
Stat Comput (2018) 28:441–460
https://doi.org/10.1007/s11222-017-9741-y

Adaptive grid semidefinite programming for finding optimal
designs

Belmiro P. M. Duarte1,2 · Weng Kee Wong3 · Holger Dette4

Received: 30 July 2016 / Accepted: 15 March 2017 / Published online: 23 March 2017
© Springer Science+Business Media New York 2017

Abstract We find optimal designs for linear models using a
novel algorithm that iteratively combines a semidefinite pro-
gramming (SDP) approach with adaptive grid techniques.
The proposed algorithm is also adapted to find locally opti-
mal designs for nonlinear models. The search space is first
discretized, and SDP is applied to find the optimal design
based on the initial grid. The points in the next grid set are
points that maximize the dispersion function of the SDP-
generated optimal design using nonlinear programming. The
procedure is repeated until a user-specified stopping rule is
reached. The proposed algorithm is broadly applicable, and
we demonstrate its flexibility using (i) models with one or
more variables and (ii) differentiable design criteria, such
as A-, D-optimality, and non-differentiable criterion like E-
optimality, including the mathematically more challenging
casewhen theminimumeigenvalue of the informationmatrix
of the optimal design has geometric multiplicity larger than

B Belmiro P. M. Duarte
bduarte@isec.pt

Weng Kee Wong
wkwong@ucla.edu

Holger Dette
holger.dette@rub.de

1 Department of Chemical and Biological Engineering,
Instituto Politécnico de Coimbra, Instituto Superior de
Engenharia de Coimbra, Rua Pedro Nunes, Quinta da Nora,
3030-199 Coimbra, Portugal

2 Department of Chemical Engineering, CIEPQPF, University
of Coimbra, Coimbra, Portugal

3 Department of Biostatistics, Fielding School of Public Health,
UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1772,
USA

4 Department of Mathematics, Institute of Statistics,
Ruhr-Universitaet Bochum, 44780 Bochum, Germany

1. Our algorithm is computationally efficient because it is
based on mathematical programming tools and so optimality
is assured at each stage; it also exploits the convexity of the
problems whenever possible. Using several linear and non-
linearmodelswith one ormore factors,we show the proposed
algorithm can efficiently find optimal designs.

Keywords Adaptive grid ·Continuous design ·Model-based
optimal design · Nonlinear programming · Semidefinite
programming

Mathematics Subject Classification 62K05 · 90C47

1 Motivation

We consider the problem of determining model-based opti-
mal designs of experiments for linear models as well as
locally optimal designs for nonlinear models. This problem
has increasing relevance in many areas, such as engineering,
social sciences, food science and pharmaceutical research
(Berger and Wong 2009; Goos and Jones 2011; Fedorov and
Leonov 2014). The design problem is to determine optimal
design points, which are members of the design space that
describe the experimental condition, and the number of repli-
cates at each of these design points, subject to the requirement
that they sum to n, the maximum number of observations
available for the study. These design issues involve hard
combinatorial optimization problems, commonly designated
the exact design problems that are known to be NP-hard
(Welch 1982). However, since we consider continuous or
approximate design problems where n → +∞, we only
need to solve a P-hard reformulation of the problem to find
the proportions of the optimal combination of design points.
Continuous optimal designs of experiments are particularly

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9741-y&domain=pdf

442 Stat Comput (2018) 28:441–460

helpful for providing maximum information at minimum
cost. For problems discussed in this paper, we assume we are
given design criterion, a known compact design space and
a known parametric linear or nonlinear model, apart from
unknown parameters in the model. Typically, the goal is to
find an efficient design to estimate the model parameters.

Kiefer (1959) considered that the continuous optimal
design problem is equivalent to finding anoptimal probability
measure on the given design space X (Kiefer and Wolfowitz
1960; Kiefer 1974). The optimal probability measure speci-
fies the number of design points required, where these design
points are in X and the proportions of total observation to be
taken at the design points under the design criterion (Atkin-
son et al. 2007). He termed these continuous designs and
showed that there are many advantages of working with con-
tinuous designs (Kiefer 1959; Kiefer and Wolfowitz 1960;
Kiefer 1974). Identifying optimal continuous design can be
difficult to determine even for relatively simplemodels. Ana-
lytical solutions are rarely available for high-dimensional
problems, and algorithms are required to find them, espe-
cially when the criterion is complex. The aim of this paper is
to apply mathematical programming-based algorithms com-
binedwith adaptive grid techniques to find efficiently optimal
continuous designs for linear and nonlinear models with one
or more factors.

During the last few decades, algorithms have been devel-
oped and continually improved for generating different types
of optimal designs for algebraic models. Various numerical
algorithms developed for the construction of exact designs
are based on exchange methods and were initially proposed
for D-optimality criterion (Mitchell et al. 1970; Wynn 1970;
Fedorov1972).Many refinements occurred over time, among
them are the DETMAX algorithm (Mitchell 1974), the mod-
ified Fedorov algorithm (Cook and Nachtsheim 1980), the
KL-exchange algorithm (Atkinson and Donev 1989) and the
acyclic coordinate algorithm (Meyer and Nachtsheim 1995).
For continuous optimal designs, exchange-based algorithms
for finding D-optimal designs were correspondingly devel-
oped in Wynn (1970), Wynn (1972) and Fedorov (1972),
the so-called Wynn–Fedorov algorithms. Several authors
contributed to improve the numerical efficiency of theWynn–
Fedorov schemes; see Wu (1978), Wu and Wynn (1978),
Pronzato (2003) and Harman and Pronzato (2007). Some
of these algorithms are reviewed, compared and discussed
in Meyer and Nachtsheim (1995) and Pronzato (2008),
among others. Multiplicative algorithm is another class of
approaches to find continuous optimal designs that find
broad application due to the simplicity (Mandal et al. 2015).
The basic algorithm was proposed by Titterington (1976)
and later exploited in Pázman (1986), Fellman (1989),
Pukelsheim (1991), Torsney and Mandal (2006), Mandal
and Torsney (2006), Dette (2008), Torsney and Martín-
Martín (2009), Yu (2010c, 2010b). Recently, the cocktail

algorithms that rely on both exchange and multiplicative
algorithms have been proposed (Yu 2010a) and improved
(Yang et al. 2013).

The algorithms are iterative, requiring a starting design
and a stopping criterion to search for the optimal solution.
The stopping criterion may be the maximum number of
iterations allowed or the requirement that the value of the
optimality criterion of the generated design does not change
from the previous values by some pre-specified tolerance
level. The algorithms iteratively replace current design points
by one ormore points that are new or already in the support of
the current design. The rule for selecting the point or points
for generating the next design varies depending on the type
of algorithms and the design criterion. Some issues of such
algorithms are the need to collapse points very close together
to a support point of the design, and how often this procedure
needs to be carried out.

Mathematical programming algorithms have improved
substantially over the last two decades, and they can currently
solve complex high-dimensional optimization problems,
especially when they are P-hard. Examples of applications
of mathematical programming algorithms for finding contin-
uous optimal designs are linear programming (Gaivoronski
1986; Harman and Jurík 2008), second-order conic program-
ming (Sagnol 2011; Sagnol and Harman 2015), semidefinite
programming (SDP) (Vandenberghe and Boyd 1999; Papp
2012; Duarte and Wong 2015), semi-infinite programming
(SIP) (Duarte and Wong 2014; Duarte et al. 2015) and
nonlinear programming (NLP) (Chaloner and Larntz 1989;
Molchanov and Zuyev 2002). Applications based on opti-
mization procedures relying on metaheuristic algorithms are
also reported in the literature; see Heredia-Langner (2004)
for genetic algorithms, Woods (2010) for simulating anneal-
ing, Chen et al. (2015) for particle swarm optimization and
Masoudi et al. (in press) for imperialist competitive algo-
rithm, among others.

In this paper, we focus on SDP, which is not new; details
on the general use and application of SDP to search for opti-
mal designs for linear models are available in Vandenberghe
and Boyd (1996). Additional applications include find-
ing (i) D-optimal designs for multi-response linear models
(Filová et al. 2011), (ii) c-optimal designs for single-response
trigonometric regression models (Qi 2011), (iii) D-optimal
designs for polynomial models and rational functions (Papp
2012) and (iv) Bayesian optimal designs for nonlinear mod-
els (Duarte and Wong 2015). A key advantage of using SDP
to handle the design problem is that it transforms the original
problem into a convex program that allows us to efficiently
find the global optimal design. However, drawbacks are that
(i) the design space has to be discretized and consequently
this may produce sub-optimal designs when the design space
is continuous and the grid is coarse, and (ii) the success of

123

Stat Comput (2018) 28:441–460 443

the strategy depends on the dimension of the problem and
the types of SDP solvers available.

A potential strategy to circumvent the drawbacks of SDP
is to use adaptive grid (AG) strategies where the grid used
to search for the optimal design can be increasingly reduced
in size and locations of the support points can be more accu-
rately located at the same time. As we will show, having an
adaptive grid search with a coarse initial grid also does not
seem to have an impact on the computational time and qual-
ity of the optimal design generated. Grid adaptation search
strategy is commonly employed to solve PDEs and com-
putational fluid dynamics problems where it is important
that “eventual moving fronts are well followed by meshes
not much dense” (Berger 1982; Peraire et al. 1987). The
rationale of the adaptive grid search for the optimal sup-
port points is similar to the step of deletion/exchange of
points in the several exchange algorithms (Atkinson et al.
2007, Chap. 12) previously used in the literature. After the
initial user-specified grid used to find the optimal design,
the next grid is generated by points that maximize a spe-
cific function formed from the current design. The steps are
repeated until a user-specified rule for convergence is met.
Unlike previously proposed algorithms, such as Fedorov’s
algorithmwhere only onepoint is allowed to augment the cur-
rent design in each iteration, our method has the advantages
of (i) working with only points that maximize the directional
derivative of the criterion evaluated at the SDP-generated
design and (ii) the subsequent grid sets can be substantially
smaller than initial grid set so that the optimization problem
to find the support points of the optimal design is increas-
ingly simplified by having to search over a few candidate
points.

AG approaches have never been combined with mathe-
matical programming formulations to find optimal designs,
and an exception is Pronzato and Zhigljavsky (2014, Sect.
3.4). In our proposed methodology, we have two levels of
optimization: (i) the SDP solver finds the optimal design
for a given grid and (ii) the AG algorithm finds a new grid
(node’s placement) that consists of points that maximize the
directional derivative of the criterion evaluated at the current
design. The later procedure requires solving a constrained
nonlinear program. We present an algorithm that automates
the process and tests it for linear and nonlinear algebraic
models.

Section 2 presents the statistical setup, a brief review of
optimal design theory, and how to verify whether a design is
optimal or not. Section 3describes themathematical formula-
tions and algorithmic procedure used to find optimal designs
by updating the grid judiciously. Section 4 applies our algo-
rithm to find different types of optimal designs for various
linear and nonlinear models with one or more variables. We
offer a summary in Section 5.

2 Background

In this section, we provide the background material required
for the formulation and numerical solution of optimal exper-
imental design problems. In Sect. 2.1, we introduce SDP as
a tool to find optimal designs, and in Sect. 2.2, we briefly
review the fundamentals of NLP.

Throughout we assume we have a nonlinear model with a
given differentiable mean function f (x,β�) with indepen-
dent components and x ∈ X = ⊗nx

i=1[x LOi , xU P
i] ⊂ R

nx .
The design space X is typically the Cartesian product of the
domains of the variables and has dimension nx and each xi
in x = (x1, x2, . . . , xnx) has a known range given by its
lower bound x LOi and its upper bound xU P

i . The univariate
response is y ∈ R, and its mean response at x is modeled by

E[y|x,β] = f (x,β), (1)

where the vector of unknown model parameters is β ∈ P,
a known n p-dimensional Cartesian box P ≡ ×n p

j=1[l j , u j],
with each interval [l j , u j] representing the plausible range of
values for the j th parameter. The symbolE[•] is the expecta-
tion operator, and the linear model is a subclass of (1) where
E[y|x,β] = β� f (x). When nonlinear models are consid-
ered,we assume that a nominal set of values of the parameters
are known a priori and our goal is to determine locally
optimal designs that can be used to confirm/improve their
accuracy. Finally, we assume that the errors of the response
are independent and homoscedastic.

Supposewe have a continuous designwith k(≤ n) support
points at x1, x2, . . . , xk and the weights at these points are,
respectively, w1, w2, . . . , wk . To implement the design for a
total of n observations,we take roughly n×wi observations at
xi , i = 1, . . . , k subject to n×w1+· · ·+n×wk = n and each
summand is an integer. If there are nx variables in the model,
we denote the i th support point by x�

i = (xi,1, . . . , xi,nx) and
represent the design ξ by k rows (x�

i , wi), i ∈ {1, . . . , k}
with

∑k
i=1 wi = 1. In what is to follow, we let Ξ ≡

Xk × Σ be the space of feasible k-point designs over X
where Σ is the k − 1-simplex in the domain of weights
Σ = {∑k

i=1 wi : wi ≥ 0, ∀i ∈ [k], ∑k
i=1 wi = 1},

and let [k] = {1, . . . , k}.
Following convention, we measure the worth of a design

by its Fisher Information Matrix (FIM). The elements of the
normalized FIM are the negative expectation of the second-
order derivatives of the log-likelihood of (1), L (ξ,β), with
respect to the parameters, given by

M (ξ) = − E

[
∂

∂β

(
∂L (ξ)

∂β�

)]

=
∫

ξ∈Ξ

M(x) d(ξ) =
k∑

i=1

wi M(xi), (2)

123

444 Stat Comput (2018) 28:441–460

where M (ξ) is the global FIM from the design ξ , M(xi) is
the local FIM from point xi . Here and throughout, we use
bold face lowercase letters to represent vectors, bold face cap-
ital letters for continuous domains, blackboard bold capital
letters for discrete domains, and capital letters for matrices.
For example, let X be the discretized version of X with, say,
q points and let [q] = {1, . . . , q} be the set containing the
point’s identification. Without loss of generality, we assume
that each covariate space, a subspace of the design space X,
is discretized by uniformly spaced points with possibly dif-
ferent step sizes (Δxi , ∀i) for the different covariate spaces.
The integral in (2) may be represented by

M (ξ) =
∑

x∈X
M(x) χ(x) (3)

where χ is the continuous design with the same support
points and weight distribution on X.

We focus on the class of design criteria proposed byKiefer
(1974). Each member in the class is indexed by a parameter
δ, is positively homogeneous and is defined on the set of
symmetric n p × n p semi-positive definite matrices given by

Φδ[M (ξ)] =
[
1

n p
tr(M (ξ)δ)

]1/δ
. (4)

The maximization of Φδ for δ �= 0 is equivalent to
minimization of tr(M (ξ)δ) when δ < 0. We note that
Φδ becomes [tr(M (ξ)−1)]−1 for δ = −1, which is A-
optimality, and becomes λmin[M (ξ)]when δ = −∞, which
is E-optimality, and [det[M (ξ)]]1/n p when δ → 0, which is
D-optimality. These design criteria are suitable for estimat-
ing model parameters as they maximize the FIM in various
ways. For example, when standard normal linear models and
the D-optimality criterion are considered, the volume of the
confidence region ofβ is proportional to det[M−1/2(ξ)], and
consequently maximizing the determinant or a convenient
function of the determinant (e.g., logarithm or geometric
mean) of the FIM leads to the smallest possible volume.

When the design criterion is convex or concave (which
is the case for the above criteria), the global optimality of a
design ξ in X can be verified using an equivalence theorem
based on directional derivative considerations (Kiefer and
Wolfowitz 1960; Fedorov 1972; Whittle 1973; Kiefer 1974;
Silvey 1980; Pukelsheim 1993). For instance, if we let δx be
the degenerate design at the point x ∈ X, the equivalence
theorems for D-, A- and E-optimality are as follows: (i) ξD
is D-optimal if and only if

tr
{
[M (ξD)]−1 M(δx)

}
− n p ≤ 0, ∀x ∈ X; (5)

(ii) ξA is globally A-optimal if and only if

tr
{
[M (ξA)]−2 M(δx)

}
− tr

{
[M (ξA)]−1

}
≤ 0,

∀x ∈ X, (6)

and (iii) ξE is globally E-optimal if and only if (Dette and
Studden 1993)

min
E∈E

tr {E M(δx)} − λmin ≤ 0, ∀x ∈ X, (7)

whereE is the space of n p×n p positive semidefinitematrices
with trace equal to 1 and E ∈ E has the form

E =
mλ∑

i=1

αi

(
eλmin, i e

ᵀ
λmin, i

)
. (8)

Here eλmin, 1, . . . , eλmin,mλ are normalized linearly indepen-
dent eigenvectors of M (ξE) corresponding to λmin with
geometric multiplicity mλ and α1, . . . , αmλ are nonnegative
weights that sum to unity. We recall the geometric multi-
plicity, or simply the multiplicity of an eigenvalue is the
number of linearly independent eigenvectors associated with
the eigenvalue.

We call the functions on the left side of the inequalities
(5, 6 and 7) dispersion functions and denote them byΨ (x|ξ).
They are different for different concave criteria.

2.1 Semidefinite programming

Semidefinite programming is employed to solve the optimal
design problems for D-, A- and E-optimality criteria over
a given discrete domain X. In this section, we introduce the
fundamentals of this class of mathematical programs.

Let Sn p be the space of n p × n p symmetric semidefi-
nite positive matrices. A function ϕ: Rm1 �→ R is called
semidefinite representable (SDr) if and only if inequalities
of the form u ≤ ϕ(ζ), where ζ ∈ R

m1 is a vector, can be
expressed by linear matrix inequalities (LMI) (Ben-Tal and
Nemirovski 2001; Boyd and Vandenberghe 2004). That is,
ϕ(ζ) is SDr if and only if there exist some symmetricmatrices
M0, . . . , Mm1 , . . . , Mm1+m2 ∈ S

n p such that

u ≤ ϕ(ζ) ⇐⇒ ∃v ∈ R
m2 : u M0 +

m1∑

i=1

ζi Mi

+
m2∑

j=1

v j Mm1+ j � 0. (9)

Here, � is the semidefinite operator, i.e., A � 0 ⇐⇒
〈A ζ , ζ 〉 > 0, ∀ζ ∈ H , where 〈., .〉 is the Frobenius inner
product operator and H is the Hilbert space. The optimal
values, ζ , of SDr functions are then formulated as semidefi-
nite programs of the form:

123

Stat Comput (2018) 28:441–460 445

max
ζ

{

cᵀ ζ ,

m1∑

i=1

ζi Mi − M0 � 0

}

(10)

In our design context, c is a vector of known constants
that depends on the design problem, and matrices Mi , i =
{0, . . . ,m1} contain local FIM’s and othermatrices produced
by the reformulation of the functionsϕ(ζ). The decision vari-
ables in vector ζ are the weights wi , i ∈ [q] of the optimal
design and other auxiliary variables required. The problem
of calculating a design for a pre-specified grid G of points xi
is solved with the formulation (10) complemented with the
linear constraints on w: (i) w � 0, and (ii) 1ᵀ w = 1.

Ben-Tal and Nemirovski (2001, Chap. 2, 3) provided a
list of SDr functions in SDP formulations useful for solving
continuous optimal design problems; see Boyd and Vanden-
berghe (2004, Sect. 7.3). Sagnol (2013) showed that each
criterion in the Kiefer’s class of optimality criteria defined
by (4) is SDr for all rational values of δ ∈ (−∞,−1] and
general SDP formulations exist. This result also applies to
the case when δ → 0.

2.2 Nonlinear programming

In this section, we introduce NLP which is used to find the
points that maximize the dispersion function over the contin-
uous design domain. Nonlinear programming seeks to find
the global optimum x of a convex or nonconvex nonlinear
function f : X �→ R in a compact domain X with possi-
bly nonlinear constraints. The general structure of the NLP
problems is:

min
x∈X f (x) (11a)

s.t. g(x) ≤ 0 (11b)

h(x) = 0 (11c)

where (11b) represents a set of ri inequalities, and (11b)
represents a set of re equality constraints. The functions f (x),
g(x) and h(x) are twice differentiable, and in our context, the
variable x ∈ X contains points that we want to choose from
the candidate set of maximizers of the dispersion function
Ψ (x|ξ), and f (x) is a convex linear combination of Ψ (x |ξ)

for a pre-specified k-point design obtained with SDP. The
variables are subject to bounds previously set based on the
SDP-generated design, and this topic is further discussed in
Sect. 3.2.

Nested and gradient projection methods are commonly
used to solve NLP problems, and some examples are the
general reduced gradient (GRG) (Drud 1985, 1994) and trust
region (Coleman and Li 1994) algorithms. Othermethods are
sequential quadratic programming (SQP) (Gill et al. 2005)
and interior point (IP) (Byrd et al. 1999). Ruszczyński (2006)
provides an overview of NLP algorithms.

3 Algorithm

This section describes an algorithm for finding D-, A- and E-
optimal designs for linear models employing an SDP-based
procedure combined with AG. In Sect. 3.1, we introduce the
formulation to find SDP-based designs, and in Sect. 3.2, we
discuss the adaptive grid algorithm. Because E-optimality
is not differentiable, the grid adaptation procedure has to
be modified, particularly so when the problem has multiple
minimum eigenvalues; Sect. 3.3 describes the strategy for
this case.

3.1 Semidefinite programming formulation

The SDP formulations for finding optimal designs for lin-
ear models are based on the representations of Boyd and
Vandenberghe (2004), and require a pre-specified grid G =
{x : x1 ≤ x2 ≤ · · · ≤ xq−1 ≤ xq} of points over X. The
global FIM is constructed by averaging the local FIM’s, and
the SDP solver determines the weights at each point so that
the design optimality criterion as a function of the FIM is
optimized. The solver determines automatically the number
of support point of the SDP-generated design, and these are
from points in the current grid with positive weights.

The SDP formulation for solving the D-optimal design
problem can be more compactly represented by

z = max
w∈Rq

[det(M (ξ))]1/n p (12a)

s.t.
q∑

i=1

wi = 1 (12b)

M (ξ) � 0 (12c)

wi ≥ 0, ∀i ∈ [q], (12d)

which can then be transformed into LMIs and solved with
a SDP solver. As an illustration, suppose we specialize this
general approach to find a D-optimal design. We recall that
the LMI τ ≤ (det[M (ξ)])1/n p holds if and only if there
exists a n p × n p-lower triangular matrix C such that

[
M (ξ) C T

C diag(C)

]

� 0 and τ ≤
⎛

⎝
n p∏

j=1

C j, j

⎞

⎠

1/n p

,

where diag(C) is the diagonal matrix with diagonal entries
C j, j and the geometric mean of the C j, j ’s can, in turn, be
expressed as a series of 2×2 LMIs (Ben-Tal and Nemirovski
2001).

The formulations for finding A- and E-optimal designs
are given below in (13) and (14), respectively:

z = max
w∈Rq

[tr(M−1(ξ))]−1 (13a)

123

446 Stat Comput (2018) 28:441–460

s.t.
q∑

i=1

wi = 1 (13b)

M (ξ) � 0 (13c)

wi ≥ 0, ∀i ∈ [q] (13d)

z = max
w∈Rq

[λmin(M (ξ))] (14a)

s.t.
q∑

i=1

wi = 1 (14b)

M (ξ) � 0 (14c)

wi ≥ 0, ∀i ∈ [q]. (14d)

We denote the design problems (12, 13 and 14) byP1 and
employ a user-friendly interface, cvx (Grant et al. 2012),
to solve them. The cvx environment automatically trans-
forms the constraints of the form τ ≤ ϕ(ζ) into a series
of LMIs, which are then passed on to SDP solvers such as
SeDuMi (Sturm 1999) or Mosek (Andersen et al. 2009). All
the results presented in Sect. 4 were obtained with Mosek.

3.2 Adaptive grid procedure

This section describes the procedure to adaptively refine the
grid and delete candidate nodes when they are not required in
the design. We assume the search space is one-dimensional,
i.e., X ∈ R and discuss the extension to nx ≥ 2 later on.

We begin the procedure with an equidistributed grid G (0),
where the superscript indicates the iteration number, so at
iteration j , the grid set becomes G (j). The value of Δx is
self-selected to be automatically computed from the number
of candidate points q in X. For this grid set, we solve the
problem of interest inP1 and denote the SDP optimal design
and the criterion value by ξ (0) and z(0), respectively.

Suppose ξ (0) has k(0) support points and its dispersion
function is Ψ (x|ξ (0)), x ∈ X. Points in X that maximize
this dispersion function become points in the new grid set
forming G (1); this is accomplished by solving a constrained
NLP problem. To distinguish the support points of the design
ξ (0) from the candidate points in the updated grid G (1), we
designate the former by s(0)i , i ∈ [k(0)], and the latter set

by x(1)
i , i ∈ [k(0)]. The grid G (1) has up to k(0) points and

is determined by solving the problem (15). In practice, the
grid G (1) has k(0) potential points, each one corresponding
to a local maximizer of the dispersion function, but may be
fewer if some of them are the same or very close, in which
case, they are collapsed to a single point. The optimization
problem is:

max
x(1)∈X

1

k(0)

k(0)
∑

i=1

Ψ (x(1)
i |ξ (0)) (15a)

s.t x(1)
i ≥ s(0)i − Δx, x(1)

i ≤ s(0)i+1

− Δx, i ∈ {2, · · · , k(0) − 1} (15b)

x(1)
1 ≥ xLO , x(1)

i ≤ s(0)2 − Δx (15c)

x(1)
k(0) ≤ xU P , x(1)

i ≥ s(0)
k(0)−1

− Δx (15d)

where (15a) is the objective function and (15b, 15c and 15d)
are bound constraints for each maximizer, where the bounds
are constructed from the support points of the previous SDP
optimal design as described below.We designate the problem
(15) asP2, and its formalization is based on two interesting
features. First, the dispersion function is often nonconvex and
finding a singlemaximum is a challenging task. Second, each
maximizer is independent on the others. Let us first introduce
the rational used to construct bounds for local maximizers,
and subsequently present the procedure to collapsemaximiz-
ers, when required.

The design points obtained from the SDP provide ini-
tial estimates of the maximizers of the dispersion function
and are also used to construct bounds for them. Let one of
the design points obtained by solving the SDP problem at
iteration 0 be s(0)i , and another be s(0)i+1. Then there exists

a local maximizer of the dispersion function, x(1)
i , in the

interval Xi ≡ [s(0)i − Δx, s(0)i+1 − Δx] ∈ X, corresponding

to the design space between the candidate points s(0)i−1 and

s(0)i+1. We note that the problem of maximizing the dispersion
function in interval Xi is convex and the optimum found
is global. We apply this procedure to all the support points
of the design ξ (0) and construct non-overlapping bounding
intervals Xi for each local maximizer of Ψ (x|ξ (0)). This
strategy requires solving a different NLP problem for each
compact intervalXi . However, since all maximizers are inde-
pendent of each other and by construction they have equal
values of Ψ (x|ξ (0)), we formulate the objective function of
the resulting NLP problem as a linear combination of the
values of the dispersion function from all the compact inter-
vals Xi , ∀i ∈ [k(0)]. Since each x(1)

i is locally constrained
by (15b), we can solve the problem using a single call of the
solver. Further, because the problem is convex and the solver
guarantees globally optimal solutions, all of the maximiz-
ers are located. It is worth noting that the constraints (15b) of
theNLP problemhave a tridiagonal structure that is exploited
by decomposition techniques to increase the numerical effi-
ciency of the solver.

To check whether contiguous maximizers need to be col-
lapsed, we first measure the distance between successive
candidate points in x(1) by

d
(
x (1)
i+1, x

(1)
i

)
=

∥
∥
∥x

(1)
i+1 − x (1)

i

∥
∥
∥
2
, i ∈ [k(0) − 1]. (16)

123

Stat Comput (2018) 28:441–460 447

When two points are ε-close for a pre-defined ε, i.e.,
d(x (1)

i+1, x
(1)
i) < ε, the points are collapsed into a single

point with average values of x included in the new grid G (1);
otherwise, both points are included. After collapsing two
points, the criterion measuring the design efficiency does not
decrease because this procedure is only performed when two
local maximizers are within ε-close inRnx . Further, the local
maximizers of the dispersion function in iteration j + 1 are
at least as efficient as that obtained from the SDP-generated
design from the previous iteration because the NLP problem
finds the local maxima of the directional derivative on a set
of bounded compact subintervals for each x(1)

i . In the worst
case, themaximizers are equal to previous support points and
the efficiency of the design neither increases nor decreases
which happens when convergence is attained.

The grid G (1) replaces G (0), and the optimal design ξ (1)

for this new grid is obtained with the SDP formulation. The
optimum is saved as z(1), and the procedure terminates if the
following convergence criterion (17) is met:

∣
∣
∣
∣
∣

z(j) − z(j−1)

z(j)

∣
∣
∣
∣
∣
≤ ε1 (17)

The value of the relative tolerance ε1 is also user speci-
fied. If the condition (17) is not satisfied, the procedure is
repeated, starting with the solution of P2 for the dispersion
function obtained from k(1)-support points design ξ (1). In
every iteration, the NLP problem (15) is solved with an inte-
rior point-based solver, IPOPT (Wächter and Biegler 2005).
To increase the accuracy, the gradient and Jacobian matrix
required by the solver are constructed employing an auto-
matic differentiation tool, ADiMat (Bischof et al. 2002).

Algorithm 1 below summarizes the procedure. The distin-
guishing feature of the proposed algorithm is that it converges
to the global optimal design, ξ∗. To see this, let us con-
sider that in (j − 1)th iteration we have the design ξ (j−1)

with the support points s(j−1). The maximizers are x(j) =
maxx Ψ (x|ξ (j−1)) and consequently

Ψ
(
x(j)|ξ (j−1)

)
− Ψ

(
s(j−1)|ξ (j−1)

)
≥ 0. (18)

Then, a new grid is formed with the candidate points s(j)

that are the local maximizers x(j), and a new optimal design
ξ (j) = maxξ Φδ(M (ξ)) is found for this new grid. Using the
relation (18),Φδ(M (ξ (j))) ≥ Φδ(M (ξ (j−1))) and since the
dispersion function is bounded from above, it follows that
Φδ(M (ξ)) converges globally and tends to a finite value.

We also compare our algorithm with traditional exchange
and multiplicative algorithms. The improvement of the opti-
mality criterion in exchange algorithms is performed by
updating the weight and the location of each of the candidate
points in the design space, and both steps are sequential. The

multiplicative algorithm allows us to update simultaneously
the weight and the location of each candidate point. Here, we
start with a pre-defined grid before updating the weights of
all the candidate points simultaneously which is performed
by solving the SDP problem, whereupon the complete grid of
candidate points is also updated simultaneously by solving
the NLP problem. We use a collapsing scheme to join local
maximizers ε-close, similarly to the other algorithms that
consider collapsing and acceleration procedures. We expect
to converge the design in few iterations, since both updat-
ing steps are global and not local as in the other algorithms.
However, every step in our algorithm is more complex and
requires global solvers so that the convergence is assured.
Computationally, the more demanding step in our algorithm
is the first SDP problem where all the candidate points are
considered. The NLP problems to solve are of small dimen-
sion, and the SDP problems in subsequent iterations are also
soft, since the number of candidate points is reduced.

All computations in this paper were carried using on an
Intel Core i7 machine (Intel Corporation, Santa Clara, CA)
running 64 bitsWindows 10 operating systemwith 2.80GHz.
The relative and absolute tolerances used to solve the SDP
and NLP problems were set to 10−5. The values of ε and ε1
in (16) and (17), respectively, are also set to 10−5 for all the
problems addressed.

Algorithm 1 Algorithm to find optimal designs combining
SDP with AG.
procedure OptimalDesign(x L , xU , q, ε, criterion)

Δx ← (xU − x L)/(q − 1) � Compute the disc. interval
j ← 0 � Initialize the it. counter
Construct G (j) using intervals Δx � Discretization of the design

space
Find ξ (j) � Solve SDP problem P1
z(j) ← z
Find new candidate points � Solve NLP problem P2
Check points distance using (16) � Collapse points if needed
j ← j + 1
G (j) ← x(j−1) � Update the grid
Find ξ (j) � Solve SDP problem P1
z(j) ← z
while |(z(j) − z(j−1))/z(j)| > ε do � Convergence checking

Find new candidate points � Solve NLP problem P2
Check points distance using (16) � Collapse points if needed
j ← j + 1
G (j) ← x(j−1) � Update the grid
Find ξ (j) � Solve SDP problem P1
z(j) ← z

end while
end procedure

3.3 Adaptive strategy for finding E-optimal designs

Section 3.2 applies the adaptive grid strategy to construct
D- and A- designs. The methodology can also be extended

123

448 Stat Comput (2018) 28:441–460

to E-optimality, which is a non-differentiable criterion. For
E-optimality, we focus on the minimum eigenvalue of the
information matrix and consider separately, the simpler case
when its geometric multiplicity is mλ = 1 and the more
difficult casewhen it is larger than 1.When themultiplicity of
theminimumeigenvalue,mλ, is 1, there is only one nonzeroα

in (8), resulting in a simple dispersion function to maximize,
and Algorithm 1 can be used without modification.

The case with mλ ≥ 2 occurs in applications, such as
in one-dimensional polynomial models with “large” design
spaces (Melas 2006), or in studying response surface mod-
els (Dette and Grigoriev 2014). When mλ ≥ 2, it is harder
to verify condition (7) because we now have to additionally
determine the weights α1, . . . , αmλ . These weights play a
crucial role because (i) failure to determine the weights cor-
rectly may lead us to continue search for the optimal design
even when the current design is optimal and (ii) the compu-
tational time to find the optimal design depends on how fast
these weights are identified correctly. The upshot is that max-
imizing the dispersion function of the SDP-generated design
using NLP becomes more challenging.

We recall that given an initial gridG (0), we first use SDP to
find a k(0)-point optimal design and use its dispersion func-
tion to ascertain whether it satisfies the conditions in Sect.
2, cf. (7). Let λ

(0)
min be the minimum eigenvalue of M (ξ

(0)
E),

mλ be its multiplicity, and S (0) = sl , l ∈ [k(0)] be the
set of support points of the design ξ

(0)
E . First, we determine

the optimal combination of α that minimizes the mean abso-
lute deviation of the dispersion function at the support points
sl , l ∈ [k(0)] of ξ

(0)
E . This task is carried out by solving

the following constrained linear programming (LP) problem
similar to Arthanari and Dodge (1993, Chap. 2):

min
t,α

k(0)
∑

l=1

tl (19a)

s.t. tr

[
mλ∑

i=1

αi

(
eλmin, i e

ᵀ
λmin,i

)
M(δsl)

]

− λ
(0)
min ≤ tl , sl ∈ S (0) (19b)

tr

[
mλ∑

i=1

αi

(
eλmin, i e

ᵀ
λmin,i

)
M(δsl)

]

− λ
(0)
min ≥ −tl , sl ∈ S (0) (19c)

tr

[
mλ∑

i=1

αi

(
eλmin, i e

ᵀ
λmin,i

)
M(δx j)

]

− λ
(0)
min ≤ 0, x j ∈ G (0) \ S (0) (19d)

mλ∑

i=1

αi = 1, (19e)

and tl ≥ 0. (19f)

Here (19b) and (19c) represent the upper and lower bounds
of the error of the dispersion function at the support points,
respectively, and eλmin, i is the eigenvector associated with
i th smallest eigenvalue of M (ξ

(0)
E). Equation (19d) guaran-

tees that the fitted dispersion function is below λ
(0)
min for all

points from the initial grid except the support points. Since
the problem (19) falls into LP class and the number of deci-
sion variables, mλ + k(0), is small, very little computational
effort is required to find the global optimum. We also use
Mosek to handle (19) using a tolerance level of 10−5.

The next step in the extended algorithm computes the
matrix E from α using Eq. (8) and solves problem (15) by
finding points x(1) that maximize the dispersion function.
From this point on, the extended algorithm runs the same
way it did in Sect. 3.2 for mλ = 1. If Algorithm 1 requires
a few iterations to converge, problem (19) is solved at every
iteration after replacing G (0) by the latest grid, and replac-
ing the k(0)-point design ξ

(0)
E by the SDP-generated design

obtained with the latest grid.

4 Applications to find D-, A- and E-optimal
designs

We apply our algorithms in Sect. 3 to find D-, A- and E-
optimal designs for a battery of linear and nonlinear models
in Table 1. For models 1–4, the design space is X = [−1, 1]
and for Models 5–8 other design spaces are used, some of
them replicating the original problem. Models 1–5 are lin-
ear and Models 6–8 are nonlinear and we are interested in
finding a locally optimal design for a given set of parame-
ters (listed above the model). In all cases, the initial grid is
equidistributed having 101 points and ε = ε1 = 10−5, cf.
Sect. 3.2. We also assess the effects of having different ini-
tial grid sets on the performance of our algorithm for finding
optimal designs for Models 1 and 5. In Sect. 4.1, we test how
well the extended algorithm generates E−optimal designs
when mλ > 1, and in Sect. 4.2 we report optimal designs
found when there are two or more variables in the model,
i.e., nx ≥ 2.

Tables 2, 3 and 4 present A-, D- and E-optimal designs
for all the models in Table 1, with values in the first line
representing the support points, xi , i ∈ [k] and values in the
second line representing the corresponding weights, wi , i ∈
[k]. The results are in good agreement with those found by
other authors, when available, see Atkinson (2007), Pronzato
and Zhigljavsky (2014) and Yu (2010a). The computation
time required for solving all the problems is relatively short
compared with the other algorithms, and in all cases, the
proposed algorithms converge in 2 or 3 iterations, and as
demonstrated in Sect. 3 finds globally optimal designs. The
main difference in computation time is due to the need of
additional iterations to reach the convergence criterion (17).

123

Stat Comput (2018) 28:441–460 449

Table 1 Battery of one factor
statistical models

Model Regression function Design space (X)

1 β0 + β1 x + β2 x2 [−1, 1]
2 β0 + β1 x + β2 x2 + β3 x3 [−1, 1]
3 β0 + β1 x + β2 x2 + β3 x3 + β4 x4 [−1, 1]
4 β0 + β1 x + β2 x2 + β3 x3 + β4 x4 + β5 x5 [−1, 1]
5 β0 + β1 x + β2 x−1 + β3 exp(−x) [0.5, 2.5]
6† V x

k+x + F x [0, 2]
V = 20, k = 0.05, F = 10

7‡ E0 + (E∞−E0) xm

kmd +xm [10−5, 2]
E∞ = 1.70, E0 = 0.137, kmd = 1, m = −1.5

8� γ exp[−α (x − θ) − exp(−λ (x − θ))] [10, 50]
γ = 1.946, θ = 6.06, α = 0.174, λ = 0.288

† Modified Michaelis–Menten model (López-Fidalgo et al. 2008).
‡ Four-parameter Hill model (Hill 1910).
� Coale-McNeil model (Coale and McNeil 1972)

Table 2 D-optimal designs for
Models in Table 1, and the
initial grid has 101 uniformly
spaced points

Model Design CPU (s) Iterations

1

(−1.0000, 0.0000, 1.0000
0.3333, 0.3333, 0.3333

)

4.10 2

2

(−1.0000, −0.4500, 0.45000, 1.0000
0.2500, 0.2500, 0.2500, 0.2500

)

5.64 3

3

(−1.0000, −0.6501, 0.0000, 0.6501, 1.0000
0.2000, 0.2000, 0.2000, 0.2000, 0.2000

)

4.77 2

4

(−1.0000, −0.7688, −0.2900, 0.2900, 0.7688, 1.0000
0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667

)

5.73 2

5

(
0.5000, 0.7773, 1.5800, 2.5000
0.2500, 0.2500, 0.2500, 0.2500

)

4.95 2

6

(
0.0000, 0.2699, 2.0000
0.3333, 0.3333, 0.3333

)

7.18 3

7

(
10−5, 0.3042, 0.9703, 2.0000
0.2500, 0.2500, 0.2500, 0.2500

)

10.38 3

8

(
10.0000, 13.1801, 24.3901, 50.0000
0.2500, 0.2500, 0.2500, 0.2500

)

5.86 2

The speed of the algorithm depends on two factors. First,
the SDP-generated design usually has efficiency close to 1
and so provides an accurate initial solution. Consequently,
the computed directional derivative of the design criterion
evaluated at theSDP-generated design is accurate. This direc-
tional derivative in turn provides good candidate points for
the new grid, determined by solving the NLP problem (15).
For instance, Fig. 1b displays the dispersion function of the
D-optimal design for Model 3 in successive iterations, and
Fig. 2b displays the corresponding plot for the A-optimal
design for Model 5. In both examples, we observe that the
design resulting from the first iteration is close to the final
optimal design. Second, all the candidate points formaximiz-
ing the dispersion function are determined simultaneously,

and consequently, all points of the new grid are updated in
a single step. This is different from other algorithms where
the location of each point of the grid is updated sequentially,
one at a time. Figures 1a and 2a show the grid evolution for
both problems. We observe that most of the initial candi-
date points are discarded in the first iteration and the optimal
design obtained with SDP includes only a few nodes located
in the vicinity of the maxima of the dispersion function. We
next apply the NLP procedure to find the local maximizers
and use the distance checking procedure to collapse them
when they are close. Afterward, the points remaining form
the newgrid, used to construct local FIM’s, subsequently pro-
vided to SDP solver to determine an updated optimal design.

123

450 Stat Comput (2018) 28:441–460

Table 3 A-optimal designs for
Models in Table 1, and the
initial grid has 101 uniformly
spaced points

Model Design CPU (s) Iterations

1

(−1.0000, 0.0000, 1.0000
0.2500, 0.5000, 0.2500

)

4.03 2

2

(−1.0000, −0.4667, 0.4667, 1.0000
0.1510, 0.3490, 0.3490, 0.1510

)

4.45 2

3

(−1.0000, −0.6800, 0.0000, 0.68000, 1.0000
0.1015, 0.2504, 0.2883, 0.2504, 0.1015

)

4.14 2

4

(−1.0000, −0.7902, −0.2927, 0.2927, 0.7902, 1.0000
0.0806, 0.1880, 0.2313, 0.2313, 0.1880, 0.0806

)

8.14 3

5

(
0.5000, 0.7571, 1.6718, 2.5000
0.1546, 0.3351, 0.3452, 0.1650

)

12.22 2

6

(
0.0000, 0.2401, 2.0000
0.0209, 0.7058, 0.2733

)

4.89 2

7

(
10−5, 0.2765, 1.0301, 2.0000
0.1474, 0.2753, 0.3518, 0.2256

)

9.72 3

8

(
10.0000, 13.0001, 24.3491, 50.0000
0.3307, 0.4593, 0.1736, 0.0365

)

6.64 2

Table 4 E-optimal designs for
Models in Table 1, and the
initial grid has 101 uniformly
spaced points

Model Design CPU (s) Iterations

1

(−1.0000, 0.0000, 1.0000
0.2000, 0.6000, 0.2000

)

3.70 2

2

(−1.0000, −0.5000, 0.5000, 1.0000
0.1267, 0.3733, 0.3733, 0.1267

)

3.98 2

3

(−1.0000, −0.7072, 0.0000, 0.7072, 1.0000
0.0930, 0.2481, 0.3178, 0.2481, 0.0930

)

6.17 3

4

(−1.0000, −0.8090, −0.3091, 0.3091, 0.8090, 1.0000
0.0736, 0.1804, 0.2460, 0.2460, 0.1804, 0.0736

)

5.47 3

5

(
0.5000, 0.7552, 1.6800, 2.5000
0.1486, 0.3294, 0.3541, 0.1677

)

5.97 3

6

(
0.0000, 0.2201, 2.0000
0.0253, 0.7423, 0.2324

)

5.14 2

7

(
10−5, 0.2730, 1.0530, 2.0000
0.1288, 0.2757, 0.3631, 0.2325

)

9.11 3

8

(
10.0000, 12.9563, 25.3471, 50.0000
0.3356, 0.4640, 0.1689, 0.0315

)

25–50 3

The comparison of the designs presented in Tables 2, 3
and 4 with designs reported in the literature obtained with
other algorithms, for the cases where those are available,
reveals that on average the efficiency of ours is above 99.9%,
and there is a few cases where we obtained values above
100%, specifically for E-optimal designs. As for the CPU
time, our algorithm is less efficient, on average it requires
7.71 times more resources than others used for testing [e.g.,
Yang (2013)], with values ranging from 1.55 to 15.41 times.
However, in case a compiler is used the performance would
be improved. We notice that in all our designs the initial SDP
problem requires on average 36% of the total CPU time,
corroborating the criticality of this step.

Now we analyze the impact of the initial grid on the
optimal design found by the Algorithm 1. We do so by
considering the D-optimality criterion for Model 3, and the
A-optimality criterion for Model 5, and varying the number
of points in the initial grid. In all cases, as is throughout the
whole paper, grid points are all equidistributed. Table 5 shows
the generated designs using different grid sets are very close,
suggesting that the initial grid may have only a marginal
impact on the optimal design. Initial coarser grids require
more iterations to reach the convergence and so longer CPU
time even though the initial SDP problem has fewer vari-
ables to solve. We also note that when the SDP-generated
design has more points, the NLP procedure requires more
computational time.We also observe A-optimal designs take

123

Stat Comput (2018) 28:441–460 451

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

x

It
er

at
io

n
Points in the grid

(a)

−1 −0.5 0 0.5 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

x

D
is

p
er

si
on

fu
nc

ti
on

iteration 1
iteration 2

(b)

Fig. 1 The construction of the D-optimal design for Model 3 on X = [−1, 1] in Table 1 with Δx = 0.02: a grid evolution; b dispersion function
evolution

0.5 1 1.5 2 2.5

0

1

2

x

It
er

at
io

n

Points in the grid

(a)

0.5 1 1.5 2 2.5
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

x

D
is

pe
rs

io
n

fu
nc

ti
on

iteration 1
iteration 2

(b)

Fig. 2 The construction of the A-optimal design for Model 5 on X = [−1, 1] with Δx = 0.02: a grid evolution; b dispersion function evolution

longer time to find compared to other optimal designs even
though an automatic scaling procedure has already been
implemented.

4.1 E-optimal designs with mλ ≥ 1

E-optimal designs that have minimum eigenvalue with mul-
tiplicity greater than unity are harder to find and they
commonly serve as benchmark tests for algorithms for con-
tinuous optimal designs of experiments. The verification of
its global optimality ismore difficult because aminmax prob-
lem needs to be solved so that the dispersion function is

maximized in the design space for a feasible combination
of the α’s. Our proposed algorithm is one of a few that can
successfully handle the added complexity.

Table 6 lists the models we used to test the algorithm.
They were selected in part because all of them yield FIM’s
where the minimum eigenvalue has multiplicity 2. The E-
optimal designs for Models 1∗ and 2∗ were constructed by
Melas (2006, Chap. 3) via functional analysis, and we com-
pare them with those found by our proposed algorithm using
their relative E- efficiencies defined by:

EffE = λmin(M (ξ))

λmin(M (ξ∗))
(20)

123

452 Stat Comput (2018) 28:441–460

Table 5 A- and D-optimal designs found using different numbers of uniformly distributed points in the design space

Model Criterion Domain Δx Design CPU (s) Iterations

3 D- [−1, 1] 0.01

(−1.0000, −0.6550, 0.0000, 0.6550, 1.0000
0.2000, 0.2000, 0.2000, 0.2000, 0.2000

)

5.25 2

0.02

(−1.0000, −0.6501, 0.0000, 0.6501, 1.0000
0.2000, 0.2000, 0.2000, 0.2000, 0.2000

)

4.77 2

0.04

(−1.0000, −0.6594, 0.0000, 0.6594, 1.0000
0.2000, 0.2000, 0.2000, 0.2000, 0.2000

)

6.31 3

0.10

(−1.0000, −0.6563, 0.0000, 0.6563, 1.0000
0.2000, 0.2000, 0.2000, 0.2000, 0.2000

)

6.92 3

5 A- [0.5, 2.5] 0.01

(
0.5000, 0.7543, 1.6698, 2.5000
0.1561, 0.3358, 0.3439, 0.1642

)

10.66 3

0.02

(
0.5000, 0.7571, 1.6718, 2.5000
0.1546, 0.3351, 0.3452, 0.1650

)

12.22 2

0.04

(
0.5000, 0.7543, 1.6720, 2.5000
0.1560, 0.3353, 0.3440, 0.1657

)

11.66 3

0.10

(
0.5000, 0.7545, 1.6672, 2.5000
0.1562, 0.3363, 0.3439, 0.1636

)

21.06 5

Table 6 Models for which the
minimum eigenvalue of the
information matrix of the
optimal design has multiplicity 2

Model Regression function Design space (X)

1∗ β0 + β1 x + β2 x2 [−5, 5]
2∗ β0 + β1 x + β2 x2 + β3 x3 [−5, 5]
3∗ β0 + β1 x + β2 x2 + β3 x3 + β4 x4 [−5, 5]
4∗ β0 + β1 x + β2 x2 + β3 x3 + β4 x4 + β5 x5 [−5, 5]

whereM (ξ) is the FIM of the E-optimal design found from
our algorithm and M (ξ∗) is the FIM of the optimal design
found by Melas (2006, Chap. 3).

To analyze the details and the mechanics of the algorithm,
let us consider theModel 2∗ in Table 6. The initial gridG (0) is
equidistributed and is formed by 201 points, corresponding
to Δx = 0.05. The discrete domain-based optimal design
ξ (0) has six points, two of them in the extremes of X, two
close to −1, and two in the vicinity of +1:

ξ (0) =
(−5.0000, −1.000, −0.9500, 0.9500, 1.0000, 5.0000

0.0184, 0.2853, 0.1963, 0.1963, 0.2853, 0.0184

)

The design is symmetric and includes two pairs of
neighbor support points. A simple analysis of ξ (0) reveals
that the optimal design obtained considering a continuous
space should have four support points, one in the interval
[−1.00,−0.95], the other in [0.95, 1.00], plus the extremes.
The minimum eigenvalue of the FIM of the design ξ (0) is
0.852267, and the corresponding eigenvalue for the design
found by Melas (2006, Chap. 3) is 0.852281, which leads to
EffE = 0.99998. It is noteworthy that the efficiency of the
SDP initial design is high even considering that it includes
two additional support points than the one obtained with
functional analysis.

A direct calculation shows that mλ = 2 for ξ (0) and the
normalized eigenvectors associated with both λmin are

eλmin, 1 =

⎛

⎜
⎜
⎝

−0.996814
0.000125
0.079750

−0.000005

⎞

⎟
⎟
⎠ and eλmin, 2 =

⎛

⎜
⎜
⎝

0.000124
0.999138

−0.000009
−0.041509

⎞

⎟
⎟
⎠

and the dispersion functions constructed for each eigenvector
eλmin, i , i ∈ {1, 2} are

Ψi (x|ξ (0)) = tr
[(

eλmin, i e
ᵀ
λmin, i

)
M(δx)

]
− λmin,

i ∈ {1, 2}, x ∈ X. (21)

The dispersion function for the optimal convex matrix E
is constructed by weighting the eigenvectors eλmin, i and is
given by

Ψ3(x|ξ (0)) = tr

[
2∑

i=1

αi

(
eλmin, i e

ᵀ
λmin, i

)
M(δx)

]

−λmin, x ∈ X, (22)

where the vector of weights found by solving the mean abso-
lute deviation problem (19) is α = (0.85192, 0.14808)ᵀ.

123

Stat Comput (2018) 28:441–460 453

−5 0 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

D
is

p
er

si
on

fu
nc

ti
on

Ψ1(x|ξ(0))

Ψ2(x|ξ(0))

Ψ3(x|ξ(0))

Fig. 3 The dispersion functionsΨi (x|ξ (0)), i ∈ {1, 2, 3} of the design
found from SDP in the first iteration for Model 2∗

Figure 3 displays all three dispersion functions where
Ψ3(x|ξ (0)) and demonstrates the optimality of the design
ξ (0). Next, the maxima of Ψ3(x|ξ (0)) are determined solv-
ing the problem (15). The solution found is x = (−5.0000,
−0.9783,−0.9783, 0.9783, 0.9783, 5.0000)ᵀ with the sec-
ond and third points collapsing into one and the same is true
for the fourth and fifth points. The grid of candidate points
for the second iteration of the algorithm, G (1), contains the
four remaining points. This grid is then used to find a new
design ξ (1) which is based on4 support points, cf. Table 7, and
the FIM has λmin = 0.852154 where mλ = 2. This design
satisfies the convergence condition (17), and the iteration pro-
cedure stops. Figure 4(a) illustrates the grid adaptation, and
Fig. 4(b) presents the evolution of the dispersion function.We
observe that the dispersion function constructed from ξ (1) is
very similar to that of ξ (0) which strengthen the accuracy of
the first design obtained with SDP although of having two
points more than the latest.

The results in Table 7 show good agreement with those
of Melas (2006, Chap. 3) and denote the ability of the algo-
rithm to handle E-optimal designs with multiple minimum
eigenvalues. The efficiency of the design found for Models

1∗ and 2∗ is 1.0000 and 0.9999, respectively, which corrobo-
rates the accuracy of the algorithm. We also observe that the
algorithm requires more computation time than that used for
similar models that lead to mλ = 1 because of the additional
linear program solved in each iteration.

4.2 Extension to higher-dimensional models

In this section, we consider linear models with nx ≥ 2.
The extension to nx -dimensional problems is straightfor-
ward, and Algorithm 1 does not need additional or special
updates. The design space X is, in all cases but one, a
Cartesian closed domain, and the candidate points included
in G (0) are the points of the nx -dimensional grid obtained
by equidistribution in each dimension. The space between
the points is represented by Δx and can have different
values for each dimension, so that for i th covariate xi is
Δxi = (xU P

i − x LOi)/(qi − 1), and qi is the number of
points used in that particular dimension. The NLP problem
to find the maxima of the dispersion function for a k-point
design previously obtainedwith SDPhas k×nx variables and
becomes computationally more challenging than that result-
ing from nx = 1. However, nonlinear programs to solve in
each iteration are small compared to those that IPOPT is
capable of handling because the number of support points is
low. All variables in the NLP program need to be bounded
using constraints (15b, 15c and 15d). The gradient and the
Jacobian matrix are still constructed by automatic differen-
tiation, which now requires more computational time but is
only performed once for each model.

The collapsing procedure deletes support points that are
in the same ε-size ball belonging to X. As in Sect. 4, the
Euclidean distance is used to check whether two support
points belong to the ε-size ball. For the i th iteration, we
determine the matrix of distances between the support points
using

d
(
x(i)
j , x(i)

l

)
=

∥
∥
∥x(i)

j − x(i)
l

∥
∥
∥
2
, j, l ∈ [k(i)] (23)

and delete the l th point when d(x(i)
j , x(i)

l) < ε.

Table 7 E-optimal designs for
Models in Table 6, and the
initial grid has 201 uniformly
spaced points

Model Design CPU (s) Iterations

1∗
(−5.0000, −0.0000, 5.0000

0.0192, 0.9616, 0.0192

)

5.03 2

2∗
(−5.0000, −0.9783, 0.9783, 5.0000

0.0184, 0.4816, 0.4816 0.0184

)

6.53 2

3∗
(−5.0000, −2.6751, 0.0000, 2.6751, 5.0000

0.0173, 0.1131, 0.7392, 0.1130, 0.0173

)

6.23 2

4∗
(−5.0000, −3.6451, −0.9257, 0.9257, 3.6451, 5.0000

0.0194, 0.0704, 0.4102, 0.4102, 0.0704, 0.0194

)

6.98 2

123

454 Stat Comput (2018) 28:441–460

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

1

2

x

It
er

at
io

n

Points in the grid

(a)

−5 0 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x

D
is

p
er

si
on

fu
nc

ti
on

iteration 1
iteration 2

(b)

Fig. 4 The construction of the E-optimal design for Model 2∗ on X = [−5, 5] with Δx = 0.05: a grid evolution; b dispersion function evolution

Table 8 presents a battery of statistical linear and nonlin-
ear models; Models 9–13 and 15–17 have two variables, and
Models 14 and 18, 19 have three. To submit the algorithm to a
broad range of problems, we address linear models (Models
9–14 and 17), and nonlinear models (Models 15, 16 and 18,
19), design spaces with the form of boxes (Models 9–18) and
design spaces constrained by a simplex (Model 19). The lin-
ear models have regression functions including a wide range
of terms, such as linear, quadratic, exponential, mixture and
rational functions, commonly used to fit experimental data.

The design space for Models 9–13 is X = [−1, 1] ×
[−1, 1], and 21 equidistributed points in each dimension
are used to generate the initial grid which yields Δx =
[0.05, 0.05]ᵀ. Consequently, the initial grid is formed by 441
candidate points. The initial mesh can be coarser or thinner
without major impact on the optimal design, as we observed
in Sect. 4. Thinner initial grids may require a large amount of
computational time to solve the initial SDP problem due to
the size, and extremely coarse grids may require additional
iterations to reach the convergence condition. We also use 21
equidistributed points in each dimension for Models 15–17,
and note that for Model 15 Δx = [0.25, 0.05]ᵀ.

The design space for Models 14 and 18 is X = [−1, 1] ×
[−1, 1] × [−1, 1], and we use 11 points to discretize each
dimension. Consequently, the initial grid is formed by 1331
candidate points, and Δx = [0.1, 0.1, 0.1]ᵀ. The design
space of the Model 19 is discretized using 441 equidis-
tributed points in each of the first two dimensions where
Δx = [0.025, 0.025]ᵀ. The values of x3 for each point are
obtained through the equality constraint.

Figure 5a, b displays the D- and A-optimal designs for
Model 14. Both are symmetric having 27 points. Tables 9,

10 and 11 list the designs for all models, and we note the
mild computational time required to solve each one. The
results found are also in good agreement with those found
with other algorithms, when those are available for com-
parison; see Atkinson (2007), Yu (2010a). All the designs
obtained for the E-optimality criterion need the algorithm
presented in Sect. 3.3 to handle FIM’s where the multiplicity
of the minimum eigenvalue is larger than 1; see column 3 of
Table 11.

5 Summary

Our paper is the first to apply an algorithm that hybrids SDP
with adaptive grid strategies to find optimal designs for linear
models and locally optimal designs for nonlinear models.
Our work is somewhat inspired by exchange methods and at
the same time, take advantage of mathematical programming
tools that guarantee optimality of the generated design in
each step of convergence. The user first supplies an initial
grid, and SDP is applied to find an optimal design on the
grid. We then apply NLP to find points that maximize the
dispersion function of the SDP-generated design, and they
form the next grid set. The process is iterated until an ε-
convergence condition is satisfied. We provided examples to
show how our algorithm generates A- and D-optimal designs
for polynomial and rational function models with one and
multiple variables.

Maximin optimal design problems for general regression
models are notoriously difficult to find, and we are not aware
of algorithms that can systematically generate such designs.
Using E-optimality as an illustrative example, we applied

123

Stat Comput (2018) 28:441–460 455

Table 8 Battery of multiple factor statistical models

Model Regression function Design space (X)

9 β0 + β1 x1 + β1 x2 + β3 x21 + β4 x22 [−1, 1] × [−1, 1]
10 β0 + β1 x1 + β1 x2 + β3 x21 + β4 x22 + β5 x1 x2 [−1, 1] × [−1, 1]
11 β0 + β1 x1 + β1 x2 + β3 exp(−x1) + β4 exp(−x2) [−1, 1] × [−1, 1]
12 β0 + β1 x1 + β1 x2 + β3 exp(−x1) + β4 exp(−x2) + β5 x1 x2 [−1, 1] × [−1, 1]
13 β0 + β1 x1 + β1 x2 + β3 exp(−x1) + β4 exp(−x2) + β5 exp(−x1 x2) [−1, 1] × [−1, 1]
14 β0 + β1 x1 + β1 x2 + β3 x3 + β4 x21 + β5 x22 + β6 x23+ [−1, 1] × [−1, 1] × [−1, 1]

+ β7 x1 x2 + β8 x1 x3 + β9 x2 x3

15♣ 1
1+exp(β0+β1 x1+β2 x2+β3 x1 x2)

[0, 5] × [0, 1]
β0 = −2, β1 = 0.5, β2 = 0.5, β3 = 0.1

16� θ1 θ3 x1
1+θ1 x1+θ2 x2

[0, 3] × [0, 3]
θ1 = 2.9, θ2 = 12.2, θ3 = 0.69

17 β0 + β1 x1 + β2 x2 + β3
x1

1+x2
+ β4

x2
1+x1

+ β5
x1 x2

1+x1 x2
[0, 1] × [0, 1]

18† exp(β0 + β1 x1 + β1 x2 + β3 x3 + β4 x21 + β5 x22 + β6 x23+ [−1, 1] × [−1, 1] × [−1, 1]
+ β7 x1 x2 + β8 x1 x3 + β9 x2 x3)

β0 = 0.5, β1 = −0.2, β2 = 0.5, β3 = −0.2, β4 = −0.1, β5 = 0.2,

β6 = −0.1, β7 = 0.2, β8 = −0.1, β9 = 0.2

19‡ exp(β0 + β1 x1 + β1 x2 + β3 x3 + β4 x21 + β5 x22 + β6 x23+ [0, 0.5] × [0, 0.5]×
+ β7 x1 x2 + β8 x1 x3 + β9 x2 x3) × {x3 : x1 + x2 + x3 = 1}

β0 = 0.5, β1 = −0.2, β2 = 0.5, β3 = −0.2, β4 = 0.4, β5 = −0.3,

β6 = 0.7, β7 = 0.7, β8 = 1.7, β9 = 1.0

♣ Logistic model with two factors and all pairwise interactions.
� Kinetics of the catalytic dehydrogenation of n-hexil alcohol model (Box and Hunter 1965).
† Poisson model with 3 factors and all pairwise interactions.
‡ Poisson model with 3 factors and all pairwise interactions constrained to

∑3
i=1 xi = 1

−1 −0.5 0 0.5 1
−1

0

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

(a)

−1 −0.5 0 0.5 1
−1

0

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

(b)

Fig. 5 a D-optimal; and b A-optimal designs for Model 25 in the domain X = [−1, 1] × [−1, 1] × [−1, 1] with Δx = [0.1, 0.1, 0.1]ᵀ. The size
of the markers is proportional to weight of the design at the particular point

our algorithm to find E-optimal designs for polynomial and
rational function models with one or more variables. When
the minimum eigenvalue of the FIM has multiplicity larger
than 1, the design problem is more difficult because we have

to work with subgradients. We showed our algorithm can
also tackle such design problems systematically and does so
by solving an additional LP problem that optimizes a convex
combination of weights that validates the Equivalence The-

123

456 Stat Comput (2018) 28:441–460

Table 9 D-optimal designs for Models in Table 8

Model Design CPU (s) Iterations

9

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111

⎞

⎠ 5.33 2

10

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.1458, 0.0802, 0.1458, 0.0802, 0.0962, 0.0802, 0.1458, 0.0802, 0.1458

⎞

⎠ 6.08 2

11

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1650, −0.1650, −0.1650, 1.0000, 1.0000, 1.0000
−1.0000, −0.1650, 1.0000, −1.0000, −0.1650, 1.0000, −1.0000, −0.1650, 1.0000
0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111

⎞

⎠ 6.30 2

12

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1966, −0.2027, −0.1537, 1.0000, 1.0000, 1.0000
−1.0000, −0.1966, 1.0000, −1.0000, 1.0000, −0.1537, −1.0000, −0.2027, 1.0000
0.1357, 0.0834, 0.1444, 0.0834, 0.0796, 0.0956, 0.1444, 0.0796, 0.1539

⎞

⎠ 7.17 2

13

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.2060, −0.1484, −0.1674, 1.0000, 1.0000, 1.0000
−1.0000, −0.2060, 1.0000, −1.0000, −0.1484, 1.0000, −1.0000, −0.1674, 1.0000
0.1324, 0.0852, 0.1480, 0.0853, 0.0977, 0.0774, 0.1480, 0.0775, 0.1486

⎞

⎠ 6.95 2

14

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0690, 0.0249, 0.0690, 0.0249, 0.0209, 0.0249, 0.0690, 0.0249, 0.0690
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0249, 0.0209, 0.0249, 0.0209, 0.0237, 0.0209, 0.0249, 0.0209, 0.0249
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0690, 0.0249, 0.0690, 0.0249, 0.0210, 0.0249, 0.0690, 0.0249, 0.0690

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

25.27 2

15

⎛

⎝
0.8000, 1.4437, 4.2362, 5.0000
1.0000, 0.0000, 1.0000, 0.0000
0.25000, 0.2500, 0.2500, 0.2500

⎞

⎠ 12.00 3

16

⎛

⎝
0.3000, 3.0000, 3.0000
0.0000, 0.0000, 0.7944
0.3333, 0.3333, 0.3333

⎞

⎠ 7.87 2

17

⎛

⎝
0.0000, 0.0000, 0.6430, 2.0000, 2.0000, 2.0000
0.0000, 2.0000, 2.0000, 0.0000, 0.6430, 2.0000
0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667

⎞

⎠ 7.03 2

18

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, 0.0148, 0.0139
−1.0000, −1.0000, 0.0922, 0.2195, 1.0000, 1.0000, 1.0000, 0.2195, 1.0000
−1.0000, 1.0000, −1.0000, 0.0148, −1.0000, 0.0139, 1.0000, −1.0000, −1.0000
0.0997, 0.0971, 0.0052, 0.0641, 0.0857, 0.0341, 0.0877, 0.0641, 0.0341

−0.0093, −0.0332, 1.0000, 1.0000, 1.0000, 1.0000
1.0000, 1.0000, −1.0000, 1.0000, 1.0000, 1.0000

−0.0093, 1.0000, −1.0000, −1.0000, −0.0332, 1.0000
0.0715, 0.0438, 0.0971, 0.0877 0.0437, 0.0843

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

39.81 3

19

⎛

⎜
⎜
⎝

0.0000, 0.0000, 0.0000, 0.2485, 0.2452, 0.2420, 0.5000, 0.5000, 0.5000
0.0000, 0.2485, 0.5000, 0.0000, 0.2452, 0.5000, 0.0000, 0.2420, 0.5000
1.0000, 0.7515, 0.5000, 0.7515, 0.5096, 0.2580, 0.5000, 0.2580, 0.0000
0.1440, 0.0891, 0.1453, 0.0891, 0.1014, 0.0716, 0.1453, 0.0715, 0.1426

⎞

⎟
⎟
⎠ 12.66 3

123

Stat Comput (2018) 28:441–460 457

Table 10 A-optimal designs for Models in Table 8

Model Design CPU (s) Iterations

9

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0704, 0.1121, 0.0704, 0.1121, 0.2698, 0.1121, 0.0704, 0.1121, 0.0704

⎞

⎠ 6.38 2

10

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0939, 0.0978, 0.0939, 0.0978, 0.2332, 0.0978, 0.0939, 0.0978, 0.0939

⎞

⎠ 5.52 2

11

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1566, −0.1566, −0.1566, 1.0000, 1.0000, 1.0000
−1.0000, −0.1566, 1.0000, −1.0000, −0.1566, 1.0000, −1.0000, −0.1566, 1.0000
0.0943, 0.0865, 0.0484, 0.0865, 0.3328, 0.1114, 0.0484, 0.1114, 0.0803

⎞

⎠ 6.41 2

12

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1623, −0.1506, −0.1557, 1.0000, 1.0000, 1.0000
−1.0000, −0.1623, 1.0000, −1.0000, −0.1506, 1.0000, −1.0000, −0.1557, 1.0000
0.0775, 0.0848, 0.0702, 0.0848, 0.3213, 0.1096, 0.0702, 0.1096, 0.0720

⎞

⎠ 7.06 2

13

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1613, −0.1464, −0.1422, 1.0000, 1.0000, 1.0000
−1.0000, −0.1613, 1.0000, −1.0000, −0.1464, 1.0000, −1.0000, −0.1422, 1.0000
0.0886, 0.0842, 0.0571, 0.0842, 0.3196, 0.1097, 0.0571, 0.1097, 0.0899

⎞

⎠ 6.83 2

14

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0386, 0.0291, 0.0386, 0.0291, 0.0366, 0.0291, 0.0386, 0.0291, 0.0386
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0291, 0.0366, 0.0291, 0.0366, 0.1223, 0.0366, 0.0291, 0.0366, 0.0291
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0386, 0.0291, 0.0386, 0.0291, 0.0366, 0.0291, 0.0386, 0.0291, 0.0386

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

16.06 2

15

⎛

⎝
0.3537, 0.7488, 4.6460, 5.0000
1.0000, 0.0000, 1.0000, 0.0000
0.2957, 0.5584, 0.0660, 0.0800

⎞

⎠ 12.25 3

16

⎛

⎝
0.2645, 3.0000, 3.0000
0.0000, 0.0000, 0.8022
0.4521, 0.1079, 0.4400

⎞

⎠ 9.02 3

17

⎛

⎝
0.0000, 0.0000, 0.6575, 2.0000, 2.0000, 2.0000
0.0000, 2.0000, 2.0000, 0.0000, 0.6575, 2.0000
0.0873, 0.1178, 0.2437, 0.1178, 0.2437, 0.1896

⎞

⎠ 8.64 3

18

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.0635, −1.0000, −1.0000, −1.0000, 0.3134, 0.0163, 0.2459, 1.0000, 0.8663
−1.0000, −1.0000, 0.2940, 0.2940, 0.2940, 1.0000, −1.0000, 0.2670, 1.0000
−1.0000, 0.2589, −1.0000, 0.5923, 1.0000, 0.2468, −1.0000, −0.0635, 1.0000
0.2798, 0.0583, 0.0410, 0.0570, 0.0805, 0.0279, 0.2831, 0.0891, 0.0370
1.0000
0.2940

−1.0000
0.0464

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

72.86 7

19

⎛

⎜
⎜
⎝

0.0000, 0.0000, 0.0000, 0.2511, 0.2445, 0.2378, 0.5000, 0.5000, 0.5000
0.0000, 0.2511, 0.5000, 0.0000, 0.2445, 0.5000, 0.0000, 0.2378, 0.5000
1.0000, 0.7489, 0.5000, 0.7489, 0.5110, 0.2622, 0.5000, 0.2622, 0.0000
0.1224, 0.1233, 0.0876, 0.1233, 0.1734, 0.0925, 0.0876, 0.0925, 0.0975

⎞

⎟
⎟
⎠ 10.42 3

123

458 Stat Comput (2018) 28:441–460

Table 11 E-optimal designs for Models in Table 8

Model Design mλ CPU (s) Iterations

9

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0500, 0.1000, 0.0500, 0.1000, 0.4000, 0.1000, 0.0500, 0.1000, 0.0500

⎞

⎠ 2 6.05 2

10

⎛

⎝
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0500, 0.1000, 0.0500, 0.1000, 0.4000, 0.1000, 0.0500, 0.1000, 0.0500

⎞

⎠ 3 6.67 2

11

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1614, −0.1614, −0.1614, 1.0000, 1.0000, 1.0000
−1.0000, −0.1614, 1.0000, −1.0000, −0.1614, 1.0000, −1.0000, −0.1614, 1.0000
0.0954, 0.0662, 0.0693, 0.0662, 0.3943, 0.08333, 0.0693, 0.0833, 0.0724

⎞

⎠ 2 7.70 3

12

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1615, −0.1614, −0.1615, 1.0000, 1.0000, 1.0000
−1.0000, −0.1615, 1.0000, −1.0000, −0.1614, 1.0000, −1.0000, −0.1615, 1.0000
0.0908, 0.0661, 0.0740, 0.0662, 0.3941, 0.0834, 0.0740, 0.0834, 0.0679

⎞

⎠ 2 7.98 3

13

⎛

⎝
−1.0000, −1.0000, −1.0000, −0.1613, −0.1617, −0.1617, 1.0000, 1.0000, 1.0000
−1.0000, −0.1613, 1.0000, −1.0000, −0.1617, 1.0000, −1.0000, −0.1613, 1.0000
0.1067, 0.0662, 0.0579, 0.0662, 0.3945, 0.0834, 0.0579, 0.0834, 0.0838

⎞

⎠ 2 8.22 3

14

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000
−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0135, 0.0232, 0.0135, 0.0232, 0.0537, 0.0232, 0.0135, 0.0232, 0.0135
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0232, 0.0537, 0.0232, 0.0537, 0.2924, 0.0537, 0.0232, 0.0537, 0.0232
1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000
−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000
0.0135, 0.0232, 0.0135, 0.0232, 0.0537, 0.0232, 0.0135, 0.0232, 0.0135

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

6 20.38 3

15

⎛

⎝
0.0000, 0.5385, 5.0000, 5.0000
1.0000, 0.0000, 0.0000, 1.0000
0.3038, 0.6237, 0.0534, 0.0190

⎞

⎠ 1 11.79 3

16

⎛

⎝
0.3000, 2.7499, 3.0000
0.2749, 0.8000, 1.1074
0.2066, 0.3319, 0.4615

⎞

⎠ 2 39.48 3

17

⎛

⎝
0.0000, 0.0000, 0.5759, 2.0000, 2.0000, 2.0000
0.0000, 2.0000, 2.0000, 0.0000, 0.5736, 2.0000
0.0807, 0.0953, 0.2478, 0.0957, 0.2480, 0.2336

⎞

⎠ 2 14.39 2

18

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.0000, −0.1469, −1.0000, −0.1922, 0.1575, −0.3605, −0.1469, 0.2000, 1.0000
−1.0000, 0.1740, 0.9964, 1.0000, 0.3440, 1.0000, −1.0000, 0.0950, 0.5139
−0.7138, −1.0000, 1.0000, 0.3491, −0.2644, 0.1657, 0.6609, −1.0000, 0.6609
0.0100, 0.1874, 0.0483, 0.1254, 0.0866, 0.0895, 0.0086, 0.2310, 0.0498
0.1575
1.0000
0.1657
0.1634

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1 97.34 7

19

⎛

⎜
⎜
⎝

0.0000, 0.0000, 0.0000, 0.2459, 0.2412, 0.2362, 0.5000, 0.5000, 0.5000
0.0000, 0.2459, 0.5000, 0.0000, 0.2412, 0.5000, 0.0000, 0.2362, 0.5000
1.0000, 0.7541, 0.5000, 0.7541, 0.5176, 0.2638, 0.5000, 0.2638, 0.0000
0.0981, 0.1392, 0.0464, 0.1391, 0.2475, 0.1095, 0.0464, 0.1095, 0.0642

⎞

⎟
⎟
⎠ 2 8.88 3

123

Stat Comput (2018) 28:441–460 459

orem. Our results are in good agreement with those obtained
with other algorithms when those are available. A main dif-
ference is our algorithm is computationally efficient and is
guaranteed to find the optimal design by construction.

Acknowledgements Dette’s work was partially supported by the Col-
laborative Research Center “Statistical modeling of nonlinear dynamic
processes” (SFB 823, Teilprojekt C2) of the German Research Founda-
tion (DFG). Dette and Wong were also partially supported by a Grant
from the National Institute of General Medical Sciences of the National
Institutes of Health under Award Number R01GM107639. The con-
tent is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

References

Andersen, E., Jensen, B., Jensen, J., Sandvik, R., Worsøe, U.: Mosek
version 6. Tech. rep., Technical Report TR-2009-3, MOSEK
(2009)

Arthanari, T.S., Dodge, Y.: Mathematical Programming in Statistics. A
Wiley-Interscience publication. Wiley, Hoboken (1993)

Atkinson, A.C., Donev, A.N.: The construction of exact D-optimum
experimental designswith application to blocking response surface
designs. Biometrika 76(3), 515–526 (1989)

Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental
Designs, with SAS. Oxford University Press, Oxford (2007)

Ben-Tal, A., Nemirovski, A.S.: Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms, and EngineeringApplications. Society
for Industrial and Applied Mathematics, Philadelphia (2001)

Berger, M.J.: Adaptive mesh refinement for hyperbolic partial dif-
ferential equations. Ph.D. Dissertation, Department of Computer
Science, Stanford University, Stanford, CA, USA (1982)

Berger, M.P.F., Wong, W.K.: An Introduction to Optimal Designs for
Social and Biomedical Research. Wiley, Chichester (2009)

Bischof, C.H., Bücker, H.M., Lang, B., Rasch, A., Vehreschild, A.:
Combining source transformation and operator overloading tech-
niques to compute derivatives for Matlab programs. In: Proceed-
ings of the Second IEEE International Workshop on Source Code
Analysis andManipulation (SCAM 2002), pp. 65–72. IEEE Com-
puter Society, Los Alamitos, CA, USA (2002)

Box, G.E.P., Hunter, W.G.: The experimental study of physical mech-
anisms. Technometrics 7(1), 23–42 (1965)

Boyd, S., Vandenberghe, L.: Convex Optimization. University Press,
Cambridge (2004)

Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for
large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–
900 (1999)

Chaloner, K., Larntz, K.: Optimal Bayesian design applied to logistic
regression experiments. J. Stat. Plan. Inference 59, 191–208 (1989)

Chen, R.B., Chang, S.P., Wang, W., Tung, H.C., Wong, W.K.: Minimax
optimal designs via particle swarm optimization methods. Stat.
Comput. 25(5), 975–988 (2015)

Coale, A., McNeil, D.: The distribution by age of the frequency of first
marriage in a female cohort. J. Am. Stat. Assoc. 67(340), 743–749
(1972)

Coleman, T.F., Li, Y.: On the convergence of reflective Newtonmethods
for large-scale nonlinear minimization subject to bounds. Math.
Program. 67(2), 189–224 (1994)

Cook, R., Nachtsheim, C.: Comparison of algorithms for constructing
D-optimal design. Technometrics 22(3), 315–324 (1980)

Dette, H., Grigoriev, Y.: E-optimal designs for second-order response
surface models. Ann. Stat. 42(4), 1635–1656 (2014)

Dette, H., Pepelyshev, A., Zhigljavsky, A.A.: Improving updating rules
in multiplicative algorithms for computing D-optimal designs.
Comput. Stat. Data Anal. 53(2), 312–320 (2008)

Dette, H., Studden, W.J.: Geometry of E-optimality. Ann. Stat. 21(1),
416–433 (1993)

Drud, A.: CONOPT: a GRG code for large sparse dynamic nonlinear
optimization problems. Math. Program. 31, 153–191 (1985)

Drud, A.: CONOPT—a large-scale GRG code. ORSA J. Comput. 6(2),
207–216 (1994)

Duarte, B.P., Wong, W.K.: A semi-infinite programming based algo-
rithm for finding minimax optimal designs for nonlinear models.
Stat. Comput. 24(6), 1063–1080 (2014)

Duarte, B.P.M., Wong, W.K.: Finding Bayesian optimal designs for
nonlinear models: a semidefinite programming-based approach.
Int. Stat. Rev. 83(2), 239–262 (2015)

Duarte, B.P., Wong, W.K., Atkinson, A.C.: A semi-infinite program-
ming based algorithm for determining T-optimum designs for
model discrimination. J. Multivar. Anal. 135, 11–24 (2015)

Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, Cam-
bridge (1972)

Fedorov, V.V., Leonov, S.L.: Optimal Design for Nonlinear Response
Models. Chapman and Hall/CRC Press, Boca Raton (2014)

Fellman, J.: An empirical study of a class of iterative searches for opti-
mal designs. J. Stat. Plan. Inference 21, 85–92 (1989)

Filová, L., Trnovská, M., Harman, R.: Computing maximin efficient
experimental designs using the methods of semidefinite program-
ming. Metrika 64(1), 109–119 (2011)

Gaivoronski, A.: Linearization methods for optimization of function-
als which depend on probability measures. In: Prékopa, A., Wets,
R.J.B. (eds.) Stochastic Programming 84 Part II, Mathematical
Programming Studies, vol. 28, pp. 157–181. Springer, Berlin Hei-
delberg (1986)

Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for
large-scale constrained optimization. SIAM Rev. 47(1), 99–131
(2005)

Goos, P., Jones, B.: Optimal Design of Experiments: A Case Study
Approach. Wiley, New York (2011)

Grant, M., Boyd, S., Ye, Y.: cvx Users guide for cvx version 1.22.
CVX Research, Inc., 1104 Claire Ave., Austin, TX 78703-2502
(2012)

Harman, R., Jurík, T.: Computing c-optimal experimental designs using
the simplex method of linear programming. Comput. Stat. Data
Anal. 53(2), 247–254 (2008)

Harman, R., Pronzato, L.: Improvements on removing non-optimal sup-
port points in D-optimum design algorithms. Stat. Probab. Lett.
77, 90–94 (2007)

Heredia-Langner, A., Montgomery, D.C., Carlyle, W.M., Borror, C.M.:
Model-robust optimal designs: a genetic algorithm approach. J.
Qual. Technol. 36, 263–279 (2004)

Hill, A.: The possible effects of the aggregation of the molecules of
haemoglobin on its dissociation curves. J Physiol 40(Suppl), 4–7
(1910)

Kiefer, J.C.: Optimum experimental designs. J. R. Stat. Soc. Ser. B 21,
272–319 (1959)

Kiefer, J.: General equivalence theory for optimumdesign (approximate
theory). Ann. Stat. 2, 849–879 (1974)

Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problem.
Can. J. Math. 12, 363–366 (1960)

López-Fidalgo, J., Tommasi, C., Trandafir, P.C.: Optimal designs for
discriminating between some extensions of theMichaelis–Menten
model. J. Stat. Plan. Inference 138(12), 3797–3804 (2008)

Mandal, S., Torsney, B.: Construction of optimal designs using a clus-
tering approach. J. Stat. Plan. Inference 136, 1120–1134 (2006)

Mandal, A., Wong, W.K., Yu, Y.: Algorithmic searches for optimal
designs. Handbook of Design and Analysis of Experiments, chap
21, pp. 755–786. CRC Press, New York (2015)

123

460 Stat Comput (2018) 28:441–460

Masoudi, E., Holling, H., Wong, W.K.: Application of imperialist com-
petitive algorithm to find minimax and standardized maximin
optimal designs. Comput. Stat. Data Anal. (in press). doi:10.1016/
j.csda.2016.06.014

Melas, V.: Functional Approach to Optimal Experimental Design, Lec-
ture Notes in Statistics. Springer (2006)

Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for
constructing exact optimal experimental designs. Technometrics
37, 60–69 (1995)

Mitchell, T.J.: An algorithm for the construction of D-optimal experi-
mental designs. Technometrics 16, 203–210 (1974)

Mitchell, T.J., Miller Jr., F.L.: Use of design repair to construct designs
for special linear models. Technical report, Oak Ridge National
Laboratory, 130–131 (1970)

Molchanov, I., Zuyev, S.: Steepest descent algorithm in a space of mea-
sures. Stat. Comput. 12, 115–123 (2002)

Papp, D.: Optimal designs for rational function regression. J. Am. Stat.
Assoc. 107, 400–411 (2012)

Pázman, A.: Foundations of Optimum Experimental Design (Mathe-
matics and its Applications). Springer, Netherlands (1986)

Peraire, J., Vahdati,M.,Morgan, K., Zienkiewicz, O.: Adaptive remesh-
ing for compressible flow computations. J. Comput. Phys. 72(2),
449–466 (1987)

Pronzato, L.: Removing non-optimal support points in D-optimum
design algorithms. Stat. Probab. Lett. 63(3), 223–228 (2003)

Pronzato, L.: Optimal experimental design and some related control
problems. Automatica 44, 303–325 (2008)

Pronzato, L., Zhigljavsky, A.A.: Algorithmic construction of optimal
designs on compact sets for concave and differentiable criteria. J.
Stat. Plan. Inference 154, 141–155 (2014)

Pukelsheim, F.: Optimal Design of Experiments. SIAM, Philadelphia
(1993)

Pukelsheim, F., Torsney, B.: Optimal weights for experimental designs
on linearly independent support points. Ann. Stat. 19(3), 1614–
1625 (1991)

Qi, H.: A semidefinite programming study of the Elfving theorem. J.
Stat. Plan. Inference 141, 3117–3130 (2011)

Ruszczyński, A.P.: Nonlinear optimization, No. vol. 13. In: Nonlinear
Optimization. Princeton University Press, Princeton (2006)

Sagnol, G.: Computing optimal designs of multiresponse experiments
reduces to second-order cone programming. J. Stat. Plan. Inference
141(5), 1684–1708 (2011)

Sagnol, G.: On the semidefinite representation of real functions applied
to symmetric matrices. Linear Algebra Appl. 439(10), 2829–2843
(2013)

Sagnol, G., Harman, R.: Computing exact D-optimal designs by mixed
integer second order cone programming. Ann. Stat. 43(5), 2198–
2224 (2015)

Silvey, S.D.: Optimal Design. Chapman and Hall, London (1980)
Sturm, J.: Using SeDuMi 1.02, aMatlab toolbox for optimization over-

symmetric cones. Optim Methods Softw. 11, 625–653 (1999)
Titterington, D.M.: Algorithms for computing D-optimal design on

finite design spaces. In: Proceedings of the 1976 Conference on
Information Science and Systems, 3, John Hopkins University,
213–216 (1976)

Torsney, B., Mandal, S.: Two classes of multiplicative algorithms for
constructing optimizing distributions. Comput. Stat. Data Anal.
51(3), 1591–1601 (2006)

Torsney, B., Martín-Martín, R.: Multiplicative algorithms for comput-
ing optimum designs. J. Stat. Plan. Inference 139(12), 3947–3961
(2009)

Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 8,
49–95 (1996)

Vandenberghe, L., Boyd, S.:Applications of semidefinite programming.
Appl. Numer. Math. 29, 283–299 (1999)

Wächter, A., Biegler, T.L.: On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming.
Math. Program. 106(1), 25–57 (2005)

Welch, W.J.: Algorithmic complexity: three NP-hard problems in com-
putational statistics. J. Stat. Comput. Simul. 15(1), 17–25 (1982)

Whittle, P.: Some general points in the theory of optimal experimental
design. J. R. Stat. Soc. Ser. B 35, 123–130 (1973)

Woods, D.C.: Robust designs for binary data: applications of simulated
annealing. J. Stat. Comput. Simul. 80(1), 29–41 (2010)

Wu, C.F.: Some algorithmic aspects of the theory of optimal designs.
Ann. Stat. 6(6), 1286–1301 (1978)

Wu, C.F., Wynn, H.P.: The convergence of general step-length algo-
rithms for regular optimum design criteria. Ann. Stat. 6(6),
1273–1285 (1978)

Wynn, H.P.: The sequential generation of D-optimum experimental
designs. Ann. Math. Stat. 41(5), 1655–1664 (1970)

Wynn,H.P.: Results in the theory and construction of D-optimumexper-
imental designs. J. R. Stat. Soc. Ser. B 34, 133–147 (1972)

Yang, M., Biedermann, S., Tang, E.: On optimal designs for nonlin-
ear models: a general and efficient algorithm. J. Am. Stat. Assoc.
108(504), 1411–1420 (2013)

Yu, Y.: D−optimal designs via a cocktail algorithm. Stat. Comput.
21(4), 475–481 (2010a)

Yu, Y.: Monotonic convergence of a general algorithm for computing
optimal designs. Ann. Stat. 38(3), 1593–1606 (2010b)

Yu, Y.: Strict monotonicity and convergence rate of Titterington’s algo-
rithm for computing D-optimal designs. Comput. Stat. Data. Anal.
54, 1419–1425 (2010c)

123

http://dx.doi.org/10.1016/j.csda.2016.06.014
http://dx.doi.org/10.1016/j.csda.2016.06.014

	Adaptive grid semidefinite programming for finding optimal designs
	Abstract
	1 Motivation
	2 Background
	2.1 Semidefinite programming
	2.2 Nonlinear programming

	3 Algorithm
	3.1 Semidefinite programming formulation
	3.2 Adaptive grid procedure
	3.3 Adaptive strategy for finding E-optimal designs

	4 Applications to find D-, A- and E-optimal designs
	4.1 E-optimal designs with mλ1
	4.2 Extension to higher-dimensional models

	5 Summary
	Acknowledgements
	References

