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Trends in Cognitive Sciences
Review

Awake Reactivation of Prior Experiences
Consolidates Memories and Biases Cognition
Arielle Tambini1 and Lila Davachi2,3,*
Highlights
Recent human fMRI studies provide evi-
dence for spontaneous memory-related
reactivation and hippocampal interac-
tions during awake post-encoding time
periods.

Post-encoding awake reactivation is
modulated by factors that influence
memory consolidation, such as salience
and reward, and predicts behavioral
memory integration and the reorganiza-
tion of cortical memory representations.

Reactivation of prior brain states may
bias the way in which new information
is experienced, perceived, and acted
After experiences are encoded into memory, post-encoding reactivation mecha-
nisms have been proposed tomediate long-termmemory stabilization and trans-
formation. Spontaneous reactivation of hippocampal representations, together
with hippocampal–cortical interactions, are leading candidate mechanisms
for promoting systems-level memory strengthening and reorganization. While
the replay of spatial representations has been extensively studied in rodents,
here we review recent fMRI work that provides evidence for spontaneous
reactivation of nonspatial, episodic event representations in the human hippo-
campus and cortex, as well as for experience-dependent alterations in
systems-level hippocampal connectivity. We focus on reactivation during
awake post-encoding periods, relationships between reactivation and subse-
quent behavior, how reactivation is modulated by factors that influence consoli-
dation, and the implications of persistent reactivation for biasing ongoing
perception and cognition.
upon.

Several open questions remain, such as
how awake reactivation is related to on-
going conscious experience, which
awake brain states may be optimal for
supporting reactivation and memory re-
tention, and how reactivation during
sleep andwakemay interact to ultimately
support memory consolidation and
retention.
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Reactivation as a Memory Consolidation Mechanism
The hippocampus and surrounding medial temporal lobe (MTL) structures were first discovered
to be instrumental in episodic memory after the groundbreaking report of severe anterograde am-
nesia in patient H.M. [1]. Although bilateral resection of these structures prevented H.M. from
encoding new information into long-term memory, H.M. demonstrated intact memory for events
and knowledge obtained during his distant past, providing the intriguing clue that remote mem-
ories are stored in cortical networks outside the MTL [1–3]. Subsequent studies conducted
across multiple species confirmed that the hippocampus is pivotal in the acquisition of novel ep-
isodic memories, while revealing that, over time, these memory representations undergo a pro-
cess of transformation and reorganization both within the hippocampus and across
hippocampal–cortical networks [4–6]. Although there is debate about whether detailed episodic
memories ever become fully supported by extra-hippocampal networks [7–9], it is clear that the
brain networks that are active and support memory retrieval do indeed change over time and be-
come increasingly distributed across hippocampal–cortical networks.

How do memory representations become distributed across hippocampal–cortical networks
over time? The current leading mechanism thought to support memory trace distribution involves
repeated memory reactivation. Early computational models suggest that each experience is ini-
tially encoded in an ensemble of hippocampal neurons, and this ensemble is then repeatedly
reactivated during post-encoding time periods [10,11]. Post-encoding hippocampal reactivation
is ideally suited to strengthening the coherence of hippocampal ‘event’ ensembles, but it has also
been hypothesized that reactivation extends into cortical circuits and can gradually strengthen the
representation of ‘event’ patterns in and across cortical networks [6,10–12].

The first empirical evidence for post-encoding hippocampal reactivation came from recordings of
neural ensembles in rodents during sleep. This early work demonstrated that the hippocampus ex-
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hibits spontaneous reactivation of neural ensembles that were active during recent experiences
[13–15]. Specifically, sequences of hippocampal place cells that were activated as an animal tra-
versed a spatial trajectory were later spontaneously reactivated or ‘replayed’ in roughly the same
temporal order as experienced during navigational behavior, with later work revealing hippocampal
replay in the reverse temporal order [15–18]. This form of reactivation (i.e., sequential replay) primar-
ily occurs during brief (100–200 ms) sharp-wave ripple (SWR) events in the hippocampal local field
potential, both during post-encoding sleep [non-rapid-eye-movement, (NREM), sleep] and post-
encoding awake brain states [15–20]. Awake SWRs and reactivation typically occur during pauses
in ongoing behavior or quiescent periods [14–17,21], and this ‘offline’ (not task-related) reactivation
is the current leadingmechanism thought to promote both the strengtheningmemory event ensem-
bles and integrating these events across hippocampal–cortical networks [22–25].

It is important to highlight that several features of ‘replay’ make it an attractive mechanism for
supporting memory consolidation. Replay events during SWRs are temporally compressed com-
pared with active behavior, such that cell-pair co-firing during SWRs falls within a time-window that
is conducive to inducing synaptic plasticity [26,27], which would then further strengthen the con-
nections between the coactivated neurons [28,29]. Moreover, hippocampal replay is accompanied
by robust hippocampal–cortical interactions [30–34], providing a basis for post-encoding reorgani-
zation of memory representations across hippocampal–cortical networks. Most importantly, sev-
eral studies have demonstrated the functional importance of rodent hippocampal replay/SWR
events by linking their occurrence with later memory [20,35–37], changes in neural representations
over time [38,39], and prior learning or novelty [40–42]. For example, interrupting post-encoding
SWRs impairs learning across days [35,36] and trials [43], and degrades the fidelity of subsequent
hippocampal representations [39,44]. These features make reactivation/SWR events a primary
mechanism underlying the persistence and distribution of memory representations.

Although providing crucial background, work characterizing rodent replay has primarily been lim-
ited to spatial representations in the dorsal hippocampus and to the contributions of SWRs to nav-
igational behavior. Thus, recent work has not only established that post-encoding reactivation
occurs in the human brain but has also expanded the purview by assessing the reactivation of non-
spatial episodic experiences in the hippocampus and extra-hippocampal structures. Whereas pre-
vious reviews have focused on the importance of sleep in memory consolidation [45,46], we review
here current evidence that event representations are spontaneously reactivated during awake
time-periods, and this reactivation evidence, as well as systems-level hippocampal–cortical inter-
actions, is related to memory strengthening and integration into cortical networks.

Post-encoding Awake Reactivation in Humans
There are challenges to translating rodent hippocampal replay into humans. First and foremost is
the difference between the fine-scale spatial and temporal resolution information present in neuro-
physiological recordings compared with the coarser information provided by neuroimaging
methods such as fMRI. However, it is important to highlight that reactivation should manifest at
the level of the blood-oxygen-level-dependent (BOLD) fMRI signal for several reasons. First, despite
the short duration of SWR events (on the order of 50 ms in primates [47,48]), it has been verified
that SWRs are accompanied by robust and brain-wide modulations of the BOLD signal in ma-
caques (including but not limited to the hippocampus) [47]. As expected, the temporal profile of
BOLD signal changes associatedwith single SWR events resembles a canonical hemodynamic re-
sponse lasting several seconds [47]. Furthermore, even though individual replay events are brief,
they have been shown to be associated with changes in the correlation structure of cell-pair co-
firing, even when correlations are measured over long timescales such as minutes [49–51]. Thus,
temporally extended measures of the neural correlation structure are sensitive to underlying
Trends in Cognitive Sciences, October 2019, Vol. 23, No. 10 877
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reactivation. These findings highlight the plausibility of measuring reactivation in humans because it
should manifest in both detectable changes in the BOLD signal as well as in the correlation struc-
ture or patterns of functional connectivity measured over timescales of minutes.

In the past few years two primary fMRI approaches have been used to measure spontaneous
memory reactivation during awake periods immediately after learning: the analysis of multivoxel
patterns to probe the reactivation of specific event patterns locally in a single brain region
(Figure 1A,B), and inter-regional correlations in the BOLD signal over time (i.e., functional connec-
tivity) to measure systems-level hippocampal interactions (Figure 1C). From a methodological
standpoint, the clearest evidence for reactivation can be found when data are acquired during
both a pre-encoding ‘baseline’ time period and a post-encoding time period when memory reac-
tivation is expected to take place. This design provides face validity because it contrasts evidence
for event reactivation when it is expected to occur (the post-encoding period) with the pre-
experience baseline period, ensuring that it is related to encoding per se, and is not an intrinsic
property of the system or patterns being studied [52,53].

Multivoxel pattern analysis (MVPA), a powerful and widely used tool for characterizing neural rep-
resentations [54], is well suited to studying event reactivation using fMRI. First, template patterns
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Figure 1. Approaches for Measuring Post-encoding Reactivation using fMRI. (A) Data are acquired during a
baseline time period (cream box), an encoding experience or learning task (blue box), and a post-experience time period
when reactivation is expected to take place (cream box). To examine the reactivation of multivoxel representations o
patterns, template patterns are defined from the encoding data (center column), which can be activation patterns (A) o
functional connectivity patterns (B). Template patterns are then compared with the baseline and post-experience data
and their similarity is measured. Reactivation evidence is operationalized as greater levels of similarity between encoding
representations and the post-encoding data, as compared with the similarity between encoding patterns and the baseline
data. (C) Systems-level interactions can be examined by measuring the level of correlation, or functional connectivity, o
the blood oxygen level-dependent (BOLD) signal between regions of interest (e.g., hippocampus and cortical regions). Expe-
rience-dependent changes in functional connectivity, from pre- to post-experience time periods, serve as an index of sys-
tems-level interactions that may be related to memory consolidation.
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that characterize particular encoding experiences are defined. These patterns can be represen-
tations of specific stimuli or events (Figure 1A), or connectivity patterns corresponding to partic-
ular encoding contexts or tasks (Figure 1B). Reactivation is typically operationalized as greater
levels of similarity between multivoxel patterns measured during an experience (encoding time
period) and those present during the post-encoding time period (compared with the preceding
baseline time period) (Figure 1A,B). Using this approach, reactivation evidence (i.e., increased
similarity of encoding patterns with post-encoding versus baseline periods) has been revealed
during awake rest in the human hippocampus [55–58] and visual cortical regions [59]. Specifi-
cally, several recent studies have examined the reactivation of encoding representations at a va-
riety of ‘levels’: activation patterns corresponding to category-level reinstatement [56,59,60],
events experienced over multiple trials [58,61,62], and even individual trials or episodes [63].
These studies typically estimate the dynamic, timepoint-by-timepoint similarity of the data during
rest with template encoding patterns, which queries reactivation evidence in a time-varying fash-
ion. Other work has shown that more temporally extensive brain ‘states’, as defined by the con-
nectivity patterns across voxels (multivoxel correlation structure) measured over specific tasks or
time periods (e.g., minutes), are also reinstated in future time-windows [55,57]. Importantly, var-
iance in the extent of post-encoding reactivation in hippocampus [55–57] and cortex [61,63] has
been demonstrated to be related to later memory for reactivated representations. Thus, reactiva-
tion is not simply obligatory or epiphenomenal but, instead, is related to the ongoing strengthen-
ing of learning experiences as evidenced in later behavioral outcomes. Whether such fMRI
reactivation evidence reflects underlying replay of sequential information is discussed in Box 1,
and the timescale of reactivation is considered in Box 2.
Box 1. ‘Replay’ versus ‘Reactivation’ – What Is the Difference?

Early work in rodents coined the term ‘replay’ – referring to neural activity elicited during awake behavior that is re-
expressed during subsequent sleep. This was initially demonstrated at the level of firing rates of individual place cells, such
that placing a rat in a specific spatial location elevated the firing rate of neurons with place fields in that location during sub-
sequent sleep [13]. With the ability to simultaneously record groups of neurons, later work examined finer grained patterns
of coactivity across cell pairs, or the neural correlation structure. This revealed that coactivation patterns expressed during
active behavior were evident in the spontaneous correlation structure following navigational behavior [14,49,50] ([55,57] for
adoption of this approach to multivoxel fMRI patterns). As the number of simultaneously recorded neurons expanded, it
was possible to record extended sequences of hippocampal neurons that represent specific spatial trajectories and probe
high-fidelity ‘replay’more directly. Initial work used template matching to examine the re-expression of temporally ordered
sequences [15,142]. Modern approaches use decoding to take advantage of the entire ensemble of recorded hippocam-
pal activity, ‘replaying’ or providing a time-varying estimate of the animal's decoded spatial location during SWR events
[18,131].

Following the history of advances in the rodent literature, the term ‘replay’ is now typically used to refer to high-fidelity
decoding of prior experience based on the activation of sequences of neurons. By contrast, the term ‘reactivation’ refers
to evidence of nonsequential neural reinstatement or the re-expression of activity patterns [23]. According to these defini-
tions, the majority of the fMRI evidence reviewed here does not provide evidence for sequential ‘replay’ directly, given that
sequentially ordered reinstatement has not been probed until very recently [58]. This work demonstrated that multivoxel
hippocampal patterns representing sequentially experienced events (or ‘task-states’) tended to be re-expressed in a tem-
porally clustered and ordered fashion during post-learning rest, consistent with the notion that recently experienced se-
quences were reactivated within a short time-window. Although this study did not query the notion of sequences
beyond the expression of pairwise patterns (i.e., evidence for reactivation of triplets or higher-order sequences), it provides
an important step towards probing the limits of the temporal structure that can be observed with BOLD fMRI. Moreover,
the broader evidence reviewed here is consistent with the notion of post-encoding reactivation and ‘replay’, especially
when reactivation evidence is compared between a post-encoding and pre-encoding time period (see Box 2 for further
consideration of this issue). The use of multiple measurements in future work will likely be fruitful for understanding the po-
tential similarity and differences in ‘replay’-like phenomena across species and measurement approaches. For example,
which measures of reactivation or systems-level interactions are most consistently predictive of memory retention across
species? In addition to commonly relating neuronal phenomenon to behavior, other homologous approaches hold prom-
ise for understanding reactivation and its contribution to behavior across species, such as examining SWR events
[48,143,144], parallel uses of targeted memory reactivation across species [34,145,146], and relationships to subsequent
cognition beyond memory retention per se.

Trends in Cognitiv
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Box 2. What Is the Temporal Nature of Memory Reactivation in Humans?

Much of the human fMRI work reviewed here was motivated by observations of temporally compressed hippocampal re-
play observed during brief (100–200 ms) SWR events in rodents. In the section 'Post-encoding Awake Reactivation in
Humans' we outline the rationale that, if SWR reactivation events occur during typical post-encoding rest scans [48], in
principle, they should manifest in detectable and systematic changes in BOLD fMRI. Although the reviewed evidence is
indeed consistent with, and could theoretically be driven by, brief reactivation events during SWRs, these fMRI observa-
tions could also be driven by neural events and mechanisms distinct from SWRs. For example, in contrast to temporally
compressed SWR replay (~10× behavioral speeds), there is evidence that hippocampal sequences are reactivated at be-
havioral timescales (without temporal compression) in rapid-eye-movement (REM) sleep during theta-like states [142]. In
addition, the general persistence or ‘reverberation’ of correlated neural firing patterns has been described in hippocampus
and cortical regions [50,51,147]; such reverberation could be driven by discrete reactivation events as well as by Hebbian
mechanisms that modify the neural correlation structure in a temporally broad manner [14,50,147].

Considering that there may be reactivation mechanisms at different timescales, which mechanisms drive the evidence for
post-encoding reactivation seen in human fMRI? It is difficult to answer this question at present because fMRI approaches
are typically agnostic to the underlying timescale of putative reactivation. On the surface, functional connectivity or corre-
lations of the BOLD signal over extended timescales (see Figure 1B,C in main text) are the most temporally coarse, and
thus could theoretically be driven by multiple mechanisms or underlying timescales of reactivation. As reviewed above,
analysis of individual timepoints provides time-varying reactivation evidence, speaking against ‘reverberation’ or
Hebbian-like mechanisms being the only drivers of fMRI measures. However, it is important to note that reactivation within
single fMRI timepoints may possibly reflect multiple reactivation events that occur in close temporal succession, as well as
the fidelity or strength of reactivated patterns. In principle, it is possible that BOLD fMRI in combination with clever exper-
imental paradigms could be used to distinguish between reactivation unfolding at compressed versus slower (behavioral)
speeds: temporally compressed reactivation occurring within SWRs should result in brief, highly clustered reactivation ev-
idence, whereas reactivation unfolding at behavioral speeds should result in extended reactivation evidence across longer
durations. Future studies that combine fMRI reactivation measures with faster timescale information, either in a simulta-
neous fashion [electroencephalography, (EEG)] [148] or in separate, parallel measurements [magnetoencephalography,
(MEG), intracranial recordings] should help to shed light on the underlying temporal nature of human memory reactivation.

Trends in Cognitive Sciences

880 Trends in Cognitive Sciences, October 2019, Vol. 23, No. 10
A second index of post-encoding reactivation may be evident in inter-regional systems-level
functional connectivity, specifically between hippocampus and cortical regions. The notion is
that brain regions that are initially engaged in a coordinated fashion during encoding should
continue to exhibit elevated correlated activity in the post-encoding time periods (relative to a
pre-encoding time period) if indeed these systems-level interactions promote some forms of
memory consolidation. Thus, pre- to post-encoding functional connectivity changes provide an
index of experience-dependent changes, or network-level plasticity, in systems-level interactions
(Figure 1C). In an early demonstration of this, we queried hippocampal interactions with the lateral
occipital (LO) cortex, a region that was engaged during the encoding of visual stimulus pairs. We
found that hippocampal–LO functional connectivity increased from baseline to post-encoding
rest that followed associative encoding of visual stimulus pairs [64]. Importantly, the increase in
hippocampal–cortical connectivity from pre- to post-encoding rest was predictive of later mem-
ory for the recently encoded associations [64]. Several recent studies have similarly examined hip-
pocampal interactions with category-selective visual cortical regions, showing evidence for
experience-dependent, pre- to post-encoding, hippocampal–cortical functional connectivity
changes that are related to later memory for recently encoded stimuli [59,65]. These findings
are consistent with the hypothesis that hippocampal event representations of a recent experience
are replayed locally in the hippocampus, and that this is associated with coordinated interactions
across hippocampal–cortical networks. Importantly, some studies have additionally shown that
trait-level connectivity in the same networks before encoding are not in and of themselves predic-
tive of later memory for the upcoming experiences [64], further highlighting the selectivity of post-
encoding time periods to the reactivation of preceding experiences to promote their strengthen-
ing and accessibility. Future work that causally manipulates awake post-encoding reactivation
and connectivity will help to further understand how these mechanisms directly support subse-
quent behavior (Box 3).



Box 3. Causal Tests of Post-encoding Reactivation

The work reviewed in the main text provides correlational evidence that signatures of persistent reactivation of encoding
brain activity (reactivation and systems-level interactions), measured immediately after learning, are related to later memory
and changes in memory over time. Although establishing these correlational links is crucial, this approach leaves open the
question of whether post-encoding reactivation plays a truly unique role, or whether post-encoding activity simply reflects
a carry-over of encoding-related activity, which is in turn predictive of later memory. This issue has been partly addressed
by several papers which have shown that the extent of post-encoding reactivation makes a unique statistical contribution
to subsequent memory, above and beyond contributions or activity measured during learning [56,65].

However, causal manipulations provide the most parsimonious way to directly test the contribution of post-encoding re-
activation to subsequent behavior. One popular approach, termed targeted memory reactivation (TMR), seeks to induce
reactivation via re-exposure of sensory cues previously associated with encoded information [145,149]. Although most
work has used TMR to externally cue reactivation during sleep, we recently found that cued exposure during an immediate
post-encoding awake time period enhanced the stability of associatedmemory representations [101]. Crucially, the awake
cueing was masked such that participants were mostly unaware of the content of the cue. Thus, awake cued reactivation
can increase memory (see also [150]), in addition to benefits of TMR during sleep [151]. In the future, it will be important to
better understand the conditions that bias whether awake cueing strengthens, updates, and/or weakens reactivated
memories, and what distinguishes the induction of reactivation versus reconsolidation? [152].

In addition to applying external cues to attempt to induce reactivation, another important step is to perform neural manipu-
lations that may more directly influence awake post-encoding reactivation. This aim has been successful in rodent studies,
where SWRs aremonitored and real-timemicrostimulation or optogenetic silencing can be performed to interfere withor tem-
porally extend reactivation events [35,39,116]. In humans, a variety of approaches have been used tomodulate endogenous
oscillations during sleep [153–155], which are in turn coupled with SWRs [144], and examine their influence on memory
retention and integration [156]. However, little work has used stimulation to more directly manipulate awake post-encoding
reactivation immediately after learning to test its importance for later memory. It will be important to fill this gap in future work,
for example by using stimulation approaches which have successfully modulated other phases of memory [157–159].

Trends in Cognitive Sciences
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In addition to hippocampal–cortical interactions, which are thought to foster systems-level mem-
ory reorganization, recent work has expanded these findings and identified interactions between
the dopaminergic ventral tegmental area (VTA) and MTL structures during immediate post-
encoding periods, based on the importance of dopamine and reward in facilitating long-lasting
memory retention [66,67]. These studies found evidence that experience-dependent changes
in VTA–hippocampal and VTA–perirhinal cortex functional connectivity are related to latermemory
for recently encoded associations [56,65,68] and items [68]. Together, this work indicates that
post-encoding systems-level interactions involving dopaminergic structures are also important
for facilitating memory consolidation and retention.

Reactivation: Functional Relevance beyond Strengthening Memory
The work summarized above provides foundational evidence in humans for post-encoding reac-
tivation of event representations that facilitates the strengthening of those memory representa-
tions. Having established that it is indeed possible to measure post-encoding reactivation,
researchers have begun to explore some of the contexts that modulate the extent of reactivation,
determine what gets reactivated, and how reactivation might relate not only to strengthening in-
dividual memories [55,57–59] but also to the integration of newmemories into cortical circuits [60,
61]. In this way, it is fruitful to consider that post-encoding time periodsmay provide the additional
benefit of allowing the memory system to selectively enhance or suppress new event representa-
tions based on several factors, including their value [66,69], affective salience [70], relevance to
future behavior [71], and congruence with prior knowledge [72,73].

Given that memory retention is strongly influenced by the salience of newly learned representa-
tions, it is logical to consider whether post-encoding reactivation is modulated by salience. Re-
cent work has examined how reward, a key factor that enhances memory retention [66,74],
influences awake reactivation. Indeed, it has been shown that representations associated with
greater levels of reward are preferentially reactivated in the hippocampus after encoding [56].
e Sciences, October 2019, Vol. 23, No. 10 881
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Furthermore, experience-dependent changes in hippocampal–cortical [65] and hippocampal–
VTA functional connectivity [56] selectively predict later memory for information associated
with high reward. Recent findings suggest that anterior and posterior hippocampal interactions
with cortical representational regions may preferentially track the consolidation of high- versus
low-value information [65]. Reward is not the only modulator of reactivation. Using similar
methods, recent work has also demonstrated that stimulus categories associated with shock
during fear conditioning are preferentially reactivated during awake rest after conditioning [59].
Another modulator of memory retention, active choice during encoding (versus passive learning),
has also been related to resting post-encoding hippocampal–cortical interactions [75]. Taken
together, this work suggests that the relative salience of experiences biases the content of
immediate post-encoding reactivation and hippocampal interactions (see also related rodent
work [20,76,77]). Beyond value learning, other factors known to bias memory retention, such
as emotional arousal [70,78] and relevance for future behavior [71,79], are also likely to influence
post-encoding memory reactivation.

Post-encoding reactivation and other memory consolidation processes not only serve to
strengthen important experiences in memory, to make those events more accessible later on,
but also may distribute memory representations across hippocampal–cortical networks. This
form of systems-level consolidation is thought to promote the extraction and integration of knowl-
edge acquired across experiences, facilitating generalization and abstraction across memories
[10]. Supporting this notion, recent findings have shown that post-encoding reactivation in ventral
temporal cortex, as well as levels of hippocampal–cortical functional connectivity, relate positively
to memory integration as measured in behavioral assays [60,80]. Moreover, hippocampal–corti-
cal resting connectivity immediately after learning is predictive of the reorganization of cortical
memory representations across shared experiences one week later [81]. On the flip side, other
work has shown that the presence of prior knowledge during new learning is also associated
with increased post-encoding hippocampal–cortical connectivity [73,82], consistent with a role
of prior experience in modulating post-encoding systems-level interactions. Together, this work
provides compelling evidence that post-encoding reactivation not only serves to strengthen re-
cent experiences in memory, but also reflects the selection of relevant experiences and the pro-
motion of memory integration both behaviorally and via the emergence of integrated, or
schematic, cortical representations [81]. Notably, reactivation which facilitates integration occurs
in an apparent spontaneous manner during post-encoding rest; it is currently unclear whether
resting reactivation is similar to or distinct from incidental or intentional reactivation during the
learning of overlapping events [83,84].

‘Optimal’ Brain States for Memory Reactivation and Consolidation?
The work reviewed here has identified signatures of post-encoding reactivation primarily
during periods of rest, in which participants are either instructed to rest with their eyes closed
[55,64,65] or open [56,60]. Such 'offline' brain states, or time periods in which the brain is not ex-
plicitly processing incoming stimuli from the external environment, are thought to promote dy-
namics that favor a state of memory consolidation and reactivation (permissible to SWRs and
hippocampal–cortical interactions), in contrast to a state of external engagement which may be
beneficial for encoding new information into memory [85,86]. In rodents, SWRs and reactivation
occur predominantly during 'offline' brain states, during both wake and NREM sleep, with awake
SWRs typically occurring during quiescence or pauses in ongoing behavior [16,17,19].

Consistent with the notion that rest periods may represent a ‘brain state’ that fosters reactivation
and consolidation, recent behavioral studies have demonstrated that periods of rest after
encoding lead to significantly better memory retention. In this work, participants are given an
882 Trends in Cognitive Sciences, October 2019, Vol. 23, No. 10
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opportunity to rest versus performing another task after encoding, such as ‘spot the difference’
[87–90] or the game 'snood' [91]. Rest periods, as compared with these other tasks, have
been found to benefit memory retention in both younger [89–92] and older adults ([87,88,93],
but see [94,95]). Interestingly, higher memory retention over the course of a distractor task was
associated with increased reports of internally oriented cognition (thinking about the past, future
planning, meditating, etc.) and reduced task-oriented attention [91]. Although neural reactivation
was not examined in these studies, they are consistent with the idea that reactivation is more likely
to occur during rest or internally oriented brain states, compared with externally oriented tasks.

Nonetheless, it is also clear that mechanisms underlying memory consolidation do not only
occur during periods of rest or disengagement from the external environment: memory-related
post-encoding reactivation and systems-level interactions have also been reported while
participants perform math [63,68] or other tasks [96]. In addition, no behavioral benefit of rest
on memory retention has been reported when rest is compared with a working memory task
[94,95,97]. Thus, the current literature indicates that, although an opportunity to rest may pro-
mote memory retention, putative consolidation mechanisms are not abolished by all externally
oriented tasks. Furthermore, cues that promote autobiographical retrieval or future planning,
during an otherwise unfilled delay period, may block the benefit of rest on memory [92,95]. This
impairment in memory retention may be due to an engagement of the hippocampus in retrieval
during the post-encoding time period [98] – which might, hypothetically, prevent the hippocam-
pus from spontaneously reactivating information in the service of consolidation. Much work is
needed to systematically manipulate behavioral demands during post-encoding time periods to
help to clarify which awake brain states may be optimal for supporting memory reactivation
and consolidation.

In addition to examining the conditions that may facilitate spontaneous reactivation, it may be
fruitful to also consider when manipulations that aim to externally induce reactivation (targeted
memory reactivation, TMR) most strongly modulate memory retention. Although most prior
work found no reliable influence of TMR on memory when it takes place during an attention-
demanding working-memory task [99,100], we recently found that masked memory cueing dur-
ing a monotonous task designed to promote a ‘rest-like’ state did reliably enhance memory sta-
bility [101]. Intriguingly, in that study we found that the extent of externally oriented attention, as
measured via response time to an external task immediately before memory cueing, was nega-
tively related to the influence of TMR on subsequent memory. This suggests a possible compet-
itive relationship between externally oriented attention and internal memory reactivation. Together
with the work reviewed above, these findings are consistent with the notion that a more internally
oriented brain state, perhaps associated with lower levels of acetylcholine [85,102], may be opti-
mal for memory cueing and awake consolidation.

Reactivation of Prior Brain States Biases Ongoing Cognition
When specific memories or more global brain states are spontaneously reactivated after learning,
how do they interact with ongoing perception and cognition? As discussed in Box 4, it seems un-
likely that reactivation during post-encoding time-periods is strongly driven by intentional or ex-
plicit rehearsal of recently encoded information. However, stimulus-related mentation does
spontaneously occur during post-encoding rest periods [89,90], and this was initially described
a century ago as the tendency of recently encountered information to ‘perseverate in conscious-
ness’ [103]. It is possible, but currently unknown, whether dynamic changes in reactivation evi-
dence during rest are linked with stimulus-related mentation or other spontaneous cognitive
processes [104]. This possibility could be examined in future work using experience-sampling ap-
proaches [105], potentially with the aid of real-time fMRI analysis to detect reactivation events.
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Box 4. Is Resting Reactivation Driven by Rehearsal?

When studying memory reactivation during awake post-encoding time periods, it is important to consider whether reac-
tivation may be driven by, or related to, intentional rehearsal of recently learned information. To reduce potential relation-
ships between rehearsal and post-encoding reactivation, prior fMRI studies have sought to minimize rehearsal
demands. This has been accomplished by using incidental rather than intentional encoding tasks (i.e., participants are
not aware that their memory for stimuli would be later be tested) [55,64] or by using intentional encoding paradigms,
but performing memory testing before the post-encoding time period of interest [65]. Post-scan questionnaires can be
used to assess whether participants intentionally rehearse recently encoded information during post-encoding periods
or expect subsequent memory testing [64,89,90]. When stimulus-related thoughts do emerge during post-encoding rest,
they tend to be spontaneous in nature rather than in the form of intentional rehearsal [89,90], making it unlikely that post-
encoding reactivation is driven by explicit rehearsal. The frequency of stimulus-related mentation during post-encoding
rest varies across studies, from occurring infrequently [64] to in approximately half of the participants [89,90].

Several lines of behavioral evidence further suggest that intentional rehearsal is not linked with awake resting reactivation.
Specifically, the behavioral benefit of rest on memory retention does not differ between stimuli that are amenable versus
difficult to rehearse [88], is present when participants who report intentional rehearsal during rest are excluded [89,90],
and is not related to the extent of spontaneous stimulus-related thoughts during rest [91]. In addition, a recent study
showed that the benefit of targeted memory reactivation on later memory is actually inversely related to explicit knowledge
of which items were cued, suggesting that the benefit of awake cued reactivation is not driven by intentional cue-triggered
retrieval processes [101]. Together, this work suggests that awake post-encoding reactivation is not clearly linked with, or
driven by, intentional or willful retrieval from memory. Nonetheless, future work that directly contrasts conditions in which
instructed rehearsal is manipulated may help to shed light on this issue.
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Beyond spontaneous reactivation leading to consciousness of the past, it is also conceivable that
brain states associated with one context may persist or reactivate in other contexts, and thus bias
the way that new information is processed, attended to, and perceived (Figure 2). In other words,
spontaneous post-encoding reactivation can shape the way in which we experience and interact
with the world. As a step towards addressing this possibility, in recent work we found that pat-
terns of activation and functional connectivity associated with prior emotional experiences spon-
taneously re-emerged during the subsequent encoding of distinct neutral stimuli, tens of minutes
later [106] (Figure 2B). The persistence of these emotional ‘brain state’ signatures resulted in en-
hanced recollection of neutral stimuli encountered after emotional learning, a classic signature of
the influence of emotional arousal on memory [107]. This bias towards enhanced recollection
faded over the course of minutes during subsequent neutral encoding (Figure 2B). Thus, expo-
sure to emotional stimuli biased the way in which new and distinctive information was subse-
quently encoded into memory and later remembered. Relatedly, other recent studies have
found that incidental reminder cues can reactivate neural representations of prior contexts and
thus bias subsequent decision making [108–110]. In future work, it will be interesting to more
broadly examine how memory reactivation influences the way in which new information is expe-
rienced, processed, and acted upon.

Reactivation during SWR events has also been considered as a potential substrate for retrieval
which may in turn contribute to ongoing processing, such as planning and decision making
[23,111–113]. For example, interrupting ‘online’ SWR events has been reported to increase de-
liberation time at upcoming decision points [114], and, when decision-making involves retrieving
or maintaining information over short timescales, silencing ‘online’ SWRs impairs performance
[115], whereas prolonging them improves memory [116]. Furthermore, the content and coordi-
nated activity expressed during awake SWR events prospectively encodes immediate future nav-
igational behavior ([117–119], also [120]). Thus, sequences expressed during SWRs seem to be
related to both aspects of future planning and decision making, as well as memory strengthening
or consolidation [35,36]. Recent work suggests that awake ‘online’ (supporting immediate be-
havior) versus ‘offline’ (supporting memory consolidation) SWRs could be separated based on
the time elapsed from prior task engagement [121], perhaps reflecting a shift from an externally
to an internally oriented brain state. It is thus possible that the fMRI evidence for post-encoding
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Figure 2. Persistent Brain States May Bias Future Cognition. (A) Depiction of a brain state, or activity pattern (shown in
blue), associated with the encoding of neutral stimuli into memory. (B) Schematic depiction of the persistence of a brain state
associated with emotional arousal (exposure to emotional stimuli, shown in red) into a subsequent time period in which
neutral stimuli are encountered. The activity pattern during subsequent neutral encoding is a mixture of the two brain
states or activity patterns, suggesting that cognitive processing may be biased by the persistence of prior brain states
(C) Example of biased memory formation for neutral stimuli encountered after emotional arousal (data adapted from
Tambini et al. [106]). Emotional stimuli typically show greater levels of recollection during later memory testing (as opposed
to being endorsed as familiar). This is operationalized here as the proportion of stimuli labeled as 'remember' (associated
with the recollection of specific details) minus the proportion labeled as 'know' (familiarity without detailed recollection
during memory testing. A bias towards recollection is apparent for emotional stimuli (indicated by high levels of the red
bars), and persists into and fades over time during neutral encoding, highlighting how memory for neutral information can
be biased by previous experience and the reactivation of prior brain states.
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reactivation reviewed above, typically measured over extended time periods, may reflect
both reactivations supporting memory consolidation and ongoing cognitive processing. We
also speculate that the reported memory-related signatures at stimulus offset [122,123] may
more closely resemble ‘online’ SWR-like activity. The use of techniques with higher temporal
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resolution [48,124] in future work may help to disambiguate human reactivation that supports
‘online’ cognition versus consolidation.

How Is Awake Consolidation Related to Consolidation during Sleep?
Although much work has focused on the role of sleep in memory consolidation (often referred to
as ‘sleep-dependent’ consolidation), the work reviewed here highlights the role of consolidation
mechanisms during awake time periods immediately after learning. Considering post-encoding
mechanisms across both sleep and awake time periods naturally leads to many questions for fu-
ture research, such as whether and how awake post-encoding reactivation interacts with consol-
idation during subsequent sleep, and whether and how consolidationmechanisms across awake
and sleep brain states differ (both neurally and in their contribution to subsequent behavior). While
most studies separately examine one type of post-encoding brain state (awake or sleep), studies
examining consolidation across both time periods are necessary to gain a comprehensive and
holistic understanding of the similarities and differences between mechanisms of consolidation
during these distinct brain states.

Recent work has begun to provide a foothold into these questions. First, several studies have
linked immediate post-encoding reactivation [57,59,65,68,81,101] or rest periods [87–89] with
memory tested after one or more nights of sleep, indicating that at least some signatures of
awake reactivation predict later memory after intervening sleep. An interesting study found that
functional connectivity immediately after motor learning predicted subsequent overnight memory
retention, suggesting a synergistic relationship between awake resting reactivation and consoli-
dation during later sleep [125]. It is thus possible to speculate that memory strengthening via
awake reactivation has the capacity to bias or ‘tag’ information for consolidation during subse-
quent sleep, which could influence the content of sleep reactivation and also interact with other
mechanisms such as synaptic downscaling [25,126]. There is also evidence that SWR events
may be homeostatically regulated [127], which could have implications for understanding poten-
tial interactions across brain states: could reactivation or consolidation during sleep compensate
for a lack of awake reactivation?

In future work, it will also be interesting to examine whether and how consolidation during
awake rest and sleep functionally differ, both mechanistically and in terms of their contribution
to behavior. To the extent that similar brain or hippocampal ‘states’ that promote reactivation
and consolidation [85,86] are present across wakeful periods and NREM sleep, somemechanis-
tic similarities are likely to be present; however, it has also been proposed that distinct pathways
may underlie hippocampal–cortical communication across these states [128]. It is also clear that
NREM is fundamentally distinct from awake rest because it is dominated by specific neurophys-
iological activity (slow-wave activity and spindle events). Intriguingly, recent work indicates that
power in the slow oscillatory frequency range during awake post-encoding rest is predictive of
later memory [91], suggesting that at least some consolidation-related oscillatory signatures
may not be specific to sleep. Considering their contribution to behavior, separate literatures
have implicated both awake and sleep consolidation mechanisms to later memory. Observations
of higher fidelity reactivation during wake SWR events (versus sleep) [129–131] suggest that
awake consolidation may be most important for memory strengthening and online behavior,
whereas NREM sleepmay preferentially support the emergence of integrative and schematic rep-
resentations [128,132]. For example, in separate human studies, awake rest periods promote ac-
curate and detailed memory [133], whereas sleep may be optimal for memory extraction and
generalization [134,135], perhaps suggesting distinct functional profiles. However, combined,
within-study measures and comparisons of reactivation across brain states, as well as their rela-
tionships with behavior, will be helpful in evaluating their functional differences.
886 Trends in Cognitive Sciences, October 2019, Vol. 23, No. 10



Outstanding Questions
How is hippocampal reactivation
related to dynamic changes in whole-
brain network interactions? Is memory
consolidation associated with specific
large-scale network configurations, or
with general signatures of large-scale
functional connectivity? Does the hip-
pocampus act as a ‘hub’ during post-
encoding consolidation periods?

Is hippocampal reactivation, hippocampal–
cortical interaction, and/or cortical
reactivation most important for memory
consolidation (i.e., is predictive of subse-
quent behavior andmemory transforma-
tions over time)?

How do reactivation and consolidation
mechanisms across wake and sleep
mechanistically and functionally differ?

How do reactivation and consolidation
mechanisms interact between awake
and sleep brain states? Are they
independent or does awake reactivation
bias the content of what becomes
reactivated during sleep?

Are there optimal (awake) brain states
for spontaneous reactivation and

Trends in Cognitive Sciences
Concluding Remarks
In recent years, human neuroimaging studies across multiple laboratories have revealed key evi-
dence for the occurrence of memory consolidation mechanisms during awake periods after
encoding, including memory-related multivoxel pattern reactivation and systems-level interactions
(functional connectivity). These findings highlight the role of spontaneous, ‘offline’ mechanisms in
supporting memory strengthening during wakefulness. This work importantly extends related find-
ings in rodents by demonstrating reactivation of event representations beyond the spatial domain,
including visual and conceptual representations of individual items [62], associations [58,61,63],
stimulus categories [56,59,65], and tasks [55,57]. Most importantly, this work also provides
many essential examples of links between reactivation evidence and features of future behavior,
highlighting its functional importance. It is also important to consider that methods such as fMRI
can be advantageous because they provide broad coverage of activity across the entire brain.
This permits the inquiry of reactivation across multiple brain regions (the hippocampus, cortical re-
gions, and other structures of interest), systems-level functional interactions between a priori sets of
brain regions, and the exploration of interactions across large-scale whole-brain networks [136].

Beyond being predictive of memory for recent experiences, signatures of post-encoding consol-
idation also track the preferential retention of salient information, predict transformations of mem-
ory representations across hippocampal networks over time, and may bias the way in which new
information is encountered and processed. Foundational evidence for these mechanisms,
reviewed here, provides a new window into examining spontaneous memory-related processes
in humans and opens up numerous exciting questions for future research (see Outstanding
Questions). Although this review has focused on hippocampal mechanisms in the context of ep-
isodic memory, similar awake post-encoding mechanisms likely support multiple domains of
learning and memory [137–141].
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