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HIGHLIGHTS 1 

 Temperatures, heat flux and energy uses were measured in office building, 2 

Chongqing. 3 

 Comparing white and sedum-tray garden roofs to black roof for one year. 4 

 White roof reduced 1.6 times annual energy savings than sedum-tray garden roof. 5 

 Natural aging of white and sedum-tray garden roofs has been discussed. 6 

  7 
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Thermal Performance and Energy Savings of White and Sedum-tray Garden Roof: A 22 

Case Study in a Chongqing Office Building 23 

ABSTRACT 24 

This study presents the experimental measurement of the energy consumption of three top-25 

floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in 26 

the hot-summer and cold-winter zone of China, to examine the energy performance of white and 27 

sedum-tray garden roofs. The energy consumption of the three rooms was measured from 28 

September 2014 to September 2015 by monitoring the energy performance (temperature 29 

distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air 30 

temperature. The rooms had the same construction and appliances, except that one roof top was 31 

black, one was white, and one had a sedum-tray garden roof. This study references the International 32 

Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy 33 

savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms 34 

with the sedum-tray garden roof and with the white roof were 25.0 % and 20.5 %, respectively, as 35 

compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were 36 

−9.9 % and −2.7 %, respectively, in the winter. Furthermore, Annual conditioning energy savings of 37 

white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is 38 

evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white 39 

roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its 40 

thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also 41 

identified to have a significant effect on the energy savings of the sedum-tray garden roof.  42 

Key Words 43 

White roof; Sedum-tray garden roof; Office building; Thermal performance; Energy savings 44 

 45 

 46 

 47 

 48 
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Nomenclature 

Qa air conditioning power demand intensity in one room (kW/m²) 

Qload heat load of the tested room (kW/m²) 

Qenvelope heat gains from the roof, window, and other sources (kW/m²) 

Qroof heat gain through the roof (kW/m²) 

Qe heat gain within the room from other interior rooms (kW/m²) 

Qwindow solar irradiance from the window (kW/m²) 

Qother heat gain from other sources (e.g., plug load, infiltration, and occupants) (kW/m²) 

Qwall heat gain from wall (kW/m²) 

Qfloor heat gain from floor (kW/m²) 

P∆  air-conditioning energy savings (kW) 

E∆  power savings of room (kWh) 

P  air-conditioning energy consumption (kW) 

E  power consumption of room (kWh) 

Aadjustment modification of energy savings (kWh) 

ΔC air-conditioning energy cost savings (RMB) 

de the price of electrical power (RMB/kWh) 

Δp CO2 emission factor (tCO2/MWh) 

Qm measured air-conditioning energy consumption in one room (kW/m²) 

EFgrid,2015 the mean marginal CO2 emission factor in 2015 (tCO2/MWh) 

Greek Symbols 

λ thermal conductivity of interior wall (W·m /K) 

𝛿𝛿 thickness of interior wall (m) 

∆𝑡𝑡 temperature difference between the opposite faces of interior walls (K) 

𝜏𝜏 time (s) 

A the area of interior wall (m2) 

Subscript 

a air-conditioning 

e adjacent room 

black room with black roof 

roof room with white or sedum-tray garden roof 

heating heating season 

cooling cooling season 
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1. Introduction 49 

As a result of economic growth and urbanization, buildings consume almost one-third of the 50 

total energy consumption and contribute to 40 % of the CO2 emissions in China [1]. Especially, 51 

because the city’s original surface has been replaced by black roofs and pavements (with an albedo 52 

of approximately 0.1 to 0.2), a shortage of greenery causes a decrease in canopy interception and 53 

transpiration in the city, leading to increased temperatures and CO2 emissions. Worse still, in the 54 

summer, it results in urban heat islands (UHIs) and contributes to greater energy consumption, more 55 

heat-related deaths, increased peak-hour power demand, and other ecologically adverse impacts 56 

[2]. 57 

With the increase in the city’s high-rise buildings and building density, the low-rise buildings 58 

are usually covered by other buildings, so the roofs are the major receivers of solar radiation in this 59 

case. Therefore, the insulation performance of the roof is an important factor affecting the thermal 60 

comfort and regional microclimate of low-rise buildings (e.g., podium buildings, old buildings, or 61 

factory buildings). In particular, the roof surface has a significant effect on the peak energy load and 62 

the total energy consumption of air-conditioned buildings, as well as the indoor thermal comfort in 63 

non-air-conditioned buildings [3]. The roofs of existing buildings usually consist of a waterproof 64 

membrane, insulation, and a structural layer [4], resulting in low reflectance and poorer insulation 65 

performance that makes the roofs inadequate to either reduce solar heat gains in summer or to 66 

decrease heat losses in winter [5]. The energy consumption due to the roof top accounts for 5 %–67 

10 % of a building’s total energy consumption (the more floors, the lower the percentage) and more 68 

than 40 % of the energy consumption of the top floor. These problems can be partially solved by 69 

retrofitting the rooftop construction. The technique of retrofitting common rooftop surfaces is often 70 

regarded as an effective strategy for rendering the buildings more sustainable [6] [7]. Specifically, 71 

innovative passive techniques such as cool (reflective) roofs and green (vegetative) roofs for 72 

improving the energy performance of buildings have demonstrated strategic environmental, 73 

economic, and social benefits [9]. 74 

These cool roofs can boost the albedo (solar reflectance) of the exterior surface of the buildings 75 

to reduce the solar heat gain, lower the surface temperature, and decrease the heat conduction 76 
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through the roofs, thereby reducing the cooling load (albeit increasing the heating load) in a 77 

conditioned space, or lowering the air temperature in an unconditioned space [10]. Because of the 78 

added shade from the plants, the thermal resistance and thermal mass of the soil layer, and 79 

approximately 25 % of the solar radiation being consumed by the plants’ evapotranspiration, only a 80 

small heat flux is transferred to the indoor space [11] [7] in the case of green roofs, which can improve 81 

the thermal performance of roofs and reduce the building’s energy consumption in a cooling-82 

dominated climate. 83 

Normally, green roofs are classified as intensive, extensive, or semi-intensive [12]. An 84 

extensive roof is characterized by small plants, a thin soil layer (6–25 cm) and simple maintenance. 85 

An intensive roof, on the contrary, is heavier and thicker (15–70 cm) and requires more maintenance, 86 

while the semi-intensive roof falls in between these two [7]. Extensive roofs are often the preferred 87 

option for retrofitting old buildings [4]. However, extensive green roofs have displayed a few 88 

drawbacks such as heavy structural reinforcement requirements, drainage issues, high cost, and 89 

difficulties with design and construction [13]. In recent years, light sedum-tray garden roof has 90 

launched into the market to meet the need for a light-weight planting roof in urban areas [14]. In 91 

these systems, the plants initially grow in a freely combined container that is commonly made of 92 

PVC plastic. When the plants are more mature, they can be moved to the roof. This technology is 93 

not only easy to assemble and combine, but also keeps the roof structure intact to address the issues 94 

of storage and drainage, filtering, and preventing root overgrowth. Although it has been recognized 95 

in engineering practice, it has been rarely applied or studied. 96 

In some countries, studies of white roofs have been conducted, in which the insulation 97 

performance and energy savings were analyzed based on the local climate and building form. White 98 

roofs can reflect 55–80 % of incident sunlight, making the roof surface stay cooler on clear summer 99 

days [13], which decreases the heat gain through the roof, lowers the indoor air temperature, and, 100 

thus, makes the indoor space more comfortable in unconditioned buildings; likewise, the white roof 101 

can also reduce the cooling load (although it increases the heating load) in a conditioned building. 102 

A. Synnefa et al. [16] investigated the application of white roofs to conditioned residential buildings 103 

in different climates, and discovered that the white roofs reduced the total cooling load and peak 104 
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cooling load of conditioned rooms by 18 %–93 % and 11–27 %, respectively, and reduced the 105 

maximum temperature of the unconditioned buildings by 1.2–3.3 °C. Based on cool-roof studies 106 

performed in China and elsewhere, installing cool roofs is an effective way to reduce a building’s 107 

energy consumption or improve its thermal comfort [40]. Moreover, white roofs can also reduce 108 

carbon emissions and neutralize global warming, as their highly reflective surfaces reflect an amount 109 

of radiation that would otherwise have been absorbed by the ground [16]. Cotana et al. estimated 110 

that approximately 16,000 tCO2-eq could be offset over 30 years with the installation of 111 

approximately 115,000 m2 of white roofs at a Tunisian factory site [17]. Akbari et al. simulated the 112 

long-term effect of the increasing urban surface albedos using a spatially explicit global climate 113 

model of intermediate complexity; the results indicated that the global cooling ranged from 0.01 to 114 

0.07 K, which corresponds to a carbon emission reduction of 25–150 billion tons of CO2 [18]. 115 

However, a white roof faces the challenge of natural aging, which worsens its thermal 116 

insulation performance. Kelen et al. [19] researched the natural aging of roofs, 12 with standard paint 117 

and 8 with highly reflective paint, in São Paulo, Brazil. They found that the albedo of the roof tops 118 

sharply decreased, from 0.74 to 0.50, within their first 6 months due to climate and contamination 119 

and that a new cool roof could decrease the energy demand for cooling by 72 %, as compared to 120 

the aged cool roof. Elena et al. [20] found that the surface temperatures of white roofs after aging 121 

(with 0.50–0.55 reflectance) were higher than those of newly coated roofs (with 0.71–0.74 122 

reflectance). The albedo of a white roof decreases due to local weather changes, wind erosion, 123 

microbial growth, and dust [21]. Chongqing, one of the first cities severely impacted by air pollution, 124 

including PM2.5, O3, haze, and smog, is in the Sichuan Basin and has complicated meteorology [22], 125 

so the natural aging there will be different than in other places. Compared with white roofs, sedum-126 

tray garden roofs are less effective at reflecting incident light and have a lower global cooling 127 

potential. Coutts et al. [23] indicated that the reflectivity of a lighter-colored vegetated roof is 0.21. 128 

Similarly, Ekaterini and Dimitris [24] found that a vegetated roof had 27 % of its total solar radiation 129 

reflected, 60 % absorbed by the plants and the substrate medium, and a 13 % solar transmittance. 130 

Compared to white roofs, however, the albedo of sedum-tray garden roofs persists because of the 131 
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life cycle of the plants, except for the reduction due to the contamination of the encapsulated 132 

polystyrene (EPS) base.  133 

Sedum-tray garden roofs reduce a building’s energy demand through the improvement of its 134 

thermal performance [25] [26]. Onmura [27] studied the roof of a three-story building in Osaka and 135 

found that implementing a sedum-tray garden roof could reduce the surface temperature and the 136 

heat flux of the roof by 30 °C and 50 %, respectively. The ability of green roofs to improve thermal 137 

performance was also reported by Ekaterini and Dimitris [28]. Sedum-tray garden roofs influence the 138 

roof surface and nearby air in two major ways [29]: they reduce the heat transfer into the top-floor 139 

rooms because of the insulating effect of their soil layer and vegetation, and the evaporation from 140 

the plants absorbs the sensible heat and transforms it into a latent heat of vaporization. A study in a 141 

hotel near Athens Beach in Greece measured that the roof surface and indoor temperatures of an 142 

unconditioned space were reduced by 14 °C and 3 °C, respectively, owing to the implementation of 143 

a green roof, and a simulation of the whole building indicated that the green roof could reduce the 144 

cooling load by 45–61 %, heating load by 45 %, and annual power demand by 37–48 %. According 145 

to their findings, strengthening the ventilation of the unconditioned space at night could further 146 

enhance the cooling effect of the sedum-tray garden roofs [30]. 147 

However, the energy savings of sedum-tray garden roofs are totally different in different 148 

climates because of hydrological performance and other factors. For instance, during the winter, the 149 

green roof acts as an insulator and decreases the heat flow, although this benefit has been often-150 

debated. Some studies have claimed that a green roof saved energy [31], some identified that a 151 

green roof had no influence on energy consumption during the winter [32], while still others viewed 152 

it as the cause of increased energy consumption [33]. Researchers in Japan found that the peak 153 

sensible heat fluxes (QH) were small for the white roof (153 W/m2) during a summer day, but the QH 154 

of the green roof was twice as much as that of the white roof [34]. However, Scherba et al. [35] 155 

modeled the performance of green and white roofs and found that the daily QH was not that much 156 

greater for the green roofs. We think that the thermal performance and energy savings are strongly 157 

affected by the climate and hydrology and that a lack of local research and the premature introduction 158 

of products into the market causes the sedum-tray garden roofs to generally not be optimized to 159 
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realize their benefits [36]; therefore, it is necessary to conduct local research of sedum-tray garden 160 

and white roofs in China, as well as to provide a comprehensive comparison between these two roof 161 

types[37].  162 

Above all, white roofs and sedum-tray garden roofs can provide numerous economic and 163 

social benefits in addition to their more-obvious environmental advantages [38] [39] [40]. Hence, the 164 

Chinese government has started promoting the implementation of white and sedum-tray garden 165 

roofs on buildings. Notably, while the related products have started to thrive in China, many benefits 166 

have not yet been fully realized through engineering due to the lack of local research in following 167 

areas: 1) there have been some case studies that compared white roofs with black roofs [41] [42] 168 

[43] and green roofs with black roofs [44] [45], but there is no systematic comparative study on the 169 

energy savings of these two roof types in Chongqing, China; 2) there is a lack of study on the 170 

attenuation of albedo through the natural aging of the two roof types in significant air pollution; 3) 171 

there is no comparative study of the energy efficiency before and after the natural aging in China; 172 

and 4) for the new type of light-weight sedum-tray garden roof, there is a lack of study on its thermal 173 

performance and energy savings. 174 

This case study analyzes the heat transfer mechanisms of white and sedum-tray garden roofs 175 

and the energy savings realized between September 2014 and September 2015 for three air-176 

conditioned rooms (rooms A, B, and C) of an office building in Chongqing, China, which is a typical 177 

hot and humid climate in which offices use air conditioning between May and September, by 178 

monitoring energy performance (temperatures, heat fluxes, and energy consumption) and the 179 

external roof temperatures. We also reference the IPMVP for savings determination. Additionally, 180 

the impact of natural aging upon the energy efficiency of the two roof types is also considered. 181 

2. Theoretical analysis 182 

Although the tested rooms shared the same floor, their fenestration (orientation, window area, 183 

construction, and shadings), plug load (air-conditioning system, lighting, and occupancy), and other 184 

differences beyond their roof construction could influence their air conditioning energy consumption. 185 

In this study, we analyzed the heat balance model, and then referenced the IPMVP to synthetically 186 

evaluate the cumulative energy savings and peak-hour power demand reduction, along with the 187 
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energy cost savings and emission reduction, and, finally, the comprehensive operational conditions 188 

and economic benefits attributable to the white roof and sedum-tray garden roof. 189 

2.1. Heat balance model 190 

A tested room can gain or lose heat through both its envelope (e.g., roof, window, walls, and 191 

floor) and interior walls with no internal sources, as the air-source heat pump removes cooling or 192 

heating loads to maintain thermal comfort. Denoting the rates of heat gain (power) from other interior 193 

rooms, the room’s envelope and other sources as Qe , Qenvelope  and Qother, respectively, the rate 194 

Qload at which the heat pump must remove heat to regulate the room’s air temperature, Qload (positive 195 

in cooling season, negative in heating season) is disaggregated into heat gain through envelope 196 

(e.g., wall, roof, window, and floor), other sources (e.g., plug load, infiltration, and occupants) and 197 

heat transfer through interior rooms: 198 

=a load envelope other eQ Q Q Q Q= + +                                                                                                         199 

(1) 200 

envelopeQ is disaggregated into heat gain through envelope (e.g., wall, roof, window, and floor), 201 

other sources (e.g., plug load, infiltration, and occupants) and heat transfer through interior rooms, 202 

such that [46]: 203 

+load envelope other e wall roof window floor other eQ Q Q Q Q Q Q Q Q Q= + + = + + + +                                                              (2) 204 

Eqs. 2 is the heat balance model of tested rooms. The subscript of the rate represents the 205 

source of heat gain, Qroof can be measured by roof heat flux. Qwindow can be estimated by a U value 206 

(3.94 W/m²K) of a window and a g-value (0.50). Qe is calculated by indoor air temperatures of 207 

adjacent rooms. 208 

Because the three air-source heat pumps share the same coefficient of performance (COP), 209 

we define the rate of air-conditioning heat removal during the cooling season and heating season, 210 

respectively, as: 211 

,a cooling cooling coolingQ COP P= ⋅                                                                                                                (3) 212 

,a heating heating heatingQ COP P= ⋅                                                                                                                (4) 213 
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Considering that the three tested rooms in the office building have the same envelope and 214 

construction, except for the different roof types (black, white, and sedum-tray garden roof), we define: 215 

black roofP P P∆ ≡ −                                                                                                                                 (5) 216 

Together with Eqs. (3), (4), and (5), the air-conditioning power savings during the cooling and 217 

heating seasons (positive during the cooling season, negative during the heating season) is: 218 

a loadQ QP
COP COP
∆ ∆

∆ = =                                                                                                                                (6) 219 

For distinguishing the air-conditioning power savings of the roof from those aspects, we define 220 

the air-conditioning power savings due to the white roof and sedum-tray garden roof during the 221 

cooling and heating seasons (positive during the cooling season, negative during the heating season) 222 

as: 223 

roof
roof

Q
P

COP
∆

∆ =                                                                                                                                         (7) 224 

We calculate the air-conditioning power savings from the measured power consumption 225 

denoted as  𝑄𝑄𝑚𝑚  for one room, in consideration of the heat transfer through interior walls. If we 226 

assume the envelope of all tested rooms is well insulated, such that 0otherQ∆ = , then combining Eqs. 227 

2, 6 and 7 yields the cooling and heating power savings (positive in healing season, negative in 228 

cooling season) is: 229 

window wall floor e
roof

Q Q Q Q
P P

COP
∆ + ∆ + ∆ + ∆

∆ = ∆ ±                                                                                                   (8) 230 

2.2. Energy savings 231 

The IPMVP provides a procedure for comparing the energy consumption levels before and 232 

after the application of energy conservation measurements (ECMs). The comparison of before and 233 

after energy consumption or demand should be made on a consistent basis, using the following 234 

general equation [47]: 235 

( )baseline reporting adjustmentsE E E A∆ = − ±                                                                                                            (9) 236 
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where adjustmentsA  is used to remove the air conditioning heat load transfer caused by the interior wall 237 

heat transfer from the simple comparison of cost or usage before and after the implementation of an 238 

energy conservation measure (ECM). 239 

The IPMVP provides four options (A, B, C, and D) for determining energy savings. Option C is 240 

best applied where the ECMs involve activities for which the individual energy consumption is difficult 241 

to measure separately (e.g., operator training and wall or window upgrades), so this is the option 242 

chosen for use in this case study [48]. 243 

Option C in the IPMVP compares the energy consumption, adjusted for weather and other 244 

interfering factors, before and after the ECMs, but this case used parallel controlled measurements 245 

in rooms A, B (black roof as baseline), and C, which objectively negated the differential influence of 246 

the weather and other interference factors [49]. However, the power consumption must still be 247 

adjusted to account for the energy effects of the heat transfer through the interior walls of these three 248 

different rooms. Except for the differences in the time and space dimensions, the experimental 249 

objects (i.e., the cooling and heating temperatures and the air conditioning energy consumption) are 250 

the same as the IPMVP Option C. Therefore, when referencing the IPMVP Option C to calculate the 251 

energy savings, each month’s energy consumption (for the white and sedum-tray garden roofs) 252 

required modification to account for the interior wall heat transfer, which was then taken from the 253 

corresponding baseline actual demand (black roof). Then, the equation (6) could be transformed to: 254 

=
adjustmentblack roofE E E A Pdt A∆ = − ± ∆ ±∫（ ）                                                                                                (10) 255 

Such that, once the expressions of
adjustment

A for the cooling and heating seasons were derived, the Qe 256 

could be analyzed. 257 

The interior wall heat transfer process can be viewed as a one-dimensional heterogeneous 258 

partition unsteady heat conduction process [50]. In this study, the interior wall heat transfer is 259 

approximated as a steady-state heat transfer in five-minute increments, then summed by the hour, 260 

so that the daily interior wall heat transfer during the test period could be calculated. The energy 261 

consumption of the interior wall heat transfer is: 262 
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288

1
( / ) 300 ( / )e iday

i
Q A T x dt A tλ λ δ τ

=

= ∆ ∆ = − ∆∑∫                                                                                           (11) 263 

In practice, the energy savings effects of the white and the sedum-tray garden roofs may be 264 

affected by the heat radiation intensities between the interior surfaces and interior walls of these 265 

three different rooms. Thus, the energy consumption in the different test rooms can be expressed in 266 

the following way when the heat transfer between the rooms is considered [46]: 267 

=a m eQ Q Q+                                                                                                                                                                       (12) 268 

Hereto, under the condition of a well-insulated envelope, the daily, seasonal, and annual 269 

cumulative energy savings of the rooms are each evaluated using Eqs. (8), (9), and (11). 270 

2.3. Other savings and emissions reductions 271 

2.3.1 Energy cost savings 272 

The air conditioning energy cost savings for a period (daily, seasonally, or annually) can be 273 

calculated as: 274 

= eC d E∆ ⋅∆                                                                                                                                                (13) 275 

where de is the prices of electricity,  is cumulative energy savings of rooms. ΔE is the power savings 276 

of room and calculated by Eqs. 10 and 11. 277 

2.3.2 Emissions reductions 278 

The reduction of CO2 emissions can be calculated as: 279 

,2015gridp EF E∆ = ⋅∆                                                                                                                                (14) 280 

where ,2015gridEF  is the mean marginal emissions factor in 2015 and is derived by taking a weighted 281 

average of the values of , ,2015grid OMEF  and , ,2015grid BMEF  [51], which are obtained from the 2015 282 

Baseline Emission Factors for Regional Power Grids in China; Chongqing belongs to the Central 283 

China Grid [52]. 284 

2.3.3 Peak-hour power demand reduction 285 

The peak electrical demand could be defined by the utilities. According to the Chongqing 286 

Power Grid Peak and Valley Load Trial Measures for Electricity (2000), the State Grid Chongqing 287 
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Electric Power Company and the Chongqing Municipal Price Bureau classify 08:00–12:00 288 

and19:00–23:00 local standard time (LST) as the peak demand hours for ordinary non-residential 289 

users [53]. Therefore, the value of the cooling energy saved during 08:00–12:00 LST could be used 290 

to measure the peak-hour demand reduction in the office building for one daytime period. 291 

3. Experimental study 292 

3.1. Study location 293 

Chongqing, a mountain city located in southwest China, has a subtropical humid monsoon 294 

climate, with hot summers, cold winters, and high humidity throughout the year, owing to the 295 

shielding effect of the mountains around the Sichuan Basin and the influence of the Qinghai-Tibet 296 

Plateau [57]. Solar radiation is primarily distributed in the summer, and is up to 4 times greater than 297 

that in the winter, ranging from 121.2 W/m2 in January to 558.8 W/m2 in September. As shown in 298 

Figure 1, the mean annual temperature is 18.6 °C, and the maximum outdoor air temperature is up 299 

to 28.5 °C higher in the summer than in the winter, ranging from about 7.5 °C in December to 35.8 300 

°C in June. 301 

 302 

Figure 1 Mean outside air temperature and global solar irradiance through the year. 303 

Figure 2 illustrates that Chongqing features a hot and humid climate (relative humidity greater 304 

than 70 % in all months), with a mean annual relative humidity of 78.9 %, and a maximum relative 305 

humidity of 85.9 % in December. Fog and haze frequently occur in Chongqing, because of low wind 306 

speed and high levels of air pollution, including PM2.5 and O3; the PM2.5 is severe in the winter, 307 

especially in January, while the O3 is severe in the summer, especially in July and August [54]. 308 

 309 

Figure 2 Monthly average relative humidity and wind speed throughout the year. 310 

3.2. Experimental setup 311 

This experiment site was an office building located in the Jiangjin District in Chongqing. The 312 

roof top heat flux, temperatures (plant, roof top and bottom, and indoor air), soil temperature and 313 

humidity, and air conditioning (cooling + heating) energy consumption were compared over the 314 

course of the 12 months between September 2014 and September 2015 in three top-floor rooms 315 



15 

 

that had identical orientation, floor area, function, and air conditioning system. All three rooms used 316 

the same split-system direct expansion air-source heat pump, which is typical in China and Europe. 317 

During the cooling season (Sept. 2014, Jun.–Sept. 2015) and the heating season (Nov. 2014–Feb. 318 

2015), the air-source heat pump was turned on between 08:00 and 18:00 on workdays and turned 319 

off on the weekends. During the transitional season (Oct. 2014–May 2015, and Oct. 2015), the air 320 

conditioner was turned off all the time. 321 

The energy consumption of the white and sedum-tray garden roofs during the cooling and 322 

heating seasons were computed via the energy meter. The seasonal and annual site energy savings, 323 

source energy savings, energy cost savings, and emission reductions were calculated using local 324 

source-to-site energy ratios, energy prices, and emissions factors. 325 

3.3. Construction of the case study 326 

In the three-story unoccupied office building in the Jiangjin District of Chongqing (106.44 °E, 327 

29.49 °N), each tested room was 5.92 m × 3.62 m × 3.30 m and had an area of 21.4 m2 (Figure 3a). 328 

According to the Technical Specification for Planted Roofs (JGJ155-2013), Sedum lineare (carpet 329 

sedum or stonecrop) is an excellent drought-resistant and pulpy groundcover species widely 330 

distributed in Chongqing [54], which can replace the traditional insulation layer with the use of soilless 331 

cultivation. Sedum lineare thunb (needle stonecrop or carpet sedum) planting modules were applied 332 

to the roof section over room A on the top floor of the building. The properties of the modules are 333 

detailed in Table 1. The sedum-tray garden roof was designed according to the Roofing Construction 334 

Technical Specification (GB50345) [55]. Black coating was applied to the roof of room B, and highly 335 

reflective paint was applied to the roof of room C; the coating materials are shown in Table 2. The 336 

air-source heat pump for each room was turned on to measure the energy consumption or left off to 337 

measure the room air temperature reduction. The geometry, construction, air-source heat pump, 338 

and schedule for each room and its roof are detailed in Table 2.  339 

Figure 3 (a) a three-dimensional model of the office building; (b) view of the black roof, white roof, 340 

and sedum-tray garden roof. 341 

 342 

Figure 4 Figure 4 (a) sedum-tray module; and (b) installation of sensors. 343 
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 344 

Table 1 Description of Sedum lineare planting modules. 345 

 346 

Table 2 Characteristics of the test rooms in the office building in the Jiangjin District of Chongqing. 347 

3.4. Instrumentation and data acquisition 348 

The measuring points were arranged according to the Standard for Energy Efficiency Test of 349 

Public Buildings (JGJ/T177-2009). Sensors and data loggers were installed after their calibration 350 

and are detailed in Table 3. Exterior and interior surface temperatures, outside air and indoor air 351 

temperatures, roof surface heat flux, solar radiation, and electricity consumption were measured in 352 

each room 24 hours a day, with the data being recorded every five minutes. The details are shown 353 

in Table 3 and Figure 5. 354 

Table 3 Measurement sensors and protocol in an office building in Jiangjin District, Chongqing. 355 

 356 

Figure 5 Locations of temperature, heat flux, and roof reflectance sensors in the office building. 357 

 358 

4. Results and discussion 359 

Temperatures, heat flows, and energy uses were measured for a year in three side-by-side 360 

and similar rooms in a Chongqing office building. An analysis was performed to estimate the 361 

temperature reduction and thermal performance of representative summer and winter days. 362 

Furthermore, a comprehensive analysis of seasonal and annual temperature reductions, energy 363 

savings and emissions reductions are conducted. Additionally, comparative analysis of thermal 364 

performance after natural aging and peak-hour power demand reduction is also discussed. Finally, 365 

the influence of evaporation on the energy savings of sedum-tray garden roof is confirmed. 366 

4.1. Representative summer and winter days  367 

The dates of 22 September 2014 and 17 February 2015 were selected as representative sunny 368 

days in summer and winter, respectively. The maximum and minimum air temperatures on 22 Sept. 369 

2014 were similar to the average maximum and minimum values on Sept 22nd between 2006 and 370 

2014, and likewise for 17 Feb 2015 [57]. On the summer day, the outside air temperature ranged 371 
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from 21.3 C (at 05:30 LST) to 36.8 C (15:10 LST); the global horizontal solar irradiance peaked at 372 

0.774 KW/m2 (12:45 LST), with 12.3 h from sunrise to sunset (Figure 6a). On the winter day, the 373 

outside air temperature ranged from 23.3 °C (at 16:45 LST) to 13.1 °C (07:50 LST); the global 374 

horizontal solar irradiance peaked at 0.65 kW/m2 (13:05 LST), with 11.3 h from sunrise to sunset 375 

(Figure 6b). 376 

 377 

Figure 6 Outside air temperature and global horizontal solar irradiance on (a) a sunny summer day 378 

(22 September 2014) and (b) a sunny winter day (12 2015). 379 

 380 

4.2. Temperature reduction and thermal performance of the roofs 381 

 382 

Figure 7 Roof top and roof bottom temperatures, roof top heat fluxes, indoor air temperatures, and 383 

daily cumulative AC energy consumption and temperature on (a–e) the summer day and (f–j) the 384 

winter day. 385 

 386 

Table 4 Roof top and bottom temperatures and peak heat fluxes of rooms on the summer and winter 387 

days. 388 

After correction for the heat flow through the interior walls, both sedum-tray garden roofs and 389 

white roofs demonstrated that they could lower the roof top and bottom temperatures and roof top 390 

heat flux, which could reduce air conditioning energy consumption in the summer, but increase 391 

energy consumption for heating in the winter. The heat flow of the white roof was from the outside 392 

to the interior in both summer and winter, but the heat flow of the sedum-tray garden roof was the 393 

opposite. The black and white roof tops were both exposed to the sunlight and atmosphere, with a 394 

wide range of temperatures, while the sedum-tray garden roof top was covered by plant modules 395 

and experienced more moderate temperature changes.  396 

On the summer day, the roof top temperature and roof bottom temperature of room B reached 397 

their maxima at 14:30 and 18:40 LST, respectively; in room C, the corresponding maxima were 398 

attained 20 and 25 min later, respectively; in room A, the corresponding maxima were attained 10 399 
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and 17 min after those for room B , respectively (Figure 7a, b). The maximum indoor air temperature 400 

in the room with the sedum-tray garden roof was 26 °C, which was 0.2–1.2 °C less than those of the 401 

rooms with white or black roofs (Figure 7d). Because the air conditioners in all three rooms were 402 

turned on, we attribute this difference in indoor air temperature to the thermostat performance, rather 403 

than to roof solar heat gain. Long-wave radiation resulted in the temperature descending in the white 404 

and black roof topped rooms on the summer night. The added insulation increased the heat 405 

resistance of the sedum-tray garden roof top; hence, room A’s roof top and bottom temperatures 406 

were lower than those of other two rooms at night. Moreover, the reductions in the white roof’s top 407 

and bottom temperatures were greater than those of the black roof because of high emissivity. 408 

Normalized by roof area, the air conditioners in rooms C and A consumed 181.2 Wh/m2 and 181.1 409 

Wh/m2 less electricity, respectively, than that in room B, both for a daily savings of approximately 410 

45.6 % (Figure 7e). Therefore, the white and sedum-tray garden roofs had the same effect upon 411 

energy savings in the summer. 412 

On the winter day, the roof top and bottom temperatures of room B reached their maxima at 413 

14:40 and 18:00 LST, respectively; in room C, the corresponding maxima were attained 20 min later, 414 

and 10 min earlier, while in room A, the corresponding maxima were both attained 15 min earlier 415 

(Figure 7f, g). The maximal indoor air temperature in room A was 30 °C, which was slightly higher 416 

than those of rooms B and C, and the temperature reduction of the black roof after 12:00 was greater 417 

than that of the white roof, which experienced a rise in its indoor air temperature (Figure 7i). The roof 418 

bottom temperature showed a wave vibration pattern because the hot air from the air-conditioning 419 

(heating) unit’s intermittent operation affected the temperature sensor in real time (Figure 7i). Plants 420 

withering and severe weather resulted in the roof bottom and indoor air temperatures of room A 421 

being mostly lower than those of other two rooms. Normalized by roof area, the air conditioners in 422 

room C and room A consumed approximately 57.5 Wh/m2·day and 87.9 Wh/m2·day more electricity 423 

than that in room B, for a daily savings of approximately −26.8 % and −17.5 %, respectively (Figure 424 

7j). This result demonstrates that both the sedum-tray garden roofs and the white roofs had negative 425 

effects on the insulation of the top floor rooms, with the sedum-tray garden roof being worse. 426 
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4.3. Seasonal and annual temperature reductions, energy savings, and emissions reductions 427 

Figure 8 presents the daily maximum and mean roof top, roof bottom, and indoor air 428 

temperatures. After being corrected for interior heat transfer, the seasonal mean reductions (black− 429 

garden) in the roof top, roof bottom, and indoor temperatures during the cooling season were 430 

approximately 14.8 °C, 8.7 °C, and 3.2 °C, respectively, and were roughly 1.8 times those of the 431 

white roof. During the heating season, the seasonal mean reduction (black−garden) in the roof top 432 

temperature was 3.5 °C greater than that of the white roof, but the roof bottom and indoor 433 

temperature reductions were approximately 1.4 °C and 1.2 °C, roughly half those of the white roof, 434 

meaning that the thermal performance of the room with the sedum-tray garden roof was better than 435 

that of the room with the white roof. Based on the above theoretical analysis, together with Eqs. (10), 436 

(11), (12), and (13), the seasonal and annual energy savings, corrected for the heat flow through the 437 

interior walls, and the emission reductions due to the white roof and sedum-tray garden roof are 438 

evaluated as follows. 439 

 440 

Figure 8 Daily indoor air maximum and mean temperatures: (a) roof top, (b) roof bottom, and (c) 441 

indoor air. 442 

 443 

Figure 9 Daily energy savings per unit of conditioned roof area during the heating season (a) and 444 

cooling season (b). 445 

Figure 9 shows the daily energy savings per unit conditioned roof area of the white and sedum-446 

tray garden roofs during the cooling and heating seasons. The seasonal cooling energy savings for 447 

the white and sedum-tray garden roofs were 4.8 kWh/m2 and 5.7 kWh/m2, respectively. The seasonal 448 

heating energy consumption of room A (sedum-tray garden roof) and room C (white roof) were 3.2 449 

kWh/m2 and 0.9 kWh/m2 greater, respectively, than that of room B (black roof). Similarly, Su Bin [58] 450 

presented a study in Guangzhou showing that the power demand of rooms tested with green and 451 

cool roofs increased by 0.040 kWh/m2∙d and 0.020 kWh/m2∙d, respectively, in the winter. Although 452 

both the white and sedum-tray garden roofs did not save energy during the winter, their annual 453 

energy savings were 3.9 kWh/m2 and 2.5 kWh/m2, respectively. 454 
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The seasonal (cooling and heating seasons) and annual mean values of energy consumption, 455 

energy cost savings, and emissions reductions (black−white and black−garden) are detailed in Table 456 

5. 457 

Table 5 Seasonal and annual mean values of energy savings and emission reduction. 458 

 459 
4.4. Comparative analysis of thermal performance after natural aging 460 

Days with meteorological conditions similar to the original test days were selected (2014-7-17 461 

to 19 and 2015-7-17 to 19) in 2014 and 2015 to investigate the thermal performance of the white 462 

and sedum-tray garden roofs after one year of natural aging. Figure 10 shows the outdoor solar 463 

irradiation and air temperature on these days. In 2014, the mean outdoor air temperature was 464 

30.7 °C, and the mean daily solar insolation was 23.6 MJ/m2·d; in 2015, the mean outdoor air 465 

temperature was 31.7 °C, and the mean daily solar insolation was 22.6 MJ/m2·d. In Sept. 2014 and 466 

Sept. 2015, the albedo of the white roof was measured using a TBQ-8 reflectance sensor, which is 467 

set on the open space of roofs and installed 1.5 m high from roofs, yielding values of 0.82 and 0.58, 468 

respectively, representing a 28.7 % decrease in one year. TBQ-8 reflectance sensor is composed 469 

of two solar reflectance sensors, one measures the total solar radiation and the other measures the 470 

solar reflectance reflected by roof, the albedo is the ratio of the reflected solar radiation to the total 471 

solar radiation. The data was measured in each room 24 hours a day over the course of the 12 472 

months between September 2014 and September 2015 on three roofs, with the data being recorded 473 

every five minutes. 474 

  475 
Figure 10 Outdoor solar irradiation and air temperature. 476 

 477 

Figure 11 Temperature distributions of roofs (a, b); and indoor air temperature (c, d). 478 

 479 

Table 6 Roof top and bottom temperature reductions in 2014 and 2015. 480 
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The indoor and outdoor temperature distributions of the three rooms are presented in Figure 481 

11; the roof top and bottom temperatures during the conditioned hours and the indoor air temperature 482 

during the unconditioned hours were affected positively relative to the outdoor meteorological 483 

parameters. As illustrated in Figure 11, the roof bottom temperatures of the black roof in 2014 and 484 

2015 reached their maxima at 19:15 LST and 19:10 LST, respectively; in room A, the corresponding 485 

maxima were attained 600 min later, on both July days, while the corresponding maxima in the room 486 

with white roof were attained 15 min later in 2014 and just 5 min later in 2015, as compared with 487 

room B. Table 6 shows the roof top and bottom temperature reductions before and after natural 488 

aging; the maximum and mean temperature reduction of the white roof top and bottom in 2015 were 489 

12.0 °C and 5.2 °C and in 2014 were 5.2°C and 3.3°C, respectively. During the unconditioned hours 490 

(18:00 to 08:00 the next day), indoor mean air temperature quantity comes from temperature 491 

difference between black – garden were 2.5 °C and 2.7 °C on both July days, while those between 492 

black – white were 2.7 °C in 2014 and just 0.4 °C in 2015. Thus, the cooling performance of the 493 

white roof was significantly reduced after one year of natural aging. 494 

 495 

Figure 12 Heat fluxes through the exterior surfaces of the roofs. 496 

The heat fluxes through the exterior surfaces of the roofs at the time of installation and one 497 

year later are shown in Figure 12. In 2014, the peak heat flux of the black roof was 232 W/m2, more 498 

than that of the white roof by 99 W/m2; the heat flux of the black roof was 229.3 W/m2 in 2015, just 499 

11.7 W/m2 less than the prior year. The heat flux of the sedum-tray garden roof was between −24 500 

and −37 W/m2 in 2014 and 2015, respectively.  501 

Figure 11 illustrates that the meteorological conditions were similar on these two July days, 502 

but the black−white temperature difference was much smaller and the delay time was reduced by 503 

10 min after a year of natural aging. Figure 11 demonstrates that the maximal white roof top 504 

temperature greatly increased, by 10 °C, from 2014 to 2015; thus, the cooling effect of the white 505 

roof, which was due to its reflectance, generally weakened after natural aging, causing the coated 506 

surface temperature to increase, and, consequently, the heat transmittance to become greater. After 507 

the year of natural aging, the white roof had become soiled and lost much of its solar reflectance. 508 



22 

 

This could result from (a) heavily polluted air; (b) poor performance of the white coating (some white 509 

coatings soil much more easily than others, depending on their chemistry); and/or (c) poor drainage 510 

from the roof (water ponding promotes soiling). By contrast, the insulation performance of the sedum-511 

tray garden roof was maintained due to the life cycle of the plants. 512 

 4.5. Peak-hour power demand reduction 513 

 514 

Figure 13 Daily values of the peak-hour cooling power demand reduction. 515 

Figure 13 shows the daily values of the peak-hour cooling power demand reduction, calculated on 516 

each weekday during the cooling season (May through September) as the mean value of the roof 517 

power demand reduction from 08:00 to 12:00 and 19:00 to 23:00, LST. Based on the seasonal mean 518 

demand reduction, as calculated by Eqs. (10), (11), and (12), the peak-hour cooling power demand 519 

reduction of room C (4.60 W/m2) was much greater than that calculated for room A (0.78 W/m2). The 520 

peak-hour power demand reduction is an indicator for demand-side management. The result 521 

indicated the white roof performed better in enhancing the efficiency of the electrical terminal, 522 

reducing or postponing capital investments for units, and improving the quality of electrical services. 523 

4.6. The influence of evaporation on the energy savings of the sedum-tray garden roof 524 

 525 

Figure 14 Energy savings ratio  and evaporation of the sedum-tray garden roof. 526 

Heat loss through evaporation is the primary mechanism by which a sedum-tray garden roof 527 

cools and reduces heat flux [25] [26] [27]. Water evaporation was analyzed through the real-time 528 

monitoring of the weight changes of the planting modules; how the trend of the energy saving ratio 529 

varied with the water evaporation of the planting modules during air-conditioning is presented in 530 

Figure 14. As illustrated, the maximum and minimum evaporation rates were 2.01 kg/m3 and −1.13 531 

kg/m3, which occurred on August 12 and July 13, and the energy savings ratio also reached its 532 

maximum and minimum concurrently. The energy saving ratio of the sedum-tray garden roof 533 

correlated with the tendency of evaporation; therefore, evaporation has a significant effect on the 534 

energy savings of the sedum-tray garden roof. 535 
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4.7. Summing up 536 

In summer, both the white and sedum-tray garden roof decreased the heat gain through the 537 

roof, and reduced the cooling loads of rooms A and C during the air-conditioned hours and the indoor 538 

air temperature during the unconditioned hours. The roof top maximum temperatures of the sedum-539 

tray garden and white roofs were 33.9 °C and 7.5 °C lower, respectively, than the black roof; the roof 540 

bottom maximum temperatures were 12.4 °C and 2.8 °C lower, respectively; the heat flows were 541 

319 W/m2 and 26 W/m2 less, respectively; and, the indoor air temperatures were 2.1 °C and 0.4 °C 542 

lower, respectively, during the unconditioned hours. After correction for heat flow through the interior 543 

walls, the daily cooling energy consumptions of the rooms with the sedum-tray garden and white 544 

roofs were 25.0 % and 20.5 % lower, respectively, than that of the room with the black roof, and the 545 

daily cooling energy savings yielded by the sedum-tray garden roof (0.106 kWh/m2·d) was 21.8 % 546 

greater than that from the white roof (0.087 kWh/m2·d). The sedum-tray garden roof demonstrated 547 

better thermal performance and greater energy savings because the thermal properties of the 548 

sedum-tray garden roof were significantly affected by evaporation, and the change in the energy 549 

savings ratio was positively correlated with evaporation. The maximum evaporation was 1.13 kg/m3 550 

under the strong solar radiation and high temperature, and the corresponding energy savings ratio 551 

reached its maximum, 27.2 %. 552 

Because of the effects of one year of natural aging, the reflectance of the white roof decreased 553 

by 23.6 %, to 0.58, causing its thermal performance to worsen and the power saving ratio to reduce. 554 

After natural aging, the roof top and bottom temperature difference and the maximum and mean 555 

temperature reduction of the white roof top and bottom in 2015 were 12.0 °C, 5.2 °C, 5.2 °C, and 556 

3.3  C lower than in 2014, respectively. Also, the cooling energy consumption in 2014 was 0.033 557 

kWh/m2·d lower than that in 2015. The roof bottom temperature reached its maximum 10 min earlier 558 

in 2015 than in 2014. In contrast, the thermal performance and energy savings of the sedum-tray 559 

garden roof remained consistent between 2014 and 2015. 560 

In winter, both the sedum-tray garden and white roofs have a negative effect on the insulation 561 

performance and energy savings of the building. The roof top maximum temperatures of the sedum-562 

tray garden and white roofs were 14.2 °C and 4.0 °C lower, respectively, than that of the black roof; 563 
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the roof bottom maximum temperatures were 1.7 °C and 1.2 °C lower, respectively, the heat flows 564 

were 152 W/m2 and 16 W/m2
 lower, respectively, and the indoor air temperatures were 0.3 °C and 565 

1.8 °C lower, respectively, during the unconditioned hours. After correction for the heat flow through 566 

the interior walls, the daily cooling energy consumption of the rooms with the sedum-tray garden and 567 

white roofs were −9.9 % and −2.7 % lower, respectively, than that of the room with the black roof, 568 

and the daily cooling energy savings yielded by the sedum-tray garden roof (0.046 kW·h/m2·d) was 569 

2.8 times greater than that of the white roof (0.012 kW·h/m2·d). The results for the white roof in winter 570 

agree with other researchers, but there are also deviations regarding the sedum-tray garden roof. 571 

Wang N [55] identified that a green roof could save energy depending on the plant canopy and 572 

thickness of the soil layer, while Santamouris concluded that a green roof had no influence during 573 

winter [33], and similar results were found of Jim C [60]. Except for the roof bottom temperature, the 574 

temperatures of the sedum-tray garden roof were lower than those of the white roof in both winter 575 

and summer. This indicates that the thermal performance of the sedum-tray garden roof is poor in 576 

winter. There are three possible reasons for this observation: 1) when air flowed through the weep 577 

holes, and water remained below the planting module, the natural convective heat transfers and 578 

rapid evaporation takes the heat away; 2) Chongqing experiences high amounts of precipitation in 579 

the winter and the air temperature is very low, so the insulation of the soil substrate is limited 580 

compared with the evaporative heat loss; and/or 3) Sedum lineare was hardy and resistant to the 581 

low temperatures such that the influence of plant transpiration exceeded the insulation supplied by 582 

the soil. 583 

5. Conclusions 584 

This paper summarized a study of sedum-tray garden roofs and white roofs that analyzed the 585 

heat transfer mechanisms of the roof tops and referenced the IPMVP for calculating and comparing 586 

the thermal performance and energy savings of three kinds of roofs on an office building under both 587 

air-conditioned and unconditioned conditions in Chongqing. The annual temperature distributions of 588 

the roofs, and the heat flux, evaporation, and indoor air temperature of the tested rooms were 589 

presented. Finally, based on the analyses of the annual energy savings, cost savings, annual carbon 590 

emission savings, and peak power demand reduction, the following conclusions can be drawn: 591 
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1) In summer (June–September), both the sedum-tray garden roof and white roofs could 592 

decrease the heat gain from the outside and lower the roof top and bottom temperatures and indoor 593 

air temperature, and reduce the cooling energy consumption. Compared with room B (black roof), 594 

room A (sedum-tray garden roof) and room C (white roof) reduced the air-conditioning daily energy 595 

consumption by 0.106 kWh/m2·d and 0.087 kWh/m2·d, respectively, for average power saving rates 596 

of 25.0 % and 20.5 %, respectively. On days with similar meteorological conditions during the 2014 597 

and 2015 cooling seasons, the black−white temperature difference was much smaller and the delay 598 

time was reduced by 10 min after a year. The white roof had a reflectance of 0.58 after the year of 599 

natural aging, which worsened the insulation performance and reduced the power savings by 0.033 600 

kWh/m2·d; in contrast, the thermal performance and energy savings of the sedum-tray garden roof 601 

maintained because of the life cycle of the plants. 602 

2) In winter (November–February), both the sedum-tray garden roofs and white roofs 603 

increased the heat loss from the interior, and lowered the roof top and bottom temperature and the 604 

indoor air temperature, thus increasing the heating energy consumption. Compared to room B, 605 

rooms A and C reduced the air conditioning power consumption by 0.046 kWh/m2·d and 0.012 606 

kWh/m2·d, respectively, and the power saving rate by −9.9 % and −2.7 %, respectively. 607 

3) Relative to the black roof, the white roof reduced the annual power consumption by 3.9 608 

kWh/m2, which was 1.6 times the energy savings for the sedum-tray garden roof; the annual energy 609 

saving ratio of the white roof was 7.99 %, and ratio of the white roof savings to the sedum-tray garden 610 

roof savings was 1.02. The annual conditioning-related energy cost savings of the white and sedum-611 

tray garden roofs were 3.3 RMB/m2 and 3.1 RMB/m2, respectively. The annual CO2, NOx, and SO2 612 

emission reductions of the white roof were 3.2 kg/m2, 17.9 g/m2, and 43.3 g/m2, respectively, while 613 

those of the sedum-tray garden roof were 2.1 kg/m2, 11.4 g/m2, and 27.8 g/m2, respectively. The 614 

peak-hour cooling power demand reduction of the white roof (1.06 W/m2) was approximately 20 % 615 

higher than that of the sedum-tray garden roof (0.88 W/m2). These findings imply that the energy 616 

savings due to the white roof were greater than those for the sedum-tray garden roof. 617 

Summer rainfall patterns, climate, energy prices, and storm water management fees and 618 

policies may greatly influence the results of the comparison. The observed energy savings were not 619 
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all as expected, but it has become common for people to not opt for dark roofs that increase the 620 

building’s energy costs, summer urban heat islands, and global warming. 621 
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Figure captions 755 

Figure 1    Mean outside air temperature and global solar irradiance through the year. 756 

Figure 2    Monthly average relative humidity and wind speed throughout the year. 757 

Figure 3    (a) a three-dimensional model of the office building;  758 

(b) view of the black roof, white roof, and sedum-tray garden roof. 759 

Figure 4    (a) sedum-tray module; and (b) installation of sensors. 760 

Figure 5:   Figure 5 Locations of temperature, heat flux, and roof reflectance sensors in the office building. 761 

Figure 6  Outside air temperature and global horizontal solar irradiance on (a) a sunny summer day (22 762 

September 2014) and (b) a sunny winter day (12 January 2015). 763 

Figure 7   Roof top and roof bottom temperatures, roof top heat fluxes, indoor air temperatures, and daily 764 

cumulative AC energy consumption and temperature on (a–e) the summer day and (f–j) the winter 765 

day. 766 

Figure 8    Daily indoor air maximum and mean temperatures: (a) roof top, (b) roof bottom, and (c) indoor air. 767 

Figure 9   Daily energy savings per unit of conditioned roof area during the heating season (a) and cooling 768 

season (b). 769 

Figure 10    Outdoor solar irradiation and air temperature. 770 

Figure 11    Figure 11 Temperature distributions of roofs (a, b); and indoor air temperature (c, d). 771 

Figure 12    Heat fluxes through the exterior surfaces of the roofs. 772 

Figure 13    Daily values of the peak-hour cooling power demand reduction. 773 

Figure 14    Daily values of peak-hour cooling power demand reduction. 774 



32 

 

 775 

Figure 1 Mean outside air temperature and global solar irradiance through the year. 776 
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 779 

Figure 2 Monthly average relative humidity and wind speed throughout the year. 780 

  781 



34 
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 783 

Figure 3 (a) three - dimensional model of the office building; (b) field for black roof, white roof and 784 

containered planting roof. 785 
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 787 

Figure 4 (a) sedum-tray module; and (b) installation of sensors 788 
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 790 

Figure 5 Locations of temperature, heat flux, and roof reflectance sensors in the office building. 791 
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 793 

Figure 6 Outside air temperature and global horizontal solar irradiance on (a) a sunny summer day (22 794 

September 2014) and (b) a sunny winter day (12 January 2015).  795 
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  799 

 800 

Figure 7 Roof top and roof bottom temperatures, roof top heat fluxes, indoor air temperatures, and daily 801 

cumulative AC energy consumption and temperature on (a–e) the summer day and (f–j) the winter day12. 802 

 

1 “Garden” in the charts refers to the sedum-tray garden roof, the same below. 

2  “Black−White” and “Black−Garden” are the differences in temperature, heat flux, and energy 

consumption between the black roof and white roof and between the black roof and sedum-tray garden roof, 

respectively. 
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 806 

Figure 8 Daily indoor air maximum and mean temperatures: (a) roof top, (b) roof bottom, and (c) indoor air. 807 
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 808 

Figure 9 Daily energy savings per unit of conditioned roof area during the heating season (a) and cooling 809 
season (b). 810 
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 814 

Figure 10 Outdoor solar irradiation and air temperature. 815 
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 818 

Figure 11 Temperature distributions of roofs (a, b); and indoor air temperature (c, d).  819 
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 821 

Figure 12 Heat fluxes through the exterior surfaces of the roofs. 822 
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 823 

Figure 13 Daily values of peak-hour cooling power demand reduction. 824 
  825 
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 826 

 827 

Figure 14 Energy savings ratio and evaporation of the sedum-tray garden roof 3. 828 

  829 

 

3 Energy savings ratio is the energy savings of room A/power consumption of room B 
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Table captions 830 

Table 1     Description of sedum lineare planting modules. 831 

Table 2     Characteristics of the test rooms in the office building in the Jiangjin District of Chongqing. 832 

Table 3     Measurement sensors and protocol in an office building in Jiangjin District, Chongqing. 833 

Table 4     Roof top and bottom temperatures and peak heat fluxes of rooms on the summer and winter days. 834 

Table 5     Seasonal and annual mean values of energy savings and emission reduction. 835 

Table 6     Roof top and bottom temperature reductions in 2014 and 2015. 836 

  837 



50 

 

Table 1 Description of Sedum lineare planting modules. 838 

Item Index 

Planting modules Sedum + nutritional soil + filter + storage / hydrophobic 
sand + EPS boards 

Geometric Size (mm) 500 x 500 x 90 
Planting load (kg/m2) 35 

Thermal resistance (m2·K/W) 0.857 
Regenerative coefficient4 (W/m2·K) 1.6 

Sedum growth height (mm) 80–100 
Sedum growth diameter (mm) 60–80 

Planting density (plants per module) 20–25 
Leaf area index 2.9 

Life expectancy (y) 10–20 
  839 

 

4 Regenerative coefficient is the ability of the materials to store heat. 
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Table 2 Characteristics of the test rooms in the office building in the Jiangjin District of Chongqing. 840 

Roof type Room A Room B Room C 
Sedum-tray garden roof Black roof White roof 

Initial solar 
reflectance 0.36 0.21 0.84 

Installation date 2014-08-15 same same 

Products and 
manufacturers 

Guangdong Shunguan Waterproof 
Reinforcement Engineering Co., 

LTD. SGK Sedum lineare planting 
module 

Chongqing 
Gongmei Science 
and Technology 

Development Co., 
LTD. AL-6001 
Black Roofing 

System 

Chongqing Aluo 
Science and 
Technology 

Development Co., 
LTD. AL-8001 Cool 

Roofing System 

Coating material 

Sedum + 1.5-4.0 cm depth of 
nutritional soil + filter + 2 cm 

storage / hydrophobic sand + EPS 
board 

Polyurethane 
waterproof coating 

Ceramic glaze with 
titanium silicon 

cenosphere filler 

Roof structure 
(layers, top to 

bottom) 

5 mm waterproofing membrane + 
20 mm cement mortar + 45 mm 

EPS+ 20-mm cement mortar + 20 
mm slag cement + 120 mm 

reinforced concrete+20 mm cement 
mortar 

Same Same 

Roof assembly 
thermal resistance 

 (m2 K/W) 
1.02 Same Same 

Floor & roof area 
(m2) 21.4 Same Same 

Ceiling height (m) 3.3 Same Same 
Doors (number, total 

area [m2]) 1, 1.89 Same Same 

Windows (number, 
orientation, window-
wall ratio, total area 

[m2]) 

2, south, 0.17, 2 Same Same 

Cooling/heating 
equipment 

Split-system direct expansion air-
source heat pump Same Same 

Make and model Media KFR-35GW/DY-IA(R3) Same Same 
COP 3.29(Summer)/3.67(Winter) Same Same 

Capacity (W) 3,520(Summer)/4,000(Winter) Same Same 
Set point (°C) 26(Summer)/20(Winter) Same Same 

Schedule 08:00–18:00 (Workdays) Same Same 
  841 
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Table 3 Measurement sensors and protocol in an office building in Jiangjin District, Chongqing. 842 

Measurement Details 
Roof top, bottom, soil, ceiling, and interior wall temperature 

Sensor type Temperature (resistance temperature detector) 
Sensor make Pt100 

Sensor range/accuracy −40–150 °C / 0.2 °C 

Protocol 

Sensor totally encased in the roof top and painted 
the same color as the corresponding roof coating; 
sensor attached to the surface of the roof bottom, 

soil, ceiling, and interior wall and affixed using 
aluminum foil 

Roof top heat flux 
Sensor type Heat flux sensor 

Sensor model HFP01-10 
Sensor range/accuracy −2,000–2,000 W/m2/ < 5 % 

Protocol 

Sensor totally encased in the roof top, layered with 
thermally conductive paste and cement plaster, and 
painted the same color as the corresponding roof 

coating 
Soil moisture 

Sensor type Soil moisture sensor 
Sensor model TDR-3 

Sensor range/accuracy 0–100 %(m3/ m3) / ± 2 % 
Protocol Sensor totally embedded in the soil 

Single module weight 
Sensor type Soil moisture sensor 

Sensor model TDR-3 
Sensor range/accuracy 0–100 %(m3/ m3) / ± 2 % 

Protocol Sensor placed in the middle of the module 
Outside air, indoor air temperature 

Sensor type Weighting sensor 
Sensor model CZ-1 

Sensor range/accuracy 0–15 kg / 0.5 g 

Protocol Sensor suspended 1.5 m above floor; 
measurement logged internally every 5 minutes 

Global horizontal, diffuse solar irradiance 
Sensor type Solar radiation recorder 

Sensor model PC-2 
Sensor range / accuracy 280–3000nm / 0.5 % 

Protocol Sensor suspended 1.5 m above floor and installed 
horizontally on roof top 

Cooling + heating electricity use 
Sensor type Power meter 

Sensor model PowerBay-T8005 
Sensor range/accuracy 0–2.2 kW/0.1 kW 

Reflectance of roofs 
Sensor type Reflectance sensor 

Sensor model TDR-3 
Spectral range 300–3000 nm 

Sensor range/ accuracy 0–100 % (m3 / m3) / ± 2 % (m3 / m3) 

Protocol 
Sensor is covered with 2 layers of quartz glass 

and suspended 1.5 m above and installed 
horizontally on roof top 

  843 
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Table 4 Roof top and bottom temperatures and peak heat fluxes of rooms on the summer and winter days. 844 

Roof type 
Room A Room B Room C 

Sedum-tray 
garden roof Black roof White roof 

Summer day 
Maximum roof top temperature (°C) 47.1 58.2 42.2 
Maximum bottom temperature (°C) 27.7 39.0 32.1 

Peak heat flux (W/m2) −27.0 236.0 183.0 

Winter day 
Maximum roof top temperature (°C) 28.7 33.9 30.9 
Maximum bottom temperature (°C) 24.7 26.7 24.5 

Peak heat flux (W/m2) −32.0 109.0 98.0 
  845 
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Table 5 Seasonal and annual mean values of energy savings and emission reduction. 846 

Savings per unit conditioned roof 
area 

Cooling season 
(2014.09; 2015.06 to 

2015.09) 

Heating season 
(2014.11 to 2015.02) Annual 

White 
roof 

Sedum-tray 
garden roof 

White 
roof 

Sedum-tray 
garden roof 

White 
roof 

Sedum-tray 
garden roof 

Daily cooling energy (Wh/m2) 74.5 89.0 — — — — 
Daily heating energy (Wh/m2) — — −11.3 −40.2 — — 

Seasonal or annual energy (kWh/m2) 4.8 5.7 −0.9 −3.2 3.9 2.5 
Seasonal or annual conditioning 

energy cost (RMB/m2) 4.1 4.8 −0.8 −2.7 3.3 2.1 

Seasonal or annual CO2 (kg/m2) 4.0 4.7 −0.7 −2.6 3.2 2.1 
Seasonal or annual NOx (g/m2) 22.0 26.1 −4.1 −14.7 17.9 11.4 
Seasonal or annual SO2 (g/m2) 53.3 63.3 −10.0 −35.5 43.3 27.8 
  847 
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Table 6 Roof top and bottom temperature reductions in 2014 and 2015. 848 

Temperature 
Roof top (°C) Roof bottom (°C) 

Black−white Black−garden Black−white Black−garden 

2014 Max 17.6 16.4 6.6 10.3 
Mean 7.6 8.5 4.2 5.5 

2015 Max 5.6 17.9 1.3 11.7 
Mean 2.4 9.5 0.9 7.7 
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