Paolo De Luca, Gabriele Messori, Robert L. Wilby, Maurizio Mazzoleni, and Giuliano Di Baldassarre
Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, https://doi.org/10.5194/esd-11-251-2020, 2020
Short summary
Short summary
We show that floods and droughts can co-occur in time across remote regions on the globe and introduce metrics that can help in quantifying concurrent wet and dry hydrological extremes. We then link wet–dry extremes to major modes of climate variability (i.e. ENSO, PDO, and AMO) and provide their spatial patterns. Such concurrent extreme hydrological events may pose risks to regional hydropower production and agricultural yields.
Yang Liu, Jisk Attema, Ben Moat, and Wilco Hazeleger
Earth Syst. Dynam., 11, 77–96, https://doi.org/10.5194/esd-11-77-2020, https://doi.org/10.5194/esd-11-77-2020, 2020
Short summary
Short summary
Poleward meridional energy transport (MET) has significant impact on the climate in the Arctic. In this study, we quantify and intercompare MET at subpolar latitudes from six reanalysis data sets. The results indicate that the spatial distribution and temporal variations of MET differ substantially among the reanalysis data sets. Our study suggests that the MET estimated from reanalyses is useful for the evaluation of energy transports but should be used with great care.
Mia H. Gross, Markus G. Donat, Lisa V. Alexander, and Steven C. Sherwood
Earth Syst. Dynam., 11, 97–111, https://doi.org/10.5194/esd-11-97-2020, https://doi.org/10.5194/esd-11-97-2020, 2020
Short summary
Short summary
This study explores the amplified warming of cold extremes relative to average temperatures for both the recent past and future in the Northern Hemisphere and the possible physical processes that are driving this. We find that decreases in snow cover and
warmer-than-usual winds are driving the disproportionate rates of warming in cold extremes relative to average temperatures. These accelerated warming rates in cold extremes have implications for tourism, insect longevity and human health.
Giorgia Di Capua, Marlene Kretschmer, Reik V. Donner, Bart van den Hurk, Ramesh Vellore, Raghavan Krishnan, and Dim Coumou
Earth Syst. Dynam., 11, 17–34, https://doi.org/10.5194/esd-11-17-2020, https://doi.org/10.5194/esd-11-17-2020, 2020
Short summary
Short summary
Drivers from both the mid-latitudes and the tropical regions have been proposed to influence the Indian summer monsoon (ISM) subseasonal variability. To understand the relative importance of tropical and mid-latitude drivers, we apply recently developed causal discovery techniques to disentangle the causal relationships among these processes. Our results show that there is indeed a two-way interaction between the mid-latitude circulation and ISM rainfall over central India.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Ashok Kumar Pokharel and Michael L. Kaplan
Earth Syst. Dynam., 10, 651–666, https://doi.org/10.5194/esd-10-651-2019, https://doi.org/10.5194/esd-10-651-2019, 2019
Short summary
Short summary
This study contributes to a better understanding of how large-scale dust transport can be organized from northwest Africa to the US, Amazon basin, and Europe and might be due in part to Kelvin waves. We also think there is still a need to study major historical dust events that occurred in this region to confirm that this location is suitable and responsible for the generation of the Kelvin waves and the transport of dust on a regular basis.
Christoph Heinze, Veronika Eyring, Pierre Friedlingstein, Colin Jones, Yves Balkanski, William Collins, Thierry Fichefet, Shuang Gao, Alex Hall, Detelina Ivanova, Wolfgang Knorr, Reto Knutti, Alexander Löw, Michael Ponater, Martin G. Schultz, Michael Schulz, Pier Siebesma, Joao Teixeira, George Tselioudis, and Martin Vancoppenolle
Earth Syst. Dynam., 10, 379–452, https://doi.org/10.5194/esd-10-379-2019, https://doi.org/10.5194/esd-10-379-2019, 2019
Short summary
Short summary
Earth system models for producing climate projections under given forcings include additional processes and feedbacks that traditional physical climate models do not consider. We present an overview of climate feedbacks for key Earth system components and discuss the evaluation of these feedbacks. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research.
Leying Zhang, Haiming Xu, Jing Ma, Ning Shi, and Jiechun Deng
Earth Syst. Dynam., 10, 261–270, https://doi.org/10.5194/esd-10-261-2019, https://doi.org/10.5194/esd-10-261-2019, 2019
Short summary
Short summary
Net heat flux dominates the frontogenesis of the NPSTF from October to December, while oceanic meridional temperature advection contributes equally as much or even more net heat flux in January and February. The atmosphere is critical to frontogenesis through net heat flux and the Aleutian low, the latter of which benefits meridional temperature advection.
Miguel Nogueira
Earth Syst. Dynam., 10, 219–232, https://doi.org/10.5194/esd-10-219-2019, https://doi.org/10.5194/esd-10-219-2019, 2019
Mathias Hauser, Wim Thiery, and Sonia Isabelle Seneviratne
Earth Syst. Dynam., 10, 157–169, https://doi.org/10.5194/esd-10-157-2019, https://doi.org/10.5194/esd-10-157-2019, 2019
Short summary
Short summary
We develop a method to keep the amount of water in the soil at the present-day level, using only local water sources in a global climate model. This leads to less drying over many land areas, but also decreases river runoff. We find that temperature extremes in the 21st century decrease substantially using our method. This provides a new perspective on how land water can influence regional climate and introduces land water management as potential tool for local mitigation of climate change.
Elad Levintal, Nadav G. Lensky, Amit Mushkin, and Noam Weisbrod
Earth Syst. Dynam., 9, 1141–1153, https://doi.org/10.5194/esd-9-1141-2018, https://doi.org/10.5194/esd-9-1141-2018, 2018
Stéphane Vannitsem and Pierre Ekelmans
Earth Syst. Dynam., 9, 1063–1083, https://doi.org/10.5194/esd-9-1063-2018, https://doi.org/10.5194/esd-9-1063-2018, 2018
Short summary
Short summary
The El Niño–Southern Oscillation phenomenon is a slow dynamics present in the coupled ocean–atmosphere tropical Pacific system which has important teleconnections with the northern extratropics. These teleconnections are usually believed to be the source of an enhanced predictability in the northern extratropics at seasonal to decadal timescales. This question is challenged by investigating the causality between these regions using an advanced technique known as convergent cross mapping.
Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen
Earth Syst. Dynam., 9, 939–954, https://doi.org/10.5194/esd-9-939-2018, https://doi.org/10.5194/esd-9-939-2018, 2018
Short summary
Short summary
In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.
Cited articles
Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J.-J., and Yamagata, T.: How may tropical cyclones change in a warmer climate?, Tellus A, 59, 539–561, https://doi.org/10.1111/j.1600-0870.2007.00251.x, 2007.
Beniston, M.: August 2005 intense rainfall event in Switzerland: Not necessarily an analog for strong convective events in a greenhouse climate, Geophys. Res. Lett., 33, L05701, https://doi.org/10.1029/2005GL025573, 2006.
Blender, R., Fraedrich, K., and Lunkeit, F.: Identification of cyclone-track regimes in the North Atlantic, Q. J. Roy. Meteorol. Soc., 123, 727–741, https://doi.org/10.1002/qj.49712353910, 1997.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thëpaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Donat, M. G., Pardowitz, T., Leckebusch, G. C., Ulbrich, U., and Burghoff, O.: High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany, Nat. Hazards Earth Syst. Sci., 11, 2821–2833, https://doi.org/10.5194/nhess-11-2821-2011, 2011.
Fink, A. H., Pohle, S., Pinto, J. G., and Knippertz, P.: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones, Geophys. Res. Lett., 39, L07803, https://doi.org/10.1029/2012GL051025, 2012.
Fricke, W. and Kaminski, U.: Ist die Zunahme von Starkniederschlägen auf veränderte Wetterlagen zurückzuführen, GAW Brief des Deutschen Wetterdienstes, DWD, 12 pp., http://www.dwd.de/bvbw/generator/DWDWWW/Content/Forschung/FEHP/GAW/DL/GAW__BRIEFE/gaw__brief__012__de__pdf,templateId=raw,property=publicationFile.pdf/gaw_brief_012_de_pdf.pdf (last access: August 2015), 2002.
Gao, X., Pal, J. S., and Giorgi, F.: Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation, Geophys. Res. Lett., 33, L03706, https://doi.org/10.1029/2005GL024954, 2006.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global Planet. Change, 63, 90–104, https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Grams, C. M., Binder, H., Pfahl, S., Piaget, N., and Wernli, H.: Atmospheric processes triggering the central European floods in June 2013, Nat. Hazards Earth Syst. Sci., 14, 1691–1702, https://doi.org/10.5194/nhess-14-1691-2014, 2014.
Grazzini, F. and van der Grijn, G.: Central European floods during summer 2002, ECMWF Newslett., 96, 18–28, 2002.
Gómez-Navarro, J. J., Montávez, J. P., Jerez, S., Jiménez-Guerrero, P., and Zorita, E.: What is the role of the observational dataset in the evaluation and scoring of climate models?, Geophys. Res. Lett., 39, L24701, https://doi.org/10.1029/2012GL054206, 2012.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Held, H., Gerstengarbe, F.-W., Pardowitz, T., Pinto, J. G., Ulbrich, U., Born, K., Donat, M. G., Karremann, M. K., Leckebusch, G. C., Ludwig, P., Nissen, K. M., Österle, H., Prahl, B. F., Werner, P. C., Befort, D. J., and Burghoff, O.: Projections of global warming-induced impacts on winter storm losses in the German private household sector, Climatic Change, 121, 195–207, https://doi.org/10.1007/s10584-013-0872-7, 2013.
Hofstätter, M. and Chimani, B.: Van Bebber's cyclone tracks at 700 hPa in the Eastern Alps for 1961–2002 and their comparison to circulation type classifications, Meteorol. Z., 21, 459–473, https://doi.org/10.1127/0941-2948/2012/0473, 2012.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature, J. Geophys. Res.-Atmos., 114, D21101, https://doi.org/10.1029/2009JD011799, 2009.
IPCC-AR4: The physical science basis, in: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2007.
IPCC-SREX: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, in: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012.
James, P., Stohl, A., Spichtinger, N., Eckhardt, S., and Forster, C.: Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions, Nat. Hazards Earth Syst. Sci., 4, 733–746, https://doi.org/10.5194/nhess-4-733-2004, 2004.
Kaspar, M. and Müller, M.: Selection of historic heavy large-scale rainfall events in the Czech Republic, Nat. Hazards Earth Syst. Sci., 8, 1359–1367, https://doi.org/10.5194/nhess-8-1359-2008, 2008.
Köppen, W.: Die Zugstrassen der barometrischen Minima in Europa und auf dem nordatlantischen Ocean und ihr Einfluss auf Wind und Wetter bei uns, Mittheilungen der Geographischen Gesellschaft in Hamburg, 1, 76–97, 1881.
Kron, W., Steuer, M., Löw, P., and Wirtz, A.: How to deal properly with a natural catastrophe database – analysis of flood losses, Nat. Hazards Earth Syst. Sci., 12, 535–550, https://doi.org/10.5194/nhess-12-535-2012, 2012.
Kundzewicz, Z. W., Ulbrich, U., Brücher, T., Graczyk, D., Krüger, A., Leckebusch, G. C., Menzel, L., Pinskwar, I., Radziejewski, M., and Szwed, M.: Summer Floods in Central Europe – Climate Change Track?, Nat. Hazards, 36, 165–189, https://doi.org/10.1007/s11069-004-4547-6, 2005.
Lionello, P., Dalan, F., and Elvini, E.: Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios, Clim. Res., 22, 147–159, https://doi.org/10.3354/cr022147, 2002.
Lionello, P., Trigo, I. F., Gil, V., Liberato, M. L. R., Nissen, K., Pinto, J. G., Raible, C. C., Reale, M., Tanzarella, A., Trigo, R. M., Ulbrich, S., and Ulbrich, U.: Objective Climatology of Cyclones in the Mediterranean Region: a consensus view among methods with different system identification and tracking criteria, Tellus, in preparation, 2015.
Martius, O., Zenklusen, E., Schwierz, C., and Davies, H. C.: Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: a climatology, Int. J. Climatol., 26, 1149–1164, https://doi.org/10.1002/joc.1295, 2006.
Mudelsee, M., Börngen, M., Tetzlaff, G., and Grünewald, U.: Extreme floods in Central Europe over the past 500 years: Role of cyclone pathway "Zugstrasse Vb", J. Geophys. Res.-Atmos., 109, D23101, https://doi.org/10.1029/2004JD005034, 2004.
Muskulus, M. and Jacob, D.: Tracking cyclones in regional model data: The future of Mediterranean storms, Adv. Geosci., 2, 13–19, https://doi.org/10.5194/adgeo-2-13-2005, 2005.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms, B. Am. Meteorol. Soc., 94, 529–547, https://doi.org/10.1175/BAMS-D-11-00154.1, 2013.
Nissen, K. M., Ulbrich, U., and Leckebusch, G. C.: Vb cyclones and associated rainfall extremes over Central Europe under present day and climate change conditions, Meteorol. Z., 22, 649–660, https://doi.org/10.1127/0941-2948/2013/0514, 2013.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.: Mediterranean cyclones and windstorms in a changing climate, Reg. Environ. Change, 14, 1873–1890, https://doi.org/10.1007/s10113-012-0400-8, 2014.
Pal, J. S., Giorgi, F., and Bi, X.: Consistency of recent European summer precipitation trends and extremes with future regional climate projections, Geophys. Res. Lett., 31, L13202, https://doi.org/10.1029/2004GL019836, 2004.
Pinto, J. G., Spangehl, T., Ulbrich, U., and Speth, P.: Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment, Meteorol. Z., 15, 279–291, https://doi.org/10.1127/0941-2948/2006/0128, 2006.
Pinto, J. G., Ulbrich, S., Parodi, A., Rudari, R., Boni, G., and Ulbrich, U.: Identification and ranking of extraordinary rainfall events over Northwest Italy: The role of Atlantic moisture, J. Geophys. Res.-Atmos., 118, 2085–2097, https://doi.org/10.1002/jgrd.50179, 2013.
Raible, C. C.: On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40, Geophys. Res. Lett., 34, L07703, https://doi.org/10.1029/2006GL029084, 2007.
Raible, C. C., Della-Marta, P. M., Schwierz, C., Wernli, H., and Blender, R.: Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses, Mon. Weather Rev., 136, 880–897, https://doi.org/10.1175/2007MWR2143.1, 2008.
Raible, C. C., Ziv, B., Saaroni, H., and Wild, M.: Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5, Clim. Dynam., 35, 473–488, https://doi.org/10.1007/s00382-009-0678-5, 2010.
Sodemann, H. and Zubler, E.: Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002, Int. J. Climatol., 30, 947–961, https://doi.org/10.1002/joc.1932, 2010.
Sodemann, H., Wernli, H., and Schwierz, C.: Sources of water vapour contributing to the Elbe flood in August 2002 – A tagging study in a mesoscale model, Q. J. Roy. Meteorol. Soc., 135, 205–223, https://doi.org/10.1002/qj.374, 2009.
Speranza, A.: The formation of baric depressions near the Alps, Ann. Geophys., 28, 177–217, https://doi.org/10.4401/ag-4898, 1975.
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of the global water cycle, Part I: Method description, validation, and demonstration for the August 2002 flooding in Central Europe, J. Hydrometeorol., 5, 656–678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2, 2004.
Stucki, P., Rickli, R., Brönnimann, S., Martius, O., Wanner, H., Grebner, D., and Luterbacher, J.: Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868, Meteorol. Z., 21, 531–550, https://doi.org/10.1127/0941-2948/2012/368, 2012.
Stucki, P., Brönnimann, S., Martius, O., Welker, C., Imhof, M., von Wattenwyl, N., and Philipp, N.: A catalog of high-impact windstorms in Switzerland since 1859, Nat. Hazards Earth Syst. Sci., 14, 2867–2882, https://doi.org/10.5194/nhess-14-2867-2014, 2014.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Objective climatology of cyclones in the Mediterranean region, J. Climate, 12, 1685–1696, https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2, 1999.
Ulbrich, U., Brücher, T., Fink, A. H., Leckebusch, G. C., Krüger, A., and Pinto, J. G.: The central European floods of August 2002: Part 1 – Rainfall periods and flood development, Weather, 58, 371–377, https://doi.org/10.1256/wea.61.03A, 2003a.
Ulbrich, U., Brücher, T., Fink, A. H., Leckebusch, G. C., Krüger, A., and Pinto, J. G.: The central European floods of August 2002: Part 2 – Synoptic causes and considerations with respect to climatic change, Weather, 58, 434–442, https://doi.org/10.1256/wea.61.03B, 2003b.
Van Bebber, W.: Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890, Meteorol. Z., 8, 361–366, 1891.
Winschall, A., Pfahl, S., Sodemann, H., and Wernli, H.: Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events, Q. J. Roy. Meteorol. Soc., 138, 1245–1258, https://doi.org/10.1002/qj.987, 2012.
Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M., and Brayshaw, D. J.: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling, Nat. Geosci., 5, 313–317, https://doi.org/10.1038/ngeo1438, 2012.
Yin, J. H.: A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684, 2005.
Zängl, G.: Numerical simulations of the 12–13 August 2002 flooding event in eastern Germany, Q. J. Roy. Meteorol. Soc., 130, 1921–1940, https://doi.org/10.1256/qj.03.152, 2004.
Zappa, G., Hawcroft, M. K., Shaffrey, L., Black, E., and Brayshaw, D. J.: Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models, Clim. Dynam., https://doi.org/10.1007/s00382-014-2426-8, in press, 2014.
Altmetrics
Final-revised paper
Preprint