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A B S T R A C T

The full utilization of hemicellulose sugars (pentose and exose) present in lignocellulosic material, is required for
an efficient bio-based fuels and chemicals production. Two recombinant thermophilic enzymes, an endo-1,4-β-
mannanase from Dictyoglomus turgidum (DturCelB) and an α-galactosidase from Thermus thermophilus (TtGalA),
were assayed at 80 °C, to assess their heterosynergystic association on galactomannans degradation, particularly
abundant in hemicellulose. The enzymes were tested under various combinations simultaneously and sequen-
tially, in order to estimate the optimal conditions for the release of reducing sugars. The results showed that the
most efficient degree of synergy was obtained in simultaneous assay with a protein ratio of 25% of DturCelB and
75% of TtGalA, using Locust bean gum as substrate. On the other hand, the mechanism of action was demon-
strated through the sequential assays, i.e. when TtGalA acting as first to enhance the subsequent hydrolysis
performed by DturCelB. The synergistic association between the thermophilic enzymes herein described has an
high potential application to pre-hydrolyse the lignocellulosic biomasses right after the pretreatment, prior to
the conventional saccharification step.

1. Background

Lignocellulose is the most abundant available feedstock produced
every-day on the Earth and it is constituted by cellulose (35–50%),
hemicellulose (26–35%) and lignin (14–21%), as well as by other minor
components [1]. Lignin provides the structural integrity of the plant,
encapsulating the microfibrils of hemicellulose and cellulose, to with-
stand the herbivores and pathogens attacks. Hemicellulose is the second
most abundant biopolymer present in lignocellulosic-feedstocks [2].
Unlike cellulose, a linear homopolymer of b(1,4)-linked D-glucose re-
sidues, hemicellulose is a branched heteropolymer composed by pen-
toses (i.e. xylose and arabinose), hexoses (i.e. glucose, galactose,
mannose) and also by sugars in acidified form (glucuronic acid and
galacturonic acid) [3]. Mannans are the major source of secondary cell
wall found in hemicellulose fraction of conifers (softwood) and legu-
minosae. On the basis of their sugars components they are classified in:
mannans, glucomannans, galactomannans and galactoglucomannans
[4]. During the detrital food webs, the polysaccharides hydrolysis is
carried out by saprophytes and detritivores, as the natural process for
the deconstruction of biomasses [5]. Since lignocellulosic feedstock is
clean and available in large amount, the biomass is currently used to
produce value added-products such as bio-fuels and –chemicals [1,6].
In the industrial processes, the deconstruction is performed using

chemical and physical pretreatments upon which the lignin is dis-
arrayed [7]. The resulting polysaccharides (i.e. cellulose and hemi-
cellulose) are subsequently hydrolyzed by enzymatic mixture to pro-
duce fermentable sugars. This latter process, also named
saccharification, involves an array of (hemi)cellulases, auxiliary en-
zymes and proteins to obtain an effective hydrolysis [8].

In nature plant biomass degradation is accomplished by the complex
action of various glycosyl hydrolases (GH) enzymes. To achieve an ef-
ficient hydrolysis of galactoglucomannans, the presence of multiple
GHs such as β-glucosidases (EC 3.2.1.21), endo-mannanases (EC
3.2.1.78), mannosidases (EC 3.2.1.25) and α-galactosidases (EC
3.2.1.22), is needed [9]. Therefore, the optimization of enzymatic
mixtures to improve the conversion of biomasses into fermentable su-
gars is needed for biorefinery purposes. Nevertheless, a major issue in
this context is to set up the right reaction conditions to achieve a sy-
nergistic interaction among enzymes that act on the same complex
substrate. Moreover, enzymes belonging to diverse families can display
synergistic and/or antisynergistic interaction due to their own substrate
specificities. A synergistic association between two or more enzymes is
present when the degree of synergy (DS) is greater than 1.0 and
therefore produces a degradation yield greater than that obtained from
enzymes acting separately. Synergy among mannanolytic enzymes is
classified in two types: i) homosynergy between two main-chain
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enzymes or two side-chain enzymes; ii) heterosynergy between side-
and main-chain enzymes [4].

Previous studies showed that galactomannans could be effectively
degraded by the combined action of a main-chain-cleaving mannanase
and a side-chain-cleaving galactosidase compared to when mannanases
or galactosidases were used alone [10]. Since the pretreatment step is
performed at high temperature (90°–120 °C), the development of ther-
mophilic enzymatic mixtures which could operate at high temperature
is needed to reduce the whole process cost [11]. However, knowledge
about thermophilic enzymatic cocktails is scarce. Therefore, it is in-
teresting to study the synergistic action of enzymes derived from dif-
ferent “hot” sources that can be employed in biomasses hydrolysis right
after the pretreatment.

The main objective of this work has been to study the synergistic
effect of the thermophilic endo-1,4-β-mannanase (DturCelB) from
Dictyoglomus turgidum and α-1,6-galactosidase (TtGalA) from Thermus
thermophilus on galactomannan substrates from Locust bean gum, Carob
and Guar. D. turgidum, the hyperthermophilic gram-negative anaerobic
bacterium, was isolated from a hot spring in the Uzon Caldera, in Russia
and grows up to 80 °C [18], while T. thermophilus HB27, the thermo-
philic and aerobic gram-negative bacterium, was isolated from water at
a Japanese hot spring and shows optimal temperature of grow at 74 °C
[12].

2. Methods

2.1. Substrates

Locust bean gum was purchased from Sigma-Aldrich.
Galactomannans (Carob, Low viscosity and Guar, Medium viscosity)
were purchased from Megazyme.

2.2. Expression and purification of recombinant enzymes

Dtur_0671 gene, encoding DturCelB, was synthetically produced and
cloned into the NdeI/XhoI digested pET30b (+) vector to express pro-
tein in E. coli BL21 DE3 strain. The transformant cells, grown until
stationary phase, were induced by 0.5 mM IPTG for 18 h at 25 °C. The
protein was purified by two steps: a heat-treatment at 70 °C for 15min
and an affinity chromatography on a His-Trap column [18]. TTP0072
gene, encoding TtGalA, was amplified by PCR from T. thermophilus
HB27 genomic DNA and cloned into the NdeI/HindIII digested pMKE2
vector for the expression in T. thermophilus HB27:nar strain.The re-
combinant protein, bear a His-tag at their N-terminus, was purified by
two steps: an anionic exchange chromatography on a Hi-trap Q HP
column and an affinity chromatography on a His-Trap column [12].

2.3. Substrate specificity determination of DturCelB and TtGalA towards
galactomannans

DturCelB and TtGalA activities were determined using Locust bean
gum, Carob and Guar as polymeric substrates. The reaction mixtures
(1 mL) containing one of the purified enzymes (1 μg) were assayed
using 1% galactomannan substrates dissolved in 50mM citrate-phos-
phate buffer pH 6.0. The reaction was carried out at 80 °C for 30min
and the concentration of reducing ends was determined following the
Nelson-Somogyi (NS) method, using mannose as standard [13]. All
enzyme assays were performed in triplicate. One unit of enzyme ac-
tivity was defined as the amount of enzyme required to release 1 μmol
of product per min, under the above assay conditions.

2.4. DturCelB and TtGalA synergistic action

To evaluate the degree of synergy between DturCelB and TtGalA the
enzymes were tested simultaneously and sequentially using 1% of ga-
lactomannan substrates (Locust bean gum, Carob and Guar) dissolved

in 50mM citrate-phosphate buffer pH 6.0. For the simultaneous assay,
various ratios of DturCelB and TtGalA were tested (50% DturCelB–50%
TtGalA; 25% DturCelB–75% TtGalA; 75% DturCelB–25% TtGalA) for a
total amount of 2 μg. The assays were carried out as described above
through NS method.

For the sequential assay 1 μg of DturCelB or TtGalA was incubated at
80 °C for 30min in the reaction mixture described above. Afterwards,
the mixture was boiled for 10min to inactivate the first enzyme. After
ice-cooling, the second enzyme (1 μg) was added to the mixture and the
reaction was carried out under the same conditions (80 °C for 30min).
Reactions containing only one of the heat-inactivated enzyme were
used as a negative control. All the samples were analyzed for the con-
centration of reducing ends by NS method using mannose as standard.
All enzyme assays were run in triplicate.

2.5. Synergy studies

To investigate the interaction between two or more enzymes, sy-
nergism is calculated as ratio between the observed activity of the en-
zyme mixture and the theoretical sum of individual specific activity of
the same enzymes. The degree of synergy (DS), between DturCelB and
TtGalA, was determined by the following equation:

=

+

+DS Y
Y Y( )

1 2

1 2

where Y1+2 indicates the yield (μg) of reducing sugars achieved by the
two enzymes working simultaneously or sequentially, Y1 and Y2 in-
dicate the yields (μg) of reducing sugars achieved by each enzyme when
working separately.

3. Results and discussion

3.1. Determination of specific activity of DturCelB and TtGalA on different
galactomannans

The recombinant enzymes DturCelB and TtGalA were previously
characterized for their biochemical catalytic features [18]. In this study,
the hydrolytic endo-mannanase activity of DturCelB was assayed at
80 °C and pH 6.0 towards Locust bean gum (44.0 Umg−1), Carob
(40.3 Umg−1) and Guar (2.8 Umg−1) (Table 1).

The different catalytic efficiency can be explained by the increasing
number of galactose residues (Guar > Carob > Locust bean gum)
branching out from the linear mannan backbones and causing steric
hindrance to the enzymes (Fig. 1).

A similar behaviour was also demonstrated for Clostridium thermo-
cellum Man5A [14]. Therefore, one way to improve the DturCelB hy-
drolysis of galactomannans is to combine its catalytic activity with an
α-galactosidase acting on the branched glycosidic 1,6-α-bounds be-
tween galactose and mannose. As potential partner, it was chosen
TtGalA, an α-galactosidase from T. thermophilus performing its highest
catalytic activity at 90 °C and pH 6.0 on synthetic pNP-α-D-galacto-
pyranoside substrate (pNPG, Sigma) [12]. Assays conditions for the two
enzymes were set at 80 °C and pH 6.0 because TtGalA retained 98% of
its catalytic activity at 80 °C. In this work TtGalA was assayed towards
Locust bean gum (4.4 Umg−1), Carob (1.4 Umg−1) and Guar
(0.33 Umg−1) galactomannans and displayed a specific activity lower

Table 1
Specific activity of DturCelB and TtGalA on different galactomannan substrates.

Substrate DturCelB Specific activity
(Umg−1)

TtGalA Specific activity
(Umg−1)

Locust bean gum (G/
M:1/4)

44.0 4.4

Carob (G/M:1/3.5) 40.3 1.4
Guar (G/M:1/2) 2.8 0.33
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than that detected on pNPG substrate (338 Umg−1). The different
specific activities are in agreement with the preference of TtGalA to-
wards galactose-oligosaccharides over -polysaccharides, as for other
GH36 members [10]. Nevertheless TtGalA catalytic activity on poly-
meric substrates is not negligible (Table 1), indeed it is higher if com-
pared to that of a GH36 AglC (1.0 Umg−1) from Aspergillus niger and
very similar to that of a GH27 Aga27A from Cyamopsis tetragonolobus
(3.7 Umg−1) [10]. Therefore, the synergistic association between these
two thermophilic enzymes might be functional to improve the hydro-
lysis of hemicellulose as already demonstrated in other systems [4,10].

3.2. Heterosynergistic studies of TtGalA and DturCelB towards three
different galactomannans

The aim of this study was centred on the setting up of reaction
conditions suitable to achieve heterosynergy between TtGalA and
DturCelB to ameliorate the galactomannans hydrolysis. The synergistic
interaction between the recombinant enzymes was assessed through the
quantification of the reducing sugars released during the degradation of
the three galactomannan substrates. These contained a different ratio of
galactose- versus mannose- residues to assess how the activity and sy-
nergistic interactions of TtGalA and DturCelB were influenced by the
extent of galactose substitution on the mannan backbone (Fig. 1). In
simultaneous assays the enzymes were added to the reaction mixture at
the same time, varying their relative ratio (50% TtGalA–50% DturCelB;
75% DturCelB–25% TtGalA and 25% DturCelB–75% TtGalA), while in
sequential assays it was used the same ratio (50% DturCelB–50%
TtGalA).

Locust bean gum is the most important galactomannan used as
stabilizing agent in food and non-food industries [15], it is purified
from endosperm of carob tree seeds [16] and is the lowest galactose
containing polymer (G/M: 1/4) among the substrates tested (Fig. 1). All

the conditions led to an increase of the release of reducing sugars
compared to that achieved by the two enzymes alone (Fig. 2). Using this
substrate, the enzymes exhibited synergism under all combinations
with a DS of 1.8, 1.3 and 1.1 using a ratio of 25% DturCelB–75%
TtGalA, 75% DturCelB–25% TtGalA and 50% DturCelB–50% TtGalA,
respectively (Fig. 2A). To get further insight into the observed sy-
nergistic action, we performed sequential assays. When DturCelB was
added as first, the DS= 1.1 (Fig. 2B) turned out to be identical to that
obtained with simultaneous assays (Fig. 2A). Conversely, the DS raised
up to 1.4 when TtGalA was added as first (Fig. 2B). These results de-
monstrate that TtGalA significantly supported DturCelB activity by re-
moving galactose branches on the polymer that would have sterically
hindered DturCelB.

Locust bean gum and Carob are both isolated from Ceratonia siliquia.
These galactomannan polymers display different chemical and rheolo-
gical properties depending on their geographic origin [17]. The re-
ported G/M ratio of Carob is slightly lower (1/3.5) than Locust bean
gum (Fig. 1) and our data indicate that the specific activity of TtGalA on
Carob is 30% of that on Locust bean gum (Table 1). Therefore, we re-
solved to perform a comparative synergy study of the two thermophilic
enzymes also using this substrate. In fact, when DturCelB and TtGalA
were assayed in combination of 50%–50% no synergy was exhibited
(DS=0.8) (Fig. 3A). This result might be explainable with a complex
nature of the Carob substrate (purity degree, extent of galactose rami-
fications) that renders the binding of TtGalA not completely productive,
thus in turn inhibiting the DturCelB hydrolysis when they are present in
the enzymatic mixture in a similar amount. However, a similar degree
of synergy (DS=1.4 on Carob vs DS= 1.3 on Locust bean gum) was
achieved when the enzymes were assayed simultaneously, with a pro-
tein ratio of DturCelB to TtGalA 75%–25% and the total amount of re-
ducing sugars released was also comparable (467 μg vs 454 μg) (Figs.
Figure 3A and Figure 2A). Yet, the highest DS obtained on Carob

Fig. 1. Graphical representation of the galactomannans used in
this study: Locust bean gum, Carob and Guar.

Fig. 2. Simultaneous (A) and sequential (B) assays of TtGalA and
DturCelB using 1% Locust bean gum. Various combinations of
recombinant enzymes were tested and protein ratio was expressed
as relative percentage. The degree of synergy is highlighted with
an asterisk. Values were presented as mean values ± S.D. (n=3).
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(DS= 1.4) was indeed lower than that measured on Locust bean gum
(Fig. 2A, DS=1.8), indicating that the two enzymes performed their
synergistic catalytic activity, less efficiently on this substrate (Figs.
Figure 2A and Figure 1A). This result can be only explained by the low
specific activity of TtGalA on Carob, since the affinity of DturCelB on
Carob and Locust bean gum is almost the same (Table 1). Our data
highlighted the role of TtGalA, that plays a major function in enhancing
the DturCelB activity, improving the linear mannan chain accessibility.
Accordingly, results from the sequential assay show clearly that also on
Carob the synergistic association, between the two enzymes, benefits
(DS= 1.5) by the previous action of the debranching enzyme.

The Guar backbone is composed of a linear chain of mannose re-
sidues (Fig. 1), where the galactose residues branch at every second
mannose residue. The specific activity of DturCelB and TtGalA on Guar
was lower than that obtained on Locust bean gum (Table 1), due to the
higher extent of galactose substitutions (Fig. 1). Accordingly, the total
yield of reducing sugars obtained on this substrate was much lower
than that on Locust bean gum and Carob (Fig. 2–4). Nevertheless, in
simultaneous assays our data clearly indicate that the synergistic in-
teraction between the two enzymes occurred also using Guar as sub-
strate (i.e. DS≥ 1.0) under all the conditions tested (Fig. 4A). The se-
quential assays further confirmed that the prior action of TtGalA by
removing galactose substituents, increases the release of reducing sugar
by DturCelB (Fig. 4).

4. Conclusions

One of the major factor contributing to increase the yield of the
efficient lignocellulose biomass conversion yield, resides in under-
standing how different enzymes may cooperate to degrade complex
polymeric substrates. Both the new isolated thermophilic DturCelB and
TtGalA enzymes performed a better catalytic activity working in sy-
nergy rather than alone, preferring the low galactose-polysaccharides

than the highly galactose decorated polymers used in this study. In fact,
a good degree of heterosynergy relationship with each other on ga-
lactomannan degradation was clearly demonstrated on all the substrate
tested at high temperature (80 °C) and in a relatively short time
(30min) compared to other studies [10]. Based on the sequential as-
says, the synergy was a result of TtGalA activity, which removes ga-
lactose branches from the galactomannan polymers, then improving the
accessibility of the linear mannan backbone to DturCelB. Our finding
also revealed that the 25%–75% ratio of DturCelB and TtGalA is the best
combination to attain a compromise between a good degree of synergy
and the highest yield of reducing sugars released. The strength point of
this enzymatic cocktail resides in the thermophilicity and thermo-
stability of both the TtGalA and DturCelB enzymes [12], that allows to
foresee their employment during the gradual cooling right after the
pretreatment of lignocellulosic material. The addition of thermophilic
enzymes earlier in this step would result in time savings and improved
conversion efficiency of the whole process, compared to the use of
mesophilic thermophilic enzyme cocktails.
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Values were presented as mean values ± S.D. (n=3).
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