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Abstract:
Random Forest (RF) is a widely used classifier to show a good performance of 
hyperspectral data classification. However, such performance could be improved by 
increasing the diversity that characterizes the ensemble architecture. In this paper, we 
propose a novel ensemble approach, namely rotation random forest via kernel principal 
component analysis (RoRF-KPCA). In particular, the original feature space is first randomly 
split into several subsets, and KPCA is performed on each subset to extract high order 
statistics. The obtained feature sets are merged and used as input to an RF classifier. 
Finally, the results achieved at each step are fused by a majority vote. Experimental 
analysis is conducted using real hyperspectral remote sensing images to evaluate the 
performance of the proposed method in comparison with RF, rotation forest, support vector 
machines, and RoRF-PCA. The obtained results demonstrate the effectiveness of the 
proposed method.
 ISSN Information:
INSPEC Accession Number: 16773852
DOI: 10.1109/JSTARS.2016.2636877
Sponsored by: IEEE Geoscience & Remote Sensing Society
 Funding Agency:

 Contents

    Download PDF

https://ieeexplore.ieee.org/document/5460897
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7805181
http://www.grss-ieee.org/
https://doi.org/10.1109/JSTARS.2016.2636877
https://ieeexplore.ieee.org/document/7805181/media
https://ieeexplore.ieee.org/document/7805181/metrics
https://ieeexplore.ieee.org/document/7805181/keywords
https://ieeexplore.ieee.org/document/7805181/citations
https://ieeexplore.ieee.org/document/7805181/references
https://ieeexplore.ieee.org/document/7805181/figures
https://ieeexplore.ieee.org/document/7805181/authors
https://ieeexplore.ieee.org/document/7805181/?part=1
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Jocelyn%22&searchWithin=%22Last%20Name%22:%22Chanussot%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Peijun%22&searchWithin=%22Last%20Name%22:%22Du%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22J%C3%B3n%20Atli%22&searchWithin=%22Last%20Name%22:%22Benediktsson%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Nicola%22&searchWithin=%22Last%20Name%22:%22Falco%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Junshi%22&searchWithin=%22Last%20Name%22:%22Xia%22&newsearch=true
https://ieeexplore.ieee.org/document/6595156
https://ieeexplore.ieee.org/document/7299279


    Download Citation

 View References

    Email

    Print

    Request Permissions

    Export to Collabratec

    Alerts

SECTION I.

Introduction
Hyperspectral sensors capture images in a few tens or hundreds of narrow 
spectral channels which provide discriminant information for different materials 
in a given scene [1], [2]. The capability of a classifier can be affected when a 
small number of training samples is available on a high number of spectral 
channels, provoking the Hughes phenomenon  [3].

Over the last two decades, researchers have investigated a variety of 
approaches to alleviate the Hughes phenomenon [4]–[7] . Recently, kernel-
based methods, e.g., support vector machine (SVMs), have attracted increasing 
attention due to their encouraging performance in handling high-dimensional 
data [4]– [6]. Melgani and Bruzzone [5] investigated the effectiveness of 
strategies based on ensembles of binary SVMs used to solve multiclass 
problems in hyperspectral data and found that one against one is the most 
effective strategy  [5], [8]. Campus-Valls and Bruzzone  [6] assess the 
performance of several kernel-based classifiers, such as regularized radial basis 
function neural networks (Reg-RBFNN), SVMs, kernel Fisher discriminant, and 
regularized AdaBoost (Reg-AB). Experimental results demonstrated that SVMs 
yield the best results with a much lower computational cost. However, one of 
the main issues of such technique is related to the selection of the kernel 
parameters, which is usually addressed by performing a high computationally 
expensive cross-validation.

Another effective strategy in classifying high-dimensional data is the 
combination of simple classifiers, which is identified as multiple classifier 
systems (MCSs) [9], [10]. In this context, random forest (RF), which has been 
shown to be effective in dealing with high-dimensional datasets, is proposed by 
Breiman  [11]. Ham et al. [12] and Gialson et al. [13]investigated the 
performance of RF in hyperspectral data and multisource remote sensing and 
geographic data. Two tree-based ensemble classification algorithms, AdaBoost 
and RF, were compared regarding classification accuracy, computational time, 
and classification stability, in addressing the classification of ecotopes task by 
analyzing hyperspectral imagery in  [14]. Although both AdaBoost and RF 
attained similar classification results in terms of accuracy, and both 
outperformed a neural network-based classifier, RF was shown to be faster and 
more stable than AdaBoost. Waske et al. [15]investigated the performance of 
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SVMs and RF, comparing them with a maximum likelihood classifier and the 
spectral angle mapper. Although SVMs and RF had shown some diversity in the 
classification results, the global performance is quite similar. The parameter 
selection for RF is less expensive than the ones required by SVMs.

Since then, a considerable amount of literature has been published on remote 
sensing applications, in which RF is exploited in other typology of remote 
sensing data, such as high spatial resolution data  [16] and LiDAR datasets [17]. 
Recently, many extensions of the standard RF algorithm have been suggested in
the following three main strategies:

1. reduction of the features prior the classification via RF;

2. definition of the efficient aggregation strategies in RF; and

3. definition of an ensemble of RFs.

Considering the first strategy, Tuv et al. [18] generated a compact subset of 
nonredundant features for RF. Representative works that follow the second 
strategy are the alternating decision forest [19] and oblique random 
forests [20], [21]. The former method extends RF to any given differentiable loss
function without losing the main characteristics and benefits of the original 
RF [19]. The latter method projects the original data at each node into another 
feature space that calculate the best split [20]. An oblique decision tree 
ensemble in which each decision hyperplane in the internal node of tree was 
calculated by multisurface proximal SVMs in [21]. An example of the third 
strategy is represented by the work in [22], in which a novel ensemble of the RF 
classifier, namely rotation random forest (RoRF), was developed. The main idea 
of this approach is related to the data transformation, which in this case was 
performed via principal component analysis (PCA), applied at node level to 
identify the best split. Such approach was exploited in [23] for hyperspectral 
image classification, obtaining promising results.

PCA aims at finding a representative lower-dimension projection that keeps most
of the variance of the original data. The main theoretical limitation of PCA is the 
assumption of a linear relationship between spectral features, which does not 
reflect the real data behavior [1]. To circumvent this limitation, a nonlinear 
version of PCA, namely Kernel PCA (KPCA), which is capable of capturing part of 
the higher order statistics, thus, extracting nonlinear features, was 
introduced [24] . Fauvel et al. [25] demonstrated the effectiveness of the 
extracted features using KPCA in providing better class separability when 
compared to those obtained via PCA.

Inspired by the idea of RoRF and the aforementioned considerations on KPCA, 
the main contribution of this paper is to propose a novel classification scheme 



based on the RoRF integrated with KPCA, namely RoRF-KPCA. The integration of 
the KPCA will permit the extraction of informative features at the node level, 
providing a more representative subset of features on those extracted by 
exploiting the original algorithm. The effectiveness of the proposed approach is 
assessed concerning accuracy and diversity in the ensemble via experimental 
analysis, which is carried on two real hyperspectral datasets. In the analysis, the
impact of different sizes of the training set and the use of various kernel 
functions are investigated. It should be emphasized that, although RoRF-KPCA 
can be combined with spatial information, i.e., Markov random fields 
(MRFs) [26] and extended multiattribute profiles (EMAPs) [23], we focus on pixel-
wise classifier.
SECTION II.

Background
This section provides an introduction to the background on both RF and KPCA. 
Let us denote ={xi,yi}ni=1 as the training set, where xi∈ℝD is 
a D− dimensional pixel vector, yi=1,…,C is the corresponding class label, C is 
the number of classes and n is the number of training samples.
A. Random Forest (RF)

RF is an ensemble of T̂  decision trees. During the training stage, decision trees 
are independently constructed on a bootstrap training set with randomly chosen
features using two steps bagging techniques [11]. Each decision tree is 
constructed by the following steps:

1. selecting subset training samples from the training set ;
2. randomly selecting Dtry≤D features and consequent identification of the 

best split; and
3. growing of the tree to the maximum depth without pruning.

During the classification stage, a given sample x∗ is classified by going through 
each decision tree until a leaf node is reached. A classification result (the 
decision function h ) is assigned to each leaf node. The class label y∗ is 
determined by taking the class having the most votes.
B. Kernel Principal Component Analysis

KPCA maps the original input space into a high dimensional feature space using 
a kernel trick  [24]. For a given nonlinear mapping, the input data space ℝD can 
be mapped into the feature space 

Φ:ℝD→x⟼Φ(x).(8)(9)

View Source

Given a set of n training samples x1, x2,..., xn in ℝD, the covariance 
operator, Φ, of the feature space  can be constructed by

ΦmΦ=1n∑i=1n(Φ(xi)−mΦ)(Φ(xi)−mΦ)T=1n∑i=1n(Φ(xi)).(10)(11)

View Source
Since each eigenvalue of a positive operator is nonnegative in a Hilbert space, it
follows that all nonzero eigenvalues of Φ are positive. In this way, the 



eigenvector is linearly expressed as β=∑ni=1αiΦ(xi), where, β is the eigenvector
of Φ.
In order to obtain the expansion coefficients, let us denote Q=[Φ(xi),
…,Φ(xn)] and form an M×M Gram matrix, R ̃ =QTQ, whose elements can be 
determined by virtue of kernel tricks

R ̃ =Φ(xi)TΦ(xj)=Φ(xi)⋅Φ(xj)=(xi,xj).(12)

View Source

R ̃  is centralized by R=R̃ −1nR ̃ −R̃ 1n+1nR ̃ 1n, where 1n=(1/n)n×n.
Thus, the orthogonal eigenvectors γ1,…,γn of Rcorresponding to the n largest 
positive eigenvalues, λ1≥λ2≥…≥λn are calculated. The orthogonal 
eigenvectors β1,…,βn corresponding to the n largest positive 
eigenvalues, λ1≥λ2≥…≥λn, are βi=1λi√Qγi,i=1,…,n.
After the projection of the mapped sample Φ(x) onto the eigenvector system β1,
…,βn, we can obtain the KPCA transformed feature vector z=(z1,
…,zn)T by z=PTΦ(x) , where P={β1,…,βn}.
Specifically, the ith KPCA component zi is obtained by

zi=βTiΦ(x)=1λi‾‾√γTiQTΦ(x)=1λi‾‾√γTi[(x1,x),…,(xn,x)],i=1,…,n.(13)

View Source
In this paper, the following three well-known kernels for the implementation of 
KPCA are used and investigated:

1. Linear: (xi,xj)=xi⋅xj

2. Polynomial: (xi,xj)=(xi⋅xj+1)d,d∈ℝ
3. RBF: (xi,xj)=exp(−‖‖xi−xj‖‖22σ2),σ∈ℝ

SECTION III.

Rotation Random Forest-Kernel Principal 
Component Analysis
The success of MCSs depends not only on the choice of the base classifier but 
also on the diversity within the ensemble [9]. The use of different training 
samples and features provides the greatest diversity [9]. To achieve this task, 
rotation-based ensemble architecture was designed considering multiple DTs, 
denote as rotation forest (RoF)  [27].

Although RF is considered as a robust classifier, it shows low diversity, leading to
propagation of errors. Aiming at improving both the diversity and classification 
accuracy of the RF classifiers within the ensemble, we propose a new rotation-
based architecture as an ensemble of RF classifiers coupled with KPCA (RoRF-
KPCA), which is exploited to handle nonlinearity in the hyperspectral data. Since 
rotation-based ensemble and KPCA are both considered powerful techniques in 
different ways, combining them to benefit from the capabilities of both seems 
desirable.

SECTION Algorithm 1



RoRF-KPCA
Training phase

Input: {X,Y}={xi,yi}ni=1: training samples, T: number of classifiers, K: number
of subsets, M: number of features extracted in a subset, L: base classifier. The 
ensemble =∅. �: Feature set
Output: The ensemble 
for i = 1: T do
randomly split the features � into K subsets �ij

for j = 1: K do
form the new training set Xi,j with �ij

randomly select the 75% of the initial training samples to generate X̂ i,j
calculate the kernel matrices by X̂ i,j, Ktraini,j=(X̂ i,j,X̂ i,j)
perform KPCA to transform X̂ i,j with the aim of getting the 
coefficients Pi,j=[β(1)i,j,⋯,βMi,j]
end for

the features extracted will be given by: �newi=[Ktrain⊤i,1Pi,1,⋯,Ktrain⊤i,KPi,K]
train an RF classifier Li using {�newi,Y}
Add the classifier to the current ensemble, =∪Li.
end for

Prediction phase

Input: The ensemble ={Li}Ti. A new sample x∗. Transformation matrix: P.
Output: class label y∗

for i = 1: T do
for j = 1: K do
generate the kernel matrices between X ̂ i,j and x∗, Ktestk=(X ̂ i,j,x∗i,j)
generate the test features of x∗, �testi=[Ktest⊤i,1Pi,1,⋯,Ktest⊤i,kPi,K]
end for

run the RF classifier Li using �testi as input
end for

calculate the confidence x∗ for each class and assign the class label y∗ to the 
class with the largest confidence.
The main train steps are summarized as follows:

1. the original feature space is divided into K disjoint subspaces, each one 
composed of M features;

2. about 75% size of the original training set are randomly selected via 
Bagging technique;



3. KPCA is performed on each K subset to obtain the coefficients and kernel 
matrices for each subspace;

4. the new training data set is formed by concatenating Mextracted features 
in each subset that are achieved by rotating the original training set using
the obtained coefficients and kernel matrices;

5. an RF classifier is trained with the new training dataset; and

6. the process is repeated T times. The final classification result is produced 
by integrating the results obtained by each step via majority voting.

The detailed training and prediction steps are presented in Algorithm  1. The 
reason for selecting 75% size of Xi,j is to avoid obtaining the same coefficients 
when the same features are chosen and hence promote the diversity [27]. 
Diversity in RoRF-KPCA is promoted in two aspects: 1) random selection of 
features; and 2) KPCA data transformation applied to the selected features using
bootstrap sampling technique.
SECTION IV.

Experimental Results and Analysis
A. Hyperspectral Datasets

Two well known public hyperspectral datasets are used to evaluate the 
performance of the proposed method.

1) Indian Pines AVIRIS
The first dataset was captured by Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) over northwestern Indiana in June 1992, with 220 spectral
bands and a spatial resolution of 20 m/pixel. The whole scene (145 × 145) 
consists of 16 classes, ranging in size from 20 to 2468 pixels (seen in Table I).
TABLE I Indian Pines AVIRIS and University of Pavia ROSIS Images: Class Name and Number of 
Reference Samples



2) University of Pavia ROSIS
The second dataset, which was acquired over an university area in the city of 
Pavia, Italy, was collected by the Reflective Optics System Imaging 
Spectrometer (ROSIS) with 115 bands (wavelength range from 430 to 860 nm) 
and a very high spatial resolution of 1.3 m/pixel. It consists of 610 × 340 pixels. 
About 12 noisy bands have been removed, and the remaining 103 bands have 
been used in the classification. The reference data with nine classes of interest 
is composed of 42 776 pixels (seen in Table I ).
B. Experimental Setup

Here, we present the experimental setup used in this paper.

1. Number of classifiers in the ensemble: T=10.
2. Number of features in a subset: M=10 .
3. Base classifier: RF. The number of trees is set to 10 and the number of 

features in a subset is set to the default value (square root of the number 
of the used features).

4. Kernels in KPCA: linear, RBF, and Polynomial kernels. In RBF, σ is 
estimated with the median distance between all used samples. In 
Polynomial, d is set to 2.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4609443/7885612/7805181/xia.t1-2636877-large.gif


For comparison, several classifiers have been used as baseline (ten repetitions 
were done for which a new training set has been randomly generated).

1. Random Forest [11].

2. Rotation Forest [27], [28].

3. SVMs [29]. SVMs with a RBF Kernel is used.

4. RF/SVMs+PCA/KPCA. PCA/KPCA is used as the feature extraction method 
prior to RF/SVMs.

5. RoRF-PCA [23].

For the cases of RF/SVMs+PCA/KPCA, the range of extracted components is from
2 to 30. Only best results are reported.

The performances are evaluated by the overall accuracy (OA), average accuracy
(AA) Kappa coefficient ( κ), average of overall accuracies (AOA) of the individual 
classifiers, and coincident failure diversity (CFD)  [30]

CFD={011−p0∑Ti=1T−iT−1pip0=0p0<1(14)

View Source where pi is the probability of B taking the value iT. B={1,1−1T,
…,0} is defined as a random variable that denotes the proportion of classifiers 
that are incorrect on a randomly selected input pattern. Higher values lead to 
stronger diversity.
C. Experimental Results and Analysis

Tables II and III display the global accuracies (OA, AA, and κ) for both the AVIRIS 
and ROSIS datasets.1 As we expected, the proposed RoRF-KPCA significantly 
outperforms the other methods regarding OA using the McNemar's test with a 
95% confidence interval.. In particular, both RF and SVM offer poorer 
classification results when the AVIRIS image is considered (see Table II). In this 
case, both RF and SVM with PCA/KPCA can increase the classification 
performance. RoRF-PCA performs better than RF, SVM, and RF/SVM+PCA/KPCA. 
In the case of ROSIS image(see Table III), SVM provides better results than RF. 
RoRF-PCA performs better than RF and RoF+PCA/KPCA and provides slightly 
higher classification accuracies than SVM and SVM+PCA. Moreover, we can see 
that the choice of using different kernel functions in the RoRF-KPCA is not critical
in this context, and the approach provides an absolute stability in providing 
classification results very close each other.
TABLE II Classification Accuracies for Indian Pines AVIRIS Using Different Training Set



TABLE III Classification Accuracies for University of Pavia ROSIS Images Using Different Training Set

Tables IV and V report the class-specific accuracies using a fixed training set (20 
samples per class). RoRF-KPCA shows a clear and consistent improvement OA 
with respect to RF of about +17% and +12%, RF+PCA of about +17% and +6%,
RF+KPCA of about +17% and + 7%, SVM of about +17% and +3%, SVM+PCA 
of about +11% and +2%, SVM+KPCA of about +14% and + 11%, RoRF-PCA of 
about +11% and +1% for AVIRIS and ROSIS data, respectively. It can be noticed 
that the proposed approach can achieve better class-specific accuracies on the 
other approaches. In particular, for the classes “Corn-no till,” “Soybeans-no till,” 
“Soybeans-clean till,” and “Hay-windrowed,” the proposed approach increases 
the classification accuracies of at least ten percentage points.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4609443/7885612/7805181/xia.t3-2636877-large.gif
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TABLE IV Indian Pines AVIRIS Image

TABLE V University of Pavia ROSIS Image

The accuracies of member classifiers and diversity within the ensemble are two 
essential components in MCSs. Here, we present OAs, AOAs, and diversities 
in Tables VI and  VII. AOAs and diversities of RoRF-KPCA are significantly better 
than the ones of RF and RoF for AVIRIS image. For ROSIS image, RoRF-KPCA get 
slightly higher values of AOAs than RoF-PCA, although RoRF-KPCA are 
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significantly better RoRF-PCA. The main reason could be related to a higher 
presence of nonlinear data structures in AVIRIS image due to the lower spatial 
resolution, and thus a higher presence of mixtures (i.e., vegetation and soil) and 
more variability (i.e., vegetation with different level of hydric stress) in the 
scene. Hence, the use of KPCA in RoRF can better capture the information, 
leading to high precision classification result.

TABLE VI Indian Pines AVIRIS Image

TABLE VII University of Pavia ROSIS

To investigate the impact of the number of features in a subset (M ) on the 
classification accuracy (see Fig. 1), tests are performed considering different 
values of M (10, 25, 50, and 100 for AVIRIS image, and 10, 25, and 50 for ROSIS 
image). For AVIRIS image, a larger M gain higher OAs of RoRF-PCA. In contrast, 
RoRF-KPCA provides greater accuracy considering fewer features. For ROSIS 
image, when M becomes larger, RoRF-PCA and RoRF-KPCA tends to have worse 
performances. However, for both images, RoRF-KPCA yield the best classification
results for small values of M.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/4609443/7885612/7805181/xia.t7-2636877-large.gif
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Fig. 1.
Sensitivity to the change of number of features in a subset (M ). (a) Indian Pines AVIRIS. (b) University 
of ROSIS.

View All
Furthermore, we analyzed the sensitivity analysis of different bootstrap sizes in 
RoF. When we use a small size, there is insufficient training sample for 
constructing reliable rotation matrix to generate the accurate result but the 
diversity is promoted. When we use the total size, we can get the accurate 
result, but the diversity is reduced. Therefore, we select a moderate size (75%) 
to balance the diversity and accuracy.

Other parameters, such as the number of trees (T̂ ) in RF and number of RFs 
(T ), have a small and nonsignificant effect on the OA. Hence, parameter 
selection is not very critical for the proposed method, which is a significant 
added advantage. In practice, the users might select a small value of M as in our
cases to improve the diversity and the accuracy of member classifier to increase
the classification capability.
D. Discussion

Rotation-based is the effective strategy to construct the ensemble because it 
enhances both the accuracy of the member classifiers and the diversity. The first
rotation-based ensemble is the RoF  [27]. We investigated RoF with PCA, MNF, 
ICA, and LFDA for hyperspectral classification and RoF-PCA obtained the best 
results in [31]. Then, we integrated RoF with local feature extraction and MRFs 
in [26], and rotation-based ELM and RoRF with EMAPs in [23]. SVM was 

https://ieeexplore.ieee.org/document/7805181/all-figures
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investigated in a rotation-based architecture with random projection, to deal 
with limited training set in  [32]. We proposed RoFCS to alleviate the traditional 
RoF that performs data transformation on the training samples of each subset 
in [33].
Although RoF and its improvements achieved remarkable performance, they just
consider the linear data transformation. However, linear relationship between 
spectral features does not reflect the real data behavior. A nonlinear kernel 
version (e.g., KPCA) was introduced to circumvent this limitation. Based on this 
assumption, we aim at improving the performance of RF by using a rotation-
based ensemble, where the KPCA is introduced as the data transformation 
method. Experimental results indicated that the proposed RoRF-KPCA could gain
the better performance than other compared methods. An additional advantage 
is that the selection of the parameter is not critical. The users can select a small 
value of the number of features in a subset (M ) to increase the classification 
performance. In RoF  [26] and RoRF-PCA [23], the optimal value of M depends 
on the datasets. The main limitation of the proposed method is the high 
computation time, due to the high computational complexity of calculating the 
kernel matrices.
SECTION V.

Conclusion
Hyperspectral image classification was addressed by exploiting a rotation 
strategy applied to RF (base classifier) and KPCA (data transformation). Two 
hyperspectral datasets characterized by a different context (urban and 
agricultural areas) were used for validation assessment. The obtained results 
confirmed the high capability of the proposed method, in particular for Indian 
Pine dataset, which is characterized by a low resolution and a high presence of 
mixed classes.

For the proposed approach, parameter tuning is needed, however, different 
kernel functions (linear, RBF, and Polynomial) provide very similar results, 
making this choice not critical in this context. The only parameter that affects 
the performance is the number of features in a subset (M ). In this case, a small 
value of M would be preferable.
In future research, we will utilize semisupervised methods [34]and spatial 
features in our classification process. Furthermore, the optimization to reduce 
the computational burden and classification problems will be investigated.
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