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A B S T R A C T

Early diagnosis of CKD patients at risk for microalbuminuria or macroalbuminuria could facilitate clinical
outcomes and long-term survival. Considering the few and limited efficacy of current biomarkers in early de-
tection, we aim to discover plasma lipids that effectively predict the development of CKD paitents with mi-
croalbuminuria or macroalbuminuria. A total of 380 healthy controls and 1156 patients with CKD stages 3 to 5
were stratified by urine albumin-creatinine ratio as microalbuminuria (30–300mg/g) and macroalbuminuria
(> 300mg/g). Fasting plasma samples were determined by UPLC-HDMS based on lipidomics. Quantitative real-
time polymerase chain reaction, Western blot and immunohistochemical analyses were used to validate the lipid
metabolism-associated pathways. Pathway analysis demonstrated that these lipids were closely associated with
PPARγ, inflammatory mediator regulation of TRP channels and RAS signaling, which were intimately involved
in activated NF-κB and Nrf2 pathways. We further carried out pathway validation and demonstrated that NF-κB
pathway was activated in patients with macroalbuminuria compared with CKD patients with microalbuminuria,
while Nrf2-associated protein expression was downregulated, which was accompanied by the up-regulation of
Wnt/β-catenin signaling pathway. Four lipids including DTA, 5,8-TDA, GGD3 and DHA that showed great po-
tential in the discrimination of CKD patients with microalbuminuria and healthy controls were selected by
logistic regression analysis. Additionally, six lipid species including CDCA, glucosylceramide, GGD2, TTA, DHA
and EDA that contributed to the discrimination of CKD patients with microalbuminuria and macroalbuminuria
were selected by logistic LASSO regression Gangliosides were first identified and might be promising therapeutic
targets for CKD patients with the different degree of albuminuria. Collectively, this study first demonstrates the
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association of plasma inflammation, oxidative stress, Wnt/β-catenin and lipid metabolism in CKD patients with
microalbuminuria and macroalbuminuria.

1. Introduction

Chronic kidney disease (CKD) is an independent risk factor of car-
diovascular diseases [1,2], and CKD patients are more likely to die of
cardiovascular diseases rather than enter dialysis. Albuminuria is one of
the manifestations in renal diseases. Microalbuminuria (urinary al-
bumin excretion between 30 and 300mg/day) is regarded as a typical
hallmark of kidney dysfunction, which often leads to macroalbuminuria
and end-stage renal disease (ESRD) [3]. CKD and heavy glomerular
albuminuria (nephrotic syndrome) result in profound but distinctly
different changes in plasma lipid metabolism and lipid profile [4]. The
dysregulated lipid metabolism are intimately implicated in the pro-
gression of CKD and other complications, including accelerated ather-
osclerosis and cardiovascular diseases, impaired energy metabolism
and diminished exercise capacity [5]. The degree of lipid disorders in
patients with kidney disease is independently determined by the extent
of renal failure and presence and severity of albuminuria [6]. Nephrotic
albuminuria resulted in significant elevation of serum total cholesterol
(TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C),
very low density lipoprotein-cholesterol (VLDL-C) and lipoprotein(a),
as well as significant changes in the composition of lipoproteins in-
cluding TC/TG, free cholesterol/cholesterol ester, and phospholipid/
lipoprotein ratios [4]. The dysfunction of lipid and lipoprotein in
chronic renal failure was primarily caused by the altered expression of
proteins involved in production, transport, remodeling, and clearance
of lipids and lipoproteins [7,8]. Additionally, nephrotic syndrome led to
profound changes in the structure and function of high density lipo-
protein-cholesterol (HDLeC) which were caused by the dysregulation
of proteins involved in the regulation of HDL-C structure and loading
and unloading of its lipid contents [9].

Serum lipid profile in majority of CKD patients without macro-
albuminuria and most patients with ESRD on chronic hemodialysis
were marked by elevated serum TG, VLDL-C, chylomicron remnants,
oxidized lipids and lipoproteins as well as low plasma levels of ApoA1
and HDL-C [4,10]. However, serum TG and LDL-C levels were within or

below the normal limits in most CKD patients without nephrotic pro-
teinuria and ESRD patients on hemodialysis. The LDL-C in this popu-
lation consisted of small-dense particles containing significant amounts
of TG [6]. Finally, due to its impaired clearance, plasma HDL-C level
was elevated in a minority of ESRD patients who exhibited a para-
doxically higher risk of overall and cardiovascular morbidity and
mortality [9].

Inflammation plays a paramount role in the pathogenesis and pro-
gression of CKD, which contributes to the albuminuria in CKD [11,12].
Plasma proteomics has demonstrated that CKD patients with hy-
pertension or type 2 diabetes from microalbuminuria to macro-
albuminuria stages were closely associated with phosphatidylinositol 3-
kinase-Akt-mammalian target of rapamycin, vascular endothelial
growth factor and mitogen-activated protein kinase (MAPK) signaling
pathways, hinting inflammation is a powerful driver of progressive
renal diseases [13]. Additionally, the activation of Wnt signaling
pathway was also involved in the development of CKD patients from
microalbuminuria to macroalbuminuria [13], which was reactivated in
myriad CKD including adriamycin nephropathy, obstructive nephro-
pathy, diabetic nephropathy, chronic allograft nephropathy and poly-
cystic kidney diseases [14].

Although the underlying mechanisms of dysregulated serum lipid
and lipoproteins in the progression of CKD and nephrotic syndrome are
well-known, their effects on the serum lipid metabolites have not been
fully elucidated. A growing body of evidence revealed that sphingo-
myelin was associated with diabetic kidney disease patients with mi-
croalbuminuria or macroalbuminuria and sphingomyelin was re-
cognized as a significant regressor of urinary albumin excretion, which
may be exploited for novel biomarker [15]. In the past few years,
metabolomics including lipidomics has been increasingly used to detect
the dynamic changes of lipid metabolites and identify promising bio-
markers of various diseases [16–19]. Moreover, The most compelling
evidence indicated that dysregulation of lipid metabolism may con-
tributed to the pathogenesis and progression of CKD [20–24]. Among
many analytical platform, ultra performance liquid chromatography-

Table 1
Summary of clinical and demographic baseline characteristics of patients with CKD and healthy controls in this study.

Clinical variables Healthy controls CKD patients with microalbuminuriaa CKD patients with macroalbuminuriaa

Male/female 200/180 248/254 308/346
Age (years) 56.8 (51.2–72.5) 60.5 (50.4–71.8) 59.8 (51.4–74.8)
Diabetes (%) N/A 28.5 29.4
Hypertension (%) N/A 74.5 78.4
SBP (mm Hg) 117.2 (107.4–124.5) 137.7 (104.4–184.2) ⁎⁎ 140.1 (102.5–181.4) ⁎⁎

DBP (mm Hg) 72.8 (61.4–81.4) 79.6 (64.5–95.7) ⁎ 79.8 (62.5–94.1) ⁎

Smoker (%) 12.4 13.4 11.5
BMI (kg/m2) 23.7 (18.1–27.4) 25.1 (20.1–28.4) 24.6 (21.4–27.9)
eGFR (mL/min/1.73m2) 99.5 (85.5–114.4) 36.4 (20.4–48.5)⁎⁎ 18.6 (11.2–32.8)⁎⁎##

Creatinine (mg/dL) 0.7 (0.61–0.9) 2.1 (1.1–2.9)⁎⁎ 2.9 (2.7–5.3)⁎⁎##

BUN (mg/dL) 13.5 (4.9–19.6) 63.2 (35.4–125.6)⁎⁎ 114.5 (69.5–189.7)⁎⁎##

Uric acid (mg/dL) 5.2 (3.5–9.8) 7.2 (5.7–12.5)⁎⁎ 7.0 (5.6–13.9)⁎⁎

Triglyceride (mg/dL) 138.0 (87.6–190.3) 148.7 (87.7–209.8)⁎ 165.2 (115.9–224.1)⁎⁎#

Total cholesterol (mg/dL) 183.6 (139.2–228.2) 197.6 (141.5–253.6)⁎ 219.9 (179.0–274.9)⁎⁎##

LDL-cholesterol (mg/dL) 93.4 (49.4–137.4) 105.7 (52.5–3.94)⁎ 124.1 (71.8–170.6)⁎⁎##

HDL-cholesterol (mg/dL) 49.8 (24.7–76.6) 46.1 (27.4–64.6) 39.1 (25.9–52.2)⁎⁎

Albumin (g/dL) 4.5 (4.0–5.4) 4.2 (4.2–4.8) 4.1 (3.4–5.1)⁎

Urine ACR (mg/g) N/A 163.4 (98.9–207.5) 669.5 (511.8–1157.4) ##

White blood cell (×109/L) 5.9 (4.1–8.1) 9.2 (6.77–11.1)⁎⁎ 9.3 (6.3–11.9)⁎⁎

Hemoglobin (g/dL) 14.2 (13.0–16.6) 11.5 (8.8–13.6)⁎⁎ 9.7 (7.4–11.6)⁎⁎

Data reported as number (%) or median (interquartile range). a Patients were classified based on albuminuria (urine albumin-creatinine ratio) as microalbuminuria
(30–300mg/g) and macroalbuminuria (> 300mg/g). ⁎P < 0.05, ⁎⁎P < 0.01 compared with healthy control group, #P < 0.05, ##P < 0.01 compared with CKD
patients with microalbuminuria. BMI, body mass index; eGFR, estimated glomerular filtration rate (4-variable Modification of Diet in Renal Disease formula); ACR,
albumin-creatinine ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure. N/A, not available.
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high-definition mass spectrometry (UPLC-HDMS) has been increasingly
applied to lipidomics or lipid identification [25–31]. Given the pro-
found impact of microalbuminuria or macroalbuminuria on lipid me-
tabolism, we conducted a population-based cohort study to examine
gene and protein expression on a group of stage 3 to 5 CKD patients
with microalbuminuria and macroalbuminuria by using UPLC-HDMS.
The aim of the current study is to discover specific lipid species that
could stratify CKD patients between microalbuminuria and macro-
albuminuria and provide potential additional biomarkers to predict the
progression of renal dysfunction. Additionally, identified metabolic
pathways that played pivotal roles in aberrant lipid metabolism were
further validated by molecular biology approach.

2. Materials and methods

2.1. Study population

A prospective, case–control study was performed in multiple med-
ical centers in China from January 2013 to December 2017 from the
Shaanxi Traditional Chinese Medicine Hospital, Xi'an No. 4 Hospital
and Baoji Central Hospital. CKD patients aged>18 years old are eli-
gible for the current study. CKD was defined by the criteria of either
kidney injury or declining glomerular filtration rate (GFR) for at least
three months [32]. The urine albumin-creatinine ratio was measured by
dividing the urine albumin to creatinine concentration. Proteinuria
based on albumin-creatinine ratio was defined as normoalbuminuria
(< 30mg/g), microalbuminuria (30–300mg/g) and macroalbuminuria
(> 300mg/g). Patients with current infection, malignancy, pregnancy,
kidney transplant and dialysis are excluded. All patients are maintained
on their regular medication. 380 age-matched healthy controls with no
history of kidney disease were enrolled. The study was conducted in
accordance with the Helsinki declaration and approved by the ethics
committees of the above institutions. Signed informed consents were
obtained from all patients prior to their inclusion in the study.

2.2. Hypertension, diabetes and dyslipidemia definition

CKD patients were stratified as the use of anti-hypertensive treat-
ment (self-reported or information retrieved from the regional phar-
macy database) or systolic/diastolic blood pressure≥ 140/90mmHg.
Diabetes was stratified by historical blood glucose concentrations based
on the criteria of American Diabetes Association, oral hypoglycemic
drug or insulin use. Dyslipidemia was defined as fasting trigly-
ceride≥ 200mg/dL, total cholesterol≥ 200mg/dL, low-density lipo-
protein≥ 130mg/dL.

2.3. Participants with drug intervention for potential biomarker validation

Based on the analysis of 24-hour proteinuria, an additional 104
patients with CKD were further studied for biomarker validation. 54
and 50 patients with proteinuria between 0.5 and 1.0 g/24 h were
treated by enalapril (10mg/kg/d) and Wulingsan (0.15 g/kg/d, a nat-
ural renoprotective medicine) in six months, respectively. 32, 37 and 35
patients were diagnosed as immunoglobulin A nephropathy, idiopathic
membranous nephropathy and hypertension nephropathy, respectively.
A total of 208 serum samples were collected from CKD patients before
and after drug treatments.

2.4. Untargeted lipidomics

Lipid profiling procedure of UPLC-HDMS was performed by the
previously published protocols [10]. Lipidomics was performed on a
Waters Acquity™ ultra performance LC system equipped with a Waters
Xevo TM G2-S QTof MS. Each sample was injected onto a reverse-phase
100× 2.1mm, HSS 1.7 μm C18 column using an ACQUITY UPLC
system (Waters Corporation, USA). A gradient of 10mM ammonium
formate and 0.1% formic acid in 2-propanol/acetonitrile (90/10) (A)
and 10mM ammonium formate and 0.1% formic acid in ACN/H2O (60/
40) (B) were used as follows: a linear gradient of 0–10min, 40.0–99.0%
A and 10.0–12.0min, 99.0–40.0% A. The flow rate was 0.5mL/min.
The temperatures of autosampler and chromatographic column were
maintained at 4 °C and 55 °C, respectively. Every 5 μL sample solution
was injected for each run.

Mass spectrometry was performed on a Xevo™ G2 QTof. The scan
range was from 100 to 1500m/z. For both positive and negative elec-
trospray modes, the capillary and cone voltage were set at 3.0 kV and
60 V, respectively. The desolvation gas was set to 900 L/h at a tem-
perature of 500 °C; the cone gas was set to 50 L/h and the source
temperature was set at 120 °C. An MSE experiment was performed as
follows: function 1, 10 V collision energy; function 2, collision energy
ramp of 20–65 V. Data were collected in continuum mode, the lock-
spray frequency was set at 10 s, and data were averaged over 10 scans.
All the acquisition and analysis of data were controlled by Waters Unifi
software.

2.5. Targeted lipidomics

Targeted lipidomics was performed on the same UPLC-HDMS
system. Targeted data detection was performed in the multiple-reac-
tion-monitoring (MRM). The reference standard chenodeoxycholic acid
(CDCA) was used for the quantification of CDCA. The reference stan-
dard docosahexaenoic acid (DHA) was used for the quantification of
glucosylceramide (GCD), ganglioside GD2 (d18:1/18:0) (GGD2),

Table 2
Clinical variable associations of healthy controls vs CKD patients from logistic regression analysis and linear regression analysis of clinical variables vs ACR.

Clinical variables Healthy controls vs microalbuminuria Clinical variables vs ACR

Effect StdErr p Effect StdErr p

Sex −0.2166 0.1364 1.12E−01 27.0885 18.8324 1.51E−01
Age 0.0019 0.0040 6.40E−01 1.5074 0.5846 1.00E−02
SBP 0.0423 0.0040 5.30E−26 0.8916 0.2749 1.22E−03
DBP 0.0344 0.0053 8.78E−11 2.5061 0.6049 3.68E−05
BMI 0.0855 0.0198 1.50E−05 3.1176 2.5770 2.27E−01
BUN 1.0095 0.3105 1.15E−03 4.8222 0.1455 1.02E−169
Creatinine 25.4823 4.4394 9.46E−09 – – –
Uric acid 0.5896 0.0492 4.90E−33 9.0564 4.2966 3.53E−02
TG 0.0008 0.0009 3.66E−01 −0.0113 0.0796 8.87E−01
TC 0.0019 0.0008 1.46E−02 0.5774 0.1411 4.60E−05
HDL-C −0.0045 0.0038 2.36E−01 −3.4485 0.6710 3.24E−07
LDL-C 0.0072 0.0017 2.17E−05 1.0406 0.1661 5.24E−10
White blood cell 0.4232 0.0372 5.04E−30 3.0302 2.3915 2.05E−01
Hemoglobin −0.2326 0.0226 7.82E−25 −18.6774 2.7078 8.70E−12
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tetracosatetraenoic acid (24:4n-6) (TTA), DHA and eicosadienoic acid
(EDA).

2.6. Lipidomic data analysis

Lipidomics data were collected by mass spectrometry on 1536
participants (healthy controls= 380, CKD patients with micro-
albuminuria= 502, CKD patients with macroalbuminuria= 654).
Mass spectrometry data were normalized to total signal per subject then
log2 transformed. We used regularization algorithm least absolute
shrinkage and selection operator (LASSO) with 10 fold cross validation
(GLMNET R package) to identify biomarkers that played prominent
roles in the identification of CKD patients with microalbuminuria and
healthy controls. Unsupervised machine learning techniques including
hieratical cluster analysis (HCA) and principle component analysis
(PCA) were used to validate the accuracy of the biomarkers or lipid
metabolites. Univariate logistic regressions were also performed on all

potential lipids to identify all lipids associated with the binary outcome
(healthy controls vs CKD patients with microalbuminuria).
Additionally, we conducted univariate linear regression by using al-
bumin-creatinine ratio (ACR) of all CKD patients as continuous outcome
and lipids as predictors. Furthermore, metabolic pathway analysis was
performed by Ingenuity Pathway Analysis (IPA).

2.7. Gene expression studies by quantitative real-time polymerase chain
reaction (qRT-PCR)

Isolation of plasma mRNA was performed by a High Pure RNA
Isolation Kit according to the manufacturer's guide. qRT-PCR was car-
ried out according to previously published protocols with minor mod-
ifications [33].

Fig. 1. The association between inflammation and metabolic pathways of identified lipid species in CKD patients with microalbuminuria. (A) The results of pathway
enrichment analysis by using the 237 lipid species. The correlation of the genes, proteins and lipid species were identified by the pathways databases. (B) The top
affected pathways observed in logistic regression. The significant canonical pathways were displayed along the x-axis, while the y-axis displayed the -log of p-value
which was calculated by right trailed Fisher's exact test. Thus, taller bars represented the increased significance and the canonical pathways were sorted by
significance from left to right. White bars were those with a z-score at or very close to 0, while gray bars indicated the pathways that can not be made at present. In
addition, the orange points connected by a thin line represented the Ratio. (C) Co-abundance network constructed within Pearson's correlation using the four
biomarkers and 303 identified lipid species.
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2.8. Protein expression studies by Western blotting analysis and
immunohistochemistry

All the antibodies were purchased from Abcam Company, Cell
Signaling Technology, R&D Technology or Santa Cruz Biotechnology.
The total protein concentration in plasma was determined by Assay Kit.
A detailed description of these studies had been reported in previous
studies [34,35]. The densitometry of each protein ratio was quantified

by using ImageJ software. The following antibodies including Wnt1, β-
catenin, active β-catenin, Twist, Snail1, plasminogen activator in-
hibitor-1 (PAI-1), matrix metalloproteinase-7 (MMP-7) and fibroblast-
specific protein 1 (FSP1) were used for immunohistochemistry from
renal biopsies of CKD patients [36–38]. Image analysis was done by
Image-Pro Plus 6.0.

(caption on next page)
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3. Results

3.1. Clinical characteristics

Total 1156 patients with CKD stage 3 to 5 were analyzed (Table 1),
which were divided into two groups according to the urine ACR. Of all
patients, 43.5% (n=502) and 56.5% (n=654) CKD patients had mi-
croalbuminuria and macroalbuminuria, respectively. There was sig-
nificant elevation of serum creatinine, blood urea nitrogen (BUN), TG,
TC and LDL-C in CKD patients. Additionally, anemia was more severe in
both microalbuminuria and macroalbuminuria groups than healthy
controls. Compared with CKD patients with microalbuminuria, patients
with macroalbuminuria had a significant increase in serum creatinine,
BUN, TG, TC and LDL-C. Decreased HDL-C and albumin were evident in
patients with macroalbuminuria. Comparison of data between CKD
subgroups revealed CKD patient with macroalbuminuria exhibited
significantly lower HDL-C and albumin levels in relative to CKD patient
with microalbuminuria.

14 clinical variables were analyzed by univariate logistic regression
(Table 2). Systolic blood pressure (SBP), diastolic blood pressure, body
mass index (BMI), BUN, creatinine, uric acid, TC, LDL-C and white
blood cell were positively associated with CKD patients with micro-
albuminuria, while hemoglobin was negatively significantly associated
with CKD patients with microalbuminuria. Furthermore, univariate
linear regression was also used to evaluate the association of these 14
clinical variables with ACR among CKD patients (Table 2), and showed
that SBP, BUN, uric acid, TC and LDL-C were positively associated with
ACR.

3.2. Correlation analysis of genes, proteins and lipids in CKD patients with
microalbuminuria

We obtained 4776 and 2773 spectral features in positive and ne-
gative ion modes. After rigorous quality control and multiple test ad-
justment, 2098 features were chosen by using logistic regression ana-
lysis between controls and CKD patients with microalbuminuria. After
excluding xenobiotics and different fragment ions from the same lipids,
293 lipids were identified using logistic regression analysis between
controls and CKD patients (Supplementary Table S1). These results
imply that there is large difference in lipid abundance between healthy
controls and CKD patients. Pathway enrichment analysis of 293 lipids

showed that 31 metabolic pathways were associated with CKD patients
(Fig. 1A), among which some metabolic pathways played prominent
roles in the regulation of lipid metabolism including peroxisome pro-
liferator-activated receptor γ (PPARγ), inflammatory mediator regula-
tion of transient receptor potential (TRP) channels, RAS signaling
pathway, α-linolenic acid and linoleic acid metabolism, fatty acid β-
oxidation, unsaturated fatty acid biosynthesis, sphingolipid metabo-
lism, arachidonic acid metabolism, bile acid biosynthesis and gastrin-
CREB signaling pathway via protein kinase C (PKC) and MAPK. PPARγ
was of paramount importance to lipid metabolism, and TRP channels
contributed much to inflammatory mediator regulation, while RAS
signaling pathway were implicated in inflammation and oxidative
stress, all of which are inseparably involved in the activation of nuclear
factor-kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2
(Nrf2) signaling pathways in the current study. Additionally, we used
identified lipids from each analysis to examine what pathway they af-
fect by IPA, and discovered that the top affected pathways observed in
logistic regression were intimately associated with farnesoid X receptor
(FXR)/retinoid X receptor (RXR) activation, palmitate biosynthesis,
stearate biosynthesis and hepatic cholestasis (Fig. 1B). These findings
indicate that identified lipids are primarily associated with fatty acid
and bile acid metabolisms. Moreover, IPA analysis showed that FXR/
RXR activation was one of most important pathways in CKD patients.
FXR is mainly expressed in the liver, intestine and kidney. Bile acids
participate in the regulation of gene expression through acting as li-
gands for the FXR [39], indicating FXR may be an attractive target for
liver and kidney disease intervention. Halilbasic et al. uncovered that
FXR agonists were used for the treatment of liver disease [40], pro-
viding additionally evidence to previous studies. Taken together, these
findings indicate that identified lipids, especially for fatty acids, are
closely associated with the activation of FXR/RXR and NF-κB/Nrf2
signaling pathways.

3.3. Biomarkers of identification and validation in CKD patients with
microalbuminuria

To select the promising lipids that can be used as biomarkers to
detect CKD patients, we conducted feature selection analysis by using
logistic regression with 10 fold cross validation with LASSO procedure
(R GLMNET). The model with the lowest misclassification error rate
(< 1%) can be achieved with 93 features (Fig. 2A) and 66 lipids can be
identified form these 93 features (Supplementary Table S1). The same
model also revealed that an error rate< 5% can still be achieved by
selecting four most relevant lipids. We identified these four biomarkers
including docosatrienoic acid (DTA), 5,8-tetradecadienoic acid (5,8-
TDA), ganglioside GD3 (d18:1/26:0) (GGD3) and DHA (Fig. 2A). The
distribution and pairwise relationship of these four lipids were illu-
strated with Fig. 2B.

To highlight the co-abundance network of the four potential bio-
markers and other metabolites, 925 variables were chosen based on
Pearson's correlation and 303 lipids were identified (Table S2). A co-
abundance network between the four biomarkers and 303 lipids was

Fig. 2. Potential biomarkers of identification, analysis and validation from CKD patients with microalbumin and healthy controls. (A) GLMNET LASSO regression
with binary outcome. The plot indicated that the error rate (y-axis) was decreased when the number of predictors (x-axis) was increased, while the diminishing return
can be clearly observed. The error rate was< 5% when the number of predictors was eight, and four of the eight predictors were identified as biomarkers including
docosatrienoic acid, 5,8-teradecadienoic acid, ganglioside GD3 (d18:1/26:0) and docosahexaenoic acid. (B) Unsupervised cluster on CKD patients with micro-
albuminuria and healthy controls (C) Scatter plot of PC1 vs PC2 from PCA. The PC1 can explain 70% of the outcome. (D) Combined box-and-whisker and dot plot of
normalized intensity of four biomarkers in the serum of CKD patients with microalbuminuria and healthy controls. The statistical significance of differences between
the two groups was marked. **P < 0.01 compared with the healthy controls. (E) PLS-DA based ROC curves of four biomarkers for the evaluation of CKD patients
with microalbuminuria with the individual lipid biomarkers. The associated AUC, sensitivity, specificity and 95% confidence interval (95% CI) values were indicated.
(F) PLS-DA based ROC curves of the combination of four biomarkers for evaluation of CKD patients with microalbuminuria. The associated AUC, sensitivity,
specificity and 95% confidence interval (95% CI) values were indicated. (G) Diagnostic performance of the four biomarkers based on the PLS-DA model. Black dots
represented CKD patients with microalbuminuria, and black circles represented healthy controls. The five black dots located healthy controls quadrant and 20 black
circles located patients with microalbuminuria were for the incorrectly predicted samples in patients with microalbuminuria and healthy controls, respectively. (B)
Correlation matrix of the four biomarkers from CKD patients with microalbuminuria and healthy controls.

Table 3
Logistic regression results for the 4 selected biomarkers.

Lipid Effect StdErr OR(95%CI) P

Docosatrienoic acid −9.8E−02 6.4E−03 0.91(0.90–0.92) 1.99E−53
5,8-Teradecadienoic

acid
3.7E−02 2.4E−03 1.04(1.03–1.04) 9.49E−55

Ganglioside GD3
(d18:1/26:0)

8.5E−03 6.0E−04 1.01(1.01–1.01) 9.79E−46

Docosahexaenoic acid −2.9E−02 2.1E−03 0.97(0.97–0.98) 6.78E−43
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Fig. 3. Biomarker identification and pathway analysis. (A) The results of pathway enrichment analysis of 237 lipid species. The correlation of the genes, proteins and
lipid species were identified by the pathways databases. (B) The results of canonical pathway analysis from IPA. The ACR equalled to the results of 237 identified
lipid species analysis from linear regression. (C) GLMNET LASSO regression with linear outcome. Y-axis represented mean-square error, and the results was the lower
the better. X-axis represented the number of predictors. In general, the mean-square error was reduced with the increased number of predictors. (D) GLMNET LASSO
regression with binary outcome. The plot indicated that the error rate (y-axis) was decreased when the number of predictors (x-axis) was increased. (E) Unsupervised
cluster on CKD patients with microalbuminuria and macroalbuminuria. (F) Combined box-and-whisker and dot plot of normalized intensity of four biomarkers in the
serum of CKD patients with microalbuminuria and healthy controls. (G) Scatter plot of PC1 vs PC2 from PCA. The two groups were evidently separated based on the
six biomarkers, and the PC1 can explain 76% of the outcome. (H) Diagnostic performance of the six biomarkers based on the PLS-DA model. Black dots represented
CKD patients with microalbuminuria, and black circles represented CKD patients with macroalbuminuria. The 20 black dots located patients with macroalbuminuria
quadrant and 175 black circles located patients with microalbuminuria quadrant were for the incorrectly predicted samples in patients with microalbuminuria and
macroalbuminuria, respectively. (I) PLS-DA based ROC curves of six biomarkers for the evaluation of the individual lipid biomarkers and the combination of six lipid
biomarkers in CKD patients with microalbuminuria.
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obtained from Pearson's correlation coefficients by using MetScape
software running on Cytoscape (Fig. 1C). The co-abundance network
indicated that there was a strong interaction in four biomarkers, espe-
cially for DTA and 303 lipids.

Validation of these four lipid biomarkers was carried out by using
two unsupervised machine learning techniques: HCA (Fig. 2B) and PCA
(Fig. 2C). The abundance of four biomarkers between CKD patients and
controls can be visualized in Fig. 2D. The odds ratio and 95%CI for the
four biomarkers from logistic regression can be seen in Table 3. In order
to investigate the biomarker suitability, partial least-squares dis-
criminant analysis (PLS-DA)-based receiver operating characteristic
(ROC) curves for the evaluation of CKD patients with the individual
lipids and the combination of the four lipids were assessed. The com-
bination of the four lipids had a higher area under curve (AUC), sen-
sitivity and specificity than that of individual lipids (Fig. 2E,F). To
predict class probabilities for each sample, validation was performed on
four biomarkers (Fig. 2G). 482 out of the 502 CKD patients with mi-
croalbuminuria were correctly grouped (96.0% sensitivity). 375 out of
the 380 healthy controls were located in the control area (98.6% spe-
cificity). These results demonstrate that the four biomarkers show high
prediction class probabilities. Both methods yield highly accurate re-
sults and demonstrate that CKD patients can be distinguished from
controls (Fig. 2H).

3.4. Correlation of genes, proteins and lipids in CKD patients with
macroalbuminuria

Rather than treating ACR as a discreet dichotomized variable (mi-
croalbuminuria vs macroalbuminuria), ACR was recognized as a con-
tinuous variable because the division between CKD patients with mi-
croalbuminuria vs macroalbuminuria was arbitrary. The regression
model identified 2389 features with significant association with ACR.
We selected the top 500 significant features and 245 lipids were iden-
tified (Table S3). Pathway enrichment analysis of these 245 lipids
showed that 54 metabolic pathways were associated with macro-
albuminuria changes in CKD patients (Fig. 3A). Identified lipid-asso-
ciated with metabolic pathways were primarily focused on the regula-
tion of lipid metabolism by PPARγ, RAS signaling pathway, α-linolenic
acid metabolism, unsaturated fatty acids biosynthesis, fatty acid β-
oxidation, arachidonic acid metabolism as well as primary bile acid
biosynthesis and gastrin-CREB signaling pathway via PKC and MAPK
(Fig. 3A). These metabolic pathways, especially for PPARγ and RAS
signaling pathways, were closely associated with inflammation and
oxidative stress, which are consistent with the activation of NF-κB/Nrf2
signaling pathway in the current study. Additionally, we used the
identified lipids from each analysis to examine what pathway they af-
fect. IPA demonstrated that the top affected pathway for results from
linear regression was associated with FXR/RXR activation (Fig. 3B).

3.5. Lipid identification from CKD patients with ACR association

Apart from above-mentioned factors, we also conducted feature
selection by linear regression with 10 fold cross validation with LASSO

procedure. The model found the least mean square error can be
achieved when 98 features were used (Fig. 3C), and 66 lipid species
were identified from these 98 features (Table S4). Furthermore, we also
conducted biomarker analysis by logistic LASSO regression with 10 fold
cross validation to dichotomize patients into two groups of micro-
albuminuria and macroalbuminuria (Fig. 3D). Six lipids including
CDCA, GCD, GGD2, TTA, DHA and EDA were identified by the model.
The odds ratio and 95%CI for six biomarkers from logistic regression
can be seen in Table 4. The validation of HCA (Fig. 3E) and PCA
(Fig. 3G) also showed reasonable separation between CKD patients with
microalbuminuria and macroalbuminuria. The abundance of six bio-
markers between CKD patients with microalbuminuria and macro-
albuminuria can be visualized in Fig. 3F. Sensitivity and specificity of
six biomarkers were 96.0% and 73.2%, respectively (Fig. 3H). In ad-
dition, ROC curves showed that the combination of the six lipids had a
lower AUC, sensitivity and specificity than that of CDCA (Fig. 3I).

3.6. Biomarker validation of CKD patients with macroalbuminuria after
drug treatment

Next we examined whether enalapril and Wulingsan could improve
abnormal biomarkers that were applied to drug use and therapy eva-
luation (Fig. 4). The significantly increased proteinuria and ACR as well
as decreased eGFR in CKD patients were improved after the treatment
of enalapril and Wulingsan (Table 5). Moreover, six biomarkers were
restored after enalapril treatment (Fig. 4A,B). PCA, orthogonal partial
least squares-discriminant analysis (OPLS-DA) and heatmap showed
that CKD patients before and after enalapril treatment could be sepa-
rated by six biomarkers (Fig. 4C-E). Prediction class probabilities
showed that the sensitivity and specificity of six biomarkers were
98.1% (Fig. 4F). ROC curves showed that six biomarkers had a high
AUC, sensitivity and specificity after enalapril treatment (Fig. 4G). Si-
milarly, six biomarkers were restored after Wulingsan treatment
(Fig. 4H,I), and six biomarkers could specially discriminate CKD pa-
tients before and after Wulinsan treatment (Fig. 4J-N).

3.7. Gene and protein expression of NF-κB pathway

In order to further validate the identified lipid-associated in-
flammatory metabolic pathways, qRT-PCR, Western blot and im-
munohistochemical analyses were used. Primers applied for qRT-PCR
were listed in Supplementary Table S5. Compared with CKD patients
with microalbuminuria, CKD patients with macroalbuminuria exhibited
a significant up-regulation of IκBα and nuclear translocation of p65
mRNA expression, indicating activation of NF-κB signaling (Fig. 5A). In
addition, the activation of IκB/NF-κB signaling was accompanied by up-
regulation of inflammatory genes including cyclooxygenase-2 (COX-2),
inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1
(MCP-1) and 12-lipoxygenase (12-LO) as well as NAD(P)H oxidase
subunit genes such as p47phox and gp91phox, while p67phox mRNA ex-
pression was not significant altered in CKD patients with macro-
albuminuria.

Compared with CKD patients with microalbuminuria, the protein
expression of the inhibitor of kappa B alpha (IκBα) was significantly
decreased, while the expression of phosphorylated-IκBα (p-IκBα) and
nuclear p65 contents denoting NF-κB activation was significantly in-
creased in the plasma of CKD patients with macroalbuminuria (Fig. 5B).
Additionally, the ratio of p-IκBα/IκBα was also significantly increased
in CKD patients with macroalbuminuria, which was accompanied by a
significant increase in protein abundance of the nicotinamide adenine
dinucleotide phosphate (NAD(P)H) oxidase subunits including ras-re-
lated C3 botulinum toxin substrate 1 (Rac1), p67phox, p47phox and
gp91phox and up-regulation of COX-2, iNOS, MCP-1 and 12-LO in CKD
patients (Fig. 5B).

Table 4
Logistic regression results for the 6 selected biomarkers.

Lipid Effect StdErr OR(95%CI) P

Chenodeoxycholic acid 2.6E−02 3.6E−03 1.03(1.02–1.03) 1.41E−13
Glucosylceramide 5.5E−03 3.8E−04 1.01(1.00–1.01) 3.00E−49
Ganglioside GD2

(d18:1/18:0)
1.2E−03 7.9E−05 1.00(1.00–1.00) 2.31E−55

Tetracosatetraenoic acid
(24:4n-6)

−2.3E−04 1.3E−05 1.00(1.00–1.00) 7.85E−65

Docosahexaenoic acid −5.6E−04 3.3E−05 1.00(1.00–1.00) 7.16E−64
Eicosadienoic acid −1.2E−02 7.3E−04 0.99(0.99–0.99) 2.21E−57
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3.8. Gene and protein expression of Nrf2 pathway

Compared with CKD patients with microalbuminuria, CKD patients
with macroalbuminuria showed a significant up-regulation in Kelch-
like ECH-associated protein 1 (Keap1) and nuclear translocation of Nrf2
mRNA expression, indicating activation of impaired Nrf2 pathway
(Fig. 6A). Activation of Keap1/Nrf2 signaling was accompanied by a
significant up-regulation of catalase and heme oxygenase-1 (HO-1)
mRNA expression as well as down-regulation of glutamate cysteine li-
gase catalytic subunit (GCLC), NAD(P)H quinine oxidoreductase 1
(NQO1) and glutathione peroxidase (GPX) mRNA expression. However,
GCLM mRNA expression was not significantly altered in CKD patients
with macroalbuminuria. Moreover, CKD patients with macro-
albuminuria showed a marked reduction in nuclear Nrf2 protein ex-
pression and a significant increase in Keap1 protein expression. In ad-
dition, the expression of Nrf2 target genes including catalase, HO-1,
GCLC, glutamate-cysteine ligase modifier subunit (GCLM), NQO1 and
GPX was also signficantly decreased (Fig. 6B). These findings point to
the significant impaired activation of the Nrf2 pathway in CKD patients.

3.9. Gene and protein expression of Wnt/β-catenin pathway

Wnt/β-catenin signaling pathway was closely associated with pro-
gressive CKD [33,41–45]. Compared with CKD patients with micro-
albuminuria, CKD patients with macroalbuminuria exhibited a sig-
nificant up-regulation in Wnt1, Wnt4 and β-catenin mRNA expression,
indicating activation of Wnt/β-catenin pathway. Activation of Wnt/β-
catenin signaling was accompanied by significant up-regulation of its
target genes including Twist, Snail1, PAI-1, MMP-7 and FSP1 (Fig. 7A).

Western blotting analysis showed that the protein expressions of
Wnt1, cytoplasmic β-catenin, nuclear β-catenin and nuclear active β-
catenin were dramatically up-regulated in CKD patients with macro-
albuminuria compared with those with microalbuminuria. Except for
Snail1, significant up-regulation of Twist, PAI-1 and MMP-7 protein
expression were observed in CKD patients (Fig. 7B).

We also examined the expression and localization of Wnt/β-catenin
and its target proteins. As shown in Fig. 7C and Fig. 8A, the expression

of Wnt1, PAI-1 and MMP-7 proteins were predominantly induced in
proximal tubular epithelium and glomerular from CKD patients. The
expression of active β-catenin protein and Twist and Snial1 proteins
were predominantly induced in nuclei of renal tubular epithelium in
CKD patients. FSP1, derived from epithelial mesenchymal transition,
was a marker of fibroblasts in different tissues undergoing tissue re-
modeling, and the expression of FSP1 protein was significantly in-
creased in tubulo-interstitium of CKD patients. In addition, the altera-
tion of Wnt/β-catenin and its target proteins showed the stronger
expression in CKD patients with macroalbuminuria than those with
microalbuminuria (Fig. 8B). These results indicate that Wnt/β-catenin
pathway could be a novel therapeutic target for the intervention of
CKD.

4. Discussion

Inflammation and CKD are both intimately implicated in cardio-
vascular diseases. Our previous studies revealed that lipid metabolism
was evidently altered in CKD patients. Additionally, we also discovered
that protein expressions of plasma inflammation and oxidative stress
were closely associated with abnormal lipid metabolism in both pa-
tients and rats with CKD. Nevertheless, whether inflammatory bio-
markers and abnormal lipid metabolites are involved in the different
degrees of albuminuria and kidney dysfunction after accounting for
traditional cardiovascular disease risk factors remains to be determined.
In this study, we first uncovered the association of plasma inflamma-
tion, oxidative stress, Wnt/β-catenin, albuminuria and lipid metabolism
in patients with CKD stages 3 to 5. The association of inflammation with
urinary albumin excretion had been widely reported in previous stu-
dies, and inflammatory biomarkers, such as C-reactive protein, tumor
necrosis factor-α, intercellular adhesion molecule 1, MCP-1, inter-
leukin-6, tumor necrosis factor receptor 2 and fibrinogen, were deeply
implicated in albuminuria and kidney dysfunction [46–48]. In parti-
cular, serum cystatin C was an index of renal function and substantial
variability in soluble tumor necrosis factor receptor 2 was attributable
to CKD and cystatin C [49], which was consistant with activated IκB/
NF-κB and Keap1/Nrf2 pathways in CKD patients with

Fig. 4. Biomarker validation of CKD patients with macroalbuminuria after drug treatment. (A) Dot plots of levels of six biomarkers including CDCA, GCD, GGD2,
TTA, DHA and EDA in CKD patients before and after enalapril treatment, which were determined by UPLC-MS/MS method. (B) Arrow plot of changes of six
biomarkers from CKD patients before and after enalapril treatment. (C) PCA of two components of six biomarkers from 54 CKD patients before and after enalapril
treatment. (D) OPLS-DA of six biomarkers from 54 CKD patients before and after enalapril treatment. (E) Heatmap of six biomarkers from 54 CKD patients before and
after enalapril treatment. (F) Diagnostic performances of the six biomarkers from CKD patients before and after enalapril treatment based on the PLS-DA model. The
one black dot located pre-treatment patient's quadrant and one black circle located post-treatment patient's quadrant were for the incorrectly predicted samples in
patients before and after treatment, respectively. (G) PLS-DA based ROC curves of six biomarkers for evaluation of CKD patients before and after enalapril treatment.
(H) Dot plots of levels of six biomarkers including CDCA, GCD, GGD2, TTA, DHA and EDA in CKD patients before and after Wulinsan treatment, which were
determined by UPLC-MS/MS method. (I) Arrow plot showing changes of six biomarkers from CKD patients before and after Wulinsan treatment. (J) PCA of two
components of six biomarkers from 54 CKD patients before and after Wulinsan treatment. (K) OPLS-DA of six biomarkers from 54 CKD patients before and after
Wulinsan treatment. (L) Heatmap of six biomarkers from 54 CKD patients before and after Wulinsan treatment. (M) Diagnostic performances of the six biomarkers
from CKD patients before and after Wulinsan treatment based on the PLS-DA model. The three black dot located pre-treatment patient's quadrant and one black circle
located post-treatment patient's quadrant were for the incorrectly predicted samples in patients before and after treatment, respectively. (N) PLS-DA based ROC
curves of six biomarkers for evaluation of CKD patients before and after Wulinsan treatment. The associated AUC, sensitivity, specificity and 95% confidence interval
(95% CI) values were indicated. **P < 0.01, compared with CKD patients before treatment.

Table 5
Clinical data and biochemical results of patients before and after treatment with enalapril and Oryeongsan.

Clinical characteristics Pre-treatment by enalapril Post-treatment by enalapril Pre-treatment by Oryeongsan Post-treatment by Oryeongsan

Sample size 54 54 50 50
Age (years) 56.4 (51.2–64.5) 57.0(51.8–65.1) 57.2 (52.4–69.1) 57.8 (53.0–69.7)
Men (%) 48 48 52 48
BMI (kg/m2) 24.8 (23.3–26.4) 24.7 (23.1–25.9) 24.5 (23.8–26.1) 24.3 (23.4–25.4)
Proteinuria (mg/24 h) 865.2 (624.3–957.4) 513.1 (389.3–756.4)** 895.4 (645.2–947.5) 578.5 (402.7–718.6) **
Urine ACR (mg/g) 527.4 (385.2–574.7) 314.8 (239.8–459.8) ** 542.4 (397.5–574.9) 358.7 (249.6–445.8) **
eGFR (ml/min/1.73 m2) 54.5 (42.5–75.8) 62.4 (52.1–78.9) ** 55.8 (45.8–72.4) 65.7 (49.8–75.5) **

⁎P < 0.05, ⁎⁎P < 0.01 compared with pre-treatment patients.
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microalbuminuria and macroalbuminuria. Furthemore, sphingomyelin
was a significant regressor of albuminuria [15]. Other metabolomics
also demonstrated that 19 metabolites distinguished diabetic nephro-
pathy with macroalbuminuria from those without albuminuria [50],
and these metabolites were significantly correlated with urinary ACR,
indicating lipid metabolism is inseparably associated with the devel-
opment of CKD patients with albuminuria. Apart from above-men-
tioned factors, inflammation was involved in the Wnt/β-catenin
pathway of renal fibrosis [14]. Taken together, NF-κB/Nrf2 and Wnt/β-
catenin pathways as well as significantly altered lipid metabolism
contributed to the aggravation of albuminuria in CKD patients.

Four lipid species that showed great potential in the discrimination
of CKD patients with microalbuminuria and healthy controls were se-
lected by logistic regression analysis. In addition, six lipid species that

played pivotal roles in the discrimination of CKD patients with micro-
albuminuria and macroalbuminuria were selected by logistic LASSO
regression. Our study showed that five fatty acids were contained in ten
biomarkers the results indicated fatty acid metabolism was closely as-
sociated with albuminuria change. Further analysis found that poly-
unsaturated fatty acids (PUFA) including DHA, DTA and TTA were
dramatically decreased and saturated fatty acids (SFA), such as 5,8-TDA
and EDA were obviously increased in CKD patients with micro-
albuminuria and macroalbuminuria. This was consistent with the ear-
lier studies that plasma free fatty acids and SFA were significantly
elevated in the pre-hemodialysis samples of ESRD patients compared
with healthy controls [51]. We also identified DTA and DHA in the
adenine-induced rats with CKD in our previous studies [52,53]. In fact,
plasma SFA was associated with the incidence of sudden cardiac death

Fig. 5. Expression of NF-κB and its target genes and proteins in CKD patients with microalbuminuria and macroalbuminuria. (A) qRT-PCR of the expression mRNA of
NF-κB p65 and its target genes including COX-2, iNOS, MCP-1, Rac1, 12-LO, p67phox, P47phox and gp91phox in CKD patients with microalbuminuria and macro-
albuminuria. (B) Representative Western blotting analyses and their quantitative analyses the expressions of p65 active subunit of NF-κB protein and its target
proteins including COX-2, iNOS, MCP-1, Rac1, 12-LO, p67phox, P47phox and gp91phox in the plasma of CKD patients with microalbuminuria and macroalbuminuria.
⁎P < 0.05, ⁎⁎P < 0.01 compared with the CKD patients with microalbuminuria.
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in patients with hemodialysis [54], which was largely due to the im-
pairment of fatty acid oxidation (FAO) in the tubular epithelial cells of
CKD patients and animal models with interstitial fibrosis [55]. The
abnormal FAO contributed to the impairment of mitochondrial ade-
nosine triphosphate generation and enhancement of reactive oxygen
species (ROS) production, leading to the occurence of tubular epithelial
cell death, inflammation, oxidative stress and interstitial fibrosis.

Normally, the uptake, oxidation and synthesis of fatty acids are
tightly balanced to avoid intracellular lipid accumulation. The uptake
of long-chain fatty acids is facilitated by long-chain fatty acid trans-
porter CD36 [56], while carnitine palmitoyltransferase 1 is of para-
mount importance to the metabolism of fatty acids by combining with
carnitine and transporting into the mitochondria, which serves as the
rate-limiting enzyme of fatty acid oxidation [57]. FAO occurres in the
mitochondria, the impairment of which leads to mitochondrial dys-
function and defective oxidative phosphorylation. In addition, mi-
tochondrial dysfunction plays pivotal roles in the pathogenesis of CKD
[58]. PUFA are very susceptible to ROS-mediated peroxidation, which
makes them attractive targets of endocytosis by macrophages.
Mounting studies revealed that PUFA deficiency was implicated in the
progression in CKD, and long-chain PUFA supplement could mitigate
inflammation and oxidative stress via lowering production of in-
flammatory eicosanoids and cytokines, adhesion molecules and ROS

[59]. Therefore, PUFA deficiency contributed to inflammation and
oxidative stress in CKD [60,61]. Therefore, the changes of fatty acids
can contribute to the inflammation and oxidative stress.

Gangliosides are glycosphingolipids or oligoglycosylceramides with
one or more sialic acids linked on the sugar chain. Ganglioside is a
component of cell membrane that plays a critical role in the modulation
of signal transduction [62,63]. Gangliosides amount to approximately
6% of the weight of lipids in brain, but gangliosides are found in all
animal tissues [64]. A lot of gangliosides were firstly identified from the
serum of CKD patients with albuminuria in our study, among which
ganglioside GD3 (d18:1/26:0) and ganglioside GD2 (d18:1/18:0) were
used to distinguish CKD patients with microalbuminuria from healthy
controls as well as CKD patients with microalbuminuria and macro-
albuminuria, respectively. Immunohistochemical analyses indicated
that ganglioside GM3 was distributed in renal proximal tubules and
glomeruli. Immunoelectron microscopy showed that ganglioside GM3
was localized in Golgi region of renal proximal tubule cells and the foot
process of podocyte [65]. Ganglioside GM3 might take a part of the
negative electric charge on the podocyte surface and multiple bioac-
tivities of ganglioside GM3 played important roles for maintaining
glomerular physiological function. Increased gangliosides in renal cell
carcinoma contributed to the immune suppression observed in cancer
patients. Ganglioside-induced T-cell killing was related to the caspase-

Fig. 6. Expression of Nrf2 and its target genes and proteins in CKD patients with microalbuminuria and macroalbuminuria. (A) qRT-PCR analysis of Nrf2 mRNA and
its target genes including catalase, HO-1, GCLC, GCLM, NQO1 and GPX mRNA, in the CKD patients with microalbuminuria and macroalbuminuria. (B)
Representative Western blotting analyses and their quantitative analyses of Nrf2 protein and its target proteins including catalase, HO-1, GCLC, GCLM, NQO1 and
GPX in the CKD patients with microalbuminuria and macroalbuminuria.⁎P < 0.05, ⁎⁎P < 0.01 compared with the CKD patients with microalbuminuria.
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Fig. 7. Expression of β-catenin and it target genes and proteins in CKD patients with microalbuminuria and macroalbuminuria. (A) qRT-PCR of Wnt1, Wnt4 and β-
catenin as well as its target genes, including Twist, Snail1, PAI-1, MMP-7 and FSP1, in the CKD patients with microalbuminuria and macroalbuminuria. (B)
Representative Western blotting analyses and their quantitative analyses of Wnt1, cytoplasmic β-catenin, nuclear β-catenin as well as nuclear active β-catenin and its
target proteins, including Twist, Snail1, PAI-1 and MMP-7, in the CKD patients with microalbuminuria and macroalbuminuria. ⁎P < 0.05, ⁎⁎P < 0.01 compared
with the CKD patients with microalbuminuria. (C) Immunohistochemical staining and (D) semi-quantitative analyses of Wnt/β-catenin signaling pathway in CKD
patients with microalbuminuria and macroalbuminuria. Paraffin kidney sections were used for immunohistochemical staining of Wnt1, β-catenin and active β-
catenin in the kidney of healthy controls, CKD patients with microalbuminuria and macroalbuminuria. Immunohistochemical staining showed a strong expression of
Wnt1 in proximal tubular epithelium (thin arrow) and glomerular (thick arrow) of kidney tissue from the CKD patients with microalbuminuria and macro-
albuminuria. The β-catenin only showed a strong expression in proximal tubular epithelium (thin arrow) of kidney tissue from the CKD patients with micro-
albuminuria and macroalbuminuria. The active β-catenin only showed a strong expression in nuclei of proximal tubular epithelium (thin arrow) of kidney tissue from
the CKD patients with microalbuminuria and macroalbuminuria. ⁎P < 0.05, ⁎⁎P < 0.01 compared with healthy controls; ##P < 0.01 compared with CKD patients
with microalbuminuria. Pink bar=20 μm; green bar =35 μm.
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dependent degradation of NF-κB-inducible and anti-apoptotic proteins
[66]. It was reported that ROS were significantly increased in GM2+

but not GM2− T cells from patients with renal cell carcinoma. Im-
munocytometric analysis showed that significantly increased ganglio-
side GD2 and ganglioside GD3 rather than ganglioside GD1a were ob-
served in T cells of patients with increased apoptosis in the GD2+ and
GD3+ cells. Moreover, increasing evidence suggested that ganglioside
might play a prominent role in CKD patients with albuminuria.
Therefore, gangliosides might be exploited for novel therapeutic targets
for CKD patients.

In conclusion, abnormal lipid metabolism was intimately associated
with PPARγ, TRP channels and RAS signaling, which were deeply

involved in the activation of IκB/NF-κB and Keap1/Nrf2 pathways.
Gangliosides were first identified and might be promising therapeutic
targets for CKD patients with the different degree of albuminuria. Of
note, this is the first time that the association of plasma inflammation,
oxidative stress, Wnt/β-catenin and lipid metabolism has been revealed
in CKD patients with microalbuminuria and macroalbuminuria.

Transparency document

The Transparency document associated with this article can be
found, in online version.

Fig. 8. The expression of target genes of Wnt/β-catenin pathway in CKD patients with microalbuminuria and macroalbuminuria. (A) Immunohistochemical findings
of Twist, Snail1, PAI-1, MMP-7 and FSP1 antibody in the kidney of healthy controls, CKD patients with microalbuminuria and macroalbuminuria. Paraffin kidney
sections were used for immunohistochemical staining for Twist, Snail1, PAI-1, MMP-7 and FSP1. Immunohistochemical staining showed an expression of nuclear
Twist and Snail1 in proximal tubular epithelial cells (blue arrow) of kidney tissue from the CKD patients with microalbuminuria and macroalbuminuria. An
expression of PAI-1 and MMP-7 in proximal tubular epithelium (thin arrow) and glomerular (thick arrow) of kidney tissue from the CKD patients with micro-
albuminuria and macroalbuminuria. Immunohistochemical staining also showed an expression of FSP1 in renal tubulo-interstitium (red arrow) of kidney tissue from
the CKD patients with microalbuminuria and macroalbuminuria. (B) Quantitative analyses of target genes of Wnt/β-catenin in CKD patients with microalbuminuria
and macroalbuminuria. ⁎P < 0.05, ⁎⁎P < 0.01 compared with healthy controls; ##P < 0.01 compared with CKD patients with microalbuminuria. Pink
bar=20 μm; green bar =35 μm.
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