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Semi-direct tree reconstruction using terrestrial LiDAR

point cloud data

Brian N. Baileya,∗, Miguel H. Ochoaa

aDepartment of Plant Sciences, University of California, Davis, Davis, CA USA

Abstract

A new method was developed for reconstructing the geometric structure of

large plants such as trees at the leaf-scale by utilizing terrestrial LiDAR data.

The primary goal of the work was to develop a feasible means for accurately

and rapidly reconstructing or “digitizing” entire trees in order to specify the

position, orientation, and size of every leaf in digital tree models that provide

geometric inputs for high-resolution biophysical models or analyses. As with any

optical measurement technique, a primary challenge is accurately accounting for

plant matter that is occluded from view of the sensor. The present method is

termed “semi-direct” because it uses a triangulation procedure to approximately

directly reconstruct as many leaves as possible that are in view of the scanner.

For plant matter obstructed from view, a statistical backfilling procedure was

used to add additional leaves such that the three-dimensional distribution of leaf

area and orientation of the reconstructed plant matched that of the actual plant

on average. In a best case scenario such as when leaf density is low, nearly all

leaf area is directly reconstructed from the scan and the branch and clumping

structure is preserved within the reconstruction. In the worst case scenario such

as when the leaf density is very high and nearly all leaves are occluded from

view of the scanner, only a small fraction of leaves can be directly reconstructed,
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but at a minimum the distribution of leaf area and the leaf angle distribution

across the reconstructed plant will be consistent with that of the actual plant.

Unlike many other approaches, the present method does not rely on the woody

matter of the plant to provide a skeleton for reconstruction, and can be used in

dense plants where little woody matter is visible from the scanner.

Keywords: Leaf angle distribution function, Plant architecture, Plant
reconstruction, Terrestrial LiDAR

1. Introduction

Leaf-level measurements of many biophysical processes (e.g., exchange of1

water vapor, CO2, and heat) have become routine, yet scaling these processes2

up to entire plants and canopies remains a considerable challenge, as performing3

direct measurements of biophysical processes at these scales if often not possible4

(Amthor, 1994; Ehleringer, 2000). Instead, our understanding of whole-plant5

and -canopy biophysical processes typically relies on models that attempt to6

aggregate information originating at the leaf scale into plant communities. Such7

models make simplifying assumptions that focus on bulk canopy behavior, such8

as “big leaf” or “multilayer” models (Sinclair et al., 1976; Amthor, 1994; DePury9

and Farquhar, 1997). Given the scale of canopy representation in these models,10

inputs are also typically bulk values specified at or near the canopy scale.11

With the continued exponential increase in computational performance (Moore,12

1965), we are now in a position where direct scaling from leaves to canopies (i.e.,13

representing every leaf in a canopy) is within reach. High-resolution, three-14

dimensional models are becoming increasingly common, and are able to repre-15

sent an incredibly wide range of scales (e.g., Bailey et al., 2014, 2016; Bailey,16

2018). The next generation of biophysical models are likely to shed new light on17

how processes at various scales interact to determine plant behavior over plant18

communities.19
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A considerable challenge in the utilization of such models is the accurate20

specification of geometric inputs. As the goal of these models is to explicitly21

represent heterogeneity at various scales and its impact on canopy-level pro-22

cesses, we must be able to accurately measure and input this geometry into the23

models (Vos et al., 2010; Sarlikioti et al., 2011). Manual measurement of canopy24

geometry is far too time consuming to be useful at providing canopy-level inputs25

at the leaf scale.26

Remote sensing techniques have provided a means for rapidly measuring27

and recording the full three-dimensional geometry of plants for use in computer28

models (i.e., “digitizing”). These techniques make a compromise between level29

of detail and the size of system that can be represented. Various methods are30

available to extract plant-scale structural parameters such as crown diameter,31

height, etc. from remote measurements (e.g., Morsdorf et al., 2004; Henning32

and Radtke, 2006; Rosell et al., 2009; Yang et al., 2013). The clear advantage of33

these approaches is that they can be used to rapidly measure large spatial scales,34

but they do not provide detailed information at the sub-plant scale that may35

be needed for high-resolution modeling. At the opposite end of the spectrum,36

methods are also available to measure the full plant structure at the leaf scale.37

Early work by Sinoquet et al. (1998) used an electromagnetic instrument to di-38

rectly record the position and orientation of individual foliage elements, which is39

limited by the need to manually place the instrument next to each leaf. Previous40

workers have also been relatively successful in using photographic methods to41

directly reconstruct small plants where nearly all foliage is in direct view of cam-42

eras placed on the perimeter of the plant (e.g., Delagrange and Rochon, 2011;43

Li et al., 2013; Pound et al., 2014). However, these methods cannot be used44

directly with large plants where a significant portion of plant area is occluded45

from view.46
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For large plants such as trees, the problem of measuring the full vegetative47

structure is complicated by the sheer size of the plants, number of leaves, and48

potentially large fraction of leaves occluded from view of a remote sensor. If only49

the woody structure of the tree is of interest, the occlusion problem becomes50

much less substantial. Numerous methods have been developed based on laser51

scanning that use the woody structure of the plant as a road map through laser52

scanning point clouds (e.g., Binney and Sukhatme, 2009; Xu et al., 2007; Côté53

et al., 2009; Raumonen et al., 2013; Hackenberg et al., 2015; Mèndez et al., 2016).54

Starting at the trunk, branches can be traced throughout the tree using point55

connectivity information, which can then be used to generate a reconstruction56

of the woody tree structure.57

If reconstructions of trees at the leaf scale are desired, the occlusion problem58

must be somehow confronted. Often this involves measurement of the over-59

all tree structure and making reasonable guesses as to where individual leaves60

should be placed. For example, Shlyakhter et al. (2001) used an aggregate ap-61

proach which utilized photographic methods to determine the general shape of62

tree crowns, and then used a structural model to create a simulated tree that63

fit within the measured crown shape. In cases where vegetation is sparse or64

leaf-off measurements are available, a reconstruction of the woody structure can65

be used as a “skeleton” to guide the placement of individual leaves (e.g., Xu66

et al., 2007; Côté et al., 2009, 2011). Delagrange and Rochon (2011) demon-67

strated the possibility of adding leaves to the branch skeleton using allometric68

relations, but this method relies on empirical relations that may or may not be69

generally applicable.70

Evaluations of plant reconstruction methods are most commonly performed71

using visual comparisons, as it is difficult to quantitatively evaluate their ac-72

curacy given that measurements of the true plant structure is typically not73
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available. While many reconstruction methods produce tree models that ap-74

pear visually reasonable, it is unclear whether the reconstructions are accurate75

enough for use in detailed model simulations. Côté et al. (2009) noted that76

reconstructed plants should be “radiatively consistent” with the actual plants,77

meaning that radiative transport through the reconstructed plants should be ap-78

proximately equivalent to that of the actual plants. Côté et al. (2009) were able79

to produce tree reconstructions for Pinus species that demonstrated radiative80

consistency based on measurements of radiation reflection and transmission.81

In this work, we develop a “semi-direct” method that uses terrestrial LiDAR82

data to reconstruct large plants such as trees that match the three-dimensional83

leaf area and angle distribution of the actual plant being reconstructed. The84

method is semi-direct in that it directly reconstructs the majority of leaves that85

are in direct view of the LiDAR scanner. The method then uses a statistical86

backfilling approach to recreate occluded leaves in a manner that ensures the87

overall leaf area and angle distribution matches that of the actual plant. Since88

the reconstructed leaf area and angle distributions are consistent with the actual89

trees, the reconstructions are applicable for use in model simulations of processes90

such as light interception.91

2. Method description92

2.1. Terrestrial LiDAR scanning93

Typical terrestrial LiDAR scanning instruments are compact units that can94

be mounted on a tripod, and are used to measure the distance to surrounding95

objects. The instrument emits a large number of concentrated pulses or beams96

of radiation into the surrounding spherical space. In the event that a beam97

intersects solid matter, some fraction of the radiation beam is scattered back to98

the instrument. Using various methods such as time of flight, the instrument99
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can calculate and record the distance to beam-object intersection points. The100

direction in which the pulse was sent is also known by the instrument, which101

allows calculation of the Cartesian (x, y, z) position of beam-object intersection102

points (Fig. 1a). By emitting millions of beams into the surrounding space, the103

instrument effectively maps the three-dimensional geometry surrounding the104

scan location.105

Terrestrial LiDAR instruments generally do not emit beams at random,106

rather they perform a systematic scan of the surrounding spherical space. Most107

commonly, instruments discretely scan a certain range of zenithal angles while108

continuously rotating between a range of discrete azimuthal angles (Fig. 1b).109

This creates an approximately uniform two-dimensional grid of points in spher-110

ical space. The scan resolution is given by the number of discrete scan zenithal111

directions Nθ (# rows), and the number of discrete scan azimuthal directions112

Nϕ (#columns), with Nθ ×Nϕ being the total number of points in the scan.113

2.2. Scan point triangulation114

The basic idea behind the plant reconstruction methodology presented in115

this work is to connect adjacent scan hit points to form triangles, then identify116

continuous triangle groups that reconstruct individual leaves. The triangulation117

methodology is described in detail by Bailey and Mahaffee (2017b), and a brief118

description is repeated below.119

The triangulation algorithm first seeks to construct a two-dimensional grid120

of scan points in spherical space. This grid consists of a (θ, ϕ) coordinate for121

each ray sent by the scanner (Fig. 1). This creates a two-dimensional plane of122

points that can be triangulated (Fig. 2). Bailey and Mahaffee (2017b) suggested123

an efficient triangulation algorithm that can be used when the indices of the scan124

points in the 2D spherical grid are recorded by the scanner. This allows for the125

construction of a “scan table” in which rows correspond to each scan zenithal126
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Figure 1: Schematic depiction of terrestrial LIDAR scanning. (a) scanning pattern in spherical
coordinates, illustrating the range of scan zenithal angles (θmin through θmax) and azimuthal
angles (ϕmin through ϕmax). (b) Cartesian coordinate (x, y, z)hit of hit point, and corre-
sponding spherical coordinate (θ, ϕ).
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angle, and columns correspond to each scan azimuthal angle. Given this table,127

it is relatively straightforward to form triangles between adjacent points in the128

uniform grid since scan point connectivity is already known. For instruments129

that do not directly record this information (such as the instrument used in this130

work), standard 2D Delaunay triangulation can be used (Press et al., 2007),131

which has the trade-off that it requires more computational effort since point132

connectivity is not initially known. Triangles exceeding a size or aspect ratio133

threshold are rejected to prevent erroneous triangles from being formed, such as134

triangles that connect adjacent leaves. Since each triangle vertex corresponds135

to a laser hit point, the (x, y, z) coordinates of the vertices are also known.136

The resulting triangulation gives a set of triangles that follow the surfaces of137

individual leaves that are in view of the scanner.138

2.3. Direct leaf surface reconstruction139

Neighboring triangles are connected to form continuous groups, where each140

group presumably corresponds to all or a portion of an individual leaf’s sur-141

face. To accomplish this, an algorithm is applied that is similar to a traditional142

“flood-fill” algorithm (e.g., Lee, 1987), except that it connects adjacent triangles143

instead of adjacent pixels (Fig. 2). For each triangle, any neighboring connected144

triangles are identified, where a “connected” triangle is defined as a triangle that145

shares two vertices with the current triangle being examined. By requiring that146

two vertices are shared rather than one, this reduces the likelihood that adjacent147

leaves or branches will inadvertently be merged into a common group. The al-148

gorithm begins by iterating over each triangle in the triangulated set. The first149

triangle is assigned a fill group identifier of “0”. For each triangle, any neighbor-150

ing connected triangles are determined. If any connected triangles exist, each151

connected triangle is added to the current fill group by assigning it the current152

group identifier, and the neighbors of each connected triangle are examined in153
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a recursive manner. The recursion halts when there are no connected triangles154

that have not yet been added to the current fill group. In this case, the current155

fill group has been completed, and the fill group identifier is increased by one.156

The original iteration over triangles proceeds, where triangles that have already157

been assigned to a fill group are skipped. Once the iteration is completed, all158

possible triangle groups have been formed (Fig. 2).159

Triangle groups are filtered by their area to exclude very small or large160

groups. If only one to a few small triangles are identified in a single group, it is161

typically not desirable to allocate an entire leaf to this group. These small groups162

are filtered by specifying a threshold value for the minimum group surface area,163

below which groups are rejected. Similarly a threshold value is specified for164

the maximum group surface area, which is typically set to be much larger than165

the expected area of a single leaf. The primary purpose of filtering large leaf166

groups is to remove outliers when calculating the characteristic leaf dimension167

(see below).168

Each continuous fill group is then replaced by a “prototype” leaf. Although169

there are many ways a prototype leaf could be specified (e.g., a rectangle, a tri-170

angular mesh), this work used a PNG image to define the leaf shape (Fig. 3). A171

leaf is specified by a planar rectangle, but a portion of that rectangle is removed172

according to the transparency channel of the PNG image (Bailey, 2018). The173

length and width of the prototype are denoted by l and w, and the fraction of174

the total rectangular area that is not transparent is the solid fraction s (Fig. 3).175

There are three quantities that must be specified for each leaf: its (x, y, z)176

position, size, and orientation. The position and average orientation are readily177

available from the triangulation; the leaf is placed at the location of the triangle178

group centroid and oriented in the direction of the average triangle group nor-179

mal. However, the size is more difficult to determine, because only a relatively180
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Figure 2: “Flood-fill” grouping of triangles. A two-dimensional grid of scan points in θ − ϕ
space is shown, with “misses” denoted by open circles and “hits” denoted by filled circles.
Connected triangle groups are identified and assigned a group identifier. In the example
shown, four continuous triangle groups are formed, which are given identifiers of 0, 1, 2, and
3.
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few number of leaves on the outside of the plant in full view of the scanner181

will be completely reconstructed by the triangulation. Most of the leaves are182

occluded to some degree and will only be partially triangulated, and thus the183

area of the fill groups will be less than the actual leaf area. One could perform184

manual measurements of leaf size using a ruler to obtain representative values185

for leaf sizes. The drawback of this method, aside from having to perform man-186

ual measurements, is that leaf size can change with position in the plant and187

thus specifying a single size value may not be representative. The method used188

here involved considering only the largest triangulated groups (e.g., 10 largest189

groups), and taking the characteristic leaf length L to be the average of the190

square root of the group areas. The spatial distribution of leaf size can be ap-191

proximately represented by dividing the plant into sub-volumes, and the largest192

triangulation groups in each volume can be used to determine the representative193

leaf size for that particular volume. In order to specify the dimension of a leaf194

from the characteristic leaf size L, we must specify a leaf aspect ratio, which195

is the ratio r of the length of the leaf parallel (l) to perpendicular (w) to the196

midrib. Given that L ≡
√
a =

√
wls and r ≡ l/w, the leaf length l is equal to197

L
√

r/s, and w = l/r.198

2.4. Backfilling occluded leaves199

Direct leaf reconstruction based on the triangulation only represents a subset200

of the total leaf area. The leaf area that is not triangulated because it is occluded201

or because the triangulation failed must be represented through other means.202

In the present method, the remaining leaf area is reconstructed by backfilling203

leaves until the leaf area density of the reconstructed plant matches that of the204

actual plant. The plant is discretized into a grid of rectangular sub-volumes205

called voxels (see Bailey and Mahaffee, 2017a), and LiDAR points are grouped206

by the voxel in which they reside. The method described in detail by Bailey and207

11



Figure 3: Example of leaf prototype image. The solid portion of the image is colored, while
the checkered portion of the image is considered transparent. The area of the solid portion is
a, and the area of the total image is A = wl, where w and l are respectively the width and
length of the prototype. The fraction of the total image that is solid is s = a/A.
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Mahaffee (2017a) can then be used to calculate the leaf area density and leaf208

angle distribution of the actual plant for each voxel using the LiDAR scan data.209

More precisely, it should be noted that the method actually measures the area210

density of all plant matter including branches. This method gives a relatively211

accurate measure of the total surface area of plant matter within each voxel212

for the actual plant. It is also straightforward to use the directly reconstructed213

leaves from Sect. 2.3 to determine the amount of leaf area in each voxel resulting214

from the direct reconstruction, as the area of each reconstructed leaf is known.215

The difference between the total and directly reconstructed area is the amount216

of leaf area that remains to be added through backfilling.217

The backfilling process begins by randomly choosing a directly reconstructed218

leaf within a given voxel, which is duplicated and placed at a random, uniformly219

distributed position within the voxel. This process continues for each voxel un-220

til the reconstructed leaf area in the voxel matches the “actual” leaf area. It221

is possible that too much leaf area could have been added during the direct222

reconstruction, in which case leaf area can be removed by randomly deleting223

leaves which we term “thinning”. Based on this process, the resulting recon-224

structed leaf area and leaf angle distribution should be consistent with that of225

the actual plant for each voxel. This method is dispersive in that it tends to226

spread out leaves in space. The larger the fraction of leaves that are directly227

reconstructed, the less dispersive the reconstruction method becomes, and the228

better the reconstructed tree will match the structure of the actual tree.229

2.5. Woody plant material230

Several methods have been suggested by previous authors for reconstruction231

of woody plant material (e.g., Xu et al., 2007; Binney and Sukhatme, 2009;232

Mèndez et al., 2016; Li et al., 2016). In this work, we focus only on recon-233

structing leaves within the crown volume, and present a simple method for234

13



reconstructing the main trunk similar to that of Xu et al. (2007). The primary235

purpose of representing the main trunk is simply to provide a visual reference for236

qualitative evaluation of the reconstruction. A voxel is specified that contains237

the portion of trunk to be reconstructed. Hit points within this voxel are trian-238

gulated, and the flood-fill algorithm of Sect. 2.3 is applied. The largest fill group239

is identified, which is assumed to correspond to the trunk. This produces a tri-240

angular mesh that approximately reconstructs the portion of the trunk visible241

from the scanner.242

It should also be noted that it is possible that the reconstruction algorithm243

for leaves could inadvertently identify branches as a leaf group. Rather than244

attempting to filter out these relatively rare instances, the algorithm is simply245

applied in the same way as for leaves, and it is assumed that a reconstructed246

branch is a reasonable location to place a leaf. This work focuses on trees247

in which the (visible) leaf area is much larger than the woody area. For trees248

where the woody area is substantial compared to the leaf area, LiDAR hit points249

corresponding to woody material could be separated within the scan (Béland250

et al., 2014), and a branch reconstruction algorithm could be applied separate251

from the leaf reconstruction method presented in this work.252

2.6. Multiple scan positions253

To reconstruct an entire tree, scans from multiple locations surrounding the254

tree are typically required and must be combined. Generally, the the instrumen-255

tation on-board the scanner for measuring geographic position is not accurate256

enough to be used to merge multiple scans (it provides only an estimate). Stan-257

dard methods are available to register multiple scans to a common global coor-258

dinate system, such as the iterative closest point (ICP) method (Zhang, 1994),259

or methods that use reflectors, checkerboards, spheres, or other common targets260

placed within the scan. Many instruments also come with software developed261
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by the manufacturer that use proprietary algorithms.262

The method for calculating the leaf area contained within each voxel (Bailey263

and Mahaffee, 2017a) does not distinguish between different scan positions, thus264

aggregating multiple scans is straightforward. For any given ray direction, the265

probability that a ray intersects vegetation, the leaf normal vector, and path266

length through the voxel are simply added to running totals for all scans. The267

totals for all scan points from all scan locations are used along with Beer’s law268

to solve for leaf area density within the voxel (Bailey and Mahaffee, 2017a). For269

the leaf reconstruction procedure, the algorithm is applied on a scan-by-scan270

basis, and reconstructed leaves from each scan are simply aggregated together271

to form the reconstructed plant.272

3. Evaluation of method273

3.1. Data collection and processing details274

Scanning data was collected for a 5 m tall Emerald Sunshine Elm (Ul-275

mus propinqua) located in Davis, California USA to demonstrate application276

of the method and evaluate its performance. The tree was scanned using a full-277

waveform Riegl VZ-1000 terrestrial LiDAR scanner (RIEGL Laser Measurement278

Systems GmbH; Horn, Austria). The scanner sends concentrated beams of radi-279

ation with a wavelength of 1550 nm in a uniformly gridded pattern in spherical280

space, covering a range from 30◦-130◦ in the zenithal direction and 0-360◦ in281

the azimuthal direction. The maximum scan resolution is about 41,000×150,000282

points in the zenithal×azimuthal directions. The beam diameter as it leaves the283

instrument is approximately 7 mm, which diverges at an angle of approximately284

0.3 mrad, meaning that at 10 m range the beam diameter is roughly 8.5 mm.285

The instrument can scan up to 122,000 points per second, with a range from286

2.5 m up to approximately 350-450 m at this scanning rate. The full-waveform287
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LiDAR instrument used can record multiple hit points per pulse, but the point288

cloud was filtered to consider only the closest hit per pulse. The instrument was289

equipped with an on-board digital camera (Nikon D810 36 Mega Pixel) that was290

used to assign RGB color values to each scan point and obtain images for visual291

comparison with reconstructions.292

Four scans were performed at equally spaced intervals surrounding the tree,293

which were automatically registered to a common coordinate system using294

Riegl’s proprietary RiSCAN Pro software. The scanner was positioned on a295

tripod approximately 1.25 m above the ground, and approximately 5.5 m from296

the trunk of the tree. This distance was chosen because it was as close as pos-297

sible to the tree such that the entire tree was in view of the scanner and digital298

camera. A modest scan resolution of 2500×4500 points (zenith×azimuth) was299

chosen. At 10 m range, this meant that adjacent points on a surface orthogonal300

to the beam direction were separated by roughly 3.5-7 mm and 7-14 mm in301

the zenithal and azimuthal directions, respectively, depending on beam zenithal302

angle. Given the chosen resolution, the scans took roughly 2 minutes to com-303

plete, with an additional 2-3 minutes for GPS location and collection of digital304

photographs. Scans were performed under very low wind speed conditions to305

minimize leaf disturbances. The above scanning configuration worked well for306

the particular application of interest, but in general configurations are expected307

to be application-dependent. Since point density effectively decreases with dis-308

tance, trees that are larger or further away will require a higher scanning density.309

Additionally, very large or dense trees could require more scans, potentially at310

multiple heights to ensure that all portions of the tree are in view of the scanner.311

Additionally, the size of 40 random leaves were measured to evaluate the312

performance of the method for determining the leaf dimensions from the LiDAR313

data. The lengths of the leaves parallel and perpendicular to the midrib were314
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measured and recorded for each of the 40 leaves. Admittedly, a robust sampling315

strategy was not used, and only leaves within reach of the ground were measured.316

This is because only a rough estimate of leaf size was desired in order to assess317

whether results of the LiDAR method were at least reasonable. Alternatively,318

a more robust quantification of errors in leaf dimension is presented in Sect. 4.3319

using synthetic data.320

For processing the data, a uniformly spaced 3D grid of voxels was overlaid321

on the tree, within which leaf area was calculated using the method described322

above and by Bailey and Mahaffee (2017a). The tree crown was divided into323

a 10×10×10 grid of rectangular voxels, each of size 0.5×0.5×0.4 m3. In the324

triangulation methodology, triangles were rejected if the length of any of their325

sides exceeded 5 cm, or if their aspect ratio was greater than 10. In the flood-fill326

algorithm, triangle groups were rejected if their total area was less than 1 cm2
327

or greater than 200 cm2, which were chosen because they are much smaller or328

larger than the expected area of a leaf. The maximum leaf area threshold is329

relatively easy to specify since it is straightforward to estimate the maximum330

expected leaf area. Understanding the minimum leaf area threshold is slightly331

less straightforward. It may be undesirable to specify a minimum area threshold332

that is too small because we typically want at least a few connected triangles333

for each leaf in order to have confidence that the triangle group uniquely cor-334

responds to a leaf. We recommend a minimum threshold that is roughly an335

order of magnitude smaller than the maximum area threshold. However, we336

varied the minimum area threshold between 0.1 and 50 cm2 and found very337

little impact on the resulting tree reconstructions. Using tighter area thresholds338

generally results in slightly less directly reconstructed leaf area, but the overall339

distribution of leaf area and orientation remains the same.340
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3.2. Generation of synthetic scanning data341

Quantitative evaluation of LiDAR data processing methods is extremely dif-342

ficult when applied to large, dense trees, since there is typically no “gold stan-343

dard” measurement against which to compare. Before proceeding to the appli-344

cation of the method under field conditions, an alternative approach is presented345

that uses simulated or “synthetic” LiDAR data in which the exact vegetation346

structure is known (see also Côté et al., 2009; Mèndez et al., 2013; Raumo-347

nen et al., 2013; Bailey and Mahaffee, 2017a,b). This approach was adopted348

to test the plant reconstruction method’s ability to reproduce the distribution349

of leaf area, orientation, and characteristic size. Admittedly, this method also350

has its drawbacks, namely that it is for an idealized case. Thus, it clearly does351

not replace the need to perform some type of field validation, but represents a352

powerful tool for algorithm testing and evaluation.353

The synthetic LiDAR data was produced by performing a ray-tracing sim-354

ulation that mimics the actual LiDAR scanning procedure described above in355

Sect. 3.1. In short, a model or “reference” tree was created based on the archi-356

tectural model of Weber and Penn (1995), which specifies the position of the357

trunk, branches, and leaves. The trunk and branches were made up of a mesh of358

triangular elements, and the leaves were rectangular transparency masks with359

zero thickness (see Fig. 3) of size 6×20 cm2 and a solid fraction s = 0.62. The360

overall tree was roughly 7.5 m tall with a crown diameter of about 5.5 m, and361

had branches with a diameter ranging from 0.36 m at the trunk base to zero at362

the branch tips. The woody structure of the tree was made up of about 77,000363

triangles, and the tree had about 30,000 leaves. Leaf orientations were specified364

as described in Weber and Penn (1995), where leaves tend to rotate around the365

axial direction of the branches, which leads to interesting non-uniform angle366

distributions (see Figs. 8 and 9). Rays were launched from each of the four sim-367
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ulated scanner locations in a spherical pattern approximately matching that of368

an actual LiDAR scan. Ray-object intersection tests were performed to deter-369

mine the (x, y, z) location of the closest intersection point (Suffern, 2007). Note370

that for simplicity it was assumed that a ray had an infinitely small diameter371

that maintains 100% of the emitted intensity, which is not true for an actual372

LiDAR beam. The resulting field of (x, y, z) intersection points was taken to be373

an approximation of an actual LiDAR scan, and was used to run the reconstruc-374

tion methodology. For the simulated tree case, the voxel grid size was slightly375

different than that of the real tree because the tree crowns were slightly different376

sizes (but still consisted of 10×10×10 total voxels). For this case, the voxels377

had a size of 0.55×0.55×0.65 m3. On average, each voxel contained about 30378

leaves.379

3.3. Error quantification380

Errors between exact and simulated data were quantified using three stan-381

dard metrics: the index of agreement (Willmott, 1981, 1982), root-mean-squared382

error (RMSE), and mean bias. The index of agreement is defined as383

d = 1−

N
∑

i=1

(Mi − Li)
2

N
∑

i=1

(∣

∣

∣

∣

Mi −M

∣

∣

∣

∣

+

∣

∣

∣

∣

Li − L

∣

∣

∣

∣

)2
, (1)

where Mi and Li are respectively the ith estimated and exact values for each384

voxel, with N total values, and an overbar denotes an average over all voxels.385

The RMSE is defined as386

RMSE =

(

∑

i

(Li −Mi)
2

)1/2

, (2)
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and the mean bias is defined as387

bias =
1

N

N
∑

i=1

(Mi − Li) . (3)

4. Evaluation using synthetic scanning data388

4.1. Visualization389

The visualizations shown in Fig. 4 provide a means for performing a qualita-390

tive evaluation of the reconstruction method using the synthetic scanning data.391

Overall, the reconstruction (Fig. 4b,d) appears visually reasonable in compari-392

son with the reference tree (Fig. 4a,c), and reproduces the general tree structure.393

Clearly, the reconstruction does not produce an exact replica of the reference394

tree nor is it intended to do so. As mentioned previously, the reconstruction395

method is dispersive, meaning that it tends to spread out leaves and diminish396

structure. As a result, the reconstructed tree has lost some branch and clump-397

ing structure compared to the reference tree. The sub-voxel-scale structure that398

is present is primarily due to directly reconstructed leaves, which are shown in399

Fig. 5.400

4.2. Leaf area401

A more quantitative evaluation of the reconstruction methodology can be402

conducted by performing a voxel-by-voxel comparison of leaf area between the403

reconstructed and reference trees (Fig. 6a). Since the exact amount of leaf404

area in each voxel is known from the reference tree, this provides a means for405

quantifying the error in measured leaf area. It should be noted that this exercise406

is primarily a test of the leaf area measurement method of Bailey and Mahaffee407

(2017a), as this is what determines how much total leaf area should be produced408

within each voxel.409
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a b

c d

Figure 4: Visualization of (a,c) computer-generated or “reference” tree, and (b,d) reconstruc-
tion of the reference tree based on simulated LiDAR scanning data for two opposing viewing
angles.
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Figure 5: Visualization of the triangulated leaf groups used to determine the locations of
directly reconstructed leaves in the reconstruction shown in Fig. 4b,d for two opposing viewing
angles. Each independent fill group is given a unique color.
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The index of agreement between the reference and reconstructed total leaf410

area within the 1000 voxels was 94.7%, and the RMSE was 0.169 m2 (Fig. 6a),411

indicating reasonably good overall agreement. There is a notable amount of412

scatter in the LiDAR measurements, particularly as leaf area density becomes413

large. There is a small overall negative bias in the estimated leaf area (-0.056414

m2), meaning that the LiDAR methodology tended to slightly underestimate415

the actual amount of total leaf area. Above roughly 1 m2 of leaves per voxel416

the scatter becomes increasingly apparent and there is more consistent under417

prediction. This is likely because the LiDAR inversion methodology used to418

measure leaf area loses sensitivity as leaf area index along the beam path be-419

comes large (which occurs when either leaf area density or voxel size becomes420

large). The inversion for leaf area is based on the LiDAR’s measurement of the421

probability that a beam is intercepted by leaves within a given voxel, and as leaf422

area index along the beam’s path becomes large there is little difference in this423

probability as leaf area varies. There was no clear location in the tree where424

the relative error in leaf area tended to be largest, but the absolute error was425

largest wherever leaf area happened to be largest.426

Figure 7 indicates the amount of leaf area that was directly reconstructed on427

average. The majority of voxels required backfilling to reach the measured leaf428

area. Some voxels required that more than 100% of the directly reconstructed429

leaf area be removed via thinning to match the measured leaf area.430

4.3. Characteristic leaf dimension431

The ability of the reconstruction method to determine the characteristic leaf432

size within a given voxel was evaluated in Fig. 6b. The leaf dimension in the433

reference tree was constant at 8.7 cm. The reconstruction method slightly skews434

to the left of the actual leaf dimension, which is expected since the leaf is rarely435

100% triangulated. However, the majority of the reconstructed leaves are near436
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Figure 6: Comparison of exact values of leaf area (a) and leaf dimension (b) with values
obtained from the synthetic LiDAR reconstruction for each voxel. In (a), the diagonal line
denotes perfect agreement, and overall agreement is quantified by the index of agreement d,
the root-mean-squared error (RMSE), and the mean bias. In (b), the dashed vertical line
denotes the (constant) exact value, and bars give a histogram of predicted values over all
voxels. Note that the characteristic leaf dimension L was defined as

√
a, where a is the leaf

surface area.

Figure 7: Histogram of the fraction of leaf area within each voxel that was directly recon-
structed. Bars to the left of the vertical dotted line correspond to voxels that had less recon-
structed leaf area than actual leaf area, and thus required backfilling. Bars to the right of the
vertical dotted line correspond to voxels that had more reconstructed leaf area than actual
leaf area, and thus required thinning.
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the actual leaf dimension, and the actual mean bias is small at -4.8 mm. The437

overall RMSE for all reconstructed leaves was 2.0 cm.438

4.4. Leaf orientation439

To make it feasible to plot voxel leaf angle probability density functions440

(PDFs), the 10×10×10 voxel grid was downsampled to a 2×2×2 grid by simply441

aggregating neighboring voxels together. Probability density functions are plot-442

ted for the leaf inclination (Fig. 8) and azimuthal (Fig. 9) angles within each of443

these 8 total grid voxels. The exact PDFs from the reference tree are compared444

against PDFs for the reconstructed tree. PDFs were calculated following the445

procedure used in Bailey and Mahaffee (2017b), which can be consulted for fur-446

ther details. Overall, the reconstruction is able to qualitatively reproduce the447

general trends in the inclination and azimuthal angle PDFs. There are some448

deviations between the reference and reconstructed PDFs due to inadequate449

sampling of the true PDF, but overall agreement appears visually reasonable.450

A two sample Kolmogorov-Smirnov test was performed to quantitatively com-451

pare the exact and reconstructed leaf angle distributions for each voxel. The452

distributions for every voxel passed the Kolmogorov-Smirnov test at a 5% con-453

fidence interval for both the leaf inclination and azimuthal angle PDFs.454

5. Evaluation using field data455

5.1. Visualization456

Unfortunately, the type of data used to perform quantitative evaluation of457

the method is not readily available in the field. Therefore, agreement between458

the actual (field) and reconstructed trees was assessed based on visual compar-459

isons. In order to do so, the reconstructed trees must be visualized in a manner460

that is consistent with the way in which the scanner’s digital camera perceives461

the actual tree, which was not an issue in the previous section since identical462
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Figure 8: Probability density functions (PDFs) of leaf inclination angle (θL) with a discrete
bin size of 10◦ for eight different leaf zones. The solid black lines correspond to the inclination
angle of N total leaves from the tree reconstruction, and the dashed red lines correspond
to the inclination angle of Nr total leaves from the reference tree (exact). The leaf zones
were determined by downsampling the 10 × 10 × 10 voxel grid to a grid of 2 × 2 × 2 voxels.
The top and bottom rows of plots correspond to the top and bottom half of the tree crown,
respectively, and each column of plots corresponds to a different azimuthal zone of the tree.
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Figure 9: Probability density functions (PDFs) of leaf azimuthal angle (ϕL) with a discrete
bin size of 40◦ for eight different leaf zones. The solid black lines correspond to the azimuthal
angle of N total leaves from the tree reconstruction, and the dashed red lines correspond to
the azimuthal angle of Nr total leaves from the reference tree (exact). The leaf zones were
determined by downsampling the 10× 10× 10 voxel grid to a grid of 2× 2× 2 voxels. The top
and bottom rows of plots correspond to the top and bottom half of the tree crown, respectively,
and each column of plots corresponds to a different azimuthal zone of the tree.
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visualization techniques could be applied for the actual and reconstructed trees.463

In plotting geometric elements associated with the reconstructed trees, a stan-464

dard rectangular perspective transformation was applied to the geometry that465

approximately matched that of the camera lens (Shirley and Morley, 2003). The466

appropriate field of view for the camera lens was determined through trial-and-467

error by comparing visualizations of the LiDAR point cloud and photographs.468

As a result, there is some error in the visualization comparisons due to the469

camera model used to visualize the reconstructed trees.470

Figure 10 shows a visualization of the tree triangulation, with each fill group471

given a unique color. Based on visual inspection, the method appears to perform472

reasonably well in terms of identifying individual leaves. Because of the limited473

number of distinct colors in the pseudocolor mapping, it can be difficult in some474

instances to determine whether neighboring leaves are in the same fill group475

or are actually slightly different colors. There appear to be instances in which476

neighboring leaves that are very close together are inadvertently placed into the477

same triangle group. However, these occurrences seem to be relatively minimal478

and still offer reasonable guesses as to where leaves should be placed.479

A visualization of the resulting reconstruction as compared with actual pho-480

tograph and point cloud data is shown in Fig. 11. Qualitative comparison481

between the actual and reconstructed trees shows close agreement. Individual482

shoot structures are clearly replicated by the reconstruction. Many individ-483

ual leaves are closely represented by the reconstructed leaves. Figure 10 shows484

which leaves were a result of the direct reconstruction, and indicates that the485

algorithm is able to identify a large number of individual leaves. The majority486

of the grid voxels had less than 50% of the leaf area directly reconstructed,487

and very few required thinning (Fig. 12b). Leaf size prediction seemed to be488

reasonable (Fig. 12a) and resulted in a visually consistent tree reconstruction.489
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Figure 10: Visualization of the triangulated leaf groups used to determine the locations of
directly reconstructed leaves in the reconstruction shown in Fig. 11b,d (actual elm tree) for
two opposing viewpoints. Each independent leaf fill group is given a unique color.
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a b

c d

Figure 11: Visual comparison of actual elm tree photograph (a,c), and reconstructed elm tree
(b,d) for two opposing viewpoints.
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Figure 12: Histogram of characteristic leaf dimension in each grid voxel for the reconstructed
tree in Fig. 11b,d (a), and histogram of the fraction of directly reconstructed leaf area within
each grid voxel for the reconstructed tree in Fig. 11b,d (b).
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Figure 13: Flow chart illustrating plant reconstruction methodology.

6. Discussion and conclusions490

A semi-direct method was developed and tested that uses terrestrial LiDAR491

scanning data to reconstruct the architecture of large plants such as trees. A492

summary of the overall reconstruction algorithm is presented in Fig. 13. The493

method is termed semi-direct because it seeks to directly reconstruct as many494

leaves as possible that are in view of the scanner. The resulting direct recon-495

struction typically represents only a fraction of the total leaf area of the plant.496

To reconstruct hidden or occluded leaf area, a statistical backfilling procedure497

32



was employed in which leaves were added (or removed) such that the overall498

leaf area and leaf orientation distributions matched that of the actual plant.499

This was accomplished by using the methods developed by Bailey and Mahaffee500

(2017a) and Bailey and Mahaffee (2017b) to measure the leaf angle and leaf501

area distributions within a user-defined grid of voxels, then adding leaves such502

that they are consistent with these measured distributions. Thus, the resulting503

reconstruction is not an exact replica of the plant, rather it is a statistical re-504

construction that is consistent with the actual tree at the scale of the voxel grid505

at that particular instant in time.506

In contrast with other methods that rely on the tree branch structure as a507

skeleton for reconstruction (e.g., Xu et al., 2007; Côté et al., 2009), the present508

method does not utilize branch structure in the reconstruction of leaves. As a509

result, the method is applicable to dense plants where little to no wood area510

is visible from the scanner. The leaf density does, however, affect the quality511

of the reconstruction. For relatively sparse plants, a larger fraction of leaves512

are visible to the scanner, and thus the direct portion of the reconstruction513

represents a larger fraction of the total reconstructed area, which preserves more514

of the vegetation structure. For dense plants, much of the leaf area is occluded515

from view of the scanner, and therefore less leaf area is directly reconstructed.516

Regardless, the reconstructed leaf area and orientation is still consistent with517

the actual plant at the voxel scale to within the accuracy that the instrument518

can measure leaf area and orientation for each voxel. A drawback of the present519

method is that it is dispersive, meaning that it tends to diminish plant structure520

by spreading out leaves.521

Dense vegetation or large voxel sizes have the effect of diminishing the ac-522

curacy of the measurement of leaf area. This work suggested that voxels with523

denser leaves tended to have higher errors in predicted leaf area (Sect. 4.2).524
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Although not explored in detail, it appeared that for the case examined in this525

work, errors started to become significant when the voxels contained greater526

than about 1 m2 of leaves (note that these values may be case-specific). Future527

work is needed to more thoroughly examine how various factors affect errors in528

the leaf area measurement method, as such an exercise was beyond the scope of529

this work which focused primarily on the reconstruction technique. Small voxels530

have an additional advantage that they reduce the tendency of the method to531

disperse or spread out leaves. However, using too small of voxels could become532

problematic if there are not enough ray samples per voxel.533

Aside from the voxel size, there are relatively few tunable parameters in534

the reconstruction methodology itself. To utilize the triangulation algorithm,535

the user must specify the maximum allowable triangle dimension. This value536

is typically easy to specify, because results have shown little sensitivity over a537

wide range, as long as this dimension is much larger than the distance between538

adjacent hit points and much smaller than the typical distance between adjacent539

leaves (Bailey and Mahaffee, 2017b). The reconstruction algorithm requires540

the specification of threshold values for the minimum and maximum allowable541

surface area of a triangulated leaf “group”. Regardless of how these threshold542

values are specified, the reconstructed tree will still be consistent with the actual543

tree at the voxel scale in terms of the leaf area and orientation distributions.544

The results of this work have important implications in terms of the ability545

to provide accurate inputs to detailed biophysical models and analyses. Mod-546

els are now able to represent plant-related processes at the leaf scale (e.g., Vos547

et al., 2010; Sarlikioti et al., 2011; Bailey, 2018), and combining such mod-548

els with consistent, leaf-level plant reconstructions provides a means by which549

these processes can be scaled from leaf-to-tree-to-canopy without the need for550

often questionable assumptions of homogeneity. In addition to modeling-related551
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efforts, reconstruction data can aid in studies seeking to understand relations552

between plant structure and function (Meinzer et al., 2011). In order to perform553

terrestrial scans of entire canopies, scanning throughput needs to be increased.554

Scanners can be placed on easily movable or autonomous platforms to increase555

throughput (e.g., Kukko et al., 2012). However, it is important to note that556

the data processing methods utilized in this work require a stationary sensing557

platform for the duration of the scan. This also makes utilization of aerial plat-558

forms a challenge. At the scan resolution used in this work, scans take only559

a couple of minutes each (if color photographs are not also collected) and can560

potentially scan several surrounding trees simultaneously. Canopy-scale recon-561

struction of very large trees (>10 m) is likely to introduce additional challenges562

such as requiring higher scan resolution and high occlusion toward the top of563

the canopy.564

Acknowledgements565

Financial support of this work by the American Vineyard Foundation grants566

2015-1825/2016-1825/2017-1825, U.S. National Science Foundation grant AGS567

PREEVENTS 1664175, and the USDA National Institute of Food and Agricul-568

ture, Hatch project number CA-D-PLS-2401-H.569

References570

Amthor, J.S., 1994. Scaling CO2-photosynthesis relationships from the leaf to571

the canopy. Photosyn. Res. 39, 321–350.572

Bailey, B.N., 2018. Efficient ray-tracing methods for modeling radiation transfer573

in leaf-resolving plant canopy simulations. Ecol. Model. 398, 233–245.574

35



Bailey, B.N., Mahaffee, W.F., 2017a. Rapid, high-resolution measurement of575

leaf area and leaf orientation using terrestrial LiDAR scanning data. Meas.576

Sci. Technol. 28, 064006.577

Bailey, B.N., Mahaffee, W.F., 2017b. Rapid measurement of the three-578

dimensional distribution of leaf orientation and the leaf angle probability579

density function using terrestrial lidar scanning. Remote Sens. Environ. 193,580

63–76.581

Bailey, B.N., Overby, M., Willemsen, P., Pardyjak, E.R., Mahaffee, W.F., Stoll,582

R., 2014. A scalable plant-resolving radiative transfer model based on opti-583

mized GPU ray tracing. Agric. For. Meteorol. 198-199, 192–208.584

Bailey, B.N., Stoll, R., Pardyjak, E.R., Miller, N.E., 2016. A new three-585

dimensional energy balance model for complex plant canopy geometries:586

Model development and improved validation strategies. Agric. For. Meteorol.587

218-219, 146–160.588
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List of Figures694

Fig. 1: Schematic depiction of terrestrial LIDAR scanning. (a) scanning pat-695

tern in spherical coordinates, illustrating the range of scan zenithal an-696

gles (θmin through θmax) and azimuthal angles (ϕmin through ϕmax).697

(b) Cartesian coordinate (x, y, z)hit of hit point, and corresponding698

spherical coordinate (θ, ϕ).699

Fig. 2: “Flood-fill” grouping of triangles. A two-dimensional grid of scan points700

in θ−ϕ space is shown, with “misses” denoted by open circles and “hits”701

denoted by filled circles. Connected triangle groups are identified and702

assigned a group identifier. In the example shown, four continuous703

triangle groups are formed, which are given identifiers of 0, 1, 2, and 3.704

Fig. 3: Example of leaf prototype image. The solid portion of the image is col-705

ored, while the checkered portion of the image is considered transparent.706

The area of the solid portion is a, and the area of the total image is707

A = wl, where w and l are respectively the width and length of the708

prototype. The fraction of the total image that is solid is s = a/A.709

Fig. 4: Visualization of (a,c) computer-generated or “reference” tree, and (b,d)710

reconstruction of the reference tree based on simulated LiDAR scanning711

data for two opposing viewing angles.712

Fig. 5: Visualization of the triangulated leaf groups used to determine the lo-713

cations of directly reconstructed leaves in the reconstruction shown in714

Fig. 4b,d for two opposing viewing angles. Each independent fill group715

is given a unique color.716

Fig. 6: Comparison of exact values of leaf area (a) and leaf dimension (b) with717

values obtained from the synthetic LiDAR reconstruction for each voxel.718

In (a), the diagonal line denotes perfect agreement, and overall agree-719

ment is quantified by the index of agreement d, the root-mean-squared720
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error (RMSE), and the mean bias. In (b), the dashed vertical line de-721

notes the (constant) exact value, and bars give a histogram of predicted722

values over all voxels. Note that the characteristic leaf dimension L was723

defined as
√
a, where a is the leaf surface area.724

Fig. 7: Histogram of the fraction of leaf area within each voxel that was directly725

reconstructed. Bars to the left of the vertical dotted line correspond to726

voxels that had less reconstructed leaf area than actual leaf area, and727

thus required backfilling. Bars to the right of the vertical dotted line728

correspond to voxels that had more reconstructed leaf area than actual729

leaf area, and thus required thinning.730

Fig. 8: Probability density functions (PDFs) of leaf inclination angle (θL) with731

a discrete bin size of 10◦ for eight different leaf zones. The solid black732

lines correspond to the inclination angle of N total leaves from the tree733

reconstruction, and the dashed red lines correspond to the inclination734

angle of Nr total leaves from the reference tree (exact). The leaf zones735

were determined by downsampling the 10× 10× 10 voxel grid to a grid736

of 2× 2× 2 voxels. The top and bottom rows of plots correspond to the737

top and bottom half of the tree crown, respectively, and each column of738

plots corresponds to a different azimuthal zone of the tree.739

Fig. 9: Probability density functions (PDFs) of leaf azimuthal angle (ϕL) with740

a discrete bin size of 40◦ for eight different leaf zones. The solid black741

lines correspond to the azimuthal angle of N total leaves from the tree742

reconstruction, and the dashed red lines correspond to the azimuthal743

angle of Nr total leaves from the reference tree (exact). The leaf zones744

were determined by downsampling the 10× 10× 10 voxel grid to a grid745

of 2× 2× 2 voxels. The top and bottom rows of plots correspond to the746

top and bottom half of the tree crown, respectively, and each column of747
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plots corresponds to a different azimuthal zone of the tree.748

Fig. 10: Visualization of the triangulated leaf groups used to determine the lo-749

cations of directly reconstructed leaves in the reconstruction shown in750

Fig. 11b,d (actual elm tree) for two opposing viewpoints. Each inde-751

pendent leaf fill group is given a unique color.752

Fig. 11: Visual comparison of actual elm tree photograph (a,c), and reconstructed753

elm tree (b,d) for two opposing viewpoints.754

Fig. 12: Histogram of characteristic leaf dimension in each grid voxel for the755

reconstructed tree in Fig. 11b,d (a), and histogram of the fraction of756

directly reconstructed leaf area within each grid voxel for the recon-757

structed tree in Fig. 11b,d (b).758

Fig. 13: Flow chart illustrating plant reconstruction methodology.759
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