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Highlights  

 Device validation with confusion matrices was evaluated empirically 

 Assessments by confusion matrices, error indices and linear regression were compared 

 Confusion probabilities help to analyse reasons for errors and their importance 

 

Abstract 

The aim of the present study was to evaluate empirically confusion matrices in device validation. We 

compared the confusion matrix method to linear regression and error indices in the validation of a device 

measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on 

classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from 

five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video 

recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and 

calculate performance measures. In addition, hourly durations of each behaviour were calculated and the 

accuracy of measurements was evaluated with linear regression and error indices. All three validation 

methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the 

intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but 

the linear regression method often disagreed with them. Our study supports the use of confusion matrix 

analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent 

evaluation of validity, and it offers extra information on the type and sources of errors. 

Keywords: validation, confusion matrix, linear regression, error indices, confusion probabilities, 

feeding behaviour  

 

1. Introduction 

The use of advanced technology for automated measurement of animal behaviour is increasing, and the 

accuracy of new devices has to be ensured in validation studies. However, there is no agreement on how 

validation should be done. In addition, many statistical techniques are sensitive to underlying assumptions 

and can produce misleading results, if the assumptions are not fulfilled. Therefore, it is always desirable to 

validate devices with several alternative methods and check their agreement. 

 

The goal of validation is to guarantee that future measurements in similar situations are sufficiently accurate. 

When behaviour is measured, an important question is the time resolution of measurements. In one extreme, 

one may require that behaviour is classified accurately at every instant, while in other applications it suffices 

that hourly or daily durations are accurate. If consecutive classifications (i.e., results from every ‘instant’ or 

second) are available, then it is always possible to calculate durations of behaviour during longer time 

intervals and perform validation at any desired resolution. 
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Previous validation studies have mostly concentrated on validating numerical behaviour measurements like 

hourly durations spent on a certain behaviour. The strength of this relationship has been evaluated with 

correlation analysis (Büchel and Sundrum, 2014), linear regression (Chizzotti et al., 2015), a combination of 

these two methods (Elischer et al., 2013; Schirmann et al., 2009) or different kinds of error indices 

(Schirmann et al., 2009) like average, minimum, maximum and variance of error or error magnitude.  When 

the underlying discrete classifications are available, an alternative approach is to validate classification 

accuracy with confusion matrices (Nielsen, 2013; DeVries et al., 2003). A confusion matrix presents 

information about how often a certain behaviour is detected correctly and how often it is classified as another 

behaviour.  The classification accuracy is usually summarized by performance indicators like precision, 

sensitivity and specificity. 

 

The aim of the present study was to evaluate the confusion matrix method in validation. For this purpose, we 

validated a halter device measuring eating, ruminating and drinking behaviour of cattle. The first objective 

was to compare the confusion matrix method with basic error indices and linear regression analysis in the 

validation of RWS. The main question was whether all three methods produce concordant assessments of the 

device accuracy. It was also hypothesized (in line with previous research, Miller-Cushon and DeVries, 2011) 

that the confusion matrix method could reveal more errors since it analyzes finer-grained measurements 

(behavior classifications on each second) while the latter two methods require coarser-grained measurements 

(hourly durations of each behaviour). The second objective was to analyse the confusion matrices in detail to 

find out reasons for errors. For this purpose, we introduce two types of confusion probabilities that extend 

the classical notions of precision and sensitivity and help in interpreting the matrix. In addition, we 

demonstrate how all available information on true behaviour can be utilized in the confusion matrix analysis 

even if the device measures only a few main classes. This gives valuable information on error-prone 

situations that should be targeted in further development of the device. 

 

2. Materials and methods  

2.1 Multiclass classification and confusion matrices 

In this paper, we concentrate on a discrete multiclass classification task, where one should assign each 

observation into one of predefined classes C1,...,Ck. Alternatively, one may perform probabilistic 

classification, where each observation is assigned a probability distribution describing probabilities of 

belonging into any of the given classes. Methods that perform the classification are called classifiers. Before 

new classifiers can be taken into use, their accuracy should be evaluated experimentally, by comparing the 

inferred classifications (measured by a new device or method) against the real classifications or gold 

standard classifications (measured by a benchmark method) with a sufficiently large test data set that is 

representative of expected future data. 
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Results of classifier validation studies are often presented as confusion matrices. A confusion matrix for k-

class classification is a k x k contingency table whose cells [i,j] (i=1,...,k, j=1,...,k) present frequencies of 

observations with real class Ci and inferred class Cj. A binary confusion matrix is a special case when there 

are only two classes: C (positive class) and not-C (negative class). A k x k confusion matrix can always be 

represented as a set of k binary confusion matrices, one for each class Ci. An example is shown in Figure 1. 

In practice, explicit transformation into binary confusion matrices is not necessary, but it helps to 

demonstrate how different classification performance indicators are calculated from a multiclass confusion 

matrix. 

 

In a binary confusion matrix (see Figure 1, on the right), observations classified correctly into the positive 

class are called true positives and observations classified correctly into the negative class are called true 

negatives. Instances of the positive class classified falsely as negative are called false negatives and instances 

of negative class classified falsely as positive are called false positives. Numbers of true positive, false 

positive, true negative and false negative observations are notated by TP, FP, TN and FN. From these 

frequencies, one can calculate classification performance indicators that reflect how the classifier performs in 

detecting the given class. The most common of such indicators are precision = TP/(TP+FP), sensitivity = 

TP/(TP+FN), specificity = TN/(TN+FP), and accuracy=(TP+TN)/(TP+TN+FP+FN).  

 

In this paper, we also introduce a new way to analyze confusion matrices with two types of confusion 

probabilities. Both confusion probabilities, cp1 and cp2, can be calculated directly for each cell of a 

multiclass confusion matrix. The first confusion probability, cp1= P(real=B|measured=A), gives the 

proportion of instances classified as class A but actually belonging to class B. The second confusion 

probability, cp2=P(measured=B|real=A), gives the proportion of actual A instances that were classified as B. 

For any class A, its cp1 values in the same column reveal the main reasons for false positive errors and its 

cp2 values in the same row reveal the main reasons for false negative errors. When A=B, cp1 reduces to 

precision and cp2 to sensitivity.  

 

Confusion probabilities can also be calculated for an extended confusion matrix where the main classes are 

divided into subclasses. Often the classifier can detect only the predefined main classes but the real classes in 

behavioural studies can be divided into detailed subclasses based on video observations. With confusion 

probabilities, one can use all available information and trace which subclasses were responsible for errors. 

Here, cp1 is especially useful because it shows the FP error distribution. Given B's subclasses, B1,...,Bm, 

comparison of cp1=P(real=Bi|measured=A) shows which subclasses were responsible for A's false positive 

errors. On the other hand, given A's subclasses A1,...,Am, cp2=P(measured=A|real=Ai) shows which 

subclasses were detected most or least sensitively. 

 

2.2 Data collection and formatting 
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The data was originally collected for a validation study (Ruuska et al., 2016) of a pressure sensor-based 

system (RumiWatch System, RWS, Itin + Hoch GmbH, Liestal, Switzerland) for measuring eating, 

ruminating, and drinking behaviour of cattle. By default, the RWS device reports hourly durations of 

behaviours and these estimates were used in the previous study. However, RWS offers also 10 Hz raw data 

consisting of ten behaviour classifications per second, and this data was used in the current study. The 

operating principles of RWS, as well as the experimental setup, collecting the RWS data, extracting correct 

behaviour classifications from video recordings (gold standard) and analysing the data with a linear 

regression method have been described in detail in the previous paper (Ruuska et al., 2016).  

 

In the primary validation study six non-lactating dairy cows were housed in tie stalls and fed with grass 

silage (dry matter 22-26%) and water was provided ad libitum.  Cows were equipped with RWS sensors and 

their behaviour was video recorded for 24 hours. Two trained observers monitored video recordings with 

continuous recording.   

 

In this study, we used 12 h (43 200 s) observational and RWS measurement data from five animals in the 

original study (excluding one animal with missing RWS data). The RWS data consisted of classifications of 

the behaviour as eating, ruminating, drinking, or other behaviour (class 'other') with 10 Hz frequency for the 

whole 12 hours.  Since the gold standard classifications were presented with 1 s resolution, the mode of 10 

consecutive RWS classifications was calculated to represent the RWS’s behavioural classification for that 

second. The observational data from video recordings was more detailed and the main classes for eating, 

ruminating, and other behaviour were divided into 32 subclasses according to body posture, feed type, and 

other activities which could possibly get confused with eating (like licking the feeding table, masticating 

feed, and grooming with the mouth) (Table 1). We note that in this study we used a strict definition of eating 

that excluded all related behaviour. The resulting 1 Hz resolution categorical data (43200 rows per animal) 

was used in the confusion matrix analysis. In addition, we created another version of the data, by calculating 

durations of eating, ruminating, drinking, and other behaviour in each hour. The resulting data consisted of 

12 rows per animal, each row containing eight numerical variables, the real duration X and RWS estimate Y 

for each of the four behaviour classes. This numerical data was used for calculating error indices and fitting 

linear regression models.  

 

2.3 Data analysis 

In the data analysis, we analysed the categorical data with confusion matrices and the corresponding 

numerical data with linear regression and error indices. The analysis was done for all five individual data sets 

as well as for the pooled data (five data sets combined together).  

 

First, we performed validation of the RWS system using only the four main behavioural classes with all three 

validation methods. In the confusion matrix analysis, the RWS classifications were compared to gold 
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standard second by second. From each 4 x 4 confusion matrix, we calculated precision, sensitivity, 

specificity, and accuracy for all four behavioural classes. All calculations were done with AWK (GNU Awk 

implementation, Free Software Foundation) programs written by the authors. In the linear regression 

analysis, we determined the regression equations with the least squares method and calculated the 

coefficients of determination (R2) with Microsoft Excel. In the error index analysis, we calculated the 

average error and average error magnitude defined as volume-weighted mean percentage error ∑(xi-yi)/∑xi 

and mean absolute percentage error ∑|xi-yi|/∑xi with AWK scripts written by the authors. The numerical data 

were also plotted with Microsoft Excel for visual inspection of linearity. The results are presented for all 

individual data sets as well as for the pooled data. 

 

Second, we analyzed the confusion matrices further by calculating confusion probabilities. The analysis was 

done in two phases, proceeding from coarser level matrices (only four main classes) to more detailed 

analysis (using subclasses to trace errors). In the second phase, the main classes of real behaviour were 

divided into subclasses, until the sources of confusion were identified. For brevity, we present the confusion 

matrix together with confusion probabilities only for the pooled data.   

 

3. Results 

3.1 Comparison of the three validation methods 

Comparison of the three validation methods is presented in Table 2 (pooled data) and Table 3 (individual 

data sets).  The tables give error indices (average error and average error magnitude), the regression 

equations with coefficients of determination, and the classification performance indicators (precision, 

sensitivity, specificity and accuracy) for eating, ruminating, drinking and other behaviour. Scatterplots 

presenting relationships between the observed and measured hourly durations are shown in Figure 2 (pooled 

data) and as online material (individual data sets). In the qualitative characterization of the overall accuracy 

(excellent−poor), we emphasize average error magnitude, precision and sensitivity. In this context, error 

magnitude ≤ 10% can be considered an excellent result, 10−20% good, 30−40% moderate and >40% poor. 

Similarly, having both precision and sensitivity ≥ 90% indicates excellent accuracy while having either of 

them <60% indicates a poor classifier. 

 

Eating was detected poorly, on average, but in two data sets (animals 79 and 3355) the performance was 

moderate. In all data sets, average errors were negative and precision was smaller than sensitivity, which 

means that the device overestimated the feeding time. Error magnitudes and classification performance 

measures were mostly in agreement but linear regression results were difficult to interpret. An obvious 

reason, detected from scatterplots, was that the relationship was far from linear except in two data sets (79, 

3355).   
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Ruminating was detected reasonably well but there was individual variation ranging from excellent (animals 

79, 102, 3355) to poor (154, 4293) accuracy. All three validation methods were in agreement in their 

assessments in spite of nonlinear relationships in two data sets (154, 4293).  

 

Drinking was detected poorly, especially according to classification performance measures. There were no 

individual differences in error magnitudes or performance measures but R2 was variable (0.00 − 0.62). Once 

again, error magnitudes and classification performance measures were in agreement. However, average error 

(-33%; -10 sec/h) gave an overly optimistic view of accuracy. None of the relationships were linear which 

made the linear regression results hard to interpret.  

 

According to classification performance measures and error indices, other behaviour was detected 

moderately well in general, even better than eating. However, there was large individual variation ranging 

from poor (animals 154, 4293) to relatively good (79, 102 and 3355) accuracy. Linear regression disagreed 

with the other methods and in the pooled data, R2 was smaller than in eating (0.33 vs. 0.58). However, linear 

regression agreed with other methods on the good accuracy in two sets (79 and 3355) where the relationship 

was linear. In all data sets, average errors were positive and precision was greater than sensitivity, which 

means that the device underestimated the duration of other behaviour. 

 

3.2 Analysis of confusion probabilities  

The confusion matrix of main classes is given in Table 4, together with confusion probabilities. The main 

diagonal cells give numbers of true positives and their cp1 and cp2 correspond to precision and sensitivity. 

The other cells show numbers of erroneous classifications with related confusion probabilities.  

 

Eating was detected with good sensitivity (83.8%) but poor precision (44.9%) which means that the errors 

were mostly false positives. Cp1 values in the eating column reveal that over 55% of RWS eating 

classifications were false positives, mainly from class 'other' (46.8%), but also from ruminating (6.2%) and 

drinking (2.1%).  Cp2 values in the eating row reveal that over 16% of eating was classified incorrectly as 

'other' (8.6%) or ruminating (7.1%).  Confusion probabilities of subclasses revealed that the main reason for  

false positives (21.5% of reported eating) was a single subclass of 'other', licking the feeding table or the base 

of the cubicle and gathering feed remainders. This behaviour is closely related to eating, and in a wider 

interpretation, it could be included into eating. Other reasons were standing still (16.6%), and, to a lesser 

extent, masticating feed (6.0%).  It also turned out that the system was less sensitive for detecting eating feed 

other than silage or concentrates (sensitivity 64.5% vs. 84.2%), but this is a small subclass (1.9% of eating) 

with little practical importance.  

 

Ruminating was detected relatively well since both precision and sensitivity were reasonable (79.5% and 

77.8%, respectively).  Analysis of cp1 reveals that over 20% of reported ruminating were false positives, 
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mainly from class 'other' (16.1%) but also from eating (4.4%). Analysis of cp2 reveals that about 22% of 

actual ruminating was not detected. These false negatives were mostly classified as 'other' (15.1%), but also 

as eating (7.0%) and drinking (1.1%).  Confusion probabilities of subclasses revealed that the system was 

more sensitivite to detect ruminating when the animal was lying on the right side (sternal recumbency) 

(sensitivity = 85.0%) than in other positions (standing or lying on the left side, sternal recumbency) 

(sensitivity = 74.5%).  

 

Drinking was detected poorly, with extremely low precision and sensitivity (5.6% and 7.4%, respectively). 

Analysis of cp1 reveals that over 94% of drinking classifications were false positives, mainly from class 

'other' (86.8%) but sometimes also from eating  (6.5%) or  ruminating (1.1%). Analysis of cp2 reveals that 

over 92% of actual drinking was not detected. These false negatives were mostly classified as eating (66.4%) 

or 'other' (25.6%). Subclass analysis revealed that the main problem of false positive errors was standing 

(63% of reported drinking), followed by licking of the surroundings (10.4%), and, to a lesser extent, lying on 

the left side, masticating feed or eating (each about 4%). 

 

Other behaviour (class 'other') was detected with high precision (87.2%) but relatively low sensitivity 

(66.5%), which means that the errors were mostly false negatives. Analysis of cp1 reveals that false positives 

(about 13%) originated mainly from ruminating (9.0%) or eating (3.2%). Analysis of cp2 reveals that over 

43% of other behaviour was not detected, but was classified as eating (24.4%) or ruminating (7.2%) and 

sometimes even as drinking (1.9%). Subclass analysis revealed that false positives due to ruminating 

happened almost exclusively when the animal was either lying on the left side (sternal recumbency) or 

standing (8.5% of reported 'other'). An interesting observation was that ruminating on the right side (sternal 

recumbency) did not cause false positives (only 0.6% of reported 'other'), even though 32% of ruminating 

happened in this posture.  

 

4. Discussion  

The first objective of this study was to compare the confusion matrix method with basic error indices and 

linear regression analysis in the validation of RWS. The study revealed that different validation methods may 

sometimes produce discordant results. In general, the validation methods agreed when the results were 

clearly accurate (ruminating) or clearly inaccurate (drinking). Disagreement appeared only in intermediate 

cases, when the accuracy was poor to moderate (eating and other behaviour). In these cases, confusion 

matrix analysis and error magnitudes produced concordant results, but often linear regression disagreed with 

them.  

 

Agreement on good accuracy is obvious, since error-free classifications mean error-free duration estimates 

and the linear equation coincides the identity line y=x with R2=1. Agreement on inaccuracy is less certain. If 

the classifier performs no better than a random guess the hourly positive and negative errors (hourly FP and 
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FN) are randomly distributed. Still, it is possible that by chance the errors in each hour would cancel each 

other out (i.e., FP=FN) and hourly measurements would be accurate. However, it is very unlikely that such 

cancelling would happen in any larger extent. 

 

The discrepancy between linear regression and the other two methods could not be explained by different 

time resolutions (second-based vs. hourly measurements), since error magnitudes were also calculated from 

hourly measurements. Instead, the main culprit was nonlinearity of data.  Visual inspection of scatterplots 

revealed that in about half of the data sets the relationship was too nonlinear for reliable use of the linear 

regression method. The problem was aggravated by small sample sizes (12 observations per animal) and 

frequent outliers. This underscores that it is always crucial to plot the data and check linearity as well as 

homoscedasticity (constant variance) before applying linear regression. In the previous research, it has 

usually been assumed that the relationship between measured and reference values is linear or nothing has 

been said of the linearity, but sometimes graphical plots have been presented (e.g., Chizzotti et al., 2015, 

Elischer et al., 2013). 

 

The effect of different time resolutions (second-based vs. hourly measurements) was best seen when error 

magnitudes were compared to the confusion matrix measures. In general, error magnitudes tended to give a 

more optimistic evaluation than the confusion matrix analysis because positive and negative errors (FP and 

FN) during the same hour could compensate each other. Usually, the compensations were relatively small, 

but in an extreme case (an hour in the animal 4293 data), the hourly error was only 1.1%, even if RWS 

detected only 67% of real eating and only 66% of measured eating were correct classifications. Average 

errors can hide even more errors, because they allow all positive and negative errors to cancel each other out. 

Therefore, average errors are alone unreliable measures of accuracy, but they allow easy detection of bias in 

hourly measurements (the sign shows over- or underestimation of durations). 

 

We note that in this study we used hourly measurements for validation with linear regression and error 

indices. It is possible to calculate durations during shorter or longer time intervals which allows less or more 

errors to compensate each other. Therefore, the presented accuracy assessments with these two methods 

cannot be generalized to other time intervals. We also note that we used the RWS model from 2013 

(firmware V01.13, data converter V0.7.0.0.; see Ruuska et al., 2016), and our results do not allow any 

conclusions on other models of RWS. 

 

The second objective of this study was to analyze what extra information can be obtained with the confusion 

matrix method. Suggested confusion probabilities turned out to be a useful aid for utilizing all available 

information of real behaviour and detecting sources of errors. Especially, cp1 could reveal which subclasses 

were responsible for FP errors while cp2 revealed which subclasses were detected most or least sensitively. 

For further development of RWS, the most important findings were the reasons for poor detection of eating 
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(certain eating related behaviour) and the effect of the animal's posture on accuracy. A possible explanation 

for the latter is that the measurements tended to be most accurate when the animal was in her most frequent 

ruminating posture and least accurate in the least frequent posture. Confusion probabilities also pointed out 

poor sensitivity for detecting eating feed other than eating silage or concentrates but this cannot be 

considered as a defect, since gnawing barn structures, feed troughs or halters could be rather classified as 

oral manipulation, although such a behavioural class was not used in the current study.  

 

In medical science, there has been a long debate on appropriate validation methods for medical devices (e.g., 

Altman and Bland, 1983; Ludbrook, 2002; Zaki et al., 2012; Indrayan, 2013) and nearly all methods have 

been criticized. Pearson product-moment correlation has been considered inappropriate since it is unable to 

detect systematic error (bias); any linear relationship y=bx+a has perfect positive correlation (r=1), yet there 

may be substantial proportional (b≠1) or fixed (a≠0) bias (Zaki et al., 2012; Indrayan 2013; Hämäläinen et 

al., 2016). Linear regression gives more detailed information on the relationship between the reference and 

the measured value if the coefficient of determination (R2=r2), the slope and the intercept of the regression 

line are presented. Still, having slope=1, intercept=0 (no systematic error) and R2 only slightly below 1 does 

not necessarily guarantee validity, as demonstrated by Indrayan (2013). In addition, the parameters of linear 

regression are difficult to interpret and there is no single estimate for random error or bias (Altman and 

Bland, 1983).  Kappa coefficients are a family of statistics designed to assess inter-rater reliability both for 

nominal (Cohen's kappa coefficient) and ordinal or continuous (weighted kappa coefficients and intra-class  

correlation) data. In validation, they can produce counter-intuitive results, because they cannot detect bias 

and the coefficients are affected by the data distribution and variance between subjects (Zaki et al., 2012; 

Fay, 2005; Bland and Altman, 1990). Currently, the most popular validation method is so called Bland-

Altman method or the limits of agreement (Altman and Bland, 1983). It includes a plot of differences x-y 

against (x+y)/2 (for checking bias) and then (in the absence of bias), analysis of the 95% confidence interval 

of differences. However, it has been shown that the Bland-Altman method may sometimes either under- or 

overestimate the bias and produce misleading results (Hopkins, 2004; Zaki et al, 2013). 

 

Confusion matrices offer a viable alternative to validation when behaviour measurements are discrete 

classifications. Compared to linear regression and error indices, confusion matrix analysis has 

many advantages: it is robust to any data distribution and type of relationship; it makes a stringent evaluation 

of validity (with no chance for hiding errors); and it offers extra information on the type and sources of 

errors. Precision and sensitivity are easy to interpret and together they summarize classification performance 

on each class, but comparing overall performance between classes or data sets is more difficult. There are 

combination measures like F-score and AUC (area under the ROC curve; see e.g., Fawcett, 2006), but using 

a single measure loses always some information. In practice, we suggest to combine confusion matrices with 

other validation methods and make conclusions only if the methods are in agreement. For a comprehensive 
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analysis, we suggest confusion probabilities that show the error distributions and help to detect the most 

serious errors and trace their reasons. 

 

5. Conclusions  

Validation methods are not always in agreement and, therefore, it is recommended that validation should be 

performed with several methods. If the assessments are concordant then conclusions can be made but 

otherwise more data should be collected for reliable validation. The current study also demonstrated that it is 

always important to check linearity before applying linear regression in validation. Confusion matrices are a 

robust validation method whenever discrete classifications are available. In addition, confusion probabilities 

offer extra information on the reasons for errors and their importance. 
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Figure 1. An example of a 3x3 confusion matrix for classes A, B and C (left) and the corresponding binary 

confusion matrix for class A (right). TP=number of true positives, FP=number of false positives, 

TN=number of true negatives, FN=number of false negatives. 
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Figure 2. Scatterplots presenting relationships between observed and measured hourly durations of eating, 

ruminating, drinking, and other behaviour. Note that the drinking data are presented in a different scale.  
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Online material. Scatterplots presenting relationships between observed (video, x-axis) and measured 

(RWS, y-axis) hourly durations of eating, ruminating, drinking, and other behaviour for individual cows. 

There are 12 data points in each individual figure. The x-axes and y-axes range from 0 to 3600 seconds (one 

hour) for eating, ruminating and other behaviour, but only from 0 to 250 seconds for  drinking. The diagonal 

lines illustrate the perfect linear relationship, i.e. y = x. 
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Table 1. The definitions of eating, ruminating, drinking and other behaviour and criteria for how subclasses 

were constructed.  

 

Behaviour Definition 

Eating Cow takes feed into its mouth, chews and swallows it   

Subclasses of eating Eating silage, concentrates or something else; body posture while eating 

silage (standing, lying, kneeling) 

Ruminating Cow regurgitates a bolus, chews and re-swallows it  

Subclasses of ruminating Body posture while ruminating: standing and lying (sternal recumbency, 

left/right side; lateral recumbency, left/right side)  

Drinking Cow puts its muzzle into the water bowl and swallows water  

Other behaviour Behaviour other than eating, ruminating or drinking 

Subclasses of other 

behaviour 

Licking the feeding table or cubicle mattress (standing, lying, kneeling), 

masticating feed (standing or lying), standing or moving, lying down and 

standing up, tongue rolling (standing or lying), auto-grooming (standing or 

lying) and allo-grooming, rubbing the halters, rubbing the head, lying (sternal 

recumbency, left/right side; lateral recumbency, left/right side), other 

behaviour 
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Table 2. Comparison of the three validation methods for RWS measuring eating, ruminating, drinking and 

other behaviour. The results are given for the pooled data (summed over all 5 cows). The compared methods 

were error indices (AE = average error, % and AEM = average error magnitude, %), regression analysis (RE 

= regression equation (y=bx+a) and R2 = coefficients of determination) and classification performance 

indicators (%; precision, sensitivity, specificity, accuracy). 

 Eating Ruminating Drinking Other 

AE, AEM -86.5, 97.1 2.1, 31.4 -32.5, 110.0 23.7, 33.0 

RE y = 0.80x + 612.7 y = 0.84x + 135.1  y = 0.46x + 28.5  y = 0.57x + 393.0  

R2 0.58 0.71 0.25 0.33 

Precision 44.9  79.5 5.6  87.2 

Sensitivity 83.8 77.8 7.4 66.5 

Specificity 80.5 92.9 98.8 87.1 

Accuracy 81.0 89.0 98.0 75.4 
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Table 3. Comparison of the three validation methods for RWS measuring eating, ruminating, drinking and 

other behaviour. The results are given for all five individual animals. The compared methods were error 

indices (AE = average error, % and AEM = average error magnitude, %), regression analysis (RE = 

regression equation (y=bx+a) and R2 = coefficients of determination) and classification performance 

indicators (%; precision, sensitivity, specificity, accuracy). 

 Eating Ruminating Drinking Other 

Cow 79     

  AE, AEM -24.5, 27.7 -11.0, 12.1 4.6, 130.4 18.7, 18.8 

  RE y = 0.88x + 287.3 y = 0.91x + 220.5 y = 0.01x + 36.4 y = 0.84x – 47.8 

  R2 0.93 0.97 0.00 0.90 

  Precision 68.7 88.7 2.0 97.8 

  Sensitivity 85.5 98.4 2.0 79.5 

  Specificity 88.9 94.6 99.0 98.4 

  Accuracy 88.2 95.7 98.0 89.6 

Cow 102     

  AE, AEM -158.9, 158.9 2.4, 9.3 -93.3, 131.6 27.7, 27.9 

  RE y = 1.39x + 468.9  y = 0.92x + 50.0  y = 0.68x + 47.1 y = 0.54 x + 419.4  

  R2 0.83 0.94 0.35 0.13 

  Precision 35.4  93.3 6.8 98.1  

  Sensitivity 91.7 91.1 13.1 70.9 

  Specificity 79.6 97.9 98.1 97.5 

  Accuracy 80.9 96.2 97.2 80.6 

Cow 154     

  AE, AEM -221.3, 226.4 36.2, 55.7 -52.6, 76.8 32.0, 37.1 

  RE y = 0.54x + 1212.3  y = 0.49x + 118.8  y = 0.62x + 40.9  y = 0.27x + 939.3  

  R2 0.37 0.55 0.62 0.14 

  Precision 25.8  81.8  7.3  86.9  

  Sensitivity 82.8 52.3 11.2 59.1 

  Specificity 65.7 96.6 98.2 84.6 

  Accuracy 67.8 86.5 97.1 68.4 

Cow 3355     

  AE, AEM -56.2, 56.5 6.2, 7.4 16.9, 100.6 17.6, 17.9 

  RE y = 1.08x + 341.0  y = 0.93x + 5.74  y = 0.37x + 12.6  y = 0.97x – 270.6  

  R2 0.89 1.00 0.29 0.84 

  Precision 63.0  97.0  6.3  97.5 

  Sensitivity 98.4 91.0 5.2 80.3 

  Specificity 85.7 99.0 99.4 97.6 

  Accuracy 88.2 96.9 98.7 88.4 

Cow 4293     

  AE, AEM -50.8, 99.9 -16.3, 76.1 -7.3, 119.5 20.0, 59.0 

  RE y = 0.56x + 491.7  y = 0.81x + 337.6 y = 0.37x + 12.0  y = 0.23x + 1202.7  

  R2 0.27 0.48 0.20 0.03 

  Precision 37.1 44.0  0.0  58.7  

  Sensitivity 55.9 51.2 0.0 46.9 

  Specificity 84.1 76.1 99.5 53.7 

  Accuracy 80.1 69.5 99.0 49.8 
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Table 4. The confusion matrix of eating (EAT), ruminating (RUM), drinking (DRI) and other behaviour 

(OTH). The matrix contrasts gold standard classifications (based on second by second continuous recording 

from videos) with RWS classifications for each second of the pooled data. Confusion probabilities cp1 and 

cp2 (%) are given in the parenthesis.  

  RWS classification 

G
o

ld
 s

ta
n

d
ar

d
  EAT RUM DRI OTH ∑ 

EAT 28864 (44.9, 

83.8) 

2434 (4.4, 7.1) 170 (6.5, 0.5) 2977 (3.2, 8.6) 34445 

RUM 3959 (6.2, 7.0) 43809 (79.5, 77.8) 30 (1.1, 0.1) 8504 (9.0, 15.1) 56302 

DRI 1319 (2.1, 66.4) 11 (0.0, 0.6) 146 (5.6, 7.4) 509 (0.5, 25.6) 1985 

OTH 30088 (46.8, 

24.4) 

8869 (16.1, 7.2) 2284 (86.8, 1.9) 82027 (87.2, 

66.5) 

123268 

 ∑ 64230 55123 2630 94017 216 000 
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