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MULTIPLE OBJECTIVE OPTIMISATION OF DATA AND CONTROL PATHS 

IN A BEHAVIOURAL SILICON COMPILER 

by Keith Richard Baker 

The objective of this research was to implement an "intelligent" silicon compiler that 
provides the ability to automatically explore the design space and optimise a design, 
given as a behavioural description, with respect to multiple objectives. The objective has 
been met by the implementation of the MOODS Silicon Compiler. The user submits 
goals or objectives to the system which automatically finds near optimal solutions. As 
objectives may be conflicting, trade-offs between synthesis tasks are essential and 
consequently their simultaneous execution must occur. Tasks are decomposed into 
behaviour preserving transformations which due to their completeness can be applied in 
any sequence to a multi-level representation of the design. An accurate evaluation of the 
design is ensured by feeding up technology dependent information to a cost function. 
The cost function guides the simulated annealing algorithm in applying transformations 
to iteratively optimise the design. 

The simulated annealing algorithm provides an abstractness from the transformations 
and designer's objectives. This abstractness avoids the construction of tailored heuristics 
which pre-program trade-offs into a system. Pre-programmed trade-offs are used in most 
systems by assuming a particular shape to the trade-off curve and are inappropriate as 
trade-offs are technology dependent. The lack of pre-programmed trade-offs in the 
MOODS system allows it to adapt to changes in technology or library cells. The choice 
of cells and their subsequent sharing are based on the user's criteria expressed in the 
cost function, rather than being pre-programmed into the system. 

The results show that implementations created by MOODS are better than or equal to 
those achieved by other systems. Comparisons with other systems highlighted the 
importance of specifying all of a designs data as the lack of data misrepresents the 
design leading to misleading comparisons. 

The MOODS synthesis system includes an efficient method for automated design 
space exploration where a varied set of near optimal implementations can be produced 
from a single behavioural specification. Design space exploration is an important aspect 
of designing by high-level synthesis and in the development of synthesis systems. It 
allows the designer to obtain a perspicuous characterization of a design's design space 
allowing him to investigate alternative designs. 
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The design of electronic systems is a highly complex process, where each integrated 

circuit (IC) may take several man years to complete. The design process starts with the 

design specification and terminates in chip fabrication using a set of masking plates 

containing images of the IC structures. The advances in VLSI technology mean that 

computer aided design tools play an essential part in synthesizing circuits in a 

reasonable time. Early tools consisted of automated layout tools, such as, mask design 

rule checkers and tools for placement and routing of small frequently used logic blocks 

(standard cells). The manual layout of logic blocks was later complemented by 

optimisers which rearranged mask structures, subject to design rules, in order to compact 

the layout. The early 80s saw the creation of a new generation of tool, the silicon 

compiler, which, from a structural description of a design synthesized an implementation 

using standard cells. 

During the late 80s and early 90s further increases in the complexity of integrated 

circuits resulted in an abstractness, from layout, of the synthesis tools and design 

descriptions. The abstract design description represents the design's required behaviour 

and the silicon compiler was given the ability to select components and design style in 

order to optimise the design. Synthesis tools attempt to produce a hardware implement-

ation that is optimal with respect to some aspect of the design. Automated optimisation 

of circuits is necessary to produce area efficient and/or fast designs. Usually the area of 

the design is optimised whilst maintaining a constraint on the speed, or vice versa. 

The silicon compiler should be part of a complete compilation environment that may 

include other compilers and tools such as multi-level simulators, timing verifiers, 

testability rule checkers and enforcers, and automatic test pattern generators [1]. Due to 

the evolution of synthesis tools the definition of a silicon compiler is vague, however, it 

has best been defined as follows: "a silicon compiler is an optimising transformation 

program that produces manufacturable integrated circuit designs from intelligible 

descriptions"^^'. The manufacturable and intelligibleloptimising aspects of the silicon 

compiler often occur separately in layout tools and high-level synthesis systems 

respectively. The mythical term "silicon compiler" is more usually applied to any 

program that compiles a description whose output will eventually be a manufacturable 

IC design and is typically classified by its input detail and architectural model. An 

"intelligent" silicon compiler is one that can make trade-offs and provide the designer 

with an insightful characterization of design alternatives [3]. 
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The incentives for silicon compilers include short design time and therefore reduced 

cost, the possibility for the designer to explore different strategies and technologies and 

correctness by construction. This makes the realisation of low-volume application 

specific designs (ASICs) cost effective. In addition designers often require to explore a 

range of implementations for each design specification {design space exploration) and 

may not require the optimum solution but one that satisfies several simultaneous 

constraints. 

The silicon compiler is intended to provide access to silicon for systems designers. The 

use of a behavioural description, that is, one which describes what a design does rather 

than how it is implemented, places the capability of designing VLSI circuits in the 

hands of those not skilled in VLSI design. It allows the designer to concentrate on the 

functionality of the design. Silicon compilation should be a "non-interactive process"̂ '*^ 

and the majority of users "need not worry about the hardware implementation of the 

description"'^'. However, the skilled user may desire to fine tune the resulting 

implementation and so some optional interaction is deemed necessary. 

Design is a multi-stage process of refinement through various levels of representation 

(from behavioural to layout) with occasional backtracking to an earlier stage, the cause 

of which is largely due to human errors. By using a design process which has been 

proved to be correct the resulting implementation can be guaranteed to be correct; this is 

correctness by construction. Correctness by construction given by the use of silicon 

compilers ensures the final implementation to be functionally equivalent to the input 

specification, that is, both interact with the environment in the same way. Therefore if 

the design specification is verified to be correct by functional simulation, then the 

implementation will also be correct. Correctness by construction can be guaranteed by 

proving the correctness of each of the synthesis steps applied during compilation. 

In addition to the above advantages silicon compilers allow early error detection by 

semantic checks at high levels thus resulting in less errors. The possibility of protecting 

technology knowledge will also be an important advantage in future commercial 

systems. 

Synthesis is the refinement of a design from an abstract level to a less abstract, lower 

level, during which some optimisation usually takes place. The levels of representation 
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range from the highest, most abstract level, the functional (behavioural) specification, to 

the lowest, most specific level, the layout. Between the functional and layout levels are, 

in decreasing abstractness, the architectural, register-transfer, logic, and circuit levels. In 

general high-level refers to the functional through to register-transfer levels and low-

level refers to the logic through to layout levels. The earlier definition of a silicon 

compiler encompasses a wide variety of tools, such as, layout, logic synthesis and high-

level synthesis tools. 

High-level silicon compilation comprises the following issues; 

a. definition of an input and output specification, 

b. definition of an architectural model, 

c. definition of an internal representation, 

d. high-level synthesis, 

e. hardware synthesis and layout, and 

f. design space exploration. 

The remainder of this chapter introduces and discusses the issues of high-level silicon 

compilation and high-level synthesis in particular behavioural synthesis; the main topic 

of this research. The last section describes the project objectives. Further information on 

the general issues of silicon compilation can be found in references [1,6,7,8,9,10], 

however, the publication date should be borne in mind as some theories and views may 

be outmoded. 

The rest of this thesis is organised as follows: Chapter 2 is a literature survey of 

previous high-level synthesis systems and shows the current research status in the area 

of silicon compilation. It describes and compares the systems and illustrates their 

drawbacks and how they have been overcome in this synthesis system; the MOODS 

Silicon Compiler. Chapter 3 describes the input, output and architectural models chosen 

and the optimisation techniques used in this system. Chapters 4 and 5 detail the 

transformations and optimisation algorithms and Chapter 6 describes the results and 

compares MOODS with existing systems. Chapter 7 sums up what has been achieved 

and gives suggestions for further work. 
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1.1 INPUT AND OUTPUT SPECIFICATION 

Silicon compilers are classified by their input specification which can be either 

structural, architectural or behavioural (algorithmic). A structural description specifies 

the circuit structure, its components and the connectivity between them. The structure 

may be described at various levels of abstraction, from switch or gate level to high-level 

using parameterization. Similar levels of abstraction are found in the architectural and 

behavioural languages, both of which are functional languages. A functional language 

specifies the circuit's input/output mapping. The structure is not explicitly specified 

however algorithmic languages such as MacPitts [11] and Silc [4], have predictable 

structural semantics, that is, the functional constructs imply certain structural elements in 

a predictable way. Functional languages without predictable structural semantics are 

behavioural languages. A language is not only defined by its semantics but also by its 

interpretation by a synthesis system, for example, a behavioural language could be 

interpreted as an architectural language using direct compilation where each construct 

produces a pre-defined circuit structure. 

A behavioural description specifies the relationship between system inputs and outputs 

by describing data structures and functions to manipulate them. Their physical structure 

is not described as the emphasis is on what a design does and not how to do it. A 

behavioural description documents the design in a readable, technology independent 

way. It frees the designer from selecting a good implementation as it does not include 

design decisions such as timing and parallelism. Explicit parallelism is a useful aid in 

writing readable design specifications and therefore may occur in a behavioural 

description; however, explicit parallelism is not adhered to during behavioural synthesis. 

In addition variables and data structures are not bound to registers or memory and 

operations are not bound to functional units or control states. The lack of premature 

bindings allows for more optimisation opportunities as it does not limit the design space 

as in architectural or structural languages. 

The input language may include parallelism, data typing, macro expansions and 

subroutine calls and must be general enough to describe a large class of problems. Some 

compilers limit the language to reduce the design space, this simplifies the compiler and 
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limits it to particular design styles; for example, the First compiler [12] for digital signal 

processing (DSP) applications. 

The input language is usually compiled to an intermediate form and optimisations such 

as dead code elimination and constant folding are done at this stage. It is usual to have 

a functional simulator that uses the intermediate form as its input, thus ensuring the 

correctness of the design. The intermediate code is at the register transfer level and 

consists of operations, register transfers and next states. A typical example of an 

intemerdiate code is the Value Trace (VT) described in Section 2.3 which is used in the 

CMU-DA systems [13,14,15]. 

The output of a silicon compiler should, by the definition of an ideal compiler [16], be 

mask layouts suitable for use in the fabrication of integrated circuits (ICs). However, the 

process is often divided into synthesis and layout steps. The compiler performs the 

synthesis and generates a netlist of library cells which is used to generate the final 

layout. The reason for this is to limit the computational explosion that would result from 

directly synthesizing mask details from high-level descriptions. Library cells are also 

used to increase correctness and reduce design time by increasing the granularity of the 

output. In early structural level compilers a fixed floor plan was used, for example in 

MacPitts [11] and First [12], however in general high-level silicon compilers this has 

proved inefficient. It is important, however, to pass information between synthesis and 

layout tools, for example, constraining net lengths and/or feedback of layout effects on 

performance, in order to provide predictable performance characteristics [17]. 

The input description and output implementation should be functionally equivalent 

which can be determined by simulation. Functional equivalence is defined as follows; 

for the same initial conditions and external inputs, equivalent programs must produce 

exactly the same external events in the same order [18]. 

IJl/URClirrEKZTlltAIjAACHDEl, 

The architectural model falls into set categories the most common of which are, data 

path only and data path plus control unit. Data path only architecture is limited in that it 

can only provide designs implementing calculations and not decisions. An example of 
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this is DSP applications in Spaid [19] and First [12]. The data path plus control unit 

architecture has operations in the data path which determine the next state of the 

controller. The controller can be state or transition based, for example Scholyzer [20] or 

Camad [21] respectively. The data path typically consists of functional units at the 

register-transfer level which exist in soft libraries consisting of parameterized cells that 

can be tailored to the desired functions. 

To avoid race conditions master slave registers are often used and clocked logic changes 

at the end of a cycle, therefore, a signal can only travel through at most one register per 

clock cycle [22]. 

An effective way to cut down the search space is to make architectural decisions and 

constraints. Synchronous systems use a centrally clocked controller which activates 

processes at fixed time steps (for example, a micro-program as in Camad [23] or FSMs 

as in Maha [24]). However, it may suffer from clock skew and the controller complexity 

increases with parallelism. Asynchronous systems use many independently clocked or 

self-timed modules. Self-timed modules use a delay unit for each part of combinational 

logic. The output of the delay unit creates the acknowledge signal from a delayed 

request signal. The delay unit has a fixed delay and for the purpose of reliability, tends 

to be over estimated using worst case values. Reliability and speed, therefore, depends 

on the accuracy of technology dependent delay models. 

13 INTERNAL REPRESENTATION 

Graphs are used as internal representations as they conveniently describe the design at 

various levels of abstraction, from behavioural to structural. They are used as 

intermediate representations during the synthesis processes. 

A control and data flow graph can be implemented as a single graph where nodes 

represent data or control operations and edges represent results. Alternatively they can 

be implemented as two separate graphs, where a control graph conveys information 

about the sequence of operations and a data flow graph specifies data dependencies. The 

nodes of a data path graph represent variables, constants and functional units and the 

arcs represent information flow. Data flow graphs may have conditions on arcs to gate 
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data path signals; where the conditions are generated either by other data flow nodes or 

by the controller. 

Two methods commonly used to represent a control graph are modified Petri-nets and 

precedence graphs. Petri-nets consist of places and transitions connected by directed 

edges. The transitions represent actions and operations that are executed whenever flags 

on places are marked as true. When an action is performed the marking from an input 

place is immediately passed to the output place, thereby comprising a token passing 

mechanism. Petri-nets do not include timing, only a partial ordering. Timing can be 

introduced by holding a token a fixed time, long enough for operations to be completed; 

for example, the extended timed Petri-net (ETPN) model in Camad [23]. The holding 

time may be equal to the clock period in synchronous circuits or the delay of 

combinational logic in self-timed systems. A precedence graph is a directed graph 

indicating the order of its nodes, the operations, by the edges of the graph. 

1.4 BEHAVIOURAL SYNTHESIS 

Behavioural synthesis, the highest level synthesis, is the conversion of a behavioural 

description to a structural implementation. The behavioural description contains implied 

operation ordering and some specific parallelism. The ordering of operations and any 

constraints, for example I/O timing, are all that must be maintained throughout 

behavioural synthesis. Parallelism, unit assignments and other bindings are not made in 

the description but design decisions concerning them are performed during the synthesis 

process. Behavioural synthesis consists of the following sub-problems: 

a. allocation of operators to functional units, 

b. allocation of variables to storage elements, 

c. scheduling of operations, 

d. allocation of interconnects, 

e. translation, and 

f. binding. 

These synthesis tasks are discussed individually below. 

The allocation of data path operators to functional units and variables to storage 

elements is a many to many mapping and involves sharing units and combining different 
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units into ALUs. In some systems [25] allocation consists of two steps; firstly the 

selection of a set of functional units to execute the operations and secondly the 

assignment of operations to specific units. 

The timing of units to be combined must be observed as the corresponding operations 

cannot be executed concurrendy on a single merged unit. Many methods have been used 

to perform allocation; from user specified as in MacPitts [11] to clique partitioning to 

create ALUs as in Facet [26]. Clique partitioning is the partitioning of a graph, G, into 

the minimum set of disjoint cliques; where a clique, C, is a fully connected sub-graph of 

G (that is every node connects to every other node) and C is not contained within a 

larger fully connected sub-graph of G. Several methods involve heuristics to determine 

the order to allocate data path units. Critical path first is a common method used in 

Maha [24], Slicer [27] and Hal [25], which allocates units with the lowest freedom first. 

Freedom is the delay allowable in an operation without lengthening the critical path and 

is equivalent to path slack in project management. The units with high freedoms will 

have more opportunities to share resources as their instructions can be moved within the 

time frame given by the freedom. By allocating the lowest freedom first units have a 

greater possibility of sharing resources. 

Scheduling involves allocating operations to time slices (time-slice allocation) or control 

states (state allocation). Operations within a time step are executed concurrently, with 

registers being loaded and read at the step boundaries. Dependencies between concurrent 

operations results in the operations being chained, that is, one operation will follow on 

from another. The scheduling of operations can be performed using various techniques, 

the simplest, with the exception of relegating the task to the designer, is "as soon as 

possible" (ASAP) compaction as used in Scholyzer [20]. ASAP scheduling places 

operations into the earliest time slot subject to data dependencies. A refinement of this 

is ASAP scheduling with conditional postponement as used in Mimola [28], where 

operations are postponed whenever operator concurrency exceeds the available 

resources. 

List scheduling involves sorting operations in topological order, as defined by their 

dependencies. The operations are then iteratively scheduling into control steps using a 

priority function. The priority function determines the order in which operations are 

placed in a control step. Urgency scheduling, as used in Elf [29], is a form of list 
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scheduling whose priority function uses urgency measures based on freedoms and the 

possibilities of sharing operators. Other techniques include iterative scheduling and 

control graph partitioning using algorithmic methods such as clique partitioning as in 

Facet [26]. 

Translation changes part of a design to another more useful or efficient one at the same 

level of abstraction. For example, if a multiplier has been specified but it does not exist 

in the cell library then it may be translated into an implementable form, such as 

cascaded adders. A translation may result in an improved design by allowing for better 

scheduling or the possibility to share data path units. 

The allocation, scheduling and translation sub-problems are all interdependent. For 

example, two operations which use a similar operator could share it given that they do 

not occur concurrentiy, whereas if they do occur concurrently then the operator must be 

duplicated. The sub-problems may be done in any order or simultaneously, the method 

chosen will depend on the optimisation strategy adopted by the system. 

Binding fixes the result of a synthesis process. In allocation a data path unit is bound to 

a physical unit, while in scheduling the operations are bound to specific times. Binding 

can occur during or after a process. For example, if allocation is performed one unit at a 

time and once only then the binding may occur with the allocation, however if a method 

such as linear integer programming is used the binding cannot occur until after. Where 

binding is done in the language (as in the case of many structural specifications) the 

appropriate synthesis process is not performed; this makes for a simple compiler but 

restricts the compiler's optimisation opportunities. Language bindings give the user the 

ability to perform area-speed trade-offs. An example of this is the explicit specification 

of parallelism in MacPitts [11]. 

To generate architecture we require to bind elements to structural components and 

operations to control states. The bindings performed are: 

a. Operations to control states, 

b. Operators to functional units, 

c. Variables to storage elements, and 

d. Nets to interconnects. 
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1.5 OPTIMISATION 

Optimisation is important as an implementation generated using direct compilation from 

the design specification is likely to be far from optimal in all aspects of the design. 

There are two reasons for this: Firstly, the language used to describe the design may be 

limited therefore additional input is required. Secondly, the designer is unlikely to write 

optimal input descriptions which will synthesize to an optimal implementation. 

There are good reasons for not writing optimal design descriptions, such as, increased 

readability, changes in the designer's constraints and requirements and last minute 

corrections to the design. Design alterations are inevitable after functional simulation 

and are part of the design process. The alterations are rarely elegantly included in the 

original description but added by rather Heath Robinson methods. The changes are non-

optimal and usually include the creation of a large number of temporary registers, most 

of which are superfluous. 

The optimality of a design depends only on the designer's interpretation of what the 

optimum implementation should be. 

There are two types of optimisation, global optimisation and local optimisation. A local 

optimisation produces the best result at a local region of the design, for example, 

combining two control states or changing the implementation of a data path unit. A 

global optimisation is one that is the best result for the whole of the design, for 

example, an allocation of storage such that the total number of units is minimised. Local 

optimisations can be used to provide simple incremental improvements to the design, 

however, this inevitably leads to local minima and a different sequence of optimisations 

could produce a better result. Global optimisations investigate trade-offs between 

differing results using methods such as linear programming and clique partitioning. 

Local minimum traps can be overcome by guiding local optimisations using a cost 

function that takes into account the global aspects of the design. This will lead to a 

global optimisation only if backtracking or design degradation is provided and local 

optimisations do not bind design decisions, that is to say, they may be overruled by 

subsequent design decisions. 
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Backtracking is done when it is found that an optimisation performed earlier in the 

synthesis process has resulted in the design not achieving the user's requirements. The 

synthesis is reversed (backtracked) to the point where the offending optimisation was 

performed, it is then reapplied in a different way that will hopefully produce a better 

final result. 

Design degradation is achieved by transforming the design so as to produce a worse 

design with respect to the user's requirements. This allows an optimisation to be applied 

that was previously restricted by the design's position in the design space. Backtracking 

differs from design degradation in that the design is degraded to a previous position in 

the design space whereas the latter degrades the design to a possibly new position in the 

design space. 

Optimisations commonly performed include the elimination of registers for temporary 

variables which are stable over their use, loop unrolling, operator sharing, extracting 

parallelism and serialisation. 

1.5.1 OPTIMISATION STRATEGIES 

As the synthesis sub-problems are interdependent, the order in which they are performed 

greatly affects the resulting implementation. For example, a binding of two operations to 

the same control step prevents any sharing of their operators; conversely, binding two 

operators to one functional unit prevents the operations being performed concurrently. A 

fixed line of reasoning can often lead to inferior results as trade-offs are not 

explored [30]. 

There are two approaches to optimisation either iterative, by synthesizing a correct 

solution and iteratively transforming it to optimise the objectives, or constructive, by 

performing optimisations as the design is constructed. 

In an iterative optimisation scheme, a naive implementation with no sharing of units or 

control states is synthesized from the input description. The implementation is then 

improved using translation steps to transform the design. The methods used include 

knowledge based expert systems, heuristics and brute-force. An advantage with using an 
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iterative approach is that the optimisation process can be terminated before the optimal 

design, and still result in a correct solution. 

In the constructive optimisation approach the implementation is constructed in such a 

way as to meet the designer's objectives; if they are not reached then the design is re-

constructed with different control parameters [6]. Strategic serialisation is a common 

constructive approach used in many systems (see Chapter 2). It consists of creating an 

ASAP schedule and re-scheduling subject to resource constraints. Algorithmic 

techniques such as mathematical programming and clique partitioning are usually 

applied to single synthesis tasks with little consideration for other tasks. Constraints can 

be used to give subsequent tasks an opportunity to achieve their targets. Although they 

can guarantee optimal solutions to the synthesis sub-problems to which they are applied, 

they are also NP-complete. This is made worse by any backtracking or re-synthesis if 

the user's objectives are not met. 

1.5.2 COST FUNCTION 

A cost function represents the state of the design within the design space. A cost 

function is required in an intelligent silicon compiler which must use it to make 

decisions on how the design should be optimised. Many systems which optimise with 

respect to only one criterion follow a pre-defined optimisation route where the 

optimisations are programmed into the synthesis algorithms. For example, Scholyzer 

[20] maximises speed and where there is a choice between functional units the smallest 

is chosen. These systems do not use a cost function to direct an optimisation algorithm 

as the synthesis tasks are aimed specifically at one optimisation objective; for example, 

Scholyzer's synthesis tasks are aimed at extracting parallelism. However these systems 

may use a cost function to inform the designer of the design's "goodness" or a local one 

to aid bindings. 

A cost function is used in conjunction with the optimisation criteria to guide the 

synthesis process. It can help select the sub-process to perform next or help in the 

evaluation of trade-offs between processes. Trade-offs are essential for producing 

optimal designs when optimising more than one aspect of the design. If allocation and 
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scheduling are performed separately trade-offs can not be made, therefore the interaction 

between or the simultaneous execution of the sub-processes is vital. 

To produce real circuits it is important to be able to specify constraints and target 

objectives on various aspects of the design. These criteria should be in absolute units 

and not in terms of data path unit counts or the number of control states. Characteristics 

of the design must be determined, for example critical paths, which are used to aid the 

evaluation of the cost function and so direct optimisations. For example, the delay can 

be reduced by extracting parallelism on the critical path and area reduced by sharing 

units off of the critical path. McFarland [31] demonstrates how an inadequate cost 

model can distort the design space and make implementations seem optimal. He shows 

that a complete cost model taking into account aspects such as wiring is important in 

making the correct design decisions. 

For systems that allow the user to specify various absolute target objectives the cost 

function must be accurate so that the targets may be met with confidence in the final 

implementation. To achieve this, technology dependent information must be fed up to 

the synthesis system for use in the calculation of costs such as data path area, power 

and delay. Layout factors such as interconnections have been shown [31] to have a 

significant effect on hardware costs and not taking them into consideration will result in 

a poor design. These can be estimated from the operations [32], however, accurate costs 

can only be obtained after layout is complete [6]. Constraints are often added to the cost 

function by penalising configurations which violate them. 

1.6 HARDWARE SYNTHESIS AND LAYOUT 

Hardware synthesis is creating a detailed implementation from the internal representation 

and producing the required output, for example a netlist of parameterized cells. This 

involves synthesizing the data path (data path synthesis) and the controller if the 

architectural model includes one. Control synthesis selects the clocking scheme and 

generates the controller according to the architectural model. Control generation has to 

be done after data path synthesis as control signals are unknown [6]. 
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Layout of the design is done by conventional placement and routing methods. In some 

compilers layout is done according to a fixed floor plan as in First [12] or columns of 

fixed width cells between which are wiring channels as in the CAL-MP system [33] 

used by Scholyzer [20]. General layout methods can be guided by a floor plan devised 

by the synthesis system. This method is used in the Camad [21] system and although 

the computational cost increases it can be justified by the availability of accurate wiring 

costs for a design. Layout costs, such as wiring, can be fed up to a synthesis system, or 

alternatively constraints on wiring lengths can be passed to the layout tools in order to 

achieve predictable performance characteristics [17]. 

1.7 DESIGN SPACE EXPLORATION 

The design space is an ^-dimensional space, where n is the number of different aspects 

of the design monitored by the designer. For example, a 2-dimensional design space 

might consist of area and time as in Figure 1.1. Each design can be represented in the 

design space by a point, with better designs being closer to the origin. The design space 

is divided into two regions which correspond to design points which are either 

achievable or un-achievable. The curve separating these regions is the optimal design 

curve which asymptotically approaches minimal values for aspects of the design as 

others approach infinity, that is, a minimum value for a single objective. For a design 

space with two or more dimensions the design which is considered optimal will depend 

on the designer's objectives. For example, if the designer requires the design, 

represented by the design space in Figure 1.1, to be the fastest given that the area 

should be no more than lOOOpm^ then the optimal design is given by the intersection of 

the optimal design curve and the line area=10(X)pm^. 

A design is considered optimal, and therefore lies on the optimal design curve, if no 

other design exists with a better value for each dimension in the design space. For a 

two-dimensional design space, a design is optimal if no other occurs in the region to the 

south-west of it. The optimal design "curve" is actually discrete as the implementations 

consist of discrete components, therefore, the set of optimal designs (those lying on the 

curve) is finite. The design space can be characterized by specifying n+l points lying on 

the curve, where n is the number of dimensions in the design space. The points consist 

of the n asymptotes, representing the best implementation for a single objective and the 
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Figure 1.1 The area-time (AT) design space. 

point closest to the origin, representing the best overall implementation. Therefore a 

two-dimensional area-time (AT) design space can be characterized by three points, the 

two asymptotes indicating the minimum area and minimum delay designs and a point 

closest to the origin representing a compromise design. The lower bounds of the design 

space, the asymptotes, can be predicted [34]; therefore without performing any synthesis 

an indication is given of whether the designer's goals can be successfully met. 

In reality only a proportion of the points in the achievable design region may be 

obtained as indicated by the actual achievable design region in Figure 1.1. The 

limitation in design space may be due to a number of factors, which include 

dependencies between design aspects, early design decisions being bound in the 

synthesis system and limitations in the optimisation process caused by sequentially 

performing the synthesis tasks or assumptions made in the internal representation. 

Selective early binding of some design decisions can effectively reduce the search space 

for an optimal design however premature binding can restrict the process 

inappropriately. 

The possibility for the designer to investigate different implementations of one 

specification is called design space exploration. Some systems claim to perform design 
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space exploration by changing the design constraints and re-synthesizing, however this 

is an ability possessed by all synthesis systems using constraints. By allowing some 

randomness in the synthesis tasks different implementations may result without adjusting 

constraints. For manual optimisation systems, design space exploration occurs as a 

consequence of the user changing the design, however he has no knowledge of the 

optimality of the design. For example. Emerald [35] explores the design space by 

manual manipulation of its intermediate code; the Value Trace. The exploration of the 

design space should be an automatic process such that a set of designs are found which 

characterize the design space for a given design. An intelligent compiler aims to provide 

the user with an insightful characterization of design alternatives as well as the optimal 

design (trade-off) curve [3]. In addition to illustrating the range of designs that can be 

achieved from one specification the design space is an important tool in the design of 

synthesis systems as it can graphically show the effect of changes to synthesis 

algorithms. 

1.18 PROJECT OBJECTIVES 

The objective of the project is to implement an "intelligent" silicon compiler that 

provides the ability to optimise a design, given as a behavioural description, with respect 

to multiple objectives. The user submits goals or objectives to the system which 

automatically finds an optimal solution in the context of the user specified constraints 

[36]. As the objectives may be conflicting, trade-offs between synthesis tasks are 

essential and consequentiy simultaneous execution of the tasks must occur. The absolute 

state of the design within the design space must be accurately represented using a global 

cost function. Therefore technology specific data is required so that optimisations 

performed at an abstract level can be guided by a cost function that takes into account 

low-level details. The compiler is more accurately described as a high-level behavioural 

synthesis system as layout is not performed. 

The compiler must also include an efficient method for automated design space 

exploration allowing the user to investigate alternative designs on the optimal design 

curve. The use of design space exploration allows the designer to obtain a perspicuous 

characterization of the design space for each design and thus determine whether a design 

can satisfy a variety of simultaneous constraints. 
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High-level synthesis research can be divided into numerous categories. The following 

literature survey details many high-level synthesis tools and systems, collectively known 

as silicon compilers. The categories used here are based on architectural or application 

restrictions and optimisation abilities. Each reference is accompanied by its year of 

publication in order to chronicle them. The description of a compiler is preceded by its 

name or author in emphasised text to allow ease of future reference. 

2.1 

A literature survey on high-level synthesis systems would not be complete without a 

description of three well known systems. Bristle Blocks [37] (1979), MacPitts [11,38] 

(1982,3) and First [12] (1983). Bristle Blocks is essentially a cell layout tool. A 

hierarchical structural description, where the lowest level are library cells, is directly 

compiled to a fixed layout. The cells are procedural and can be dimensionally 

re-configured to fit a regular fixed layout. The controller is a micro-controller or Turing 

machine where the micro-code, word width and encoding are supplied by the user. The 

user also defines buses and core elements which are bound in the description. 

The MacPitts system also has a micro-program architecture. Other restrictions include a 

fixed width data path and limited parallelism. A micro-programmed machine is 

generated to implement the required parallelism bound in the description and consists of 

a counter and control logic implemented as a Weinberger Array. The FSM is analyzed 

and similar units controlled from different states are merged (including mutually 

exclusive ones). Registers are bound in the description and can not be shared. 

MacPitts and First use a bit slice architecture. First uses a data path only pipelined 

architecture where operator synchronisation and delay insertion are supplied by the user, 

thus increasing description complexity. A fixed floor plan consisting of two rows of 

operators with a central wiring channel is used. 

The Bristle Blocks, MacPitts and First systems use structural descriptions with 

considerable language bindings, therefore allowing no or little (in the case of MacPitts) 

optimisation. The systems are akin to module assemblers and use parameterized cells or 

module generators; a property common to all high-level synthesis systems. The use of 
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an intermediate representation compiled from the source language and the separation of 

layout from synthesis are common to most subsequent high-level systems. These three 

systems also have a fixed architecture rather than a general one. 

2 2 ARCHITECTURE SPECIFIC SYSTEMS 

Architecture or application specific systems have the advantage of a restricted design 

space which can simplify the system and optimisation process, however, a 

knowledgeable designer is required to select the correct system. The synthesis 

community is divided, with some believing that a general behavioural synthesis system 

which produces good optimised designs is not possible [1]. They choose to create a 

collection of specialised systems each aimed at a particular application or architectural 

target. One such set of systems is the Cathedral silicon compilers [39] (1988). 

Cathedral I is for bit serial filters, II is for multi-processor based architectures with 

regular interconnect and synchronous data passing protocol and III is for bit slice 

architectures. Cathedral is restricted to a fixed clock and constant time functional units 

therefore simplifying design trade-offs. Hardware resources are set prior to scheduling 

thus minimum delay for a given set of resources is the optimisation objective. 

The Appolon system [40] (1985) uses pre-defined architectural templates. The synthesis 

steps performed include: architectural design consisting of simplifying complex 

operations and scheduling them, one to one operator allocation, PLA/ROM based 

controller synthesis and manual design of miscellaneous parts. The data path is a bit 

slice structure and the parallelism bound in the description determines the number of 

sub-operative parts, where an ALU is generated for each one. Both iterative and 

constructive methods of data path synthesis were studied. 

A pipeline architecture is the subject of other systems such as Sehwa [32] (1988) which 

uses a similar method as the Maha system (described in Section 2.5) from the same 

author. Both systems find designs between the highest performance and lowest cost. The 

system described by Hartley and Jasica [5] (1988) generates a complete pipeline style 

where all operations are in parallel, therefore scheduling and resource sharing are not 

required. The input is behavioural which is translated to an intermediate level that 

identifies structural elements. The order of operations is determined fi"om data 
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dependencies which can not be cyclic. After delay insertion the structure is laid out 

using a standard floor plan. A linear program is used to insert delay cells to ensure 

proper synchronisation of operator inputs. The minimum number of delay cells to be 

added and so least area increase is determined by moving operations in their time frame 

thus allowing input and output delays to be combined. 

Another pipeline system described by Choi [41] (1992) uses a similar process to force 

directed scheduling (see Hal in Section 2.5). This system determines a set of feasible 

functional units. Critical path units are scheduled and delays are inserted to avoid 

resource conflicts in parallel critical paths. The remaining operator types are iteratively 

scheduled; where the order is determined using a measure based on the force and 

density of operations in a control step. 

Pipelining is not limited to architecture specific systems, for example, Devadas and 

Newton [42] (1989) is a general system which has been extended to allow pipelining. 

Similarly MOODS could produce pipelined architectures by extending the intermediate 

code and using an appropriate cell library. 

The above systems are application or architecture specific and are therefore not 

comparable to MOODS which has a general distributed architecture aimed at a wide 

range of applications. The above systems do however have similar limitations to the 

general ones described below. 

The synthesis process is divided into a set of synthesis tasks, as described in Section 

1.4. Due to the interaction of synthesis tasks the way in which they are performed has a 

significant bearing on the type of optimisation possible and the resulting designs. The 

remaining compiler descriptions are categorised on their optimisation abilities; starting 

with those that minimise one aspect of the design and ending with those that optimise a 

number of criteria subject to user constraints. The former can only be classed as 

synthesis tools as they do not perform all of the synthesis tasks, whereas the latter can 

be classed as systems of which the MOODS synthesis system is a member. 
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2.3 SYSTEMS WITH A FIXED MINIMISING CRITERION 

The CMU-DA suite of tools, of which the EMUCS [43] (1983) tool is one, use the 

Value Trace (VT) intermediate code. The Value Trace consists of a set of directed 

acyclic graphs (DAGs). The nodes represent operations and arcs are carriers representing 

data flow. Each DAG may form a branch of a select operation representing IF or CASE 

constructs, that is, a DAG is a block of instructions to be executed having one entry 

point and one exit point. Each block is represented as a two dimensional list having all 

operations in a horizontal list executed at the same time step, where the horizontal lists 

are chained vertically in the order of execution. 

The EMUCS tool allocates hardware and attempts to find the minimum cost design 

given a Value Trace which has previously been scheduled. The cost can be any 

quantitive feature (but is typically area) which is approximated by a weighted sum based 

on the technology. The operators given in the scheduled VT input are iteratively bound 

to abstract cells in order to gradually construct a data path. At each iteration cost tables 

are constructed and an analysis made to decide what to bind. The cost tables reflect the 

feasibility of binding each element by specifying the cost of changing an existing 

functional unit to accommodate an additional operation. The operation to be bound and 

to which unit, is selected using a min-max approach that attempts to minimise the final 

cost by minimising the potential loss at each iteration. Thus the least costly operation 

over a number of steps is bound based on minimising the incremental cost associated 

with the cell being considered. Only functional units with equal bit widths can be 

merged. This cost based greedy algorithm uses no global views of the design and allows 

little backtracking; consequentially the result is only a local optimum. 

Another allocator from CMU (probably the predecessor to EMUCS) is described by 

Parker and Hafer [44,45] (1978,1982). This tool first allocates storage and I/O 

followed by the allocation of functional units one by one. If an appropriate unit exists in 

the data path it may be shared otherwise a new one is entered. Multiplexers are then 

created at unit inputs where required. Allocation is in terms of generic components and 

is specific to the style of data path used, either bussed or distributed. 
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The EMUCS tool minimises one aspect of a design, its cost, by performing one 

synthesis task; allocation. The following systems also minimise one aspect of a design, 

either area or delay but in addition use limited heuristics to improve a second aspect of 

the design. 

Facet [26] (1983) is another allocator tool, again part of the CMU-DA suite of tools. 

Facet applies clique partitioning to the synthesis tasks to minimise either storage, 

interconnects or operators by forming special ALU groups. The cUque partitioning 

algorithm uses the common neighbourhood property to produce near minimal cliques. A 

graph node is a neighbour to another if an arc exists between them. If a third node is 

connected to two neighbouring nodes then it is a common neighbour of the pair. A VT 

input can be compacted to form an ASAP schedule by moving operations to the point 

where their inputs are defined. Graphs are formulated for each synthesis problem from 

the VT and clique partitioning applied. In register minimisation for example, a 

compatibility graph is constructed using lifetime analysis, where nodes represent 

registers and arcs join mergable pairs. Register minimisation gives priority to combining 

registers with pure data transfers between them as this increases speed and also reduces 

area. VT compaction is repeated after register clustering. The synthesis tasks are 

sequentially applied to the design in a fixed order with no communication between them 

therefore the design space is not explored. 

The Emerald system [35,46] (1984,6) allows the user to perform initial VT code 

compaction by either serialising operation pairs or moving an operation to another VT 

block. Other VT changes involve transformations such as converting instances of a 

counter to an adder or local incrementer. In this way alternative data paths can be 

achieved. The Facet tool is used by Emerald to synthesize the data path, where design 

costs are represented in terms of component counts, bits or gate counts. 

The Silc [4] (1985) system is similar to MacPitts. Silc performs placement and routing 

and has storage and FSM states (scheduling and two level parallelism) bound in the 

description. The Silc chip is a collection of FSMs communicating by an asynchronous 

protocol; the first level of parallelism. The second level of parallelism occurs through 

each state controlling a set of operations. Heuristics are used to improve the FSM logic 

in the sum of products form. As with MacPitts, Silc shares functional units that occur on 

different FSM states and takes mutual exclusion into account. However, In addition Silc 
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makes unit choices, for example between a carry look ahead adder and a ripple carry 

adder, based on speed. 

The Scholyzer system [20] uses the Scholar language [47,48] which is compiled to an 

intermediate code (ICODE). The ICODE is used to create a control graph where arcs 

represent control flow and each operation is assigned to a node which represents a 

control state. Sequential and parallel sections of the graph are ASAP compacted subject 

to contention tests and declared variables. Further compaction is achieved by applying 

local transformations to fork and join type nodes, thus producing a maximally parallel 

ASAP schedule. Limited functional unit sharing is performed after scheduling where 

similar non-concurrent operators with common input or output variables are shared. 

Registers are bound in the description therefore no register optimisations are performed, 

however, some operations implementable using registers are detected. 

The Yorktown Silicon Compiler [49] (1987) from IBM is an advancement from its 

Elm [50] (1983) logic transformation system which provides an expansion of generic 

operators to primitive boolean and register blocks. Elm's boolean algebra is manipulated 

using technology dependent transforms which may be applied using various strategies 

and the best result selected in light of user constraints. In the YSC the design uses 

modules each with its own data path and controller distributed within the data path. The 

data flow steps are scheduled to facilitate a sequential controller and a fast design is the 

objective with later optimisations to reduce area. For each functional unit a 

parameterized boolean expression exists. The entire boolean structure is flattened and 

partitioned if it is too large for the logic synthesizer. The decomposition of a design to 

the logic (gate) level results in a large data structure which may be computationally 

expensive to optimise. The references on page 36 describe recent research at IBM which 

has concentrated on high-level synthesis and design space exploration. 

An improvement on the above method of minimising one aspect followed by another is 

to take the second aspect into consideration whilst performing the initial minimisation. 

This can be done by considering operator similarities or critical path and freedom 

measures. The system described by Girezyc and Knight [29] (1984) considers the 

critical path. It allocates a previously functionally optimised control and data flow graph 

using a greedy algorithm and makes hardware assignments by adding cells composed of 

a register, multiplexer and operator. During allocation the critical path is considered so 
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that the previous timing constraint is maintained. Both critical path and operator 

similarity are utilised in the system described by Hong, et al. [51] (1987). Scheduling 

uses a data flow graph with arcs specifying dependencies. The critical path is 

determined and scheduled ASAP. Non-critical operations are then scheduled and an 

attempt made to reduce concurrency between similar operations by delaying their 

schedule. Pure data transfers are scheduled ASAP. Initially a path search algorithm 

using lifetime analysis is used to group variables into registers. After scheduling, 

operations are clustered into functional units taking into account variable clusters found 

previously. 

2.4 SYSTEMS WITH A FIXED CONSTRAINED CRITERION 

The logical progression from minimising particular aspects of a design is to allow 

constraints to be placed on them. The following systems allow a constraint on one 

design aspect, area or delay, whilst minimising the other. Most allow an area constraint 

in the form of limiting the available hardware resources and strategically serialising a 

maximally parallel implementation until enough resource sharing can be performed in 

order to meet the resource constraint. The main differences between the methods lie in 

the way in which a synthesis task is taken into account by another in order to allow the 

constraint to be met. 

One of the first systems to use strategic serialisation was Mimola [28] (1979). The 

Mimola language can be structural or behavioural both of which are compiled to a 

design database containing all design information. The initial design is a maximally 

parallel design where the parallelism is bound in the description. Hardware is allocated 

at each control step (micro-instruction) using a set of hardware resources. The allocator 

adds resources, modules and connections, one by one from the hardware set. It is 

assumed that the hardware can be shared between micro-instructions. If no resources are 

available in the set for an allocation the operation is delayed (serialised) and registers 

added for intermediate results, thus allowing a resource to be shared. The designer 

restricts the available resources to force sufficient serialisation to meet his goals. 

Measures are given on design aspects such as area, power, speed and micro-program 

requirements. To aid the designer select which resources to remove from the set. 
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Utilisation figures are determined by statistical analysis, where low utilised resources are 

candidates for removal. 

The Autonomy and Attraction tools [52,53] (1981,2) use strategic serialisation in the 

synthesis of a micro-program controller. Given a data path they trade bit compaction for 

word compaction to meet a cost (area) constraint. The autonomy tool, which is applied 

first, uses a partitioning algorithm that isolates operations to be controlled independently 

of micro-instruction encoding. It makes a dedicated field in the control word for these 

operations therefore removing them from all sets of micro-operations. Operations are 

selected to increase the encodeability of the others up to the point of increasing a pre-

defined word width. The attraction tool determines, subject to the constrained instruction 

width, which micro-operations to execute in parallel and which to encode in separate 

micro-instruction formats by forming clusters to minimise encoding. Operation pairs are 

iteratively merged into clusters using attraction weights. At each iteration the weights 

are calculated using the freedom measure to determine the probability of pairs of 

operations occurring in the same time slot. The highest pair are merged into a cluster, 

thus resulting in the least degradation in opportunity for parallelism. 

Elf [29,54] (1985) uses list scheduling where the order of scheduling is based on 

urgencies. A weight is determined by taking the minimum number of cycles to execute 

an operation plus its maximum successor weight, that is, its ASAP time. The urgency is 

the ratio of weight to spare cycles to a time constraint. Therefore when the scheduling 

of an operator is delayed, to allow sharing, its urgency increases which raises its priority 

for scheduling. 

The Design Automation Assistant (DAA) [55,56] (1985) creates an initial data path by 

allocating units by direct compilation using VT block minimum delay information. 

Unchanging items such as variables and ports are allocated first followed by functional 

units. A maximally parallel design is created using an ASAP schedule and the design is 

strategically serialised using an expert system guided by estimators. The expert 

knowledge is contained in 300 rules determined by interviewing real designers. The 

rules are mostly local, for example merging registers and are technology sensitive. The 

knowledge is incomplete and although more rules result in improved designs the system 

becomes slower. Cost estimators determine the cost of upgrading functional units and 
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interconnects to contain an additional module. Module generators build technology 

dependent modules specified in DAA output. 

The Caddy system [57,58] (1989,90) (Carlsruhe Digital Design System) also uses rules 

which form local optimisations, these use commutativity type axioms. Global 

optimisations used involve folding operators, folding variables based on lifetime analysis 

and loop unrolling. The optimisations are applied to data and control flow graphs which 

are directly compiled from DSL a Pascal like language [9] where unnecessary registers 

and data transfers have been removed. Some explicit control and parallelism is bound in 

the language, however additional parallelism is extracted. The optimisations are applied 

in order to minimise area subject to timing constraints. Scheduling is performed by list 

scheduling using resource limits and freedom, taking into account mutually exclusive 

instructions. Register minimisation is done separately using a graph colouring approach. 

A graph colouring algorithm finds the minimum number of colours such that each node 

when coloured is not adjacent to a similar colour. After optimisation a one to one 

mapping using parameterized structure generators is performed. The output is a 

hierarchical netlist which provides an interface to other Caddy tools. 

The S(p)licer tools [27] (1986) also use a resource constraint, which is used to guide 

scheduling. Slicer creates a preliminary ASAP schedule and determines critical paths 

and operator freedom using unit times based on the fastest units. An optimised schedule 

is created a state at a time by binding operations to functional units from each ASAP 

state starting at the first. The operations in an ASAP state are ordered on increasing 

freedom (critical path first) and each assigned to the new state until the resource limit is 

reached for that state; a new state is then created. The Splicer tool uses a greedy 

algorithm to assign structural components, sharing where possible. A depth first branch 

and bound method is used to find a fair solution quickly and subsequent best solutions 

are retained. 

Raj [59] (1986) describes a system which uses operator similarities. Operations are 

assigned to micro-instructions (conceptually similar to control steps) to form an ASAP 

schedule. Operations are delayed where similar functional units could be shared, thus 

scheduling the operations in different time steps. A hardware allocator then uses a 

greedy methW which allocates operations to hardware one at a time, sharing where 

possible or creating additional hardware if sharing is not possible. The allocation 



K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 5 

continues until it is complete or a hardware constraint is reached. If the constraint is 

reached, the user must move an operation to a succeeding state and re-allocate. 

2^ SYSTEMS WITH A CONSTRAINED CRITERION 

Similar strategic serialisation methods to those described above are used in the following 

two systems which allow goals to be set on either cost (resource constraint) or speed. 

The Maha system [24] (1986) creates a data flow graph and assigns delay and area 

figures to elements based on the average of those components capable of implementing 

the operations. Using the delay figures the operation freedoms and critical paths are 

determined and a lower bound on resources and delay can be found. The data flow 

graph is divided into n equal time steps, initially equal to the maximum functional unit 

delay, and the timing constraint checked for violation. Operations are scheduled in order 

of increasing freedom thereby allowing greater flexibility for unit sharing as operations 

with a greater freedom can be scheduled later. Critical path operations are allocated on a 

first come first served basis, sharing where possible. Possible states for non-critical 

operations are examined in sequence and the earliest chosen with priority given to 

sharing units. If the resource cost is exceeded the data flow graph is divided into more 

steps, n increased and scheduling repeated. To minimise the cost n is increased up to the 

point prior to timing constraint violation therefore allowing maximum unit sharing. To 

minimise the delay resources are added up to the point of cost violation therefore 

allowing maximum parallelism. 

Hal [25,60,61] (1986,7) also allows goals to be set on cost or speed and performs 

allocation and scheduling separately but not independently. Hal performs a default 

allocation and ASAP scheduling similar to Slicer and Maha from which freedom figures 

are determined. The timing constraint (if specified) is used to decide on the control step 

partition to which operations are scheduled. The order in which to schedule operations is 

not determined by freedom as in Maha but by force which attempts to balance the 

distribution of operations that make use of similar resources between control states. The 

force is determined thus: for each operation type in each control step the sum of the 

probability that the operation is scheduled in that step is taken. For a given operator the 

place to schedule it is determined using forces corresponding to the change in 
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probability between steps. The smallest force of all operations is scheduled in its time 

slot and the process repeated excluding the already scheduled operations. After 

scheduling, locally optimal hardware allocation is performed to find a set of cells to 

implement the data path subject to the goals. Ceils may implement more than one 

function. Lastly, register optimisation and binding of cells taking interconnects into 

account is performed. 

Recent research at IBM by Camposano [26] (1990) uses strategic serialisation to 

determine the area-time (AT) trade-off curve. Camposano describes a method of creating 

a set of designs, in order to explore the design space, by initially generating a 

maximally parallel "as fast as possible" (AFAP) design and then introducing extra 

control states in order to allow more hardware sharing and thus navigate the design 

along the AT curve in the design space. An extra state is created by splitting an existing 

one such that the area of the operations in each state are approximately equal. It is 

important to note that the area considered is that of the data path only; interconnection, 

storage and control areas are not considered and the delay is taken to be the number of 

control states. The state splitting process does not take into account the critical path 

therefore the speed may be degraded by splitting critical path nodes before non-critical 

paths have been examined; thus resulting in a non-optimal AT curve. Camposano and 

Bergamaschi [27] (1991) use a data path graph with control constructs which is 

compacted to reduce path lengths. An AFAP schedule is created by moving operations 

into parallel branches. Operations may be duplicated thus allowing one operation to be 

scheduled in more than one control state. Although an innovative idea it would be of 

little use in the MOODS system because if the operation can be scheduled in more than 

one control state then the states would be merged thus reducing the controller. 

2.6 DESIGN ENVIRONMENTS 

Some of the tools and systems described above have been incorporated into larger 

systems which allow the designer to control the design process. By changing the order 

of the synthesis tasks or by applying transformations to the initial description the 

designer can produce a variety of designs, thus exploring the design space. The 

approach to high-level synthesis by CMU is to develop a collection of synthesis tools 

such as those CMU-DA tools described above and those described by Balakrishnan, et 
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al. [64] (1988) and Tseng and Siewiorek [65] (1981) which provide the grouping of 

variables into multi-port memories and the synthesis of buses respectively. These tools 

can then be manually controlled from one system [13,14] which uses a global database 

(GDB) that is derived from a register-transfer level language (ISPS) used to describe the 

designs behaviour. A common graph structure, the Value Trace (VT), which is able to 

describe the design at various linked levels of representation, is determined from the 

GDB. 

The Sugar system [66] (1985) from CMU uses heuristics to automate the application of 

VT transformations previously applied interactively [13]. The transformations that can 

be applied to the VT are, for example, dead code elimination, partitioning, folding, code 

motion, inline expansion, flattening of nested conditionals and pipeline formation. Code 

motion shapes the VT using user's goals so that hardware binding will give a design 

which meets the goals. The transformations help create a more synthesizable VT with 

less bias introduced in the designer's description. Sugar groups increment and decrement 

operations with other arithmetic operations. It uses a "least commitment" style of 

binding design decisions to reduce negative effects of interactions between synthesis 

tasks. Early tasks may be used to gather information and then redone later in the design 

process. 

The System Architects Workbench [15] (1987) is the latest generation of the CMU-

DA system and is a group of tools that operate interactively on the VT compiled from 

ISPS. The VT can be manipulated using the same code transformations used in Sugar, 

after which scheduling and allocation is performed by CSteps and EMUCS respectively. 

The Systems Architects Workbench includes Aparty [67] (1991) an architectural 

partitioning tool which determines subsets of behaviour to implement on separate chips. 

Aparty uses multi-stage clustering techniques and communicates information to other 

synthesis tools. 

Another design aid environment is Spaid [19] (1989) which provides tools to explore 

architectural alternatives for DSP applications. The designer can specify hardware 

resources and timing constraints such as throughput or latency. Transformations can be 

applied to the initial description to utilise operator properties, for example the 

association property, or to satisfy timing constraints, for example re-timing. 

Transformations and resource selection can be performed in any order to allow 
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exploration of design alternatives. Spaid then performs an initial schedule and allocation 

which is repeated depending on unit utilisation analysis. Lastly registers and 

multiplexers are minimised. 

The Adam synthesis system [30] (1991) is a framework manager for design tasks and is 

unique as it does not create a design but constructs a design plan which is later 

executed, if the constraints are met, using tools such as Sehwa and Maha. Initially the 

system estimates the lower bounds of the area and delay based on maximum usage of 

operators in the data path. This is similar to the prediction of design space bounds made 

by Parker, et al. [34]. The estimate is used to decide on a module set and design style 

thus reducing the design space. Heuristic rules are used to guide the tool choice and 

select tool parameters. A plan graph is constructed where the root is the initial design 

and pre-conditions aid the construction which follows a depth first search method. The 

properties of each terminal state are measured and depending on the result tool 

parameters are adjusted or the planning continued until the goals are met. A range of 

designs can be produced with the designer's interaction. A multi-dimensional cost 

function is possible, however, as estimates are used in the design plan accuracy would 

be jeopardised. 

2.7 INTELLIGENT SYSTEMS 

The systems reviewed so far optimise a design either by minimising one or two aspects 

of the design or maintaining a constraint on one aspect whilst minimising the other. If a 

goal is not reached and the synthesis task fails, human interaction is necessary to adjust 

the available resources, in the case of strategic serialisation methods, or alter the initial 

description in methods which assume language bindings. These systems can therefore be 

considered open loop systems. The remaining systems described below close the design 

loop and allow trade-offs between different design aspects; therefore they are often 

classed as intelligent compilers. Although trade-offs have been seen in for example the 

strategic serialisation systems, the trade-offs being performed were only one way; that is, 

sacrificing speed in order to improve cost or area. In those systems no provision is made 

for automated backtracking, design degradation or re-design if a synthesis task fails. 
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The Ulysses system [68] (1985) provides the simplest way to close the design loop. 

Ulysses is an interactive tool integration environment for the CMU-DA tools which 

contains its own design data representation and translators between existing synthesis 

tools. It contains knowledge of which tool to activate when a conflict occurs thereby 

providing automated re-design. A similar approach is used by Chippe [69] (1990) in 

which trade-offs are iteratively corrected using analysis of the constructed designs; 

therefore it is never too late to change a design decision. The design is analyzed with 

respect to the goals on area, power or delay. An appropriate action is taken by 

modifying the design through changing the parameters and constraints (primarily 

resource constraints) passed to the design refinement tools, which re-iterate one or more 

of the synthesis tasks. The refinement tools used are Slicer and Splicer. The evaluator 

gives area, power and delay measures as well as unit usages, unit dead time, unit 

overlap and critical paths. Tool parameter changes are determined using rules which are 

scored by the evaluator and the highest selected. Although the strategy is still one of 

generating a maximally parallel design and then strategically serialising it Chippe can, 

by using its rules and evaluator, provide more intelligent tool parameter choices and 

optimise to a wider variety of design aspects. 

Ulysses and Chippe perform re-design by global iterations, that is, complete synthesis 

tasks are iterated. This is necessary because they utilise existing synthesis tools which 

are incapable of two way trade-offs. Systems which use local iterations must allow two 

way trade-offs and therefore perform the allocation and scheduling tasks simultaneously. 

Four systems use this approach, one of which is MOODS; the other three are described 

below. 

The Camad system [21,22,23] (1986,7) produces an initial implementation using a 

timed Petri-net model which is compiled from a Pascal-like description. The architecture 

is an asynchronous one where tokens are held or delayed long enough for the operations 

to be performed. Token firing conditions are used for conditional branches and 

synchronisation transitions are used where a node depends on more than one 

predecessor. This model is the asynchronous equivalent to the synchronous controller 

model used in Scholyzer and MOODS. The design is measured using a set of matrices 

which represent the design aspects and a vector of scales representing the priority of the 

matrices. Goals can be placed on both area and delay. The initial implementation 

assumes maximum resources and parallelism. The optimisation minimises the difference 
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between the goals and the design measure by iterative improvement. The critical paths 

and signals are used to choose which sub-part of the design to transform. If the 

performance goal is not reached then the critical path is shortened either by parallelising 

operations or by shortening token hold times, that is, operation execution times. 

Likewise if the area goal is not reached units are shared preferably off of the critical 

path and operations serialised to facilitate the sharing. The algorithm is a complex 

tailored heuristic one which requires a complex flagging system to prevent 

transformations undoing previous improvements and thus alternating. By using the 

critical path the algorithm is biased towards performance. Design partitioning can be 

performed and is taken into account during optimisation. 

The system described by Devadas and Newton [42] (1989) also uses local iterative 

improvements which are applied to the design using a simulated annealing algorithm. 

The design is compiled from a ' C description and entered into a two dimensional grid 

where control states are represented by the rows and each row contains a number of 

parallel items to be executed in a given state. Each item may include one or more 

chained operations. The synthesis tasks are thus formulated as a 2D placement problem. 

The iterations consist of generating additional rows subject to dependencies and moving 

operations within the grid. The design cost is determined using estimated measures; for 

example, a measure for the number of buses required would be the maximum number of 

distinct sources and the number of sinks in all time slots. The cost measures are 

summed and scaled by weights specifying their relative importance, as also done in 

Camad. Constraints are included in the cost function by penalisation. The annealing end 

condition is when the cost function has not changed for three consecutive temperature 

steps. The number of moves per temperature step is reported to affect the solution 

profoundly, however no mention is made of how the user determines it! 

The simulated annealing system from Safir and Zavidovique [70] uses a similar cost 

function to Devadas and Newton, however, time is only represented by the number of 

states. The cost function also incorporates a "silicon surface time utilization" (STU) 

measure which is the ratio of the sum of silicon area used during each machine cycle to 

the product of total area and number of machine steps. The STU measure is similar to 

the unit utilization measure which forms part of the design goodness measure in the 

MOODS system. The iterations consist of shifting nodes of a control and data flow 
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graph between time steps. A parallel task allocates generic components. As with 

Devadas and Newton no details are given on how the annealing schedule is determined. 

SUMMARY OF HIGH-LEVEL SYNTHESIS SYSTEMS 

All of the above systems suffer from one or more of the weaknesses listed below, all of 

which the MOODS system attempts to overcome. Apart from these weaknesses one 

major problem has been highlighted by McFarland [31] (1987) which is concerned with 

the shape of the area-time curve. The AT curve is assumed to be a relatively smooth 

trade-off curve running from the high cost, high speed designs to the slower less 

expensive designs. This assumed shape is a result of the assumption of area being 

synonymous with data path operators and speed with control path length. This basic cost 

model is used by many synthesis systems from which the traditional data path versus 

control path trade-offs are made. McFarland has shown that by using a more 

comprehensive cost model which takes into account interconnect area, control hardware 

and multiplexers the AT curve takes on a completely different shape making the 

assumed trade-offs less valid. Therefore systems which include trade-off assumptions 

pre-programmed in the optimisation process are likely to produce non-optimal designs. 

An example system (one of many) demonstrating each of the following weaknesses is 

given, followed by a brief description of how the MOODS system overcomes it. 

1. Architecture or application specific (Cathedral) - MOODS is aimed at general 

applications and uses a distributed data path plus controller architecture. 

2. Use of language bindings and structural descriptions (Bristie Blocks) - The input to 

MOODS is a behavioural one where no bindings are assumed. Parallelism and 

variables may be defined in the description but are not necessarily adhered to. 

Their only effect is to determine the structure of the initial un-optimised 

implementation. 

3. Computationally expensive and a run time explosion with design size (DAA) - The 

MOODS run time is controllable and can yield a correct design if terminated 

early. A trade-off can be made between the run time and design quality. 

4. Limited design model, that is, synthesis tasks are applied in a fixed sequence which 

limits the design strategy and results in pre-defined trade-offs (Maha) - MOODS 
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iteratively applies transformations using a stochastic process to simultaneously 

perform the allocation and scheduling tasks. Therefore no fixed design model is 

used. 

5. Local rather than global minimum is found (EMUCS) - MOODS avoids local minima 

by using reversible transformations allowing the design to be temporarily 

degraded and thus climb out of local minima. The global minimum (or near 

minimum) is found with the aid of a global cost function. Due to their limited 

design model many systems do not have (or require) a cost function as trade-offs 

are pre-programmed in the optimisation process. 

6. Goals limited to one or two aspects or minimised aspects (HAL) - Again this is due 

to the limited design model and the lack of design evaluation through a cost 

function. By using a global cost function and stochastic process, which contains 

no pre-programmed trade-offs, MOODS can synthesis to any design aspect. The 

complex interaction between design aspects and their resulting trade-offs are 

another reason why more than two goals are rarely optimised using tailored 

heuristics. Encapsulating the trade-offs in an algorithm results in a complex set 

of heuristics as for example in the Camad system. 

7. Design decisions made too early which require re-design to correct (S(p)licer) -

MOODS uses reversible transformations therefore it is never too late to correct 

an inappropriate design decision. 

8. Inaccurate evaluation or estimation of the design, that is, design goals are based on 

unit or bit counts rather than real quantities and do not consider control or 

interconnect factors (Spaid) - Although MOODS does not currentiy take 

interconnects into account there would be no algorithm changes to do so as the 

interconnects would be part of the cost function. Real design quantities are used 

to constrain the design, for example, area in microns rather than bits and delay in 

seconds rather than control states. The design quantities in MOODS are produced 

by feeding up technology dependent information to the design evaluation 

procedures. The use of real quantities gives the designer realistic information; it 

is unlikely that he is concerned with the type of resources utilised but would like 

to know if the design will fit the chip die. 

9. Restricted control model, that is, the optimisation process is bound to one controller 

type which again pre-defines the trade-offs (Silc) - The costs associated with the 

MOODS controller implementation are included in the cost function therefore 

changes to the controller style are reflected in it and thus taken into account 
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during optimisation. No restrictions on parallelism are made, such as limited 

depth, therefore other controller styles can be used. 

10. Limited design space exploration - Due to fixed optimisation strategies and trade-off 

assumptions most systems can only provide design space exploration through 

manual intervention; for example, by changing the design description or available 

resources. The MOODS system can automatically explore the design space and 

provide a varied set of implementation from one description; a feature possessed 

by no other system. 

The closest systems to MOODS are those described by Devadas and Newton, and Safir 

and Zavidovique, however, there cost functions are fixed, whereas, the MOODS 

multiple objective cost function is specified by the designer. Devadas and Newton 

estimate the cost of a design and Safir and Zavidovique approximate speed to the 

number of time steps; both of which introduce opportunities for errors. MOODS 

however, uses technology dependent information fed up from a cell library. The use of 

technology dependent information means that variations in trade-offs caused by 

technology variations are also taken into account. MOODS also provides a wider range 

of transformations similar to those in Camad, however they are not applied using pre-

programmed trade-offs as in Camad. 
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As mentioned in Section 1.8 the purpose of this work is to develop a silicon compiler 

that optimises a design with respect to multiple objectives set by the designer and 

automatically explore the design space. The system is implemented as the MOODS 

Silicon Compiler, acronym for Multiple Objective Optimisation in Data path (and 

control path!) Synthesis. The compiler centres around a global optimisation mechanism 

that is guided by a global cost function. It is the flexibility of the optimisation 

mechanism and the accuracy of the cost function which determines the optimality of a 

design subject to the designer's objectives. 

3.1 MOODS INPUT AND OUTPUT SPECIFICATION 

The design specification is given by a behavioural description which is compiled to an 

intermediate code (ICODE). A behavioural description documents the design in a 

readable, technology independent way. It is an abstract representation as it avoids 

premature bindings, therefore allowing more optimisation opportunities. All languages 

constrain the design description to a particular style as they have a finite syntax. A 

silicon compiler may detect fixed structures caused by the language syntax and translate 

them into an improved form. For a large range of language constructs this would be a 

difficult process, therefore the number of constructs is minimised in the intermediate 

code. Operations are decomposed into two-input instructions to reduce the number of 

different constructs and provide technology independence. The effect of this is to 

lengthen the description when compiled to the ICODE. 

For each module in the description the ICODE consists of a set of processes each with a 

unique process number. Each process represents an instruction and has associated with it 

an activation list, that is, a list of processes to be activated when the current process 

ends. The sequencing of operations is similar to a Petri-net and uses a token passing 

mechanism to activate processes. A process may start only when all preceding processes 

have terminated, indicated by a token. A collect instruction is used where the preceding 

processes are executed concurrentiy. Its effect is to wait for a specified number of 

tokens before activating subsequent processes [47]. 

The ICODE represents the behaviour of the design at the register-transfer level and is 

the design description input for MOODS. The ICODE is generated from a behavioural 
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source language using a language compiler. The language compiler provides syntax 

checks and optimisations such as dead code elimination and constant folding. Functional 

simulation tools are essential to the designer to verify the operation of his design and 

are applied either to the source description or to the resulting ICODE. 

The source language may be either SCHOLAR [48] or a high-level subset of 

ELJLVl [71,72]. The StZHCML/Ut ini)ut is compiled to IOC)!)]: using the SKZHOOLAIt 

language compiler and may be simulated using a functional simulator which is part of 

the language tools. An ELLA to ICODE interface [73] allows behavioural descriptions 

in high-level ELLA to be compiled to ICODE. Unfortunately ELLA is of a structural 

nature, therefore behavioural constructs such as loops are difficult to implement. Despite 

this, a behavioural interpretation is possible which may be correctiy simulated using the 

ELLA simulator. Apart from giving the user a choice of source languages ELLA 

provides access to the tools available in the ELLA environment. An example of the 

SCHOLAR language and the resulting ICODE is given in Figure 3.1, where an 

instruction with no activation list is assumed to activate the next instruction in the code 

sequence. The full ICODE instruction set is given in Appendix A. 

SCHOIAR ICODE 

$ ( M o v e #2 2 A c t 4 , 5 

b 2 : Or 2 3 2 A c t 9 

= # # # A n d 4 5 6 

b 2 : = b 2 CR c3 I f n o t 6 A c t 8 

I F ' ( d 4 AND e 5 ) THEN M o v e #0 5 A c t 9 
e 5 : =0 8 Move #0 4 

ELSE 9 C o l l e c t 2 A c t 4r 5 

d4 : =0 

$ ] REPEAT 

$) 

Figure 3.1 Example behavioural description and resulting ICODE. 

The final optimised implementation generated by MOODS is represented in terms of 

parameterized cells, therefore it is natural for the output to be a netlist of parameterized 

cells. The required cells can then be taken from a cell library to produce a layout using 

conventional placement and routing methods. 
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The netli. t is produced in the form of ELLA text using the simple MAKE, JOIN and 

LET statements. Each cell in the cell library is described as an ELLA macro which is 

instantiated in the netlist output. The clock runs to all register and control parts and is 

implicit in the cell descriptions by the use of the DELAY operator. By using ELLA as 

the output the designer has access to the ELLA tools allowing the final implementation 

to be simulated, where the ELLA time units represent clock cycles. If the source 

language used was ELLA then the same simulation vectors with little modification can 

be used to simulate both the initial description and final implementation; thus their 

functional equivalence can be verified. An example simulation of both initial description 

and final optimised implementation is given in Appendix B. After simulation at the cell 

level the design can be implemented using existing systems available from the ELLA 

environment. Variable names in the initial description are maintained throughout 

synthesis and are used in the netlist output thereby allowing the designer to probe 

known variables during simulation. 

The ELLA netlist together with the parameterized cells represent the design at the 

gate/logic level. This may be flattened and further optimised by low-level logic 

synthesis systems which can optimise expanded cells and across cell boundaries. The 

true cost associated with the optimised cells can be represented in the cell library 

database which can detail pin overheads and different combinations of ALU functions 

within an ALU. For example, the cell library data takes into account the fact that the 

area increase in adding a function to an ALU will not be the area of the isolated 

function but will be less due to the shared resources within the ALU. A pin is a 

connection to a functional unit, whereas, a port is an module I/O connection; these 

definitions apply throughout the thesis. 

Although the data and control parts are thought of as separate during the synthesis 

processes, they are combined in the final cell netlist. This gives layout tools more 

flexibility in achieving a compact layout. Separate netlists for the data and control parts 

could be produced, therefore permitting, through some post-processing, different 

controller implementations; such as a microcontroller. 
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3.2 MOODS ARCHITECTURAL MODEL 

The chosen target architecture is a general one, therefore a data path plus control unit is 

used as the architectural model. The general architecture adds little restriction to the 

design space and allows the design of circuits from various application areas. 

MOODS implementation independence is maintained by adopting a distributed data and 

control path. This distributed structure is represented by a netlist of abstract 

parameterized functional units and storage elements which implement instructions in the 

input description. The control path is expressed in terms of control states and control 

signals. Initially the distributed structure is sufficiently implementation independent to 

allow the design to be bound in a variety of ways; for example, implementing functional 

units as single cells or grouping into ALUs, merging registers into memories and 

implementing the control unit as a finite state machine or microcontroller. 

A few implementation assumptions relating to the clocking scheme and timing of 

operations must be considered before detailing the synthesis steps. The clocking scheme 

adopted will match the cell library, which will typically be a single phase or two phase 

non-overlapping clock. VLSI cell libraries using these are smaller, simpler and more 

widely available than their multi-phase counterparts. The clock is assumed to run to all 

registers and control parts. Registers are loaded by controlling the load enable inputs 

and storage is assumed to occur at the end of a clock cycle, at which point the 

controller changes state. Each control state has a status output signal which when high 

indicates that the state is active. 

The timing diagram of Figure 3.2 shows the timing for an addition operation. The 

vertical bars on the clock signal signify when the controller changes state and when 

registers are loaded. The time taken for an operation is dependent on the operation itself, 

its implementation method and the technology used. The clock period is used during the 

optimisation of the design and is assumed abitrarily long if not specified by the user. 

The clock period used to drive the final implementation will be equal to or greater than 

the maximum control node delay. If a clock period has been specified by the user then 

an operation will be multi-cycled if its execution time exceeds the clock period. If an 

operation is multi-cycled then additional control states must be added when the time 
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state 1 

state 2 

clock SOURCE ICODE 
11: v1 = v2 + v3 plus 2 3 1 

load enable reg v1 

.time available, 
for operation 

state 1 
i1: 

state 2 

last assignment 
of v a r i c e s v2 and v3 

loading of 
register v1 

Figure 3.2 Timing diagram for the architectural model. 

between the last definition of the operation's input variables and the assignment of the 

output variable is less than the execution time of the operation. Alternatively a faster 

implementation of the operation can be used which may reduce the number of additional 

control states but will inevitably increase the data path area. This illustrates the trade-

offs possible between control and data path area and circuit speed. 

DESIGN REPRESENTATION 

A design representation is required as a vehicle for applying the synthesis steps. It must 

be flexible enough to represent the design throughout the synthesis process from the 

initial behavioural level to the final structural level. The design is represented as two 

graphs, a data path graph and a control graph. Two separate graphs are used to allow 

graph manipulations on one without affecting the other. This makes it easier to trace 

control or data paths and combine or split graph nodes. In addition to these graphs are 

lists specifying the variables used in the ICODE, ICODE modules and control signals. 

All graphs and lists have links tagging points in one graph or list to points in another. 

The links aid searches through the data structures and more importantly provide a 

correlation between the behavioural description contained in the instructions of the 

control graph and the implementation contained in the structural representation of the 

data path graph [14]. This allows a multi-level representation to be maintained 
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throughout the synthesis process and so reflect optimisations at both levels. An example 

of the links between data structures is shown in Figure 3.7. 

The control graph, variable list and module list are constructed using the ICODE 

description. For each module in the ICODE a separate control graph is formed and an 

entry made in the module list. The module list contains pointers to the start and end 

nodes of the control graph and a pointer to the parent module in which it was declared. 

Also included is the module header that lists the input and output ports to the module, 

which for the main program represent external I/O connections and possibly IC pins. 

The variable list contains an entry for every variable in the ICODE. Each entry has a 

pointer to the data path unit storing the variable (see Figure 3.7). The list includes both 

declared and compiler created variables which are treated equally throughout synthesis. 

Only I/O variables are reserved, that is they can not be optimised away, thus preserving 

their original roles. The only difference between the variable types is that the declared 

variable has a user defined name and bit width which defines operator bit widths 

whereas the compiler variable has no name and its bit width is derived from the width 

of the operations using it. Compiler variables are usually created where nested 

expressions existed in the source description. They are therefore only used once, that is, 

their lifetime consists of a single write and single read operation thus making them good 

candidates for elimination during synthesis and is the reason why some compilers (such 

as Scholyzer [20]) treat them differently. 

3 3 . 1 THE CONTROL GRAPH 

The control graph depicts control state sequencing information and instruction 

precedences. It is cyclic, where cycles represent control structures with loops. Each node 

in the graph represents a distinct control state, within which is a set of instructions to be 

executed. 
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The control graph is defined as follows: 

CC%NTrK)L(3FUVPH = 

where S = (si,s2,...,s„) is the set of nodes and A = (a„a2,...,an) is the set of arcs, which is 

a subset of the cartesian product S x S. 

A node s = (type, I,, Ai„, attributes) consists of: 

type An attribute indicating the node type, either general, fork, conditional, 

dot, call or collect, as explained below. 

I; A set of instructions, Is c K, where H is the complete set of instructions in 

the ICODE. 

Ai„ A set of input arcs, Ai„ c A 

Aout A set of output arcs, A û, c A 

attributes, these consist of: 

collect_N The number of tokens for a collect node. 

delay An estimate of the time taken for instructions I, to execute. 

node_enable The status signal indicating an active control state. 

loop_its The number of times a node is enabled during a single pass 

of the control graph - used in critical path calculations. 

slack The critical path slack (often called mobility or freedom). 

An arc a = (s„ ŝ , c,, FBA) consists of: 

s, A single start node, s, e S 

Sj A single terminal node, s, e g 

Cg A condition signal which gates the arc, that is, if Cg evaluates to true and 

the start node is active then at the end of the current clock cycle the arc 

can activate the terminal node. 

FBA An attribute indicating that the arc is a feedback arc thus creating a 

control loop, the removal of which renders the graph acyclic. 

The node type describes the class of control unit to be used when implementing the 

controller. It relates to the arc configuration connecting to the node and any special 
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control considerations imposed on the controller by particular ICODE instructions. The 

nodes are described in order of precedence, with general being the lowest and collect 

the highest. Figure 3.3 illustrates the nodes. 

A general node contains ICODE instructions other than collect, module call and 

conditional instructions (IPs) and has at most one input arc and one output arc. A fork 

node is the same as a general node except that it has two or more output arcs and 

therefore marks the start of a parallel section, where ^ its successor nodes are executed 

concurrently. 

1 ... p 

7 1 
General Fork 

1 ... m 

Conditional 

V X 
\ call \ 

( N tokdns j 
/module V V 

Call 

1 ... n 

Collect 

Figure 3.3 Illustration of control graph nodes. 

A conditional node, like a fork node has one input arc and two or more output arcs. The 

output arcs of both general and fork nodes have conditions set to true, however, in 

conditional and higher precedence nodes the output arc conditions depend on other 

signals. The same condition may be applied to many output arcs thereby rendering the 

node a fork type under that condition. The arc conditions originate from a conditional 

Lnstruclioii ui die ruode, siuzh as II\ (ZDIJNT loop test), and ZSTVTnCEBON 

(CASE) instructions. A dot node is similar to the conditional node except that it has two 

or more input arcs and may be activated by any one of them. The dot node is equivalent 

to an or-join node in other systems and is the counterpart to the conditional node. 

A call node is different to all other nodes as it contains only a module call instruction. 

It may have any number of input and output arcs, although the output arc conditions 

will be true as the node will not contain a conditional instruction. When activated, the 

call node also activates the start node of the module to be called. When this has finished 
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execution, indicated by the activation of its terminal node, the call node activates its 

successors. 

A collect node is the same as a dot node except that it contains a collect instruction 

indicating that it cannot activate its successor nodes until a fixed number of tokens, 

given by the collect_N attribute, have been collected. The tokens are synonymous with 

active input arcs. The collect node is equivalent to an and-join node in other systems 

and is the counterpart to the fork node, however, they do not necessarily bear a one-to-

one relationship; for example, nested parallel sections may terminate on a common 

collect node. In general terms a "fork type" node is one with two or more output arcs 

and a "join type" node is one with two or more input arcs. 

The control graph for each module is a connected, cyclic, bipartite graph. The nodes are 

joined by arcs indicating control flow. Control loops are represented by feedback arcs 

indicated by the FBA arc attribute. The removal of all feedback arcs renders the graph 

acyclic. A control graph has only one start node, from which any other node in the same 

module is reachable via the feedforward arcs. If a node has no input or output arcs, 

excluding feedback arcs, then it must be a module start or end node respectively. A 

module may have more than one end node but only one start node. The graph can be 

partitioned into sequential and parallel sections. A sequential section is a part of the 

control graph where nodes are unconditionally activated, one at a time, in a sequential 

manner. Each node in a sequential section has only one input arc and one output arc 

except for the first and last nodes which may have any number of input and output arcs 

respectively. A parallel section is a part of the graph starting with a fork type node and 

ending with a dot type node. A parallel section encloses two or more sequential sections 

which may be executed concurrently. 

Each control node contains the set of instructions to be executed in its control state. The 

instructions may be dependent on each other, that is, the output of one is the input to 

another. The dependencies between instructions are represented by acyclic instruction 

graphs within the control node and are used to determine the path and thus the time 

required for a correct result to propagate through the data path. The instruction graphs 

must be acyclic as cycles represent feedback which may cause instabilities. Each 

instruction graph is given a unique group number indicating that instructions with the 

same group number are in the same control state and dependent on one another. 
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possibly indirectly via other instructions or control signals. Within each control state the 

groups are executed concurrently, at the end of which the results of the instructions 

executed are loaded into registers. Intermediate results are not stored unless they are 

required by instructions in subsequent control states. 

An instruction i e H contains, as well as the data specific to each ICODE instruction, a 

number of attributes consisting of: 

impLlink 

Group No. 

Delay 

End time 

Condition for firing, if Cf evaluates to true then instruction i is 

executed. 

Implementation link indicating which data path unit is 

implementing the instruction. 

Mutually exclusive instructions - the set of instructions which are 

never executed concurrently with instruction i. 

The instruction graph to which i belongs. 

The time for i to execute. 

The time from the start of the control state for i to end execution. 

Predecessor instructions - the set of instructions within the control 

state that i directly depends on. 

Successor instructions - the set of instructions that depend directiy 

on i within the control state. 

group 1 group 2 

Control Node 

clock-

group 1 

group 2 

clock period 

i1 12 

4 
start 

13 

end 

register 
access time t_max • register 

set-up time 

Instruction Timing 

Figure 3.4 Example of instruction group timing within a control node. 
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The instruction graphs within control states are described using the predecessor and 

successor instruction sets. Figure 3.4 shows the timing information for three instructions 

in a control state; i, and i; are dependent and form the instruction graph, group 1, while 

ig forms instruction graph, group 2. The groups within a control node execute 

concurrently and for the purpose of timing calculations, instructions within a group 

execute according to the instruction graph. For example, i, and i; are considered to 

execute sequentially owing to their dependency. Register accesses occur at the control 

state boundary as shown in Figure 3.4. If a clock period has been defined then 

instructions with an execution time greater than the clock period will be multi-cycled in 

the initial and subsequent control graphs. A special instruction is used to indicate the 

continuation of an instruction in the successor nodes. 

The initial control graph is constructed from the ICODE description by placing each 

instruction in a separate control state with its condition for firing set to true. The nodes 

are then linked with arcs according to the activation lists, with all arc conditions being 

set to true except those with a conditional instruction in the preceding node. Dot nodes 

are added where instructions have 

identical activation lists containing more 

than one process. An example control 

graph constructed from the ICODE 

example of Figure 3.1, is shown in 

Figure 3.5. Note the addition of a dot 

node caused by instructions i3 and i9 

having equal activation lists containing 

more than one process. Beside each node 

is a list of the instructions (i„(Cf)) within 

the node, where the condition for firing is 

omitted for cptrue. For arc conditions 

other than true the signal (s„) is placed 

beside the appropriate arc. The node 

enable signal generated by a control node 

is indicated inside the node. 

To complete the initial control graph a test 

is made to ensure that instructions 

Italicized signals 
within nodes are 
node enables. 

c s16 
collect 2 

Figure 3.5 Example of an initial 

control graph. 
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executed in concurrent sections of the graph are not contentious. Additional information 

is extracted from the control graph after its creation and before performing any 

optimisations. This information does not change during the application of 

transformations and therefore a significant reduction in computational effort can be 

made by generating and retaining the information instead of generating it each time it is 

required. There are two sets of information that can be extracted, firstly, the minimum 

feedback arc set (MFBAS) which when removed from the control graph renders it 

acyclic and secondly, mutual exclusion between instructions. 

The MFBAS is generated in two stages, firstly, taking the permanent of the adjacency 

matrix by recursive expansion and secondly, the construction of a boolean function 

which when manipulated yields the required arc set [74,75,76,77]. For large general 

graphs the computation is "hard". However, in a control graph there are few feedback 

arcs, which in addition to matrix reduction methods result in a matrix where in many 

cases the MFBAS can be directly obtained without any further algebraic manipulation. 

The reduction methods involve removing and noting self arcs which by their definition 

are feedback arcs and removing single input control nodes, where the input arc can 

never be a feedback arc as the node would be inaccessible in the acyclic graph. 

Mutual exclusion occurs between a pair of instructions that can never be executed 

concurrently, therefore the instructions may share hardware even when executed in the 

same control state as they are not executed together. For example, in Figure 3.5 

instructions i7 and i8 are mutually exclusive owing to the preceding conditional node. 

Mutual exclusion is determined for all instractions in conditional branches of the control 

graph by recursively analyzing conditional nodes. For a given node, each instruction in 

one branch with branch condition Sy is mutually exclusive to all instructions in all other 

branches with branch condition 

After optimisation the control graph is likely to take on a different appearance. Many 

instructions may occur in a control state and arc conditions and conditions for firing will 

have changed. 
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3 J . 2 THE DATA PATH GRAPH 

The data path graph is constructed from the variable and module lists and the ICODE 

instructions in the control graph. It describes the data dependencies and paths between 

the functional units which implement the instructions. Each instruction and variable is 

initially assigned its own data path unit, however as the structure is optimised this may 

no longer be true as unit sharing may occur. 

The implementation of a design is divided into two parts, the control part, implementing 

the controller and the data part, implementing functional units and storage. The control 

part is implicit in the control graph described in the previous section and does not, 

therefore, require representing in the data path graph. It is assumed to exist as an 

implicit unit with clock and data path control signals as inputs and control signals, such 

as state enable, register load and register clear, as outputs. 

The nodes of the data path graph represent functional, storage, boolean and interconnect 

units and the arcs represent constants and input, output and control connections. Each 

graph node is parameterized according to the bit width and contains a pointer to the 

library cell which implements the unit. Functional t>'pe nodes represent data path units 

that implement arithmetic or logical functions. Storage type units implement registers, 

ROM, RAM, or I/O ports, as well as some ICODE instructions specific to the control 

inputs of storage units; these are the MOVE, TRUE, HIGHZ and COUNT instructions. 

The recognition of storage functions is important for cost effective designs [44]. 

Boolean type units are used as an alternative representation to a network of simple logic 

gates. The network is converted from the data path representation to a condition signal 

representation which can be implemented with the controller condition signals. The 

interconnect units depict multiplexers (MUX) as defined by the architectural model; 

however they could depict buses in a bus based architectural model. Initially 

multiplexers are only required on register inputs, where variables are assigned more than 

one value. No other multiplexers are required as no unit sharing occurs in the initial 

data path graph. The need for an interconnect unit is apparent by the connection of more 

than one signal to an input of a unit. It is therefore implicit in the graph structure and 

can be added after optimisation to avoid excessive graph manipulations during 

optimisation. 
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The data path graph is defined as: 

Data Path Graph = (HJ, N) 

where HJ = (u,,U2,...,Un) is the set of data path units and N = (n„n2,...,nn) is the set of 

nets. 

A unit u = (node_type, celLtype, Ni„, Qonw,!. impljinks, n_bits, lo_bit, area, 

power) consists of: 

node_type An attribute indicating the node type, which can be: functional, 

storage, boolean or interconnect. 

celLtype A pointer to the cell database indicating the parameterized cell 

used to implement unit u. 

Nin A set of input nets, c N 

Nout A set of output nets, c N 

Qoniroi A set of control signal inputs as described below. 

impl_links A set of links indicating which instructions are implemented by 

the data path unit. 

n_bits A parameter indicating the number of bits. 

lo_bit A parameter indicating the index of the lower bit, the index of the 

upper bit is given by: lo_bit + n_bits - 1. 

area An attribute indicating the estimated area occupied by the unit 

when implemented using the cell given by celLtype. 

power An attribute indicating the estimated power consumed by the unit 

when implemented using the cell given by celLtype. 

iiet n = (tyi)eb^ \ralu(%o, ningrek, tyixSow, vTiluCou., pirk**, Lc* i*.*, iMir) 

consists of the following attributes: 

value-

The type of input that is connected to the net, it can be: a unit, a 

control signal or a constant. 

The input value; its interpretation depends on the type attribute. 

For a unit it is a pointer to a unit, for a control signal it is a signal 

number and for a constant it is a value. 
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rangCin The output bit range for a unit input. 

pittjn The output pin type for a unit input. 

tyP^out The type of input that the net connects to, it can be: a unit or 

control signal. 

valuCout The item that the net drives, it is dependent on the type attribute. 

For a unit it is a pointer and for a control signal it is a signal 

number. 

range^ut The input bit range of the connecting unit. 

pin^ut The input pin type of the connecting unit. 

The instruction number that has caused the net to be created. This 

may be used later for the generation of MUX control inputs, 

i^^t The instruction number that reads from the net. For nets to 

registers this will equal i^ . This is used to keep track of ALU 

inputs and may be used later for the generation of interconnection 

control signals. 

var The variable number and relevant active period (see Section 4.1.9) 

transmitted over the net. 

A control signal c e Qowroi is used to direct a condition signal to a control input of a 

data path unit. The control signal c = (c„ pin, range, consists of the following 

attributes: 

c. Condition signal which when true activates the relevant control 

input on the unit. 

pin The input pin type that the control signal activates. 

range The bit range to be activated on the input pin. 

igct The instruction number causing the control input. 

An example data path is shown in Figure 3.6 and represents the initial data path for the 

example ICODE given in Figure 3.1. The control of data flow through the graph can be 

determined by identifying node enable and control signals in the control graph of 

Figure 3.5 with those used and generated in the data path. 

The initial mapping of ICODE to data path elements is similar to that used in 

Scholyzer [20], except that all signals are stored. Input variables to all modules and 
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Figure 3.6 Example of an initial data path graph. 

output variables from internal modules are mapped to ports, where, ports connecting to 

internal modules are later mapped to nets. Output variables from the main program are 

mapped to registers. Storage nodes such as registers and counters are tailored according 

to the instructions which write to them. A common destination (CD) list is created for 

each variable and consists of the set of instructions that write to the variable. The CD 

list is analyzed to determine the type of storage unit required and any control attributes. 

Instructions which represent reset or set operations (for example a:=0 or a:=2°-l, where 

n is the bit width of the variable a) are mapped to the appropriate set and reset control 

pins. A variable whose CD list contains only set, reset and increment (a:=a+l) or 

decrement (a:=a-l) operations is mapped to a counter and the count control pin set 

accordingly. 

ICODE operations are mapped to units which are implemented by a set of basic library 

cells that are assumed to exist in the cell library. As the implementation is optimised the 

units may be implemented by non-basic cells which the user may enter into the cell 

library. 

Between instructions in the control graph and nodes in the data path graph are 

implementation links, these indicate which data path units are implementing which 
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Figure 3.7 Design data structure showing links between control and 

data path graphs and variable list. 

instruction(s). They provide a fast method of determining whether units are shared 

between instructions, which would otherwise require computationally expensive 

searches. Figure 3.7 gives an example of the implementation link and other data 

structure links between the data structures associated with a control node containing a 

single instruction. The single instruction forms its own instruction graph and therefore 

has no dependencies in the control node, shown by the null ( 0 ) pointer. 

3.4 MOODS OPTIMISATION STRATEGY 

When selecting the optimisation strategy a number of requirements have to be taken into 

consideration. The first and most important is the ability to perform the synthesis tasks 

simultaneously, thereby facilitating trade-offs between tasks. The trade-offs are essential 

for producing optimal designs when optimising with respect to more than one aspect of 



K R Baker: 1992 3. Development of the MOODS Silicon Compiler 6 2 

the design. The second consideration is the ability to explore the design space quickly. 

This can be done by re-synthesizing the design. The re-synthesis computation time can 

be reduced by synthesizing from the current control and data path graphs rather than the 

initial control and data path graphs. This is based on the assumption that most practical 

optimal solutions in the design space will be closer to the current design space position 

than the initial position, therefore requiring less computation to reach them from the 

current position. A third consideration is to allow the designer to manually adjust the 

implementation to include his quirks or refine the implementation. 

Algorithmic approaches using linear programming have been reported as having a 

computational explosion for even the smallest of practical designs. For multiple 

objectives integer goal programming [78] must be used. Linear programming is a special 

case of goal programming, therefore the use of goal programming would be impractical 

from the computational point of view. Other algorithmic approaches, such as clique 

partitioning, were considered and although they are applied to individual synthesis tasks, 

they can take constraints into account which allow for better results from subsequent 

synthesis tasks. However, the problem arises whereby the constraints may not be the 

best ones to achieve a particular goal in subsequent processes or there may be too many 

or too few of them. This is due to the lack of feedback from later synthesis processes to 

earlier ones and because of this a global optimum cannot be achieved. In addition, the 

constraints are not in terms of real circuit parameters such as area and delay and would 

therefore be meaningless to the user. 

Design space exploration in the algorithmic methods must be achieved by 

re-synthesizing the design from the initial point in the design space. Re-synthesizing is 

normally done from the initial design point, however, in very few circumstances a 

partially synthesized design between synthesis tasks can be used which avoids 

performing preceding tasks. 

An iterative optimisation strategy is used in MOODS as it overcomes the problems 

described above. Iterative optimisation is achieved by breaking the synthesis tasks into a 

number of local transformations, some associated with allocation and others with 

scheduling and translation. This allows the simultaneous consideration of the synthesis 

tasks which is recognised as being extremely difficult [79] and can result in complex 

algorithms or simplified design models. However any implementation can be obtained 
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by manipulating a directly compiled design [9] and the opportunistic design 

modifications in the iterative method show the greatest power [69]. 

The transformations are considered as non-binding, allowing previous design decisions 

to be overruled, therefore providing the opportunity for design degradation and so the 

basis for global optimisation. Transforms may be applied at either the behavioural or 

structural level as the use of a multi-level representation reflects changes to the design 

at both levels. The transforms are complete, that is, a transform applied to a correct 

design will always result in a correct design; this eliminates interaction between 

transformations and allows them to be applied to the design in any sequence. To achieve 

global optimisation a global cost function is required to steer an optimisation algorithm 

in applying the transformations. The separation of the transforms, cost function and 

optimisation algorithm means that different optimisation techniques and strategies can be 

developed and incorporated in the MOODS system. The transformations, cost function 

and optimisation algorithms are the subject of subsequent chapters. 

As the strategy is iterative design space exploration can be efficientiy achieved by 

stopping the optimisation algorithm, changing the objectives and continuing from the 

current design point. This constitutes dynamic design space exploration. The use of non-

binding transformations ensures that design degradation can be done, which may be 

necessary in reaching the new objectives. The transformations can also be applied 

manually to the design. This gives the designer the ability to make accurate local 

modifications without the need for blindly adjusting objectives or applying inaccurate 

constraints and re-synthesizing from the initial design. 

Binding is assumed to take place after the design has been optimised and the final 

implementation proved to be to the designer's requirements and can be considered as 

delayed binding [66]. The design is then written to the design files and hardware 

synthesis and layout performed. 



TRANSFORMATIONS 
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This chapter describes the transformations used in the MOODS synthesis system. All 

references to program code are shown in the Cour i e r typeface, where the data 

structures are listed in Appendix C and program examples are written in pseudo-C. 

For multiple objective optimisation and fast design space exploration, trade-offs between 

synthesis tasks are essential. To facilitate trade-offs and avoid local minimum traps 

caused by their sequential execution, the synthesis tasks, scheduling, allocation and 

translation, must be performed simultaneously. This is achieved by dividing the 

synthesis tasks into a number of transformations which may be iteratively applied to the 

design in any sequence. The transforms may occur at either the behavioural or structural 

level as changes at one level are reflected in the other by the use of a multi-level 

representation. 

To allow the application of transformations in any order each must be complete, that is, 

it transforms the graph structures from one valid implementable design to another 

without the need to apply additional transformations to tidy the effects of the previous 

ones. Therefore a transformation to remove parallel control path arcs does not exist as a 

separate transformation but as a sub-transform used in transformations that generate 

parallel arcs as a consequence of removing control nodes. 

The correctness of the transformations is essential to ensure the design remains 

functionally equivalent to the original specification throughout the synthesis process. 

The semantic preserving properties of transformations should be easy to prove if they 

are simple [22]. Mathematical models of behaviour have been devised elsewhere [18,80] 

which can be used to prove the correctness and functional equivalence of a design after 

the application of transformations. 

The transformations are considered non-binding, allowing the effects of previous 

transformations to be overridden, therefore delaying the binding of design 

decisions [66]. Each transformation will affect many aspects of the design and are 

general in that they are not directed towards improving a particular aspect of the design. 

They may improve one aspect of the design while degrading other aspects. However, 

they can be associated with a particular synthesis task. 
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The amount of improvement, if any, is dependent on the section of the design to which 

the transform is appUed, as well as the user's objectives represented by the cost function 

and technology dependent data. It is the purpose of the optimisation algorithm to apply 

the transformations in such a way that the user's criteria are met. To give the 

optimisation algorithm many stratagems, the generality of the set of transformations is 

important. For this reason some transformations produce a design degradation by 

undoing the effects of previous transformations. This provides the basis for global 

optimisation in the same way as simulated annealing does through degradations by "hill 

climbing" moves [81]. None of the transformations make assumptions concerning 

possible trade-offs. For example, the statements "trade-offs on storage are not 

s ign i f i can t "and "short bit width operations are ignored because it is not profitable to 

share hardware among them"^^^ are only half truths as the costs and therefore the trade-

offs depend on technology dependent information. Assumptions such as these cause 

premature bindings and unnecessarily restrict the design space. 

Most of the transformations are local, that is, they are applied to a small part of the 

design. Each transformation consists of four distinct steps: 

1. Data selection. Data selection involves selecting a transformation and the design 

data on which to apply it. The transformation type and associated data are 

entered into the appropriate fields of a transformation data structure which is 

used as a vehicle to pass information between the program procedures. In the 

parameter list of procedures given here the transformation data structure is called 

td. In the manual optimisation mode the user sets the fields by interacting with 

the program in the s e l e c t _ t r a n s ( td) procedure, whereas in the automatic 

optimisation mode the information is created by the a u t o _ s e l e c t _ t r a n s ( td ) 

procedure according to the requirements of the optimisation algorithm. 

2. Testing. The information entered in the data selection step is minimal, with 

additional data required to perform the allotted transformation being generated 

during the testing stage. All of the information is tested by the procedure 

t e s t _ t r a n s ( td) and appropriate error codes given when the transformation 

cannot be performed. 

3. Estimation. The estimation step, performed by the procedure 

e s t i m a t e _ t r a n s ( t d ) , takes the transform data and estimates the effect the 

selected transform will have on the cost function. This estimation is used by the 
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optimisation algorithm to determine whether the transform would be instrumental 

in reaching the user's objectives. 

4. Execution. The selected transformation is performed by procedure 

p e r f o r m _ t r a n s ( td) only if the optimisation procedures, after evaluating the 

estimation, consider it appropriate. 

Each of the five procedures associated with the above steps consist of a case statement 

which selects the appropriate data selection, testing, estimation or execution procedures 

according to the transformation type initially chosen in the data selection step. For 

example, if the sequential merge transform is selected then t e s t _ t r a n s ( td) will call 

the t e s t _ s e q _ m e r g e ( td) procedure. If any error occurs due either to incorrect data 

selection or the selected data failing the testing step then a suitable error code is 

returned. The error code is used to issue an error message to the user in the manual 

mode or to direct the automated optimisation algorithm. The first three steps, data 

selection, testing and estimation, provide more information to the user and/or 

optimisation algorithm and do not make any permanent changes to the design. If an 

error code is generated during these steps then the transformation is prevented from 

being performed by the final execution stage. 

The remainder of this chapter describes the tests performed on the design data structures 

and each of the transformations. Section 4.1 describes a collection of the important tests 

which are used during the testing stage of the transformations. The scheduling and 

allocation transformations are described in Sections 4.2 and 4.3 respectively, with the 

translation transformations being in the appropriate sections. Some of the 

transformations are similar to those used in other systems [20,23]. 

4.1 TRANSFORMATION TESTS 

To determine the pending success of a transformation the selected data is checked using 

an appropriate collection of tests. Many of the tests and calculations performed during 

the synthesis process involve traversing graph structures in order to determine various 

characteristics of the design and validate transformation data; for example, critical path 

analysis in the control path, delay calculations in the instruction graphs or reachability 

and variable lifetime tests. The general recursive graph traversal algorithm used to 
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perform these tasks is shown in Figure 4.1. The algorithm shown traverses a graph 

forwards from a given start node in a depth first fashion. An equivalent algorithm that 

traverses a graph backwards from a given end node is obtained using predecessor 

instead of successor nodes. This procedure is similar to those used in other graph theory 

applications [82]. 

traverse^^gEaph (node) 

i f {Inode j j node has been evaluated) r e t u r n ; 
i f {insufficient data to evaluate node) r e t u r n ; 
evaluate node; 

f o r (each valid successor node} 

t r a v e r s e _ g r a p h { s u c c e s s o r ) ; 

Figure 4.1 The general graph traversal algorithm. 

The tests and analysis described here represent the most significant analysis topics 

employed in all high-level synthesis systems. Some of the tests described are utilised in 

more general cases. In addition to these, numerous simple tests are also used during 

synthesis, however these are mentioned where necessary and require no explanation as 

they only involve testing single fields in the data structures. For example, to determine 

whether a control path arc is a feedback arc only requires its FBA field to be checked. 

4.1.1 REACHABILITY TEST 

A control node nj is reachable from node n̂  if there exists a path from n̂  to in the 

acyclic control graph, that is, the path does not include any feedback arcs. The 

reachability test is performed by the i s _ r e a c h a b l e (n^, n^) procedure which marks all 

nodes after n̂  in the acyclic graph. If has been marked then it is reachable from nj and 

true is returned. If nj has not been marked then it is not reachable and false is returned 

indicating nj precedes n̂  or both nodes are in parallel branches of the graph. The 

marking is done by the recursive procedure t r a c e _ t e m p _ f o r w a r d ( s t a r t ) shown in 

Figure 4.2 which is derived from the general graph traversal procedure, where s t a r t is 

the control node to mark forward from. The field temp is used as a "visited" flag which 
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is initially set to false; the evaluation of each node consists of setting temp to true. A 

valid successor node is one that is not reached via a feedback arc. 

trac®__t®n?>_foxwaxd ( s t a r t > 
s t r u c t c o n t r o l _ n o d e *node; 

I f ( ! n o d e ) r e t t i r n ; 

i f { s t a r t - > t e m p > r e t u r n ; / * a l r e a d y v i s i t e d * / 

3 t a r t - > t e m p " t r n e ; 

f o r { e a c h o u t p u t a r c i n t h e l i s t s t a r t - > o u t _ a r c _ i i s t ) 

i f ( ! o u t _ a r c - > i s _ F B A ) 

t r ace_ t emp_fo rward{ou t_a rc ->succ_node} ; 

Figure 4.2 Recursive node marking procedure. 

4.1.2 MUTUAL EXCLUSION TEST 

Mutual exclusion occurs between a pair of instructions which can never be executed 

concurrently owing to their occurrence in different branches of a conditional construct. 

Mutual exclusion is determined as described in Section 3.3.1; where for each instruction 

a set of mutually exclusive instructions is obtained. The set of mutually exclusive 

instructions is stored in a linked list of pointers in the instruction data structure. 

The mutual exclusion test is performed by the t e s t _ m u t u a l _ e x c l u s i o n (i^, i„) 

procedure which tests the mutual exclusion list associated with instruction ij for a 

pointer to the instruction ij,, that is î  e Mj, where Mj is the set of instructions mutually 

exclusive to instruction ij. The order of the instructions given in the procedure 

parameters is not important as if î  e Mj then the converse ij e is also true. 

A pair of data path units may also be mutually exclusive if every instruction using one 

unit is mutually exclusive to every instruction using the other unit, that is, the units are 

never active at the same time. Procedure t e s t _ r e g _ m u t u a l _ e x c l (r^, r^) tests two 

registers, r, and Zg, for being mutually exclusive. 
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4 . U HARDWARE SHARCVG TEST 

To permit the concurrent execution of a pair of instructions they must not share a data 

padi unit in their implementation, unless they are mutually exclusive. The hardware 

sharing test is performed by the procedure t e s t _ s h a r i n g ( l i s t l , l i s t 2 ) , where listl 

and listl are two sets of instructions that are to be executed in the same control node. 

The procedure tests each instruction in listl against each instruction in listl. If the 

instruction pair is not mutually exclusive and a data path unit is shared between them, 

indicated by the implementation list, then a true is returned. Otherwise the next pair are 

tested until the end of the lists whereupon a false is returned. 

4.1 .4 DEPENDENCY TEST 

The dependency test determines whether there is a dependency arc between a pair of 

instructions, ij and i„. A dependency arc is created between two instructions that are in 

the same control state, where the result of one affects the operation of the other, that is, 

it may be an input or a term in the firing condition. The dependency list is similar to the 

mutual exclusion list in that each instruction has a linked list of pointers to dependent 

instructions. However as the dependency arcs describe the instruction graph, which 

changes during synthesis, so the arcs themselves must also change. 

The dependency test is performed by the i s _ d e p e n d e n t ( i j , i ^ ) procedure which tests 

the dependency list of ij for the successor dependent instruction î , that is î  e where 

HDSj is the set of successor dependents of ij. The order of the instructions given in the 

procedure parameters is important as if î  e ©Sj then the converse ij € is not tme 

and may never be true due to the restriction that the instruction graph is acyclic. 

However using the predecessor dependent list Dp, \ e is the same as ij e Bgn,. 

4.1 .5 CONTENTION TESTS 

Two instructions ij and î , ij precedes î , may be executed concurrently if their 

concurrent result is equal to the original result. For example, given the following pair of 

sequential instructions: 
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i,; a=b+c; 

i;] d=a+l; 

and that a=0, b=2 and c=3 the values of a and d for their sequential execution will be 5 

and 6 respectively. However, for the concurrent execution of the instructions the values 

of a and d will be 5 and 1 respectively. The variation in the value of d indicates that 

instruction ij is dependent on the output of instruction ij and that contention exists when 

they are executed concurrently. Contention occurs when there is a dependency or a 

variable access violation between the instructions. An access violation occurs when the 

instructions write to the same variable, which for concurrent execution will give 

conflicting results. Note that if the instructions are mutually exclusive then contention 

between them cannot exist as they are never executed concurrently. 

Contention is determined by testing the instruction's variables in the following way [52]: 

Let SV(ip) = {v I v e set of source variables of ip, ip e II} and 

DV(ip) = {v I v g set of destination variables of ip, ip € H} 

be the set of inputs and outputs, respectively, for an ICODE instruction. The source 

variables include the input variables for the firing condition of instruction ip as well as 

its input variables. 

c o n t e n t i o n _ i j _ i k ( i j , 1%) 

s t r u c t i n s t r u c t i o n * i j , 

i f ( t e s t _ m u t t i a l _ _ e x c l i i s i Q n ( i j , i ^ ) ) r e t u r n 0 ; 

i f ( D V ( i j ) n D V ( i ; , ) 0 ) r e t u r n 2 ; / * a c c e s s v i o l a t i o n * / 

i f ( D V ( i j ) n S V { i n } 0 ) r e t u r n 1 ; / * d e p e n d e n c y * / 

r e t u r n 0 ; / * n o c o n t e n t i o n * / 

Figure 4.3 Contention test procedure. 

The procedure c o n t e n t i o n _ i j _ i k ( i ^ , i ^ ) returns a 0, 1, or 2 for no contention, 

dependency or access violation respectively, thus giving an indication of the type of 

contention between the instructions tested. A further test is necessary if the inputs to 

both instructions are from single port memory variables. The test, SV(ij) n SV(iJ = 0 

ensures that both instructions do not read from the same memory. 
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The procedure shown in Figure 4.3 is used in further contention test procedures which 

test an instruction against a node and a node against a node. The test performed is 

indicated by the latter part of the procedure name. For example, the procedure 

c o n t e n t i o n _ n j _ n k ( n ^ , n,;) tests the contention of all instructions in node n, against 

all instructions in node % and returns the highest contention test result. 

The contention test is used to determine the insertion of dependency arcs in the 

instruction graphs and thus indicate the implied ordering of concurrent instructions. The 

dependency arcs are important to maintain the correct instruction ordering when 

serialising concurrent instructions; for example if instruction î  depends on i, then ij must 

precede i,,̂  when serialised. However, the lack of a dependency arc between concurrent 

instructions does not imply the instructions can be serialised in any order. Consider the 

concurrent instructions: 

i j : a = b + c ; igi d = a + l ; 

and that in the previous control state a=0, b=2 and c=3, thus after execution a=5 and 

d=l. The two possible serialisations, precedes ij and ig precedes i, would produce the 

results a=5, d=6 and a=5, d=l respectively; the latter being the correct result as it is the 

same as that produced by the concurrent instructions. The correct result is obtained if 

and only if the serialisation does not result in any dependency between the instructions. 

t e s t _ c o n t a n t i o n ( l i s t ) , l i s t * ) 
s t r u c t i n s t r u c t i o n * l i s t ) f ^ X i s t i ^ ; 

f o r {each instruction 1^ in list^) 
f o r (each instruction ij( in list,^) 

i f { l i s _ d e p e n d e n t ( i j , i j ) && c o n t e n t i o n _ i j _ i k ( i j , ij^) } 

r - e t u r n t r u e ; 

r e t u r n f a l s e ; 

Figure 4.4 Procedure to test for the creation of additional contention 

on instruction serialisation. 

The procedure t e s t _ c o n t e n t i o n ( l i s t j , l i s t „ ) shown in Figure 4.4, takes two 

concurrent sets of instructions with any dependency arcs between them intact and 

determines whether the correct behaviour is maintained by the serialisation listj precedes 

listu. Each instruction in list, is tested for contention with each instruction in list^. If the 
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instructions are contentious and a dependency arc does not exist between them then the 

serialisation will result in additional dependencies and thus a change in behaviour. Each 

instruction pair is tested until either extra contention is found, whereupon true is 

returned or all instructions have been tested whereupon false is returned. Note that the 

dependency test is performed first as it is less computationally intensive. 

4.1.6 JUMP TEST 

The jump test is used to determine whether a pair of consecutive instructions (ij, î ) can 

be executed in reverse order without affecting the results. This is only possible if the 

instructions are independent of each other or they are mutually exclusive, in which case 

they are independent in time rather than in terms of variable accesses. An independence 

in time has a higher priority than a variable independence, as a time independence 

implies no conflicting variable access occurs. A warning is issued if the instructions are 

found to write to the same variable. This indicates that no instruction previously tested, 

when jumping many instructions, was found to access the variable, therefore the first 

instruction may be superfluous. 

jTa«£p_i_i ( i j , ik ) 

s t r u c t i n s t r u c t i o n * i j f * i k ; 

i f ( t e s t _ m u t u a l _ e x c l u s i o n ( i j / i k ) ) r e t u r n t r u e ; 

i f ( D V ( i j ) n S V { i k ) 0 ) r e t u r n f a l s e ; 

i f ( S V ( i j ) n D V ( i | ( ) 94 0 ) r e t u r n f a l s e ; 

i f ( D V { i . ) n D V ( i J # 0 ) { 

p r i n t f ( " s u p e r f l u o u s i n s t r u c t i o n i j " ) ; 

r e t u r n f a l s e ; 

r e t u r n t r u e ; 

Figure 4.5 Instruction jump test procedure. 

Let SV and DV be as defined on page 71. The j u m p _ i _ i ( i j , i ^ ) test shown in 

Figure 4.5 returns true if the order in which the instructions are executed can be 

swapped. This procedure is used in further jump tests to determine whether an 

instruction may jump a node or a node jump a node. For example, the procedure 
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j u m p _ n _ n (n^ , n j determines whether all instructions in node nj can jump all 

instructions in node n ;̂ if so, the control nodes may be swapped. 

4 .1 .7 MOVE TESTS 

The move test determines whether an instruction i can be moved from node nj to node 

where nj precedes n .̂ The test is performed by the procedure 

t e s t _ m o v e _ o n e _ i n s t ( i , n ^ , n , , ) . For the test to succeed three conditions must be 

met: 

1. There must be a non-divergent path between the pair of nodes. This is 

determined by traversing the graph from n, to each node visited (excluding nJ 

must have a single feed-forward output arc. 

2. Instruction i must be able to jump each node visited in condition 1 (excluding nj 

and nJ. This is determined using the j u m p _ i _ n ( i , n ) procedure. 

3. There must be no access violation between instruction i and the final node n .̂ 

This is tested for using the c o n t e n t i o n _ i j _ n k ( i j , %) procedure. A 

dependency may exist between them in which case the instruction is placed at 

the start of the dependent instruction graph. 

The instruction is not tested with nj and therefore it is assumed that all instructions 

dependent on i in the same node will also be moved. The procedure 

t e s t _ m o v e _ i n s t s ( i , n^) tests each instruction in the list given by i for moving 

from node nj to node %. 

4 .1 .8 DELAY TESTS 

Delay tests are required to ensure that an instruction or set of instructions when inserted 

in a control node will not make the control node exceed the clock period. There are two 

procedures for delay testing a single instruction and an instruction graph, 

c o m b i n e _ i _ n _ d e l a y _ t e s t ( i , n , t i m e ) a n d i n s t s _ d e l a y _ t e s t ( i , n , t i m e ) 

respectively. The instmction(s) are added to the given node using the 

a d d _ i n s t _ g r o u p ( i , n ) procedure which inserts the dependency arcs that make up the 

instruction graphs. 
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The a d d _ i n s t _ g r o u p ( i , n ) procedure operates as follows: when inserting the 

instructions the contention test is made between each instruction to be added to the node 

and all instructions in the node. The result of the test determines how the instruction is 

to be inserted. If no contention exists then the instruction is entered in the node as a 

separate instruction graph with its own group number. If a dependency exists then the 

instruction is added to the instruction graph to which it depends by inserting a 

dependency arc. The group number for the instruction will be the same as the 

instruction graph group number to which it depends. If an access violation occurs then 

the test fails as instructions cannot be inserted into the node, in this case an "instruction 

insertion" error code is returned from the procedure. 

Once all instructions have been successfully added to the node its new delay is 

determined using the c a l c _ n o d e _ d e l a y ( n ) procedure. If the new node delay exceeds 

the parameter time then a "delay test failure" error code is returned, otherwise a "delay 

test pass" code is returned. In all cases the instruction(s) are removed from the node and 

the graph structure reverts to as it was before calling the delay test procedure. 

i1: a = b + c; 20ns 
12: d = a + e; 30ns 
13: z = w; 40ns 

i1 13 

Figure 4.6 Example of delay test. 

Figure 4.6 illustrates the delay test involved in merging a pair of control nodes. The set 

of instructions in node N2 are tested for inclusion in node Nl . Instruction 12 is 

dependent on il through variable a, resulting in an instruction graph which establishes 

the new node time of 50ns. The delay test will fail for times of less than 50ns. Note that 

if the destination variable of 13 had been a instead of z then an access violation would 

occur and the test would fail regardless of time. 
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4.1.9 LIFETIME ANALYSIS 

The problem of lifetime analysis is well understood in the area of software compilation 

[83] and some similarity to lifetime analysis in silicon compilation exists. A variable is 

live when it contains data which is required by subsequent instructions and if destroyed 

would affect the behaviour of the design. A live period starts fi-om the time when the 

data is created, written to the variable, t^, to the time when it is last used, read from the 

variable, t,. The lifetime of a variable, 1^^ may consist of many such live periods (t^j-

tri, ... , t^n-U between which occur the dead periods. A register is active over 

the times that the variables stored by it are live, that is the register active time is the 

union of the lifetimes of its variables. 

Figure 4.7 shows a sequence of control nodes containing instructions that write to or 

read from variables a, b or c. The instructions themselves are not relevant in illustrating 

lifetime analysis, only the variable and read or write operation performed by the 

instruction, shown by the r or w subscript, are important. The time slot, t, to which a 

control state belongs is determined by numbering the control nodes using a variation of 

the traverse graph procedure shown in 

Section 4.1 (page 68). The start node is given 

the time slot t=\ and the evaluation 

m a x ( p r e d e c e s s o r t ) + 1 is used to 

determine the subsequent node time slots. 

Using the time slot information the variable 

lifetimes can be determined (see Figure 4.7). 

The register active times are determine using 

the f i n d _ a c t i v e _ t i m e s ( r e g ) procedure 

which returns a linked list of active periods 

for the given data path register. The input, 

output and some selected control nets are 

used to determine the register active times. 

Each net contains fields specifying the 

variable transmitted and the instructions 

writing to and reading from the net, that is, 

the source and sink instructions. The time 

II 18 

A Z . 
a Lo -i1 + 18 

y r \ 
12 14 19 

15: bw 

17: b, 

t=7 

t=8) i 9 : Br 

La = (1-5, 7-8) 
Lb = (5-6) 
Lc = (3-6) 

Figure 4.7 Example of lifetime 

analysis. 
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slot for each instruction is found by locating the control node containing it. The 

instruction and variable information are entered into the list of register access times in 

time order. Register a and the instructions accessing it are shown in the top right comer 

of Figure 4.7. 

Additional access times must be entered to accommodate control loops and register 

controls such as count or shift. Control loops must be taken into account to ensure that 

data used from one iteration to the next is preserved. If a loop starts at a time slot 

within a register active period then the first access to the register within the loop must 

be a read; therefore the variable being read must be maintained to the end of the control 

loop so that it is correct on the next iteration. This is achieved by entering an additional 

read at the end of the loop. The feedback arcs, which mark the start and end of control 

loops, are used to determine where additional read accesses are required. 

Register control inputs are associated with write operations, as in the case of set and 

clear controls. However, register controls such as count or shift represent the 

modification of data held by the register. As count and shift controls imply the use of 

existing data a read access must be entered into the access list with the write access. 

The register access list is pruned to remove unnecessary accesses; there are three cases 

where accesses can be removed: 

1. a read can be removed if another read follows it and it is not the first, 

2. a write can be removed if another precedes it and it is not the last, or 

3. both a read and write can be removed if they occur at the same time slot, 

thereby concatenating two abutting live periods. 

Case 2 implies that the earlier write is redundant, however this may not be the case as 

the second could be a conditional operation. 

The final pruned list of register access times consists of alternate write/read accesses 

where live periods occur from write to read times. The access list details the live 

periods for all variables stored by the register. Access times for specific variables could 

be obtained by filtering the variables when scanning the register nets by using their 

variable transmitted fields. 
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In register sharing it is necessary to test whether two registers have overlapping live 

periods; this is done by the procedure test_non_overlapping_times (â , aj) as 

shown in Figure 4.8. As a register write occurs at the end of a control state and reads 

within control states, the end of one live period, the read, may occur in the same time 

slot as the start of another, the write, without overlapping. This is the case with the non-

overlapping lifetimes L, and Ly of Figure 4.7, where the end of the first live period of 

L, and the start of Ly occur at t=5. The lifetime overlaps with both L, and Ly. 

t e s t_noa_ov«r l app ing_ t i a i©s (&!, m,) 
s t r u c t . a c c e s s _ l i s t 

get first write-read pair from a^ (wr^^rdi); 

get first write-read pair from (wr^, rd;) ; 

w h i l e ( w r i t e ' - r e a d p a i r s ) { 

i f { ( w r i < = w r 2 && r d . > = w r 2 ) M ( w r i > = w r 2 && r d 2 > = w r i ) ) 

r e t u r n f a l s e ; / * o v e r l a p * / 

i f { w r i < w r 2 ) get next write-read pair from ( w r ^ , r d ^ ) ; 

e l s e g e t next write-read pair from ( w r ^ , r d g ) ; 

r e t u r n t r u e ; / * n o o v e r l a p * / 

Figure 4.8 Procedure to test for non-overlapping lifetimes. 

4 2 SCHEDULING TRANSFORMATIONS 

The scheduling transformations are primarily concerned with changes in the control path 

graph. Their only effect on the data path is to add or change control signals and 

registers and to change the state machine implementing the control path. These effects 

are taken into account when calculating the cost function. 
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4.2.1 SEQUENTIAL MERGE TRANSFORMATION 

The sequential merge transformation attempts to merge two control graph nodes, nj and 

n .̂ The two nodes are tested to ensure that they are in the same sequential section of the 

control graph and that nj precedes n .̂ The instruction lists associated with each node are 

tested for hardware sharing using the t e s t _ s h a r i n g ( i j , i j procedure and the 

instructions in nj tested for moving to % using the t e s t _ m o v e _ i n s t s ( i j , n ^ , n j 

procedure. If the move is possible then the i n s t s _ d e l a y _ t e s t ( i , , n „ , c k ) procedure 

is performed to ensure the clock period is not exceeded when the nodes are merged. If 

any of the tests fail then an appropriate error code is returned. 

The transformation is performed by calling the procedure m e r g e _ s e q _ n o d e s ( t d ) 

which adds the instructions in n̂  to % using the procedure a d d _ i n s t _ g r o u p n „ ) . It 

also calculates the new node delay using c a l c _ n o d e _ d e l a y (n*) and attempts to 

remove node n̂  from the control graph using r e m o v e _ c o n t r o l _ _ n o d e ( n ^ ) . Figure 4 . 9 

shows the successful application of the sequential merge transformation on nodes N1 

and N3. Note that instruction il has jumped node N2 and formed an instruction graph 

with i3. 

| \ j "I J i1: a=b+c; 

N2 ) '2: z=w; 

N 3 ) i3:a+e; 

Control path Data path 

a. Before Merge 

N 2 i2 

Control path Data path 

No*: dm* path lof 12 nol #hown b. After Merge 

Figure 4.9 Example of the sequential merge transformation. 

In addition to the operation of the procedure a d d _ i n s t _ g r o u p ( i , n ) as described 

above, the procedure has a parameter (not shown) which indicates when the instruction 

group to be added will be a permanent change to the design, as in the execution of 

transformations, rather than a temporary change as in their testing. When the parameter 
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indicates a permanent change the register on which a dependency between two 

instructions exists will be bypassed (see Figure 4.9b). The register must be bypassed to 

ensure the correct behaviour is maintained, that is the dependency arc between i, and i, 

indicates that the new value of variable a is input to ij rather than the previous value. 

As registers are loaded at the end of each clock cycle the new value of a would not 

have replaced the previous value until the end of the control state, thus leaving 

insufficient time to complete the dependent instruction. 

To bypass a register the variable access for the reading instruction is made from the 

output of the writing instruction and not the register output. This transformation is only 

performed in some systems [20] when the variable is a temporary one generated by the 

compiler and has single read and write instructions. This is because a distinction is 

made between user defined and compiler generated variables. Therefore in these systems 

the pair of instructions would have originally been one in the form: d = b + c + e; 

whereas in MOODS the instructions may have been written as separate instructions with 

variable a being user defined. The MOODS compiler therefore performs a behavioural 

optimisation that merges equations in the original description. The register is retained in 

the data path and loaded with the value taken by a. However, if no further accesses are 

made from it, shown by a null output netlist, then it is not included in the cost 

calculations and is removed from the data path after optimisation. 

The remove_control_node (n) procedure attempts to remove an empty control node, 

that is one containing no instructions, from the control graph while maintaining the 

correct graph structure. The node must have a single input or single output arc. Once the 

node has been deleted the input and output arcs are connected. If the node had a single 

input arc then it is deleted and the output arc list connected to its start node. Similarly, 

if the node had a single output arc then this is deleted and the input arc list connected to 

its end node. The newly re-connected list of arcs is analyzed and if any arc connects a 

fork node to a collect node and has a true gate condition then it is deleted and the 

collect N tokens reduced by one. The collect function is not required when the number 

of tokens reaches one. Parallel arcs, that is arcs having the same start and end nodes, 

may have been created by the removal of the node. These are merged using the 

procedure merge_para_out_arcs (n) which combines the arc gate conditions and 

deletes all but one of the parallel arcs. If only one arc remains between the start and end 

nodes then their role as fork and join nodes is no longer necessary therefore the 
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procedure attempts to remove them by calling remove_control_node (n). The 

recursive nature of the remove_control_node (n) procedure ensures that all 

unnecessary nodes are removed. 

4 2 2 PARALLEL MERGE TRANSFORMATION 

The parallel merge transformation attempts to merge a subset of the successor nodes of 

a given fork type node that are connected through arcs having the same activation 

condition. Each successor node with the chosen input arc condition is tested for only 

having one input arc (that from the fork node) and is marked for merging. 

If the tests are successful and more than one node is marked for merging then the 

instructions in each marked node other than the first are moved into the first node, see 

Figure 4.10a and Figure 4.10b. The instruction graphs in the nodes will remain executed 

in parallel therefore no hardware sharing or contention tests require to be performed. 

The output arcs of the empty nodes are concatenated with those of the first node and the 

empty nodes removed using the remove_control_node (n) procedure as in 

Figure 4.10b. As a result of the concatenation of output arcs any parallel arcs which 

exist will be merged by the merge__para_out_arcs (n) procedure. The delay of the 

resulting node will be the maximum delay of the individual nodes. 

N5 i5 N6)I6 

N7 
collect 3 

N2) i2, i3, i4 

Parallel Kterge Transform 
on node N1 using true arc condition 

12,13, i4 
i5(s6) 

12,13.14 
[N2) ®(s6) 

16(3) 
true I 

Merge Fork Transform Merge Fork Transform 
on rKide N5 on node N6 

c. d . 

Figure 4.10 Example of the parallel and fork merge transformations. 
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2-3 MERGE FORK AND SUCCESSOR NODE TRANSFORMATION 

This transformation merges a node, n,, given as a successor to a fork type node with the 

fork node itself. The instructions, î , in node n^ are tested for contention with those in 

the preceding fork node, n̂ , using the contention_nj_nk (î , i„) procedure. If an 

access violation occurs then the transformation fails. A dependency type contention will 

cause dependency arcs to be added by the add_inst_group (!„, ) procedure when 

the transform is performed. The tests test_sharing and 

inst_delay_test n̂ , clock) are also performed to ensure that no hardware 

sharing violation occurs and that the resulting node delay is shorter than the clock 

period. 

If the tests are successful then the transformation may be performed by calling the 

add_inst_group (in, Rf), calc_node_delay (rif) and remove_control_node (n̂ ) 

procedures. For example. Figure 4.10c, shows N5 merged with N2; note that instruction 

i5 now has a condition for firing s6 and that the arc with the gating condition of s6 has 

not been deleted. However, on merging N6 with N2, as in Figure 4.10d, N6 is removed 

and the resulting parallel arcs between N2 and N7 are merged (by procedure 

merge_para_out_arcs (n)) causing the combined gate condition to be a tautology, 

indicated by the presence of a single arc from N2. In addition, the empty node N7, 

previously a join type node, is also removed. 

4 2 . 4 GROUP ON REGISTER TRANSFORMATION 

This transformation is primarily concerned with reducing the number of registers in the 

data path. As described in Section 4.2.1 (page 79), a register can be bypassed if the 

writing and reading instructions are in the same control state. If the register is only used 

by these instructions (as in register a of Figure 4.9) then it can be removed from the 

data path. This transformation takes a register with one writing instruction and one 

reading instruction and attempts to combine the instruction groups to which they belong 

into the same control node. The groups must be moved rather than the instruction as by 

moving an instruction from a group to another node requires the insertion of a register, 

therefore no overall gain would be made. The instruction group associated with the 

writing instruction is tested for (a) sharing hardware with the instructions in the node 
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containing the reading instruction, (b) moving to the reading node and (c) the combined 

instructions exceeding the clock period. 

If the tests are successful then when the transform is executed the writing instruction 

group is added to the node containing the reading instruction. If this results in the 

writing node having an empty instruction list then an attempt is made to remove it from 

the control graph. Figure 4.9 shows the result of the group on register transformation 

when applied to register a. Note that the transformation is equivalent to a behavioural 

transformation which expands instructions. For example in Figure 4.9 the separate 

instructions il and i3 have been combined into one (13) shown by the dependency arc in 

the resulting instruction graph, therefore 13 becomes d=b+c+e. 

This transformation is similar to grouping in Scholyzer [20], however in MOODS it is 

applied during optimisation and not as a separate stage before. It can be applied to any 

register having one read and one write instruction regardless of whether it is user 

defined or compiler generated. The advantage of applying this transform during 

optimisation can be seen in reference to Figure 4.9. In Scholyzer the grouping is done 

before optimisation therefore eliminating the possibility of sharing, the adders used by 

instructions il and 13, whereas MOODS may perform either grouping or sharing during 

optimisation, the final decision being dependent on the user's objectives. 

4 j . 5 UNGROUPING TRANSFORMATIONS 

The ungrouping transformations allow a degradation in the control graph by splitting 

nodes into sequential sections. This may then allow hardware sharing between the 

ungrouped instructions and so facilitate trade-offs between objectives in the cost 

function. There are two ungrouping procedures ungroup_group {n,g) and 

ungroup_time (n, t) which ungroup the instructions in a given node n either by 

extracting a given group g or dividing the node into a set of nodes each having a delay, 

for groups of more than one instruction, no longer than time t. In the latter ungroup 

transformation more than one control node may be created. 

The procedure extract_inst_group (n, g) is used to extract the instruction group g 

from the given node. Instructions extracted from the control node are tested against the 
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instructions remaining in the node using the test_contention ( i , ^ , i„) procedure to 

ensure no extra dependency is created between them when the extracted instructions are 

executed before the control node. If no dependencies are created, a new control node is 

inserted before node n and the extracted group is entered as its instruction list. 

In procedure ungroup_time (n, t) a subset of the instructions in the node are 

extracted by the procedure extract_insts_greater (n, t) such that their end times 

are less than time t or they have no predecessor dependent instructions. The subset of 

instructions are tested for creating additional dependencies. If none are created a new 

control node is inserted before node n and the subset of instructions entered into it. The 

ungrouping of node n is repeated until the set remaining after extracting the instructions 

becomes the empty set. The testing stage of the transformation extracts subsets of 

instructions and tests for the creation of extra contention; each subset is added to a 

dummy node which at the end of testing is transferred back to the original control node. 

When performing the transformation each subset is entered into its own node. The 

dependency arcs between the subset and other subsets are removed and the 

corresponding registers included in the data path. To include a register access back into 

the data path requires a further test to ensure that the register is not in use during the 

execution of the control node. The additional use of the register may occur if the 

register had been shared. 

Execution times 

i1: 5ns 
i2:10ns 
13: 30ns 

i4:15ns 
15:15ns 
16:15ns 

11 
/\ 

12 i3 
\ / 

14 

15 

I 
16 

group 1 group 2 

a. Initial Node Structure 

0 i / ) 
14 

15 

i 
16 

b. Ungroup_group(N1,g1) 

11 15 

N 3 13 16 

13 i6 

1 St node N2 extracted 2nd node N3 extracted 

c. Ungroup_time(N1,20ns) 

Figure 4.11 Example of the ungrouping transformations. 
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An example of both ungrouping procedures is shown in Figure 4.11. In the ungrouping 

a group transform, group 1 has been extracted into the preceding control node N2. In 

the ungroup on time transform, the time chosen was 20ns resulting in two extra control 

nodes being generated. Note that instruction i3, having an execution time of 30ns, was 

selected for node N3 because it was the start of the instruction graph after the first node 

was extracted and not selected on its endjime. 

4 2 . 6 MULTICYCLE TRANSFORMATION 

Multicycled instructions are continued into successor control nodes by the addition of 

dummy instructions. The dummy instructions are given instruction numbers equal to the 

negative of the original instruction and point to the data held by the original. 

The multicycle transformation, multicycle_control_node (n, ck), is not strictly a 

transformation to be used on its own. It is used to maintain the clock period given by 

the user which is considered an absolute objective that must be met whatever the cost. 

The transformation is applied to the set of instructions within a control node. Each 

instruction to be multicycled is assumed to be in a separate group which can be ensured 

by ungrouping the node into time slices using the procedure ungroup_time (n, ck). 

For each instruction whose endjime exceeds the given clock period the instruction is 

flagged and the number of additional cycles required to execute the instruction is 

calculated (given by trunc(endjime/clock)). The maximum number of cycles is noted. 

For the maximum number of cycles a new control node is created and each flagged 

instruction if analyzed. 

If the delay of i, is less than t, where t equals twice the clock period minus the register 

access time for if, then a final dummy instruction -if is created and entered into the new 

node. The instruction if is un-flagged and the delay of -if set to the delay of if minus the 

clock period ck. If the result of this is less than or equal to zero then it was the register 

access time for the instruction that caused the violation of the clock period. In this case 

the delay of -if should be set to zero. This will cause the output registers for the 

instruction to be loaded on the clock cycle following the original instruction. If, 

however, the result is positive then the original instruction delay is set to the clock 
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period minus the register access time. That is, the original instruction utilises all of the 

clock cycle and the dummy instruction completes the instruction's execution. 

If the delay of if is greater than t then the delay of -if is set to the clock period ck and 

the original delay decremented by ck. Figure 4.12 illustrates the multicycle 

transformation for two instructions whose register access times are assumed to be zero. 

= multicycle flag 
clock = 30ns 

H 12 
N 1 ) 30ns 40ns 

( N 1 ) '1 '2 
35ns 70ns 

a. Original node 

MO \ -i1 -i2 

IMZ j 5ns 30ns 

b. 1 St node a d d e d 

11 12 
30ns 30ns 

-11 -12 
5ns 30ns 

-12 
10ns 

c. 2nd node added 

Figure 4.12 Example of the multicycle transformation. 

The clock period chosen is 30ns therefore an additional two control nodes are required. 

Figure 4.12b and Figure 4.12c show the sub-graph created after the addition of each 

node. 

4 2 . 7 CLOCK PERIOD TRANSFORMATION 

The clock period transformation is used to set or change the clock period. The only test 

performed is to ensure that the period chosen is greater than the register access time 

plus its set up time. The transformation is performed by firstly un-multicycling each 

instruction using the procedure un_multicycle_inst (i), which deletes the dummy 

instructions -i and resets the delay of the original instruction i. Next, if the clock period 

is being decreased (which it is when being set as the clock period is assumed to be 

arbitrarily long when not set) then each control node must be ungrouped to the clock 

period by calling the procedure ungroup_time (n, clock). Lastly each control node 

that exceeds the clock period must be multicycled using the transformation, 

m u l t i c y c l e c o n t r o l _ n o d e {n, clock), described in Section 4.2.6. 
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ALLOCATION TRANSFORMATIONS 

The allocation transformations are primarily concerned with changes in the data path. As 

the data path is a structural representation of the design the transformations involve 

manipulating the units and cells that implement them. As mentioned in Section 3.3.2 on 

page 60 the instructions are mapped to a set of data path units which are implemented 

using a basic set of parameterized cells. The mapping is done by direct compilation 

which produces the initial data path graph. In addition to the basic cell set, the user may 

add additional cells to the cell database using the cell database editor. Using the editor 

the user enters technology dependent details such as area, power, inherent delay, input 

pin capacitances and delay factors. In addition to the technology dependent data the user 

also enters behavioural data such as the functions that the cell implements. From this the 

program can determine which cells can be used to implement a given set of functions. 

4 3 . 1 COMBINE UNITS TRANSFORMATION 

Both hardware sharing and ALU creation are performed by the combine units transform. 

The transformation takes as its input a pair of data path units and attempts to combine 

them. Its success is highly dependent on the comprehensiveness of the cell database. 

The procedure t e s t _ c o m b i n e _ u n i t s ( td) tests the data path units. The units must be 

functional types and the instructions that they implement must be non-concurrent. The 

non-concurrency of the instructions means that no two instructions can be executed 

together, which is determined by testing every pair of instructions. If they are mutually 

exclusive then they are never executed together and no further tests are made. If not 

then they are tested for occupying control nodes which are reachable but different using 

the reachability test. If this test fails for any instruction pair, the transformation fails and 

the procedure returns an appropriate error code. 

When the tests have been successful the test procedure searches the cell database for the 

subset of cells which implement the set of functions implemented by the units to be 

combined. This is defined as: 

C(u„u2) = {c I c € set of cells which satisfy (f(ui) u fCug)) C f(cj , c„ e C} 

where f(Ui 2) are the sets of functions that each unit implements, f(c„) is the set of 

functions cell c„ implements and C is the set of cells in the database. If CCu^Uj) = 0 
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then no cell exists in the cell library to implement the combination of functions 

f(ui) u fCuj) and a "units can not be combined" error code is returned from the 

procedure. 

If cells exist then the cell c e CCui.Uz) implementing the least number of functions is 

selected as the combined cell. The reason for this selection is so that when combining 

units of equivalent function, as in hardware sharing, the same or equivalent cell will be 

selected that implements the one function. For example, two adders will be combined 

into an adder and not an ALU implementing the addition function. The cell selection 

process can combine any mixture of ALUs and basic cells to form new ALUs as long as 

a suitable cell is contained in the cell database. 

To perform the transformation the procedure c o m b i n e _ u n i t s ( td) is used. This 

concatenates the lists of input nets, output nets, control signals and implementation links 

into one unit and deletes the other. The execution time of the instructions implemented 

by the new unit must also be updated and any multicycling must be performed. If an 

ALU has been created then its select inputs must be added. These are control signals 

which select the appropriate ALU function and are also used to maintain the correlation 

between the unit function and the instructions. Figure 4.13 shows the creation of an 

ALU implementing plus and minus functions. Note that the implementation links of 

instructions il and i2 now point to the same data path unit thereby preventing them 

from being merged into the same control node. 

N1) i1: a=b+c: 

N2) i2: d=e-f; 

Q LD ̂ "42 a LD«—n 

a. Initial data structure b. After combine unit transform 

Figure 4.13 Example of the combine units transformation. 
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UNCOMBINE UNIT TRANSFORMATIONS 

There are two transformations which uncombine data path units that were previously 

combined using the combine units transform described in Section 4.3.1. No tests are 

required, except for checking the entered data, as the changes made to the design deal 

with the design at only the structural level. The first transformation is performed by the 

procedure uncombine_single_unit (td), which divides the original unit into two 

separate units. A new unit is created by removing an instruction implemented by the 

original unit and implementing it using a basic cell. The inputs, outputs, control signals 

and implementation links associated with the instruction are moved to the new unit. The 

select control signal is no longer required as the new unit only implements one 

instruction and can therefore be deleted. 

The second transform is performed by the procedure uncombine_uni t (td), which for 

each instruction implemented by the original unit, indicated by the implementation links, 

creates a basic data path unit. That is n units, implemented by basic cells, are created 

where n is the number of instructions implemented by the original unit. The inputs, 

outputs and control signals associated with each instruction are moved to their 

corresponding units and all select control signals are deleted. The separation of nets and 

control signals is straightforward as each data structure has fields indicating the variable 

transmitted on it and the instruction which creates and uses it. 

For both uncombine transformations each instruction's execution time is reset and 

multicycling is performed where necessary. In the example shown in Figure 4.13 the 

uncombine transform is the opposite of the combine transform and in this case the 

transformation from Figure 4.13b to Figure 4.13a could have been performed by either 

of the uncombine transformations. 

4 J J ALTERNATIVE IMPLEMENTATION TRANSFORMATION 

An alternative cell may be found by selecting one from the set of cells that implements 

the functions performed by the unit. A different cell may be selected which better 

utilises the clock period. For example, a cell may be chosen to reduce the slack or spare 

time within a control node and so provide a further trade-off mechanism with other 
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design aspects such as area. Alternatively a cell may be chosen that reduces the delay of 

the maximum delay control node which sets the clock period thereby allowing a 

reduction in the clock period and circuit delay. Like the uncombine unit transform the 

changes to the design occur at the structural level, however a test must be made to 

ensure an alternative cell exists. 

The set of alternative cells is determined using the method described in Section 4.3.1, 

which finds the subset of cells capable of implementing a combined unit For example, 

the alternative implementation to a carry propagate adder would be a carry look-ahead 

adder as both implement the same PLUS operation. The alternative cells found will 

depend on the comprehensiveness of the cell database. If an alternative implementation 

is found then the implementation of the data path unit can be changed by altering its 

cell pointer and updating its technology dependent data. The execution time of 

instructions implemented by the unit are updated as before. 

4 J . 4 REGISTER SHARING TRANSFORMATION 

The register sharing transformation, performed by the share_registers (td) 

procedure, combines two storage units, that is registers and counters. Memory (ROM 

and RAM), module ports or I/O registers may not be shared. In order to share two 

storage units they must either be mutually exclusive or have non-overlapping lifetimes; 

the tests being performed by the procedures test_reg_mutual_excl (r^, r^) and 

test_non_overlapping_times a;) respectively. If the units can be shared then 

the implementation links and input, output and control nets for both units are 

concatenated. The nets are assigned to one of the units which becomes the shared unit 

and the other one is deleted. The bit width of the resulting unit is made wide enough to 

accommodate all variables stored in it. Ideally all variables should be normalised to a 

common low bit in order to minimise the bit width of shared storage units. 

As a result of register sharing pure data transfers may be removed from the behavioural 

specification. This is illustrated in Figure 4.14, where registers storing variables a and c 

have been combined. The resulting register has a self load caused by the pure data 

transfer, 12. Self loads are retained in the data structure during synthesis to maintain the 

correlation between nets and instructions, however they are marked for deletion after 
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i1: a=z+1; 

\2: b=a; 

self load 
LD 

a/b 

Figure 4.14 Removal of pure data transfers by register sharing. 

optimisation. It is interesting to note that the same final data path would be obtained if 

instruction i2 had been moved to node N1 causing register a to be bypassed. 

4 J . 5 REGISTER UNSHARING TRANSFORMATIONS 

As with the uncombine unit transforms there are two transformations which unshare 

storage units that were previously combined using the register sharing transformation 

described in Section 4.3.4. Again no tests are required, except for checking the entered 

data, as the changes made to the design deal with the design at only the structural level. 

The checks consist of ensuring the hardware exists and that it stores more than one 

variable. The first transformation is performed by the unshare_single_reg (td) 

procedure which separates a single variable from a storage unit. The implementation 

links and input, output and control nets relating to the given variable are extracted from 

the storage unit pointed to by the hardware field of the variable structure. A new storage 

unit is created and the extracted nets and variable hardware pointer assigned to it. Both 

the original and new units require the bit widths, cell type and area to be set. 

The second register unsharing transformation, performed by the unshare_reg (td) 

procedure, unshares all variables stored in a given storage unit The variable list is 

scanned and the unshare_single_reg (td) procedure called for each variable with a 

hardware pointer pointing to the given unit. 



OPTIMISATION ALGORITHM 
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In the context of intelligent silicon compilation the iterative optimisation of a design can 

be divided into two parts, the evaluation of the design and the optimisation algorithm. 

The algorithm applies the transformations, described in Chapter 4, to the design based 

on its evaluation. This chapter is divided into two parts corresponding to the evaluation 

of the design and the optimisation algorithms. 

5.1 DESIGN EVALUATION 

5.1.1 THE COST FUNCTION 

The design is evaluated with the aid of the cost function, which represents the state of 

the design within the design space. It is used in conjunction with the user's multiple 

objectives to guide the optimisation algorithm. As described in Section 1.5.2, the cost 

function must be accurate and in terms of absolute design aspects, rather than control 

state or device counts, although these are useful in providing a comparison between 

synthesis systems. The design aspects to be monitored by the cost function must be 

global, that is, they evaluate the design as a whole and not a sub-section of it. 

The accuracy of the cost function is ensured by feeding up technology dependent 

information from the cell database. The area and power used by each control and data 

path unit and the execution time of each instruction are calculated using this 

information, which in turn is used in the cost function. An entry exists in the cell 

database for each parameterized cell that the MOODS system may use in an 

implementation. The database information consists of the cell bit width, area, power, 

propagation delays and pin overheads including delay factors and input capacitances. 

Register set-up times and some special information particular to certain ceUs is also 

included. 

For multiple objectives the cost function must be flexible in giving the user freedom to 

specify objectives on any number of design aspects that the system monitors. It should 

also incorporate information on the optimisation priority given to the selected design 

aspects, which can be used by the optimisation algorithm to indicate the effectiveness of 

a transformation and determine how trade-offs should be performed. For these reasons a 
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cost function similar to that used in goal programming applications [78] was used. Goal 

programming attempts to satisfy objectives as closely as possible rather than absolutely 

as in traditional linear programming methods. The cost function (achievement function 

in goal programming terms) consists of a priority vector, where each priority element 

specifies design aspects on which objectives have been set In goal programming only 

objectives expressed in common units can be assigned the same priority as no 

comparison can be made between different quantities. 

Each objective function Gj is expressed as a function of the data structure describing the 

design's data and control path, dcp, which is analogous to decision variables in 

mathematical programming; thus: 

G. = f-idcp) (5.1) 

In goal programming terms an objective function is expressed as follows: 

f-(dcp) + (n. - p) = b. where n., p., 6. > 0 (5.2) 

bj is the goal or target value which fi(dcp) must either satisfy, exceed or be less than, n̂  

and Pi are the negative and positive deviations of fiidcp) from its target, bj, respectively. 

In general it is desired to select dcp such that f^dcp) is either, (a) greater or equal to b;, 

(b) less than or equal to bj or (c) equal to bj which is achieved by minimising a linear 

function of the deviation variables, g(n,p); that is, either (a) minimise nj, (b) minimise p, 

or (c) minimise n, + p,, respectively. 

To formulate the achievement function, the function g(n,p) for each objective is 

associated with a priority level, therefore: 

a = fJZKZzO*,?)], _ C5.3) 

where Gk(n,p) is the k'̂ ' linear function of deviation variables. The size of a is equal to 

the number of priorities which is less than or equal to the number of objectives. As a is 

an ordered vector the P's can be dropped, therefore: 

a = (G,(Mf), CfzCnjp), C5.4) 

which is minimised by the optimisation algorithm. Gi(n,p) is the highest priority 

function, which in goal programming represents absolute objectives, that is, ones which 
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must be achieved. An achievement function a, is considered better than 8% if the first 

non-zero component of a, - a , is negative given that all components of a, and a^ are 

non-negative. 

The MOODS cost function is a variation of the goal programming achievement function 

and allows any objective to be associated with a priority. As objectives measured in 

different units are not directly comparable the function of deviation variables, G^(n,p), is 

replaced by a vector of g(n,p) functions for the objectives associated with priority k, 

therefore, Gk(n,p) becomes: 

ar. == fjaCKz*?,), .... 

where each gw(ni,Pi) represents an objective given by equation (5.2) above. 

In synthesis not only is it required to know whether one cost function is better than 

another but also by how much. Typically the two cost functions are c f ^ and cfp^ 

representing the cost functions for the next and present designs respectively. The 

difference between the two cost functions, AE, represents the change in energy between 

the functions and thus the design. AE is determined by constructing a third vector, E, 

the energy change vector, whose elements represent the change in energy at each 

priority, thus: 

E,(g,) 05.6) 

where E^(gJ is the combined objective change for priority k. For each g^ in c(^ and 

cfpres the change between them, Ac^, is evaluated and for each priority level, k, their 

average is taken, thus: 

EAc.. h (5.7) 

m 

where m is the number of objectives at priority k. The function used to determine Ac^ 

may take into account other objective factors such as initial or target values, however 

their difference was initially taken, thus: 

du:* := - ghOZmP,)*,, OSJS) 
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The change in energy, AE, between the cost functions is given by the first non-zero 

component, E^, of the energy change vector, E. The cost function c f^ is considered 

better than cfp̂ es if AE is negative. 

In synthesis it is desired to select dcp such that fi(dcp) is less than or equal to b, which 

is achieved by minimising p,, therefore equation (5.8) becomes. 

= Pk. (5.9) 

The use of the positive deviation in equation (5.9) to determine Acy allows changes in 

objectives that have already reached their target, that is negative deviations, to be 

ignored and thus permits lower priority objectives to influence AE. The methods used to 

determine Aĉ ; and whether one cost function is better than another will greatly 

influence the choices made by the optimisation algorithm and therefore the final design. 

Experiments to find a better change in energy function are described in the results 

Section 6.1.1. 

The data structure representing the cost function contains both cfp̂ es and cf^ , as well as 

the initial and target values for each objective (see struct cost_fn in Appendix C). 

The evaluation of the next cost function with respect to the current is performed by the 

evaluate (cost_fn) procedure which returns the value AE. The evaluation is done 

whenever estimating the cost of a transformation, thereby providing information on the 

effect of the transformation on the user's objectives. A negative value of AE indicates 

that the transform improves the design. 

From the graphical method of solving linear and goal programming problems an 

objective may be termed reachable if the area bounded by it, the axis and any higher 

priority objectives intersects with the achievable region of the design space, otherwise 

the objective is termed minimising. The n-dimensional design space can be 

characterized, as described in Section 1.7. Each of the n asymptotes is found by 

optimising the design with a cost function having one of the objectives at priority one 

with a minimising target, such as zero. All other objectives are at a lower priority, again 

with minimising targets. The final characterization point lies as close to the origin as 

possible indicating a good all round implementation. It is found using a cost function 

with all objectives at the same priority with minimising targets, thus giving them an 

equal opportunity for improvement. The characterization of the design space by the 
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system indicates the range of designs achievable by the system rather than by manual 

methods or other systems. 

The aspects of the design currently monitored by the system and therefore available as 

cost function objectives are area, power and delay. In addition to these a net count 

objective can be used which counts the number of one source, one sink interconnects 

used in the implementation. Any aspect of the design could be monitored and included 

in the cost function by including the relevant cost calculation procedures. The area, 

power and delay calculations are described below. 

5 . 1 2 AREA AND POWER CALCULATIONS 

The area of the design is calculated as follows: 

area = Z a , + S a + E a . (5.10) 
dp cp I 

where a^, â p and a, are the areas for a data path unit, a control unit implementing a 

control node and an interconnection respectively. At present the interconnect costs are 

not taken into account in the cost calculations as it is difficult to obtain accurate 

estimations prior to complete layout, however it is recognised that interconnect costs 

have a significant effect on hardware costs (see Section 7.2). 

The area of a data path unit is a function of its type, bit width and the cell that 

implements it. The area of each unit is calculated as it is created, initially during the 

construction of the initial data path and subsequentiy as a result of applying 

transformations. There are two components that make up the area of a data path unit, 

the main area and the area overhead of additional connections, "pins". The main area is 

a multiple {n) of the cell area implementing the unit's combination of functions'. The 

multiple n is derived such that n times the cell bit width is equal to or greater than the 

bit width of the unit that it implements. Pin overheads may be specified in the cell 

database to indicate the area overhead incurred if the pin is used\ The unit's netlist is 

' A ceil may have different area and delays for different combinations of the functions it is capable of implemmting. tlm h to take into 

account optimisations perfonned by low-level optimisation tools which would remove unused fiuK^tioos from a parametaized cell. 

Similarly pin overheads specify the additional cost of retaining a pin which would otherwise be optimked away by low-level tools. 
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scanned for pins that incur an overhead which is calculated as a multiple n of the pin 

area. 

The power used by a design and by a data path unit is calculated in an identical way to 

the area described above except that the data structure fields relating to power are used. 

5 . 1 3 DELAY CALCULATIONS 

The delay of an instruction is a function of the inherent propagation delay of the 

operator and the propagation delay factor of the output, that is: 

^ + fW&Cp * ZiiCj (5.]L1) 

where ipd^p is the inherent propagation delay of the operator, pdf^p is the propagation 

delay factor of the output and ic^ is the input capacitance of the data path unit that the 

operator drives. These parameters are provided by the cell database. To determine the 

time required to execute an instruction graph, instruction delays are accumulated as the 

graph is traversed using a variation of the graph traversal algorithm shown in Figure 4.1 

on page 68. The evaluation of an instruction consists of determining its completion time 

which is given by; 

= m^ipredecessor + r. (5.12) 

where the predecessor instructions are given by the predecessor dependency arcs. The 

completion time for the instruction graph, Tq, is given by the maximum time within 

the graph. The maximum graph time, T ( ^ , is used to determine the time required to 

execute a control state. The register accesses, which occur at the control state boundaries 

as dictated by the architectural model, are taken into account when determining the 

delay of a control node, as follows: 

ST. = + 7'c__ + (5.1:;) 

where ipdR^^ and are the inherent propagation delay and propagation delay 

factor for the input register, R^„, to the first instruction in group G, the maximum delay 

instruction graph. iCop̂ ax is the total input capacitance driven by register and is 

the set up time for the output register written to by the last instruction in group G. 
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Figure 5.1 illustrates the control node delay calculation for a node containing two 

dependent instructions (one instruction graph). 

i1: a = b + c 
i2; d = a - e 

control state 

register 

Control Node Data Path 

Figure 5.1 Control node delay calculations. 

The execution time for a design is defined as the product of the clock period and the 

number of cycles required to traverse the critical path, as described below. The clock 

period is taken to be either the maximum control node delay or a user defined clock 

period which may be specified as an absolute objective. 

5.1.4 CRITICAL PATH ANALYSIS 

Critical path analysis can only be performed on an acyclic graph such as an activity 

graph used in project management. In an activity graph the nodes represent events and 

the timing constraints are represented by the arcs. It is necessarily acyclic, for if a cycle 

did exist, some of the activities could never commence. The calculation of the critical 

path may be determined using graph algebra [82] and linear programming or the more 

traditional forward and backward pass methods [84]. The latter method was chosen 

owing to its simplicity when recursively programmed using the graph traversal 

algorithms. The forward pass establishes earliest end times and the backward pass the 

latest end times. From these the slack can be determined and so the critical paths, given 

by nodes with zero slack. 

The main difference between the control graph and an activity graph is that the control 

graph is cyclic. Therefore it must be made acyclic to allow critical path analysis to be 

performed. The acyclic graph is created by the removal of the minimum feedback arc 
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set as described in Section 3.3.1 on page 56. Although this results in a usable graph i t 

would be somewhat naive to assume that its critical path represents that of the design. 

This is because the nodes enclosed by the loops formed by the feedback arcs may be 

executed many times. The number of iterations of each loop can be taken into account 

by the use of the loopjts field in the control path data structure. Initially all loopjts are 

set to one, indicating that each node is executed once in the acyclic graph. A user 

specified loop iteration file is read immediately after creating the initial control graph. 

The file indicates whether a loop is to be taken into account and how many iterations 

the loop performs. For all the nodes contained in the loop the loopjts field is multiplied 

by the number of iterations performed by that loop. When determining the critical path 

the number of clock cycles required to execute a node is given by the loopjts field. 

Nodes on the critical path are those with a slack of zero. There will be at least c critical 

paths, where c is the number of end nodes in the control graph. The slack for node n is 

given by; 

slackg = latest end time (let^) - earliest end time (eetj 

eet. = max(eetp^ + loop_its„ 

let. = min( le t^ - l o o p j t s , ^ ) 

Critical path analysis consists of four stages: 

1. recursively determine earliest end times, 

2. for all end nodes set latest time 

equal to earliest time, 

3. recursively determine latest end 

times, and 

4. set slack to latest end time minus 

earliest end time (let - eet). 

Figure 5.2 shows the critical path analysis for a 

simple control graph containing a loop of three 

iterations. The execution time for this example 

is five clock cycles and the critical path consists 

of nodes Nl , N3 and N5. 

earliest end time / latest end time / slack 

1/1/0 

2/3/1 loopjts = 3 

3/4/1 
FBA 

Figure 5.2 Critical path analysis. 
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It is worth noting that the length of the critical path can be found by performing stage 1 

of the critical path analysis and is given by the maximum end time of the end nodes in 

the control graph. All four stages are performed as the slack information may be helpful 

during optimisation in selecting the transformation data. 

In the MOODS synthesis system the design may be optimised either manually or 

automatically using an iterative optimisation algorithm. The manual method entails the 

user to manually apply transformations to improve the design. The user has access to 

the cost function and evaluation routines to guide him, however it is essential that the 

user can visualise the design as it is being optimised. This requires the user to draw the 

initial implementation and update it as transformations are successfully applied. This 

results in a laborious process when optimising a complete design, however the manual 

option is essential for making adjustments to an already optimised design either to 

improve it or to include some of the designer's quirks. 

Iterative optimisation consists of selecting transformations and applying them to the 

design in such a way that the user's criteria are met. The method of selecting and 

applying transformations constitutes the optimisation algorithm. There are two 

approaches to iterative optimisation, namely tailored and adaptive heuristics [81]. In the 

tailored heuristic approach the cost function is analyzed and a transformation chosen and 

applied depending on the current position of the design within the design space relative 

to the required position set by the user's objectives. For example, if the user has set an 

area objective which has not yet been met then a transformation which performs an area 

reduction is selected. This approach is used in Camad [23] and Chippe [69]. The 

adaptive heuristic method arbitrarily selects a transformation and its effect on the design 

is estimated. The transformation is applied depending upon the analysis of the 

estimation with respect to the user's objectives. This approach is used by Devadas and 

Newton [42]. 

There are advantages to both approaches. For example, the tailored heuristic approach 

guarantees an improvement with each iteration, when no improvement occurs the 

optimisation ends. However, this leads to local minima. The adaptive heuristic approach 
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may also suffer from local minima traps if a straightforward iterative improvement 

method, such as pairwise exchange, is adopted where only improvements are accepted. 

By occasionally applying transforms that have an adverse effect on the design, 

transitions out of local minima are possible, this is the basis of more advanced adaptive 

heuristic methods such as simulated annealing [85,86,87]. Transitions out of local 

minima can not be done in the tailored heuristic approach as transformations are chosen, 

using a "tuned" heuristic method, to improve the design. 

The tailored heuristic approach has the disadvantage that the method used to select a 

transformation must be changed when incorporating extra design aspects and must 

survey all changes that each transformation makes to a design. As can be seen in the 

Camad and Chippe systems this leads to a complex heuristic selection process even for 

only two or three objectives. In these traditional "tuned" heuristic approaches an 

essential subtle structure that underlies the problem must be found. Using this 

knowledge a heuristic solution tuned to the nuances of the structure can be crafted. For 

multiple objectives the problem becomes "dirty", with numerous, contradictory 

constraints and complex cost functions [85]. 

An adaptive heuristic method was chosen for the optimisation algorithm as, by its 

abstractness from both the design and the transformations, it avoids the construction of 

complex "tuned" heuristics. This abstraction allows any number of different objectives to 

be incorporated into the cost function with additional objectives requiring the minimum 

of program changes. When adding new objectives only the estimation and cost 

calculation routines require updating, the optimisation algorithm will remain unchanged. 

Adaptive heuristics although "no substitute for a well designed tailored heuristic"'®*', 

offer the only solution to many "hard" problems such as high-level synthesis; where 

synthesis tasks are performed simultaneously in order to provide automated design space 

exploration and multiple objective optimisation. 

5JL1 THE GENERAL ADAPTH^ HEURISTIC 

For any optimisation problem we require to find a solution that minimises a cost 

function cf subject to particular constraints. A maximisation problem is solved by 

minimising the negative of the cost function. Solutions that satisfy the constraints are 
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feasible solutions and the feasible solution with the minimum cost function is the 

optimal solution, that is cf is optimal. In the context of iterative synthesis a feasible 

solution is one that when implemented will correctly perform the original design 

specification. In the MOODS system the transformations are complete therefore every 

solution is a feasible solution, however this is not true in the Devadas and Newton 

system [42] whose transforms may result in non-feasible solutions which must be 

determined using constraints that check the design's correctness. For example two 

instructions writing to the same register may be made to execute concurrentiy, this error 

violates a constraint which is enforced by making the cost function arbitrarily high. In 

the MOODS system the transformation would be filtered out at the testing stage. 

The general form of an adaptive heuristic to find a feasible solution with a near optimal 

cost function is shown in Figure 5.3. The significant components used in this algorithm 

are described in the following paragraph. 

G e n e r a l 
/* general form of an adaptive heuristic for 

combinatorial optimisation */ 

S = S(j; /* initial solution */ 

Initialise heuristic parameters; 

NewS - perturb(S); 

i f accept (NewS/ S) S = NewS; 

} while I Itime to adapt parameters); 

Adapt parameters; 

} while I(terminating criterion); 

Figure 5.3 The general form of an adaptive heuristic for combinatorial optimisation. 

The initial feasible solution, Sq, must first be generated, from which other feasible 

solutions are iteratively obtained, the current one being S. In synthesis any feasible 

solution can be obtained by manipulation of a directly compiled design [9]. The 

manipulation of the current solution is performed by the perturb (S) function which 

generates a new solution. The accept (News, S) function determines whether or not to 

accept the new solution and make it the current working solution, accept (NewS, S) is 
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a function of the cost functions for both S and NewS and of the heuristic parameters. 

The adapt parameters section changes the heuristic parameters which may include the 

perturbation function, acceptance function, S or the criterion time to adapt parameters. 

The parameters are changed so that the solution converges on a near optimal solution. 

This modification of the parameters gives rise to the term adaptive, where changes may 

be made by the algorithm using some learning mechanism or by the user using his own 

learning mechanism. 

Many algorithms may be obtained from the general adaptive heuristic, two of which are 

described here. The simulated annealing approach was selected as the primary algorithm 

as it has been used with varying success in numerous other applications [85,86]. Some 

problems have the "right character"'^^' for simulated annealing and as with all adaptive 

heuristics the "proof of the pudding is in the eating"'® '̂; suggesting that the algorithm 

must be implemented in order to determine its suitability to solving a problem. 

Simulated annealing is an intriguing instance of artificial intelligence as the computer 

can arrive almost uninstructed at a good solution. In addition, the connection between 

natural phenomena and problem solving in simulated annealing can provide useful 

insights into optimisation which can be used to develop alternative algorithms such as 

the sequence heuristic described in Section 5.2.3. 

ZJZ SmULATED ANNEALING 

Simulated annealing [81,85,86,87] is best explained with the aid of a configuration 

space. The optimisation problem is to find some configuration of n parameters that 

minimises the cost function. The configuration space indicates the cost evaluated by the 

cost function for particular configurations. The configuration space for n parameters 

defines an n-dimensional surface. Figure 5.4 shows a configuration space for n=\. To 

change the solution a small random perturbation is made to the current configuration. If 

only good perturbations are accepted, as with iterative improvement, the final solution is 

likely to be a local minimum, as would occur in Figure 5.4. In simulated annealing bad 

or "uphill" configurations are probabilistically accepted based on a temperature 

parameter. For high temperatures the probability of acceptance is large whereas at low 

temperatures it is small. For a given temperature all configurations with a cost less than 

and a band of configurations with a cost greater than the current configuration will be 
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A 

Cost 
greater range of 

configurations with 
large temp 

current 
configuration 

global minimum 

gopher hole 

Configurations 

Figure 5.4 A one-dimensional configuration space. 

accepted. The width of the band is dependent on the temperature, a high temperature 

gives a wide band and a low temperature a narrow band. As can be seen on the 

configuration space of Figure 5.4, for a small uphill perturbation a high temperature 

encloses a wider set of configurations defined by the band than does a low temperature. 

This means that for high temperatures less steps are required to exit minima therefore 

the configuration has a higher probability of moving between adjacent local minima. As 

the temperature is decreased the solution will settle in the deepest local minimum, the 

global minimum. The reason for this is that the probability of moving from a local 

minimum is controlled by the width of the band, therefore as the global minimum is 

deepest there is less chance of the solution moving from it. The success of simulated 

annealing depends on the landscape of the configuration surface. A mostly flat 

landscape, as in placement problems, will anneal well, however one with "gopher holes" 

(deep, steep-sided local minima) may be impossible to anneal as moves will result in 

falling into these holes which will be increasingly difficult to get out of as the 

temperature decreases, thus trapping the solution in a local minimum. 

The difficulty of moving fi-om local minima is also dependent upon the transformations 

applied to the design. This was found to be the case when a high priority was given to 

the area objective in early tests of the system, which did not include the 

uncombine_s ing le_un i t () transform. Units were merged into ALUs which 
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invariably improved the area, however when an attempt was made to uncombine an 

entire ALU the degradation in area exceeded the band defined by the temperature. This 

prevented the acceptance of the transform and so a move out of the local minimum. 

auto_optim (td) 

for {temp=Tstart; temp>=Tend; temp*=Tstep) 

for (iterations==0; iterations<Is'tep; iterat,ions++) { 

auto_select_tirans (td); 

estimate_trans(td); 

if (E <= 0 11 randO < exp(-E/temp)) 

Figure 5.5 The simulated annealing algorithm. 

The simulated annealing algorithm, auto_optim(td), is shown in Figure 5.5, where 

the initial solution and parameters are set outside the procedure. The perturbation 

function is implemented by the auto_select_trans (td) procedure which selects a 

transformation and its associated data to apply to the design using random selection with 

heuristic steering methods. The selection process consists of firstly determining the 

transformation type, either scheduling or allocation; an equal probability is given to 

each. Secondly, a node is selected on which to perform the transformation, yet to be 

determined. A data path node is selected for allocation type transformations and a 

control node for scheduling type transformations. Given the node and transform type, 

the transform itself and any additional data are selected by random selection and 

steering heuristics. For example, suppose that a scheduling type transform is to be 

selected and a general node (one input and one output arc) has been chosen. The 

heuristics used dictate that either an ungrouping or sequential merge transform must be 

selected, as the parallel merge and merge fork and successor transforms require the 

selected node to be a fork type. The group on register transform is considered by the 

selection routine to be an allocation transfomiation applied to a register data path unit. 

Out of the possible transformations one is randomly selected; suppose it is the 
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sequential merge transform. A further steering heuristic may be used which dictates that 

the second node to be selected must be in the same sequential section as the first node 

and reachable from the first node. The steering heuristics used do not bias the selection 

of the transformation data as any other data used would result in failure during the 

testing step; therefore its only effect is to reduce the quantity of unsuitable selected data 

reaching the test_trans (td) procedure. 

The effect of the transform is estimated by the es t imate_trans ( td ) procedure and 

the change in cost function calculated by the e v a l u a t e (cost_fn) procedure described 

in Section 5.1.1. The value returned from this procedure is analogous to the change in 

energy, AE, in the Metropolis procedure [88]. If AE < 0, the transform is accepted and 

performed. The case AE > 0 is treated probabilistically: the probability that the 

transform is accepted is P(AE) = e ' ^ . A random number uniformly distributed in the 

interval (0,1) is used to determine the probabilistic outcome. A random number is 

generated by procedure rand () and compared with P(AE). If it is less than P(AE), the 

transform is accepted and performed; if not a new transform is selected. 

The simulated annealing process consists of raising the temperature of the design such 

that it "melts", that is, transforms that degrade the design are accepted almost as often as 

ones that improve it. The temperature is then lowered in slow stages until the design 

"freezes" and no further changes occur. At each temperature the simulation must 

continue long enough for a steady state to be reached. The sequence of temperatures and 

the number of transformations per temperature is the annealing schedule. Simulated 

annealing establishes gross features of the design at higher temperatures and fine details 

at lower temperatures. 

The annealing schedule in the auto_optim{td) procedure is set by the variables 

Tstart, Istep, Tstep and Tend which set the starting temperature, the number of iterations 

per temperature step, the reduction between temperatures and the termination 

temperature. These parameters are currently set by the user where the start and end 

temperatures represent the boiling and freezing temperatures of the design. The value of 

Tstep should be fine enough to avoid "quenching" the design. Experiments to establish a 

procedure to determine the best annealing schedule for a design are shown in 

Section 6.1.2. 
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S 2 J SEQUENCE HEURISTICS 

Despite the success of simulated annealing it has a few major disadvantages; firstly, as 

demonstrated in Chapter 6, the algorithm parameters which describe the annealing 

schedule are difficult to obtain. It may be possible to automate the process such that the 

algorithm finds the schedule, however, this should only be done if an optimisation 

algorithm which produces better designs or executes in a shorter design time can not be 

found. Secondly, simulated annealing is slow compared to other optimisation methods. 

The reason for this is that bad perturbations are accepted on a random basis, therefore a 

design is degraded before it reaches a local minimum in order to find the global 

minimum. However, there are often many near optimal local minima which represent 

suitable near optimal design configurations. The design bounces between these near 

optimal minima eventually settling in one of them, which is in theory the deepest and 

therefore the global minimum. 

The simulated annealing approach of occasionally accepting bad perturbations has a 

great deal of worth. There are, however, other ways to accomplish this, such as the 

sequence heuristic, which can avoid the disadvantages of simulated annealing. The use 

of sequence heuristics has been shown to be an improvement over simulated annealing 

[81,89], however the proof of the pudding is, once again, in the eating! The sequence 

heuristic algorithm is shown in Figure 5.6. The sequence heuristic accepts a bad 

perturbation only if a good perturbation has not been found over a sequence of attempts. 

The current length of the bad perturbation sequence is given by the variable length. 

The accept (NewS, S) function of the general adaptive heuristic shown in Figure 5.3 

operates as follows: a new solution NewS with cf(NewS) >= cf(S), that is a positive AE, 

is accepted if and only if the last L perturbations on S failed to generate a solution with 

cf(NewS) < cf(S), that is a negative AE. If L perturbations have failed then the current 

bad perturbation is accepted and the length parameter updated. The adapt parameters 

phase also keeps track of the best solution found so far before applying the bad 

perturbation. The sequence length L can be updated by increasing it to LxP or L+P as in 

this case. The process terminates when the sequence length reaches the maximum value. 

Lend. 
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s e c j j h e u r i s t i c <td) 

L - Lstart; /* initial sequence length */ 

length = 0; 

auto_select_trans{td}; 

if <test_trans<td)) { 

estimate^tj:ans (td); 

E - evaluate (cost__fn} ; 

perform_trans(td) ; 

length - 0; 

else length+4-; 

} while (length<»L); 

save design if best so far: 

length - 0; 

perform_trans(td) ; 

} while (L<=Lend); 

Figure 5.6 The sequence heuristic procedure. 

Unlike simulated annealing the sequence heuristic approach does not rely on the 

artificial notion of temperature and has fewer parameters to adjust, therefore making it 

more elegant. The acceptance of degradations only when found to be in a local 

minimum, as opposed to the random acceptance of degradations as in simulated 

annealing, is likely to result in a faster algorithm as the degradations are applied in a 

controlled fashion. Before applying a degradation the current design is saved; after a set 

computation time the process ends and the best design saved is selected. This approach 

is in fact an elegant variation on the Monte Carlo method where a set of designs are 

generated using iterative improvement and the best one f rom the set is selected. The 

difference lies in the choice of the starting point for each Monte Carlo run: in the Monte 

Carlo approach the initial implementation is used, whereas in the sequence heuristic 

method a slightly degraded version of the last design is used. This ensures that the 

probability of finding a better design is greater. In addition the length of the sequence is 
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increased each time a degradation takes place, thus gradually increasing the probability 

of finding a better design before applying a degradation. 

5.2 .4 AUTOMATED DESIGN SPACE EXPLORATION 

As mentioned in Section 1.7 the exploration of the design space by an intelligent silicon 

compiler provides the user with an insightful characterization of design alternatives as 

well as trade-off curves [3]. The synthesis system designer can also use the design space 

to improve and develop new optimisation algorithms. 

Design space exploration entails finding a number of near optimal designs, each a point 

in the design space. In the MOODS system, a two or three dimensional design space is 

characterized by creating a two or three objective cost function respectively. A number 

of designs are generated for cost functions consisting of each objective at a high priority 

while other objectives are at a low priority. The target value of the high priority 

objective is varied from 25% to 100% of the initial value in order to generate a range of 

designs. The initial design used to generate each design point may be either the initial 

design generated from the intermediate code or a previous design; where the latter 

constitutes dynamic design space exploration. A previous design point can be used as 

the transformations are reversible thereby allowing the degradation necessary to trade 

design aspects and move to a different design point. For each design point the 

automated design space exploration procedure creates an appropriate cost function, 

initialises the adaptive heuristic parameters and calls the optimisation algorithm. The 

resulting designs not only show the variation possible but also give a useful insight into 

the effectiveness of the optimisation algorithm. 

The set of design points is analyzed and a subset extracted such that each point in the 

set is better in at least one criterion than all the others in the set, that is, the subset 

consists of only points on the optimal design "curve". 



RESULTS 
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This chapter is divided into a number of sections each concerned with a particular 

aspect of behavioural synthesis using the MOODS synthesis system. The sections are as 

follows: 

6.1 Determination of simulated annealing parameters in order to obtain 

correct annealing schedules and reliable results. This includes an 

investigation of: changes to the cost function in order to provide a stable 

start temperature for a given design, temperature reduction methods, a 

method to establish annealing schedules and the effect of the random 

number sequence on implementations. 

6.2 Initial and optimised results for a selection of benchmark designs [90] 

using a comprehensive cell library. 

6.3 Comparison of the MOODS system to other synthesis systems, where cell 

libraries and cost functions comparable to those used in the other systems 

are used. 

6.4 The use of design space exploration to investigate the optimisation 

process and characterization of designs. 

The MOODS synthesis system consists of approximately 22000 lines of ' C and runs on 

a MicroVax 3100 workstation. On execution MOODS either creates an initial design 

implementation or restores a previously saved design. MOODS then displays the 

MOODS prompt, from which the user may examine the design, specify a cost function, 

initialise the algorithm parameters and start either optimisation or automatic design 

space exploration. After manipulating the design the user exits MOODS which causes 

bindings to take place and netlist files to be generated [91]. 

6.1 DETERMINATION OF THE SIMULATED ANNEALING 

PARAMETERS 

The simulated annealing parameters comprise those that describe the annealing schedule, 

the temperature reduction function used to determine the next temperature step and the 

function used to calculate the energy change vector. As described in Section 5.2.2 the 

annealing schedule parameters are; 
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the initial temperature, 

Tend the final temperature, 

Iŝ p the number of iterations to apply at each temperature step, and 

Tstep the reduction made to the temperature in order to reach from 

6.1.1 PROVIDING A COST FUNCTION INDEPENDENCE FOR THE 

ANNEALING SCHEDULE 

One of the problems associated with the simulated annealing algorithm is the 

determination of the annealing schedule. It would be desirable if the schedule was 

consistent for all designs and all cost functions. However due to the dependence of AE 

on the design through technology dependent data, an independence from this is not 

possible. A partial independence from the cost function would be desirable, therefore 

giving one annealing schedule for each design. The most fundamental annealing 

parameter is the start temperature T,^ . The following section explains how the cost 

function was changed so as to provide an independence of T^^ from the cost function. 

The cost function consists of a prioritised list of criteria each with its associated goals 

(targets). The use of a prioritised cost vector ensures that criteria are optimised in the 

order specified. The effect a transformation has on the design is given by the first non-

zero element of the energy change vector (see Section 5.1.1). The energy change vector 

is determined by averaging the change in energy of all criteria at each priority, thus 

resulting in a single value for each priority. How the change in energy is calculated will 

affect the annealing schedule between different designs and cost functions. The change 

in energy for a given criterion, c, is given by: 

^ WLl) 

where and Pp^ are the positive deviations from the target for the estimated and 

present positions of the design in the design space respectively. 

In order to show and thus attempt to reduce the variations in the annealing schedule 

with differing cost functions, four typical cost functions were selected for application to 

an average design. The Kalman filter benchmark [90] was chosen as it represented an 

average design used later in the results. The four typical cost functions selected were: 
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1. delay at priority 1 and area at priority 2 (d(§>pl, a@p2), 

2. area at priority 1 and delay at priority 2 (a(S>pl, d@p2), 

3. area and delay criteria at priority 1 (a@pl, d@pl), and 

4. delay at priority 1 with a target of 4000ns and area at priority 2 

(d@pl to 4000, a@p2). 

Targets other than those specified above are minimising to zero. 

The start temperature of the annealing schedule should be relative to the freezing point 

of the design, therefore it is the freezing point which must be determined. This is given 

by the point where the degradations applied to the design start to reduce significantly. 

For each temperature step during the annealing schedule the cost of the degradations 

applied to the design was plotted on a temperature-cost graph. The cost of a 

transformation is given by AE (as defined in Section 5.1.1) where the cost of 

degradations is given by positive AE and cost of improvements by negative AE. For 

each temperature step the positive and negative AE are tallied and used in the 

temperature-cost graphs. Note that AE was scaled resulting in larger cost figures in order 

that temperature figures were not excessive. The cost of the degradations is used as it 

represents the actual change to the design. The number of degradation transforms 

applied to the design does not correspond to the actual change occurring to the design. 

This is due to the variation in AE depending on which transformation has been selected 

and on what part of the design it is to be applied. This is demonstrated in the graph of 

Figure 6.1b where both the number of degradation transformations (marked by triangles 

and scaled by x40) and the cost associated with them (marked by squares) have been 

plotted. This shows that transformations which have a large effect on the design are 

applied early in the optimisation process and those having a small effect, thus refining 

the design, are applied later; a characteristic of simulated annealing. 

The temperature-cost graphs for the cost functions given above are shown in Figure 6.1; 

note that as the optimisation process proceeds the temperature is being reduced, that is, 

in the temperature-cost graphs the design advances from right to left. A linear 

temperature reduction function is used, that is, the temperature is reduced by a fixed 

amount each step (T=T-T:^, thereby giving an even distribution of points along the 

x-axis. The vertical lines represent the start of freezing which is taken to be 85% of the 

maximum of the smoothed curves (the solid lines). For the cost functions with delay 

included as a major objective, ie, at priority 1, the freezing point is in the range 125-



K R Baker: 1992 6. Results 115 

a: d<@>p1. atg>p2 b: , d(̂ p2 

. No. d®gs'40 / V'-'l' 
V '' 1 
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c:m@pl. d#pl 
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d: d#pl to 4000. #&p2 
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0.6x10" 

0.4x10* 

1.5x10* 

^ 2W 
l#mp#f#Iure 

Z \ -

s/^ 

2M 
!#mp#rmnw# 

Figure 6.1 Variation of freezing point with cost function calculated 

using equation (6.1). 

155, whereas with area as the only major objective the freezing point increases to 235. 

Delay is the dominant objective as its change in energy, Ac, is small compared to that of 

the area objective. 

To make AE less vulnerable to variations in Ac for various criteria and thus less 

vulnerable to changes in the cost function, the change in energy for each criterion (Ac) 

was normalised with respect to its initial value, Cini,. Therefore equadon (6.1) becomes: 

Ac (6.2) 

The above evaluations were repeated using equation (6.2) to determine AE. The 

resulting graphs are shown in Figure 6.2. The freezing point for the area objective at 

priority 1 has moved into the range of the other three freezing points. All four cost 

functions have freezing points in the range 125-160 which is considered acceptable. 

For each of the benchmark designs used in the results the freezing point was determined 

using the above method by performing an initial optimisation using an estimated 

preliminary schedule. The freezing points were used to calculate the start temperatures, 

shown in the table of annealing schedules, Table 6.1 on page 124. 
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Figure 6.2 Variation of freezing point with cost function calculated 

using equation (6.2). 

6.1.2 FINDING THE ANNEALING SCHEDULE 

QL 
f . 

.K 

V 

The annealing parameter T , ^ is determined using the temperature-cost graph as 

described in Section 6.1.1. Throughout the experiments and results the end temperature 

Tgnd will be set to zero where only improving transforms would be applied to a design. 

The end temperature could be determined by monitoring the changes in the cost 

function. For example, in the Devadas and Newton system [42] the annealing process is 

terminated when the cost function has not changed for three consecutive temperature 

points. It is possible that this approach may lead to premature termination if the design 

becomes trapped in a local minimum which is difficult to get out of. It is unknown how 

long it would take to select the appropriate transformation in order to exit such a gopher 

hole, however it will vary with the complexity of the design as the probability of 

selecting a particular part of the design will decrease with increasing design complexity. 

Therefore a greater number of iterations will be required to exit a gopher hole for larger 

designs. The zero temperature terminating condition is therefore a safer option that 

introduces no additional parameters which would affect the determination of the 

annealing schedule and so the evaluation of the optimisation algorithm. 
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The other annealing parameters (T,^ and Î p̂) are difficult to determine, however an 

estimate of the total number of iterations, given by equation (6.3), can be made by 

examining the cost of improvements measure. 

L w = (1 + <«-3) 

The set of temperature-cost graphs in Figure 6.3 show how the cost of improvements 

(the lower curve) and cost of degradations (the upper curve) vary with parameters T,^, 

and Itotai for the FRISCl benchmark design. The values chosen for T , ^ and T ^ 

were 200 and 0 respectively. T , ^ was chosen to include the freezing point which was 

previously found to be 100. The values for T,̂ p were 2, 10 and 20 for the left, middle 

and right columns of graphs respectively and was chosen such that the total number 

of iterations, applied to the design was approximately 10000, 15000 and 20000 for 

the top, middle and bottom rows of graphs respectively. The resulting costs shown were 

summed over a range of temperature steps equal to the largest step used thereby giving 

comparable graphs. The cost curves were then smoothed as shown by the solid curves. 

In optimising a design to a particular cost function the design cost will be reduced by a 

particular value equal to the distance between the initial and optimised design points in 

the design space. The costs at temperature point T=0 are a good aid in determining 

whether sufficient iterations have been performed in order to optimise the design. If 

transformations were applied to the design at this point (only improvements are applied 

at T=0) then the design may not be optimal. On the other hand if sufficient iterations 

have been performed then few improvements will be possible at T=0. This is 

demonstrated in Figure 6.3 where in the graphs of the top row insufficient iterations 

have been performed thus the design was still being improved at T=0. As the total 

number of iterations is increased the bulk of the improvements to the design (shown by 

a bulge between the smoothed curves) occur at a higher temperature, with improvements 

at lower temperatures being applied only to counteract the effect of degradations. The 

value of where the number of improvements applied at T=0 becomes a minimum is 

the minimum total number of iterations required to optimise the design. This value 

appeared to be independent of the size of T̂ t̂ p, however the quality of the design was 

not. Using this method the minimum value of 1,̂ .̂ , was determined for each benchmark 

and entered into the table of annealing schedules, Table 6.1 on page 124. Given and 

a value for T̂ ^̂ p, 1;,̂ ^ was calculated using equation (6.3). 
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Figure 6.3 Variation in cost curves with different step and iteration values. 

Total number of iterations are KKKX), 15000 and 20000 for the top, middle and bottom rows respectively. 
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6.1 J INVESTIGATION OF THE TEMPERATURE REDUCTION FUNCTION 

According to simulated annealing theory better designs will be produced by using fine 

temperature steps as quenching would be avoided. The set of designs produced from the 

schedules used in Figure 6.3 produced the opposite effect, that is a coarse value of T ,^ 

resulted in better designs. To verify this and to show that a better design is achieved by 

using more iterations, the annealing schedules of graphs b, d, f and h of Figure 6.3 were 

each used to extensively explore an area-time design space using the automatic design 

space characterization ability of MOODS. The set of designs which characterized each 

design space were limited to 25 design points and the resulting design spaces are shown 

in Figure 6.4. 

a: T .10, I„„-477, I_,,.10000 b : T ^ - 2 0 . U - 1 3 6 4 , 5000 

2x10' 

1̂ .20000 
4 X 1 0 ' 

2 x 1 0 ' 

4x10' 

1x10' 

4x10' 

3 0 0 0 4500 

Figure 6.4 AT design spaces for FRISCl using various annealing schedules with linear 

temperature reduction. 

The design space of Figure 6.4a compared to that of Figure 6.4c show that better 

designs result when more iterations are applied. Also, the design space of Figure 6.4d 

compared to Fisure 6.4b clearly shows that worse designs have been found when a Oner 
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temperature step has been used. The reason for this is that as optimisation progresses it 

becomes considerably easier to degrade the design than improve it. This suggests that 

the improvement of using the coarser temperature step is due to the greater number of 

iterations being applied at T=0. Thus for large T^^p, is also large giving more 

opportunity at T=0 to compensate for previous degradations. Conversely, when T ,^ is 

small, Istep is also small therefore allowing less opportunity for compensation and 

resulting in a worse design space. The finer T ,^ in Figure 6.4d allows for a few 

degradations at the extra T?>K) steps (steps t=2, 4, 6 and 8) and the reduced value of I, 

means that insufficient iterations are applied at T=0 to compensate for them. The 

implication of this is that more iterations require to be performed at the low temperature 

points and so the linear temperature reduction method used to obtain the temperature-

cost graphs is inadequate for optimisation. 

To increase the number of iterations applied at low temperatures either the number of 

iterations per temperature step can be increased with decreasing temperature or more 

low temperature steps created by reducing the temperature in a non-linear fashion. The 

latter method is in line with traditional simulated annealing approaches and involves 

proportionally reducing the temperature using the reduction function: 

X P 

where p is the proportional counterpart of T^q,. The proportional temperature reduction 

function of equation (6.4) was used to generate the design spaces of Figure 6.5. The 

graphs are at the same scale as those in Figure 6.4 and use equivalent schedules. The 

value of p was chosen so that the number of temperature steps between the start and end 

temperatures were the same. T,,^ and T^^ were 200 and 0 respectively, thus making 

design spaces a through to d of Figure 6.4 comparable with design spaces a through to d 

of Figure 6.5. 

By comparing the AT design spaces of Figure 6.4 with those of Figure 6.5 it can be 

seen that the function used to determine the next temperature step plays a significant 

role in the quality of the resulting design spaces. In all four design spaces the 

proportional temperature reduction has resulted in a better clustering of design points 

therefore it was made the default reduction method in the MOODS system. The linear 

reduction method can be optionally selected when producing temperature-cost graphs. 

An improvement can still be seen for an increase in the value of between 
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Figure 6.5 AT design spaces for FRISCl design using the same schedules as in 

Figure 6.4 but with a proportional temperature reduction. 

Figure 6.5a and Figure 6.5c; however no reduction in quality can be seen in Figure 6.5d 

when compared to Figure 6.5b as previously observed in Figure 6.4. As there is little 

difference between Figure 6.5b and Figure 6.5d it would seem that the value of I, is 

less significant. This is illustrated in Figure 6.6 where quenching schedules have been 

used. As expected the linear temperature reduction produced a good design space. 

Figure 6.6a, due to the increased iterations at T=0 and the proportional temperature 

reduction produced a slightly worse design space, Figure 6.6b, due to quenching. As the 

design spaces are still quite good it not only implies to be less significant but also 

that the temperature reduction function could be improved by applying more iterations at 

temperatures in the region of T=0. 

The results produced by the experiments relating to linear temperature reduction show 

that iterations applied at T=0 are an important fine refinement process in the 

optimisation of a design. For this reason iterations are made to occur at T=0 even 

though start and step values may not have resulted in T=0 being achieved. 
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Figure 6.6 AT design spaces for FRISCl using a quenching schedule for linear and 

proportional temperature reductions. 

6.1 .4 INVESTIGATION OF THE EFFECT OF THE RANDOM NUMBER 

SEQUENCE ON IMPLEMENTATIONS 

The simulated annealing algorithm is a stochastic process where the selection of 

transformations and their subsequent application are dependent on random numbers. 

Consequently the question arises: "Does the random number sequence influence the 

resulting implementations?". In order to determine this a typical design was optimised 

using different seeds in the random number generator to produce varied random number 

sequences. Figure 6.7 shows the design points for 20 area optimised and 20 delay 

4 x 1 0 * 

3 x 1 0 r 

2 x 1 0 * 

& 

a trnm imptemwntaten 

6' o o 

1x10" 2xicr 

delay 

3X10* 4X10̂  

Figure 6.7 Variation in implementations due to arbitrary random number seeds 

for both area and delay optimisation objectives. 
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optimised implementations. Half of the designs (10 each of the area and delay optimised 

implementations) were generated using the initial implementation and the other half 

using previous implementations. 

The close grouping of design points for both the area and delay optimised 

implementations show that the random number seed and its resulting sequence has a 

minimal influence on the ability of the optimisation algorithm to consistently reach a 

point in the design space. Implementations generated using previous rather than initial 

implementations have resulted in slightly improved design points due to their already 

optimised starting points. There is a high, but not 100% probability that an achievable 

design point can be consistently reached. Therefore in the reporting of results it is fair to 

select the best result, that is one that best achieves the original objectives, from an 

exploration of the design space. The results of implementations of benchmark designs 

given in Sections 6.2 and 6.3 have been selected from explorations of the design space. 

The best implementations have been reported due to the high probability of obtaining 

those results although this can not be guaranteed due to the stochastic nature of the 

simulated annealing algorithm. 

6.2 BENCHMARK RESULTS 

The results given in this and subsequent chapters use the annealing schedules shown in 

Table 6.1 as determined using the methods described in Section 6.1.2. is always set 

to zero and the number of temperature steps was chosen to be 50 to avoid quenching. 

Table 6.1 gives the correct values of T,^, the linear reduction quantity and p, the 

proportional reduction factor, for the 50 temperature steps which includes the additional 

step, T=0. The schedules derived represent the minimum schedule required to achieve 

reasonable results, the number of iterations may be increased to improve the design 

points, however the law of diminishing returns applies. There seems to be littie 

correlation between design size and any part of the annealing schedule. The schedule is 

probably more dependent on the complexity of the design and the number and type of 

operations used rather than the design size. Some correlation would be expected due to 

the relationship between design size and complexity, however this may be only apparent 

for very large designs. 
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No. of 

ICODE 

lines 

Start 

temp 

Tcxal No. 

iterations 

Temp step for 50 steps with linear or 

proportional temp reduction. 

T ^ f o r L T R p f o r P T R 

No. of iterations 

per temp step. 

~ Iww / 5 0 

CBM2 47 66 13000 1.35 0.910 260 

CHIP 474 44 50000 0.90 0.919 1000 

FRISCl 117 100 12000 2.04 0.903 240 

FRISC2 181 121 33600 2.47 0.899 672 

KALMANIO 83 176 36300 3.59 0.893 726 

KALMANI02 83 137 42900 2.80 0.897 858 

E L U P 55 110 33000 2.24 0.903 660 

MC6845 91 154 28500 3.14 0.896 570 

TAXI 37 143 7000 2.92 0.897 140 

PARKER 30 210 18200 4.29 a889 364 

TSENG 47 220 15400 4.49 0.888 308 

W m O G R A D 92 (46)* 82 20800 1.67 0.906 416 

f Hall ot the instructions are register transters caused by the ELLA to ICUUh translator. 

Table 6.1 Annealing schedules for the benchmarks. 

The design data for the initial un-optimised implementation of each benchmark is shown 

in Table 6.2. All of the subsequent implementations reported in this and the following 

sections are derived from the same initial implementations. Using the annealing 

schedules in Table 6.1 the benchmark designs were optimised and the results derived as 

described in Section 6.1.4. The design data for the smallest (area optimised) and fastest 

(delay optimised) implementations of each benchmark are reported in Table 6.3 and 

Table 6.4. In generating the optimised results of Table 6.3 and Table 6.4, a 

comprehensive cell library was used. This consisted of the set of basic cells and 

included ALUs implementing plus and minus operations (+, -), shift operations (SR, SL) 

and comparison operations (=, <, >, !=). Alternative cells were also included in the 

library which implemented most functional type units including the (+, -) ALU. The 

alternative cells implement functions either faster and larger or slower and smaller than 

their basic counterparts. In the results tables the cells chosen to implement functional 

units are depicted by s or f indicating whether small or fast cells have been selected. 



Area (pm") Delay (ns) 
Maximum 

ccmtrol node 
delay (ns) 

Number of 
cailrol 
nodes 

Critical 
path 

length 

MOG usage measures 

(*) 

Number of 
nets 

Number of registers 
comltn. rams (wordf), 

{total bit width) 

Number of 
MUX 

units (btts): i%uts 

Functional Units 
Area (pm") Delay (ns) 

Maximum 
ccmtrol node 

delay (ns) 

Number of 
cailrol 
nodes 

Critical 
path 

length 
clock legs units 

Number of 
nets 

Number of registers 
comltn. rams (wordf), 

{total bit width) 

Number of 
MUX 

units (btts): i%uts 
Total 

unite (bits) 
Nismbcr of units and type 

CBM2 30697 1168.7 40.3 45 29 38 20 2 137 18r, (169) 8 (79) 26 47(250) 1 neg, 32 =, 3 RS, 8 LS, 3 + 

CHIP 1640204 8651.8 47.8 457 181 5 21 1 748 235r. 14c. 3a {3k), 
(2569) 

21 (302) 114 194 (2622) 4 not, 13 <=, 42 =, 10 !-, 30 +, 30 -, 
22 or, 1 RS, 6 LS, 19 and 

FRISCl 43867 2866.5 44.1 114 65 4 30 11 121 15r, (165) 12 (177) 44 31 (Z44) 3 +, 1 not, 20 =, 2 !=, 3 RS, 1 -, 1 and 

FRISC2 82257 3132.0 58.0 155 54 6 35 0 138 15r, (165) 8 (128) 45 41 (434) 1 not, 18 =, 2 !=, 3 RS, 12+, 4 - , 1 and 

KALMANIO 297088 5397.6 69.2 73 78 20 20 1 101 19r, 10c, 6a (673), (399) 10 (105) 28 21 (200) 1 <=, 10 =, 5 •. 5 + 

KALMANI02 297128 5397.6 69.2 81 78 20 9 0 101 19r, 10c, 6a (673), (399) 10 (105) 2S 21 (200) 1 <=, 10 =, 5 *, 5 + 

ELUP 149285 3051.0 67.8 53 45 8 22 1 125 44r. (689) 7 (122) 14 34 (544) 8*. 26 + 

MC6845 32254 2448.5 41.5 90 59 3 29 0 121 42r, 4c, (213) 5 (60) 11 36(187) 29 =, 6 +, 1 and 

TAXI 8506 1136.2 43.7 38 26 18 19 0 42 13r, Ic, (31) 1 (8)4 13(37) 7 =, 3 and, 3 + 

PARKER 35453 738.0 41.0 29 18 21 8 2 70 14r, (70) 4 (32) 12 22 (176) 9 -, 7 +, 6 != 

TSENG 23386 6975.0 225.0 46 31 1 46 0 55 16r, (121) 12 (96) 24 8(64) 1 div, 1 -, 1 *, 3 +, 1 (K, 1 and 

WINOGRAD 167588 10983.6 67.8 172 162 29 7 0 224 132r. (1520) 0(0) 0 46 (460) 12 *, 20 +, 14 -

Table 6.2 Initial implementation data for the benchmarks. 



Co#t Amctioa 
pdonty 

delay area 

Area 
Oim®) 

Delay 
(ns) 

Maximum 
control 

node delay 

Number 
of 

control 
node: 

CriUcal 
path 

length 

Maximum 
chain 
kngth 

MOO usage mcasureg 
(%) 

clock 

No. 
of 

nets 

Number of 
rcgwten 

comien. rams 
(words) 

(total tnt width) 

Number of 
MUX 

mia (WM): 
inpuLs 

Functional Units 
m iniiial design for both implemenimioM not ibown 

Total 
imitt (bits) 

No. of uniu and lypc 
ALUs in braciets./=f8Si, 

CBM2 
20149 51&7 39.9 13 13 49 56 119 ^ # 0 6 (61) 27 44(203) 1 +/. 6 SI/. 3 SRf. 1 (shift) 

17142 604.5 40.3 15 15 44 80 108 5r. (52) 4M%# 43 (197) 1 +/, 1 SI/, 7 S U 1 Sty 

CHIP' 
1546876 10775.8 125.3 180 86 2 5 681 160r, 4c, 3a 

(3k), (1642) 
40 (646) 160 180 

(2509) 

9 (+. ),. 7 (+,-)/; 17 -f, 2 >, I0<, 40 : 
8 !=, 10 <=. 1 SI/, 5 SU. 1 SRf. 

19 &, 12 comp. 13 

1529843 12682.5 169.1 172 75 27 675 152r. 4c. 3a 
(3k). (1381) 

40 (646) 162 180 
(2465) 

7 (+. X 10 (+.-y, 20 -i, 3 >, 12<, 
38 =. 8 !=. 8 <=. 1 SI/. 5 SU. 1 SRf. 

18 &. 13 comp, 10 +. 

FRISCl 
33334 1209.0 52.7 42 26 12 36 44 111 13r, (133) 11 (161) 41 29 (212) 1 ( + . - ) J . 1 ( + . - y , 2 S R / , I S R j 

31498 1475.6 46.5 42 28 12 37 44 111 13r. (133) 13 (193) 45 2 7 ( 1 8 0 ) 1 (+ .X 1 +f, 1 SR/ 

FRISC2 
59818 735.0 52.5 14 14 53 40 123 13r. (133) 11 (176) 51 32 (290) 3 +/, 4 3 SR/ 

26663 1440.6 68.6 21 21 49 52 102 13r. (133) 12 (192) 46 24 (162) 1 (+.-)s. ISRf 

KALMANIO 
286671 2937.6 81.6 37 36 27 45 97 14r. 2c. 6a 

(673). (250) 
11 (184) 34 21 (200) 1 4 +s. 2 */. 3 *s. 1 comp 

269778 3747.4 93.0 42 41 23 37 86 16r. 2c. 6a 
(673), (248) 

12 (200) 38 14 (88) 2 +i. 1 *s, 1<= 

KALMANI02 
284529 2101.8 67.8 31 31 40 46 99 14r. 6a 

(673), (220) 
13 (216) 40 2 0 ( 1 8 4 ) 5 +s, 4 • / 

268062 3 2 6 4 . 0 81.6 40 40 3 4 19 87 12r, 6a 
(673). (214) 

13 (232) 42 13 (85) 1 (+,->5, 1 *S 

t Design intomutlon titim linuted design space expioniuon due to system crrw. 

Table 6.3 Synthesis results of benchmark designs using the comprehensive cell library. 



Cost function 
priority Area 

(pm') 
Delay 
(ns) 

Maximum 
control 

node delay 

Number 
of 

control 
nodes 

Critical 
path 

length 

Maidmum 
chain 
length 

MOG usage measures 

(*) 

No. 
of 

nets 

Number of 
registers 

counlers, rsnu 
(words) 

(lolal bit width) 

Number of 
MUX 

imilB (bits): iiqjuts 

Functional Units 
unils S8me as imlisj design for both implemeotslioiis not shown 

delay area 

Area 
(pm') 

Delay 
(ns) 

Maximum 
control 

node delay 

Number 
of 

control 
nodes 

Critical 
path 

length 

Maidmum 
chain 
length 

clock rcgs units 

No. 
of 

nets 

Number of 
registers 

counlers, rsnu 
(words) 

(lolal bit width) 

Number of 
MUX 

imilB (bits): iiqjuts 
Total 

units (bits) 
No. of units and type 

ALUs in brackets. jt=sniall 

ELUP 
1 2 135638 531.2 142.1 4 4 7 92 40 18 118 20r(305) 22 (352) 53 23 (368) 3(+,-)f, 1 1 + / . 3 + J . 4 » / . 2 * J 

ELUP 
2 1 38282 4302,0 119 5 36 36 2 43 45 15 87 20r(305) 16 (256) 62 3(49) 

MC6845' 
1 2 28176 193.2 55.5 4 4 6 76 15 2 115 35r, Ic. (151) 7 (70) 15 35 (195) 4 (+,-y. 2 3 CMnp, 25 = 

MC6845' 
2 1 23230 316.8 105.6 3 3 13 49 9 3 109 33r, Ic, (139) 6 (67) 12 35 (190) 1 (+,-)i, 4 +i, 29 = 

TAXI 
1 2 6022 219.6 37.0 6 6 5 69 33 1 37 k C 5 ) 5 (18) 11 10(20) 1 +/. 6 = 

TAXI 
2 1 4262 360.0 60.0 6 6 5 54 33 1 35 :r(25) 3 (10) 7 n p U 1 7 = 

PARKER 
1 2 226X9 317.7 105.9 3 3 5 92 4 20 58 8r(22) 7 (56) 20 15 (120) 3 +s. 7 -/, 5 != 

PARKER 
2 1 8627 541.1 77.3 7 7 3 71 27 16 53 9t(30) 6 (48) 28 ^ ^ ) 1+i, 1 6 != 

TSENG 
1 2 22166 1406.4 234.4 6 6 6 31 33 4 55 16r (121) 12 (96) 24 ( (64) 3 +s, 1 -s 

TSENG 
2 1 17980 1707.2 213.4 8 8 5 29 48 5 56 !6r(121) 14 (112)31 5(40) 1 (+.-)i 

WINOGRAD 
1 2 133300 1286.6 91.9 14 14 5 54 13 7 171 66r (752) 11 (132) 22 43 (430) 8 (+.- / 2 (+,-% 3 +/. 10 +^. 8 7 •/, 

4 ""j WINOGRAD 

2 1 57812 14698.5 119.5 123 123 3 24 41 5 184 43r(512) 23 (322) 133 7(70) 1 (+,-)j, 6 ' s 

Table 6.4 Continuation of Table 6.3. Synthesis results of benchmark designs using the comprehensive cell library. 
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In all implementations the area and delay of the controller, as described by control cells 

in the cell library, was made small compared with that of functional units therefore 

results will show the typically accepted controller versus data path trade-offs. It should 

be noted that MOODS will adapt to different trade-off curves which are dependent on 

and thus defined by the cell library data. As described in Chapter 2 this is a capability 

possessed by very few synthesis systems. 

The area and delay optimised implementations reported in Table 6.3 and Table 6.4 show 

a trade-off between area and delay. The least trade-off occurred in the CHIP and 

KALMANIO designs both of which contain RAMs. The RAMs used are limited to 

single port memories and can not be bypassed as with registers; these restrictions limit 

merging and sharing optimisations and thus limit the actual achievable design region. In 

general more variation occurs where ROM/RAM is not used and functional units 

implement either similar operations or operations common to individual cells both of 

which can be easily merged. 

The delay of an implementation is the product of the critical path length and maximum 

control node delay. In many cases the critical path length is short and maximum node 

delay (the clock period) is long for delay optimised designs. A long clock period does 

not necessarily produce a slow design, as demonstrated by the CHIP and MC6845 

designs where the faster implementations have a longer critical path length than their 

area optimised designs. Therefore it is insufficient when reporting data for delay 

optimised designs to give either critical path length or node delay; both figures are 

required in order to compare the real speed of implementations. 

In comparing register numbers the total bit width (the sum of storage bit widths) is 

proportional to the area occupied and so is a more representative figure for area than the 

number of units. The number of registers in both the area and delay optimised 

implementations have been reduced by similar amounts, however, the mechanism used 

to optimise registers is different. Registers are required to store data between control 

states, therefore for a given design a greater number of states requires more registers to 

store data used by instructions spread among them. Fewer control states require fewer 

registers which are optimised away using the bypassing mechanism described in Section 

4.2.1. When there are many control states and registers, the registers are optimised using 

the sharing mechanism performed by the register sharing transformation. It may be 
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thought that due to the similar reduction in registers caused by bypassing and sharing, 

register optimisation can be performed as a separate synthesis task; however this is not 

the case as the optimisation opportunities for registers are highly dependent on the 

scheduling of instructions. 

The number of multiplexers used in an implementation has increased in the optimised 

implementations due to the increase in unit sharing shown by the total number of 

functional units. In comparing the area of units used in a design the total number of bits 

is a good representation of the area used. For multiplexers the number of inputs is also 

an important figure. The units which make up each design have been selected in the 

implementations such that a greater proportion of fast cells are used in the delay 

optimised design than in the area optimised design. 

An attempt has been made to determine how good a design is without reference to the 

user's objectives. The measure of goodness (MOG) measures give a guide as to how 

well the clock period, registers and units are utilised and are similar to other utilization 

measures [28,70]. For the clock period this consists of analyzing the slack time in each 

control state. The slack time is given by the difference between the end time of the 

maximum instruction graph and the clock period. The register and unit usages are 

determined by calculating the ratio of the number of control steps during which they are 

in use, to the critical path length. The unit usages are scaled by the probability of 

execution given by the conditional branch probabilities to allow for the possibility of 

mutually exclusive instructions sharing functional units. As a consequence of this the 

unit usage figures are small. In all designs the clock period is better utilised in the delay 

optimised implementations as would be required in achieving a fast design; similarly the 

unit usage should reflect the optimisation of the area, however this is not apparent due 

to the small unit usage figures. In all except the Kalman filter design the register usage 

is better for the area optimised implementations. This is not due to register sharing as 

indicated by similar register figures for both implementations but due to the increased 

critical path length which would increase the register active times compared to their 

inactive times. 

To determine the effect of inline expansion two design descriptions which use modules, 

FRISCl and KALMANIO, were transformed such that the modules were expanded 

inline resulting in the FRISC2 and KALMANI02 descriptions. The modules in the 
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FRISCl description are called more than once which causes an increase in the number 

of instructions in the expanded description; as a consequence an increase occurs in the 

area and delay of the initial implementation (see Table 6.2). Alternatively, the 

KALMANIO description only calls its modules once therefore in the expanded 

description no increase in the number of instructions occurs and there is little increase in 

the area and delay of the initial implementation. Despite the initial increases in area and 

delay the optimised implementations for the expanded designs are better than those for 

the un-expanded designs. The results shown in Table 6.3 demonstrate that inline 

expansion produces better implementations and where modules are called more than 

once, as in FRISC, a wider range of implementations occur. Better implementations will 

always result from inline expansion as optimisation restrictions, caused by module 

boundaries, are removed. In the area optimised FRISC2 design the user defined ALU 

module in FRISC 1 which was expanded in the FRISC2 has been recreated by the 

system as it reduces the area most, this is shown by the single (+,-) ALU in the 

functional units column. The effect of inline expansion is illustrated further using design 

space exploration in Section 6.4.3. 

6J COMPARISON OF SYNTHESIS SYSTEMS 

In order to compare the designs produced by different synthesis systems sufficient data 

must be available which correctly describes the implementations. As mentioned earlier it 

is not enough just to count units and the critical path length when the objective is 

reducing area and/or delay. The results of popular benchmarks produced by other 

systems have been extracted from relevant papers with the exception of Scholyzer which 

was available for actual use. 

When comparing with another system the MOODS cost function was set to the 

equivalent optimisation criteria of the other system. The cell library used by MOODS 

was constructed such that it reflected the cells and units available to the system being 

compared. Where the other system used ALUs, as in the TSENG example, a similar 

ALU was added to the MOODS cell library and given competitive parameters so that 

there was a good chance of it being used; of course this can not be guaranteed due to 

the stochastic nature of the MOODS system. 
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63.1 COMPARING MOODS WITH SCHOLYZER 

A detailed comparison of MOODS can be made with the Schoiyzer system as it uses the 

same intermediate code (ICODE), generates a similar initial implementation, creates the 

output as a netlist of parameterized cells and all of the implementation data is available. 

The MOODS cost function was set such that delay was the high priority objective with 

area as the low priority objective, which is similar to the built in optimisation criteria of 

Schoiyzer. The MOODS cell library contained only basic cells as assumed available by 

Schoiyzer. The cell library data was used to calculate, using the same methods, the 

actual area and delay of the implementations produced by both systems; therefore the 

results shown in Table 6.5 are directly comparable. Most of the implementations 

produced by MOODS are of a similar speed or faster than the Schoiyzer 

implementations. This is primarily due to the lack of binding by MOODS of user 

defined variables in the input description. 

Both systems were run on a MicroVax 3100 workstation. Schoiyzer's execution times 

varied from 9s for the TAXI design to 150s for the FRISCl design; the execution time 

being highly correlated to the design size. MOODS execution times varied from 30s for 

the TAXI design to lOOmins for the MC6845 design and are highly dependent on the 

annealing schedule. Although in general the MOODS execution times are an order of 

magnitude greater than those of Schoiyzer the variety and quality of implementations 

achieved is considered more important. The MOODS execution times are also degraded 

by the fact that the current version of MOODS was compiled using no compiler 

optimisations. 

Further improvements of the MOODS system over the Schoiyzer system can be seen by 

examining the implementations produced from a simple small example (TEST). The cell 

library used was the comprehensive one as described in Section 6.2. The behavioural 

description shown in Figure 6.8 was compiled using the SCHOLAR language compiler. 

The resulting ICODE was then used to generate circuits from both the MOODS 

synthesis system and the Schoiyzer system. A short behavioural description was used so 

that the resulting implementations could be shown graphically. Despite its shortness the 

implementations produced illustrate the major differences between the MOODS 

synthesis system and the Schoiyzer system. 
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CBM2 SCHOLYZER 28782 384.0 38.4 10 10 1 82 18r. (169) 8 (79) 26 15 (134) 3 +. 8 LS, 3 RS, 1 neg CBM2 

MOODS 16094 705.6 50.4 14 14 3 101 5 ^ 0 % 5 (52) 18 40 (167) 2 +, 3 LS, 3 RS, 1 neg, 32 = 

FRISCl SCHOLYZER 36949 1050.4 40.4 43 2 6 / 9 2 146 H r , Ic, (147) 12 (177) 40 18 (153) 1 +, 1 -, 10 &, 2 !=, 3 RS, 1 

not 

FRISCl 

MOODS 38187 1035.0 41.4 39 25 4 114 I3n, 0 3 3 ) 13 (193) 44 29 (212) 2 +, 1 1 &. 2 !=, 2 RS, 1 not, 

20 = 

KALMANIO SCHOLYZER 286577 2460.5 66.5 37 39 3 148 9r. 9c. 6a (673), (187) 9 ( 8 9 ) 2 6 17 (143) 4 +, 5 *, 7 &, 1 < = KALMANIO 

MOODS 272840 2423.5 65.5 38 37 2 88 17r, 2c, 6a (673), (276) 13 (216) 38 14 (88) 2 +, 1 *, 10 =, 1 <= 

E L U P SCHOLYZER 150039 1130.5 66.5 17 17/3 1 175 4Sr. (705) 7 ( 1 1 2 ) 14 34 (544) 2 6 + , 8 * E L U P 

MOODS 87057 618.0 224.8 3 3 7 121 16r, (241) 30 (480) 72 17 (272) 13 + , 4 * 

MC684S SCHOLYZER 22696 243.6 40.6 6 6/2 2 86 20r, 6c, (167) 4 (56) 8 13 (88) 2 +, 10 =, 1 & MC684S 

MOODS 24112 226.0 50.9 4 4 8 108 31r, 4c, (143) 7 ( K 0 I 6 32 (155) 2 +, 29 =, 1 & 

TAXI SCHOLYZER 4039 284.2 40.6 7 7 2 31 3r, Ic, (21) 1 ( 0 3 2 ( 1 2 ) 1 +. 1 = TAXI 

MOODS 4106 285.6 56.9 6 6 5 35 7 ^ ( 2 1 ) 3 (10) 7 11 (24) 1 +, 7 =, 3 & 

PARKER SCHOLYZER 30472 307.2 38.4 10 8/3 1 77 & \ ( M ) 11 ( 8 8 ) 2 3 17 0 3 Q 5 +, 6 -, 6 != PARKER 

MOODS 22689 317.7 105.9 3 3 5 58 7 (56) 20 15 (120) 3 +, 7 -, 5 != 

TSENG SCHOLYZER 23326 2237.0 223.7 10 10/3 1 87 16r, (121) 12 (96) 24 8 ( 6 4 ) 3 +, 1 -, 1 *, 1 div, 1 or, 1 & TSENG 

MOODS 23186 1446.0 241.0 6 6 5 55 16r. (121) 12 (96) 24 8 ( 6 4 ) 3 +, 1 -, 1 *, 1 div, 1 or, 1 & 

Table 6.5 Comparison of benchmarks synthesized by Scholyzer and MOODS. 
A basic cell library and delay optimising cost function has been used in MOODS for comparison with Scholyzer. 
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program test{b,c/k) 1 PROGRAM "test" 2 3 / 1 ACT 2 
$( define $( VAR "a" 4 <10 : 0> 

a<10:0> VAR "b" 2 <10 : 0> 

b<10:0> VAR "c" 3 <10 : 0> 

c<10:0> VAR "j" 5 <10 : 0> 

VAR "k" 1 <10 : 0> 
k<10r0> 2 PI,n5 2 *4 4 

3 GR 3 #10 6 

4 IFMOT 6 ACT 6 

a b + 4 5 PLUS 4 3 5 ACT 7 

if (c>10) then <5 MINUS 4 3 5 

j ;= a + c 7 MINUS 5 #3 1 
else 8 ENDMODULE 1 

j := a - c 

i := j - 3 

$) 

SCHOLAR XCODK 

Figure 6.8 Example behavioural description. 

Figure 6.9 illustrates the implementations achieved. Control signals are used to select the 

control paths and as multiplexer selectors and are shown next to the appropriate arcs and 

nets in the control and data path graphs respectively. Control signals are also used to 

load registers and select ALU functions and are shown on the data path graph by a 

horizontal arrow next to the appropriate unit. Node enable signals are shown in the 

control node that generates them and are used in conjunction with other control signals 

to select multiplexer inputs and ALU functions. Figure 6.9a shows the initial 

implementation created by both the MOODS and Scholyzer systems, as previously 

described in Chapter 3, where each instruction occurs in a unique control state. 

Figure 6.9b shows the implementation created by Scholyzer and Figure 6.9c and 

Figure 6.9d show two implementations created by MOODS. 

The design created by Scholyzer (Figure 6.9b) seems hardly improved when compared 

to the initial circuit. Scholyzer optimised the design in the following manner; firstly the 

control graph was compacted using an ASAP scheme. This resulted in nodes N2, N3 

and N4 in the initial control graph being merged. The parallel section of the graph 

(nodes N5 and N6) could not be merged by Scholyzer as both instructions 15 and i6 
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Figure 6.9 Comparison of implementations for the TEST description. 

write to the same register (although not concurrently). The mutually exclusiveness of the 

writes is not detected by Scholyzer and so the merge cannot take place. The parallel 

nodes cannot be combined with their predecessor node as a dependency exists between 

instruction 12 and instructions i5 and 16. In Scholyzer this is taken to be contentious as 

register a (the variable causing the dependency) is user defined. A distinction is made 

between user defined and compiler created variables. Only compiler generated registers 

(temp) can be removed, user defined registers cannot be optimised by bypassing as in 

the MOODS system. The second step in optimisation was to share operators. This 
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resulted in no operators being shared as Scholyzer's sharing is extremely Umited; only 

similar operators with common inputs or outputs can be shared and an area 

improvement must also result. This last condition is pre-programmed into the system as 

no cost function is used. 

The designs generated by MOODS overcome all of the problems encountered with 

Scholyzer. In both designs produced by MOODS in Figure 6.9, the parallel instructions 

15 and i6 have been merged into a common control state. This is allowed despite writing 

to the same register as MOODS detects that the instructions are mutually exclusive. In 

the fast implementation (Figure 6.9c) the dependency between instruction i2 and 

instructions i5 and i6 has been detected and on merging the instructions into the same 

control node, register a has been bypassed and dependency arcs added to the instruction 

graph. A similar situation occurs with instruction i7 and register}. The operators in the 

data path have also been implemented using fast cells, thus ensuring the fastest design 

has been created. 

In the small implementation (Figure 6.9d) all control nodes have not been merged as 

sharing data path units was found by the system to improve the cost function greatest; 

instructions implemented by a common data path unit cannot occur concurrently. All of 

the plus and minus operators have been merged into one ALU. Out of the two ALUs in 

the database the smallest was selected. The MOODS system has detected that 

instructions i5 and i6 are mutually exclusive and may therefore share a data path 

operator even though they occur in the same control state. If the basic cell library had 

been used in generating the MOODS implementations then the ALU would have 

remained single plus and minus operators; the creation of the ALU demonstrates 

MOODS superior operator merging. 

The above implementations were found by exploring the area-time design space for the 

design. The AT design space is shown in Figure 6.10, where the solid marks represent 

the implementations shown in Figure 6.9 and the two extreme designs on the optimal 

design curve are those shown in Figure 6.9c and Figure 6.9d. The position of 

Scholyzer's implementation in the design space was calculated using the information 

contained in the MOODS cell database, thus ensuring a fair comparison. A range of 

implementations were found between the fastest and smallest implementations as can be 

seen from the design points of Figure 6.10. The AT design space for TEST can be 
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Figure 6.10 Explored AT design space for the TEST example. 

characterized using the three points method described in Section 1.7 by specifying the 

points representing the fastest and smallest design points and the design point nearest 

the origin. Note that the optimal design curve is the set of best designs using these 

systems and not necessarily the best obtainable manually or otherwise. 

<;.3k2 TRTiTni fSirssTricAdK; 

The following tables, Table 6.6, Table 6.7 and Table 6.8 show the results of the 

PARKER, ELLIP and TSENG benchmarks respectively. Each table consists of a 

compilation of the results given in various relevant papers as well as the results of 

comparable implementations generated by MOODS. The implementations generated by 

MOODS are in general competitive with those produced by the other systems. However, 

it should be noted that the MOODS system optimises a design with respect to real 

aspects of the design such as area (cost) and delay and as shown earlier the number of 

units and critical path lengths do not necessarily reflect these, therefore the relative real 

costs of implementations may be different from that implied in the tables below. 

The results generated by MOODS for the PARKER design show that for the fast 

implementation the speed, if taken to be proportional to critical path length, is equal to 

the best produced by the other systems and for the small implementation the area, if 

taken to be the number of functional units, is also equal to the best produced by other 

systems. If both area and speed are taken into account, the secondary objective, that is, 
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Synthesis system 

and/OT reference 

Opdmiwdon 

goal 

No. of 

adders 

No. of 

subtracts 

No. of 

states 

Control path length 

long / short 

Maximum 

chain length 

MAHA [24] 

Critical p B h fint 

scheduling 

speed 2 3 4 4 3 MAHA [24] 

Critical p B h fint 

scheduling cost 1 1 8 8 2 

[63] 

Path based 

speed 2 3 4 3/1 5 [63] 

Path based 

cost 1 1 9 5/7 2 

HAL [60] 

w i A mutual 

exclusioQ detection 

speed 2 2 3 3 3 HAL [60] 

w i A mutual 

exclusioQ detection average 2 1 4 4 3 

HAL [60] 

w i A mutual 

exclusioQ detection 

cost 1 1 S 8 2 

SCHOLYZER speed 5 6 10 8/3 I 

MOODS with 

bmic cell library 

speed 4 6 3 3/3 5 MOODS with 

bmic cell library 

cost 1 
• 

9 9/9 4 

Table 6.6 Comparison of systems for the PARKER benchmark. 

area for the fast implementation and speed for the small implementation, is not as good 

as that produced by other systems. However, the real aspects of the implementations, 

taking into account the delay of individual units and area of registers and control, would 

result in different relative merit for the implementations. 

The results generated by MOODS for the ELLIP design (see Table 6.7) show that faster 

and smaller implementations have been produced, however the argument given in the 

previous paragraph applies equally well to both the ELLIP and TSENG benchmarks. 

The number of nets shown in Table 6.7 can not be compared as the net count for 

MOODS relates to single ended nets, that is, nets having one source and one sink, 

whereas, nets in other systems are often counted as wired trees, that is, having one 

source and many sinks. In addition both control and data path nets are counted in 

MOODS but other systems count only data path nets. 

The increase in multiplexer inputs is inevitable as no multiplexer optimisation is done 

by MOODS. The increase in registers is caused by the constraint that a design's output 

registers are not optimised in order to preserve their intended function. 
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Synthesis system 

and/or reference 

Optimisation 

goal 

No. of FSM / 

controller steps 

No. of 

adders 

No. of 

mults 

No. of 

MUX inputs 

No. of 

registers 

No of 

nets' 

[ 9 5 ] Source ref. speed 17 4 4 — — --

HAL [60] speed 17 3 3 31 12 56 HAL [60] 

cost 21 2 1 — ~ -

[42] speed 17 3 2 — — 
„ 

SPLICER [95] cost 21 2 1 43 - — 

SPAID [19] speed 17 3 2 26 17 22 SPAID [19] 

cost 21 2 1 19 19 14 

MOODS 

Using bmmic cell 

librwy. 

speed 14 3 3 79 22 113 MOODS 

Using bmmic cell 

librwy. cost 37 1 1 68 25 97 

Including ALU cell in cell Ubraiy ALU (+. *) 

APARTY [67] speed 19 4 614 bits 192 bits 32 Hts 

MOODS speed 15 3 224 bits 657 bits 1658 bits 

t count not compmimble, see text. 

Table 6.7 Comparison of systems for the ELLIP benchmark. 

Table 6.8 compares the implementations of the TSENG benchmark produced by various 

systems. The implementations produced by MOODS were constrained to use particular 

ALUs to provide useful comparisons and the restriction on optimising I/O registers was 

removed so that register optimisations were comparable. Comparisons with other 

systems are difficult even though benchmarks are available and sometimes used. In 

comparing implementations it is important to know what other ALUs are available to 

the system from which to construct alternative implementations and what the costs 

associated with these units are compared to the ones used. In forcing MOODS to use 

particular ALUs for comparison of the TSENG benchmark the ALU costs were made 

low compared with other cells, however MOODS recognised this and often used more 

than one ALU as this was advantageous in reducing the overall cost of the design. 
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Synthesis system 

and/or reference 

Optimisation 

goal 

FUs and ALUs used 

in implementation 

No. of 

registers 

MUX data 

uxiits (inputs) 

No. of 

control states 

No. of 

nets 

FACET [26] Some. 

ref. speed 

FACET ALUs 

(+, AND) 

(*. +.()R) 

(DIV) 

8 6 0 9 4 31 

HAL [25] 

speed 

FACET ALUs 

(+, AND) 

(*. +.()R) 

(DIV) 
5 6 03) 4 26 

SPLICER [27] 

speed 

FACET ALUs 

(+, AND) 

(*. +.()R) 

(DIV) 

7 4(8) 4 14 

MOODS 

speed 

FACET ALUs 

(+, AND) 

(*. +.()R) 

(DIV) 

6 2 0 Q 6 22 

HAL [25] speed HAL ALUs 

(+. AND, OR, EQ) 

(*) . (DIV) 

6 - ( 6 ) 4 28 HAL [25] 

cost 

HAL ALUs 

(+. AND, OR, EQ) 

(*) . (DIV) 5 - ( K ) >5 28 

MOODS speed 

HAL ALUs 

(+. AND, OR, EQ) 

(*) . (DIV) 

3 1 (2) 6 19 MOODS 

cost 

HAL ALUs 

(+. AND, OR, EQ) 

(*) . (DIV) 

5 1 (2) 6 19 

[51] Path search alg speed (+. -). (+. OR). 

(DIV, AND) 

5 4 (9) 4 22 

MOODS speed 

(+. -). (+. OR). 

(DIV, AND) 
5 4(8) 6 25 

[42] SA alg area (+, *. DIV, AND, 

OR). (EQ) 

8 2 (9) bus 8 ~ 

MOODS 

area (+, *. DIV, AND, 

OR). (EQ) 
6 5(10) 6 27 

[42] SA alg delay (+.-./UfCO 

(OR. DIV, *), (EQ) 

8 4 (12) bus 5 — 

MOODS 

delay (+.-./UfCO 

(OR. DIV, *), (EQ) 
5 2(4) 6 23 

Table 6.8 Comparison of systems for the TSENG benchmark. 

6.4 DESIGN SPACE EXPLORATION 

The ability to explore the design space is an important aspect in both the development 

of a synthesis system and the optimisation and evaluation of a design. The design space 

has been used in Section 6.1.3 (pages 119 and 120) to determine an appropriate 

temperature reduction method and in Section 6.1.4 (page 122) to show the variation in 

design points due to different random number sequences. This section illustrates further 

how the design space may be used. In the context of optimisation a good design space 

is not only one that contains optimal designs but where the design points are clustered 

about the optimal design curve thus showing that near optimal designs can be 

consistently achieved. 
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6 / k l ANALYSIS OF THE SIMULATED ANNEALING ALGORITHM USING 

DESIGN SPACE EXPLORATION 

Figure 6.11 illustrates design spaces for the FRISCl design. 25 design points were 

found and the same number of iterations were applied for each design space. Design 

spaces a and b used a schedule where T^=Tg^=0 (no schedule), that is, no degradations 

were applied to the design whereas design space c used the schedule given in Table 6.1. 

Design spaces a and c used a previously found design point in order to generate the 

a: no #ch#dW*. prevtotn poNHs 
b: no mdwduW. MM p e n s 

I" 15x10* 

gAKiy 34*1̂  4*1̂  WkWf WkW* lUklOf WkM* Wklf 2.5x10* 3,0x10* 3 5 x 1 0 * 4.0x10* 4 £ x 1 0 * 

Figure 6.11 Comparison of improvement only and simulated annealing 

approaches and the use of initial or previous design points. 

next whereas design space b used the initial implementation. Figure 6.7 showed that the 

starting point used, either initial or previous, has little effect of the position on the final 

design point. The slight improvement of design space c over b is therefore due to the 

annealing algorithm and as the difference is small, little backtracking (by design 

degradation) is required in reaching the design points. Design space a shows the 

importance and effectiveness of backtracking by design degradation inherent in the 

simulated annealing algorithm. With no schedule a previously optimised design point 

can not be degraded in order to find the next point therefore many points in design 

space a occur at the same position. The simulated annealing approach therefore finds 

slightiy improved and a greater number of distinct design points than a no schedule 

(improvement only) approach. 

The six graphs of Figure 6.12 illustrate how design points migrate fi"om the initial 

design point to the optimised design points. The design spaces are shown at equal 

intervals of iterations. At the start of the schedule the temperature is high therefore both 
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Figure 6.12 Illustration of how design points migrate from the initial point to the 

optimised points in the simulated annealing algorithm. 

degradations and improvements are equally applied to the designs whose points 

consequentially lie between the worst (initial) design point and the optimal design curve 

(see Figure 6.12 graph a). A range of targets along the axis are used in automated 

design space exploration and as the number of iterations increases the design points 

become closer to their targets causing the points to spread out (graphs b to d). The 

optimal design points are obtained as the designs freeze (graph e). The points are 

improved further by iterations at T=0 causing some target values to be over reached; 

this is shown by the compression of points along the delay axis in graph f. 

Both Figure 6.11 and Figure 6.12 show that most of the optimisation is done at the 

lower temperature steps, however, optimisation can not start at lower temperatures as the 

degradations which can be applied are temperature dependent. The results indicate that 

few design degradations are required in order to optimise a design. Some iterations are 

wasted in arbitrarily applying degradations, for example, there is little change between 

graphs b and c in Figure 6.12 despite applying 5 6 0 0 iterations and a large temperature 

drop. This further illustrates the importance of the non-linear temperature reduction 

method. 



K R Baker 1992 6. Results 142 

6 . 4 2 COST irijTK:Tn()Pf PRIORITY SCALING 

Analysis of early design spaces explored using a high and low priority, area/delay cost 

function showed that for an increase in the number of iterations per temperature step the 

high priority target was reached with greater accuracy. The fact that the higher priority 

objective had been met and was closer to the target should have resulted in more 

optimisation opportunities for the lower priority objective to be improved, however this 

was not always the case. The reason for this was thought to be in the determination of 

the change in energy, which is the first non-zero element in the energy change vector. 

The value returned is not dependent on its priority level therefore the design freezes at 

the same temperature for all priorities (due to the normalisation to stabilise T,^, see 

Section 6.1.1), which may result in a lower priority objective not being optimised as the 

design had frozen for all priorities. To allow lower priority objectives to be further 

optimised the change in energy was scaled by its priority thus lowering its freezing 

point. 

Figure 6.13 shows the effect of scaling the change in energy AE by the cost function 

priority at which the change occurs. The annealing schedule shown in Table 6.1 was 

used for both design spaces. The two graphs have a spread of points covering similar 

areas of the AT design space. Two major differences are apparent; firstly, the best 

overall designs, that is the ones nearest the origin, do not occur in the "scaled" design 

space and secondly, a few faster designs have been found in the "scaled" design space. 

3x10* 

4 x l f 

2 .5x10' 3.0x1 (T 3 j x 1 0 ' 4 .0x10' 

zxicr 

Ixiy 
S.OxlO' 3.5x10^ 4.5x10* 

Figure 6.13 AT graphs showing the effect of scaling the change in energy AE by its 

corresponding priority in the cost function. 
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It would seem that the good overall designs have migrated to good designs in single 

design aspects. This may be due to small errors in estimating the effect of 

transformations. In comparing design spaces the clustering of designs about the optimal 

design curve is more important than the individual designs themselves. All the designs 

should be achievable using either the scaled or un-scaled methods as the transformations 

which produce designs have not changed only their application sequence. The priority 

scaled method for calculating the change in energy is not the default method used in the 

MOODS system; however the user may initiate its use if required using a command line 

parameter. 

6 . 4 3 DESIGN ANALYSIS USING DESIGN SPACE EXPLORATION 

As shown by design spaces illustrated throughout this chapter the exploration of the 

design space gives the designer an insight into the trade-offs and consequentially the 

range of designs that can be achieved for a given design description. As described in 

Section 1.7 the design space may consist of any number of the design aspects monitored 

by the system. The two dimensional area-time (AT) design space is the archetypical 

design space where trade-offs are usually assumed to occur. Trade-offs between other 

design aspects are possible, however these are rarely seen in other systems. Synthesis 

systems are usually limited to an approximation of area and/or delay criteria and use 

pre-programmed trade-offs, resulting a high probability that real area-time trade-offs are 

not seen. 

The MOODS synthesis system is capable of exploring an n-dimensional design space 

and can automatically explore two (as seen earlier) and three dimensions. Figure 6.14 

shows a three dimensional design space consisting of area, delay and power. It can be 

seen that trade-offs occur between the area and delay criteria and the delay and power 

criteria; however almost no trade-off has occurred between the area and power 

objectives. This high correlation between the area and power criteria had been noted by 

Leive and Thomas [92]. The area and power criteria are related by cell construction and 

device characteristics and also by their method of calculation where both criteria are the 

sum of their respective area and power costs for each cell used. A further area-delay-

power design space was created where additional cells that traded area and power were 

introduced into the cell library. The additional cells produced littie improvement in area-
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Figure 6.14 Automatic exploration of a three dimensional design space consisting of 

area, delay and power for the FRISC2 design. 

power trade-offs thus indicating that the method of calculation has a greater influence on 

the correlation of criteria than the cells. Another three dimensional design space was 

generated using the area, delay and number of nets criteria. Again, a high correlation 

between the area and the number of nets was expected as the number of nets is closely 

related to the number of registers and shared units in the design. The resulting design 

space is shown in Figure 6.15. 

As well as showing the range of designs and trade-offs between design aspects, the 

exploration of the design space can also be used to illustrate the effect of changes to the 

design description. As an example, module inline expansion was shown by the results of 

Table 6.3 to improve the design, however the improvement can be graphically illustrated 

using the design space. Figure 6.16 shows the design spaces for the descriptions without 

and with their modules inline expanded on the left and right of the figure respectively. 

The KALMANIO design has modules which are only called once, therefore by 

expanding the modules no additional units are created; however, by removing the 

module boundaries further optimisation opportunities are generated as optimisations 
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Figure 6.15 Automatic exploration of a three dimensional design space consisting of 

area, delay and number of nets for the FRISC2 design. 
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Figure 6.16 Design spaces illustrating the effects of module expansion. 
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between modules can not occur. The lack of additional units and the increased 

optimisation opportunities caused by module expansion are shown in the KALMANI02 

design space by the similar spread of design points which have been shifted towards the 

origin. In contrast to the KALMANIO design, the FRISC design calls its modules more 

than once therefore their expansion causes additional units to be created which can be 

used in further optimisations; this is shown by the increased range of implementations in 

the FRISC2 design space. The design points are closer to the origin, as in the 

KALMANI02 design space, due to the removal of the module boundaries. 



CONCLUSIONS 
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7.1 CONCLUSIONS 

The objective of the project has been met by the implementation of an "intelligent" 

silicon compiler, named MOODS, that provides both automated design space exploration 

and the ability to optimise a design, given as a behavioural description, with respect to 

multiple objectives. The modularity of the program and the completeness of the 

optimising transformations allows further optimisation algorithms to be easily 

incorporated into the system. This provides the conditions for concise controllable 

comparisons between different optimisation techniques. 

The MOODS synthesis system, unlike many other systems, does not rely on pre-

programmed optimisations. Many systems use tailored heuristics or algorithmic 

approaches based on a particular shape for the trade-off curve, as highlighted in 

Chapter 2. This has been shown by McFarland [31] to be inappropriate as trade-offs are 

technology dependent. The lack of pre-programmed optimisations in the MOODS 

system is possible through the abstractness of the simulated annealing algorithm, a 

specific case of the general adaptive heuristic. The MOODS system does not assume a 

shape to the trade-off curve but uses technology dependent information fed up from the 

cell library to evaluate its cost function which is used to determine the effectiveness of a 

transformation. Allocation is dependent on the cell library, where the choice of cells and 

their subsequent sharing are based on the user's criteria expressed in the cost function, 

rather than being pre-programmed into the system. In this way the system adapts to 

changes in technology and to the availability of cells in the cell library. The MOODS 

system can use any cell described in the cell library which implements one or more of 

the basic instructions, the most suitable ones being selected in order to met the user's 

objectives. 

The results in Chapter 6 show that implementations found using the MOODS system are 

better than or equal to those achieved by other systems and that a varied set of 

implementations can be produced from a single behavioural specification. The varied set 

of good implementations is achieved through the generality of a comprehensive range of 

transformations, as well as by the "hill climbing" ability of the simulated annealing 

process. The results confirm that the opportunistic design modifications of the iterative 

method show the greatest power [69] and that larger designs allow more optimisation 
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opportunities [44]. Experiments in Section 6.1 have shown that iterations applied at T=0 

are an important fine refinement process and that the temperature reduction method is 

critical to the design quality. 

The comparison of the results with those generated by other systems illustrates the 

importance of knowing all the design data in order to do a proper comparison; for 

example, a short clock period does not necessarily mean a fast implementation. The 

conditions for synthesis are also important in the comparison of systems; for example, 

some systems require the user to select the hardware from which to build an 

implementation, whereas other systems, including MOODS, select their own hardware. 

This should be taken into account when comparing systems as by specifying hardware 

the user is biasing, or in some cases binding, the hardware used in the final 

implementation. 

Despite the execution time of MOODS being longer than that of other systems the 

improved variety and quality of the resulting implementations is considered more 

important. A design time of one minute or one hour is still faster than a hand crafted 

design. 

The results of Section 6.4 show that design space exploration is an important aspect of 

designing by high-level synthesis and in the development of synthesis systems. The 

MOODS synthesis system includes an efficient method for automated design space 

exploration. It allows the designer to obtain a perspicuous characterization of the design 

space for a design and thus allows him to investigate alternative designs and determine 

whether a design can satisfy a variety of simultaneous constraints. The design spaces 

show that there are many near optimal implementations for a given description. A 

characterized design space can be used, as shown in Section 6.4, to investigate the effect 

of changes to the synthesis system. A design space shows graphically the impact of 

system changes, giving a better overall view of their effect than is obtained by 

individually synthesising designs. 

The exploration of design spaces illustrates that there is a high correlation between some 

criteria, in particular area, power and the number of nets. This fact could be put to use 

in some systems to optimise criteria not explicitly optimised by the system; however, it 

would require an experienced designer to know how one criterion is related to another. 
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This would limit the system's potential users, defeating the object of high-level 

behavioural synthesis which is to provide a route to silicon for systems engineers. The 

ability of MOODS to simultaneously optimise a variety of criteria is therefore an 

important quality of a real synthesis system. 

The MOODS system uses a general distributed architecture which is not targeted 

towards a specific application. Although good results have been achieved for a variety 

of applications it is considered that some applications requiring completely different 

design styles would benefit from application specific compilers. 

The measure of goodness (MOG) which gives the usage of resources in a design has 

been shown to be an effective measure of the design's optimality without reference to 

particular objectives. In the compilation of the results it was noted that the designs 

flagged as being optimal by the automated design space exploration procedures had a 

better MOG than the non-optimal designs. 

Register splitting, that is the separation of variable active times into distinct registers, 

would give an improvement in register sharing and reduce the bias introduced by the 

designer in the design description but only if variables in the description have more than 

one active period. However, this is rarely the case as the programming style used in 

writing behavioural descriptions means that users create additional variables when 

required rather than re-using existing ones. Of all the descriptions used in this project, 

which were written by a variety of designers, none had variables with sufficient active 

periods to allow better register sharing if the active periods had occurred in unique 

registers. 

7.2 FUTURE WORK 

Although MOODS is currently successful and can produce a range of implementations 

there is scope for further improvement. Possible improvements can be loosely divided 

into two areas, (a) improving the performance of the system, both in terms of producing 

better implementations and increasing its computational efficiency, and (b) promoting 

the use of the system by making it more user friendly and easier to integrate with other 

synthesis tools. 
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Changes to the system in order to produce better implementations can be subdivided 

into improvements to the transformations and improvements to the optimisation 

algorithm. Further transformations could be incorporated into the system, however, they 

would be increasingly specific to special cases, that is, they would be more like the 

rules in a rule based system. A rule applying transform could be devised which searches 

for a rule and a data structure pattern on which to apply it. Detailed studies would be 

required to determine effective rules that could be applied. Rules are usually concerned 

with translation, that is, replacing a sub-structure of the design with an equivalent one 

which improves the cost function or increases subsequent optimisation opportunities; for 

example, replacing a<(b+l) by a<=b or loop (un)winding. Additional transformations are 

required to perform multiplexer optimisation which although dependent on the other 

synthesis tasks can be effectively performed after the iterative optimisation of the 

design. 

Changes to the optimisation algorithm comprise further investigation into the cost 

function and the method used to accept design degradations. As most transforms affect 

many design criteria it is unlikely that changes to low priority objectives would be 

returned from the evaluate (cost_fn) function. A two level cost function would 

therefore be adequate, thus providing a simpler cost function which could be more 

easily utilised in any additional optimisation algorithms. The results demonstrate that 

few degradations require to be performed in order to find a near optimal 

implementation, consequentially the simulated annealing algorithm may be wasting 

computational effort by randomly applying design degradations. The degradations 

require to be performed in a more controlled fashion in order to save design time. 

Sequence heuristics as described in Section 5.2.3 apply degradations only when no 

transformations that improve the design can be found. A tentative implementation of the 

sequence heuristic produced design times which were considerably longer than those of 

the simulated annealing algorithm. The reason for this is thought to be that the sequence 

heuristic wastes time in trying to find transformations which specifically improve or 

degrade the design, whereas, simulated annealing finds any transform and conditionally 

applies it. An alternative reason could be an implementation error, however a detailed 

investigation of the sequence heuristic was beyond the scope of the project. A great deal 

of research could be done in studying the sequence heuristic and in finding new 

adaptive heuristics that improve on simulated annealing, which despite its critics has 

proved to be a competitive approach to high-level synthesis. A good approach would be 
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to combine tailored and adaptive heuristics; for example, during optimisation control 

graphs are often reduced to a sequential section by merging parallel nodes, this could be 

performed by a fast tailored heuristic prior to iterative optimisation. 

Further improvements in the speed of the system could be obtained by determining all 

data dependencies before synthesis and either storing them using the present data 

stmcture but with an active flag or using look-up tables. This would help speed up 

contention tests which are computationally expensive procedures. 

The addition of timing constraints is required in order to allow the user to specify a 

particular timing between events. This could be included by the addition of time 

dependency links between instructions in control states. These links could also be used 

to maintain multicycled instructions during optimisation. Although multicycled 

instructions can be generated they are not fully integrated with the transformations. 

Timing constraints which must be met may be difficult to integrate into the 

transformations and are likely to limit the optimisation opportunities. Timing links could 

also be used in the generation of pipelined architectures where the pipeline cells would 

be represented in the cell library. 

Layout effects require taking into account in order to increase the confidence of an 

implementation reaching specific goals. Wiring effects can be estimated using a macro 

cell floorplanner as in Fasolt [93] or fed up from layout tools. Alternatively, synthesis 

tools can specify maximum wire lengths thus providing a predictable performance. 

In order to improve the usability of the MOODS system and ensure its continued use, 

additional language interfaces and tools are required. At present the behavioural 

description may be written using either the ELLA or SCHOLAR languages. Although 

ELLA is suitable as the output structural netlist, as it can be simulated using the ELLA 

simulator, it is not an appropriate language for writing behavioural descriptions as it 

lacks simple algorithmic constructs such as loops. The SCHOLAR language, although a 

good functional language with is own simulator, is not widely used. Subsets of 

VHDL [94] would be a valuable improvement for both the behavioural input and 

structural output. Further structural output formats would also be a benefit as a range of 

logic and layout tools could be used. 
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Extra tools which would aid the designer in producing an implementation could include 

automated test structure and test pattern generation [95] and automated methods in 

finding the annealing schedule or other adaptive heuristic parameters. Additional 

flexibility would be achieved if the designer could define operators to be used in the 

description that could subsequently be optimised by the system. At present user defined 

modules can be described, however their instances are not optimised. 

Currently the user interface for the MOODS system is a textual one. Once initiated the 

system creates an initial implementation and displays the MOODS prompt. The user 

issues commands at the MOODS prompt and data scrolls up the screen. When satisfied 

with the implementation the user exits the system whereupon output files are created. 

An improvement could be made in the presentation of the implementation to the 

designer. At present the data and control paths of the implementation are described in a 

number of output files and their nodes can be examine from the MOODS prompt. 

Alternative methods of design representation could either be textural, by back-annotation 

of the implementation to the original behavioural description, or by graphical output. 

Textural back-annotation would be useful as the designer could see how the original 

description had been altered by the system and could be useful in the development of 

new algorithms. Graphical output would also be valuable in order for the designer to 

visualise the implementation. By using platforms with graphical interfaces the user could 

watch the design being optimised and interact with it to produce the required 

implementation. 
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The intermediate code (ICODE) is input to the MOODS system in the form of a binary 

file. The ICODE represents the design as non-recursive modules described at the 

register-transfer (RT) level. Each module has a variable declaration part and a process 

part. Each process part consists of a set of processes each with a unique process 

number. Each process represents an instruction and associated with it is an activation 

list, that is, a list of processes to be activated when the current process ends. A process 

may start only when all preceding processes have terminated, indicated by a token. A 

collect instruction is used where the preceding processes are executed concurrently. Its 

effect is to wait for a specified number of tokens before activating subsequent processes. 

Each instruction is specified by its name, the set of inputs and outputs and the activation 

list, where conditional instructions have two or more condition dependent activation 

lists. The ICODE is stored in a binary file, however a textural representation of the 

ICODE can also be created. 

The ICODE Instruction Set and Binary File 

1. Logical and Arithmetic Operators. 

AND 2 - inputs 

3 3 ^ I, 

n - outputs 

n Oj, Oj, ... 0„ 

process list 

P A.,, Az, ... Ap 

OR 2 - inputs 

3 4 I, lo 

n - outputs 

n Oj, Og, ... O^ 

process list 

p Aj, Ag, ... Ap 

Similarly the following operators are defined in the same way: 

JKOR 3 5 

3 2 

fLUS M 

EG 20 

ATE 2 3 

18 

NOT (1 INPUT) 30 

11 

15 

21 

C E 2 4 

DIV 19 

LSHIFT 31 

ROR 12 

NEG (1 INPUT) 17 

LE 22 

GV? 2 5 
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2. Variable Access and Modification. 

50 

1 - input 

I, 

n - outputs 

n Oi, O2, ... 0„ 

process list 

p A], A ,̂ ... Ap 

4 

n - outputs 

n Oj, O2, ... 0„ 

process list 

p A], A2, ... Ap 

HIGHZ 

16 

n - outputs 

n 0 | , Og; ••• 

process list 

p Aj, A2, ... Ap 

9 I, 

index n - outputs 

n Oj, O ,̂ ... On 

process list 

P A ] , A ; , . . . A p 

4 4 I, L 

input variable 

I, 

process list 

P A], A2, ... Ap 

3. Conditional Branching. 

57 / 58 Ii 

process list (true) 

n A|5 A29 ... A^ 

process list (false) 

m Ai, A^,... A , 

SWITCHON input No. cases Default label No. 

70 I, M •^default 

(case const, label No.) l..m 

(CI, L J ( Q , W ... ( C . , L J 

COUNT 2 - inputs 

^ line Itemi 

process list (eq) 

n Aj, A2, ... A^ 

process list (ne) 

m Ai, Az, ... Am 

4. Directives. 

VAR "name" var No. upper bit lower bit 

109 n <n chars> V„ upb Iwb 
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ALIAS "name" var No. upper bit lower bit parent var upb Iwb 

108 n <n chars> V„ upb Iwb V„ pupb plwb 

ROM "name" var No. upper bit lower bit low address values L.n 

41 n <n chars> V„ upb Iwb Iwaddr n V ,̂ Yj, ... V„ 

RAM "name" var No. upper bit lower bit low address high address 

42 n <n chars> V, upb Iwb Iwaddr hiaddr 

COUNTER "name" var No. upper bit lower bit 

106 n <n chars> V„ upb Iwb 

COUNTDN "name" var No. upper bit lower bit 

107 n <n chars> V, upb Iwb 

ZJNE 

28 

line No. 

Ln 

LABEL label No. process list 

54 Lj n A], A2, ... A„ 

5. Special Instructions. 

(XNUURZr Ab. qfm&ww 

53 T 

process list 

n Aj, A2, ... Ajj 

PROGRAM "name" n - inputs m - outputs process list 

76 n <n chars> n A;, A;, ... A^ m A,, A;, ... A^ p A,, A;, ... Ap 

MODULE "name" n - inputs m - outputs process list 

74 n <n chars> n Ai, A;, ... A^ m A,, A;, ... A^ p A,, A;, ... Ap 

MODULEAP Label 

51 L 

n - inputs m - outputs process list 

n Ajj A ,̂ ... A^ m Aj, A2, ... A^ p Aj, A2, ... Ap 
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ENDMODULE process No. 

77 A, 

REMARKS: 

1. A process number is either a single number or a label. If it is a label this is indicated 

by a preceding zero byte. 

2. An input is either a constant or a variable number. When it is a constant it is 

preceded by a zero. 
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Behavioural Synthesis using MOODS 
The 5-point Winograd Fourier Transform (WIN) example has been used to generate area 

and delay efficient implementatons. The correctness of the resulting implementations are 

verified by simulation and comparison to the simulation of the source description; thus 

demonstrating that for this design correctness by construction has been achieved. The initial 

ELLA behavioural description of the Winograd Fourier Transform is shown below. 

INT word_width = 6. 

INT inter_word__width = 10. 

INT real = 1, imag = 2. 

# Winograd Multiplication constants # 

CONST coeffs_positive = {b"0100000000", 

b"1011000000", 

b"0010001111", 

b"0110001010", 
b"0010010110", 

b"0001011101"). 

CONST coeffsnegative = (b"1100000000", 

b"0101000000'\ 

b"1101110001'\ 

b"1001110110", 

b"1101101010", 

b"1110100011"). 

CONST inlt = b"0000000000". 

FN WINOGRADS = ([10]STRING[word_width]bit: ip_short) -> 

([10]STRING[word_wldth]bit): 

(SEQ 

# Extend the internal word length to avoid overflows in the calculation # 

# Using sign extension # 

VAR ip ;= [10]init; 

[INT ]=1..10] 

ip[j] := STRING [4]ip_short[j][1] CONC ip_short[j]; 

# Premultiplication additions # 

LET 

si = (ip[(l*2)+real] PLUS_STR ip[(4*2)+real], 

ip[(l*2)+lmag] PLUS_STR lp[(4*2)+imag]), 

s2 = (ip[(l*2)+real] MINUS_STR ip[(4*2)+real], 

ip[(l*2)+imag] MINUS_STR ip[(4*2)+imag]), 

s3 = (lp[(3*2)+real] PLUS_STR lp[(2*2)+real], 

lp[(3*2)+imag] PLUSSTR ip[(2*2)+lmag]), 

s4 = (ip[(3*2)+real] MINUSSTR lp[(2*2)+real], 

ip[(3*2)+.lmag] MINUS_STR lp[(2*2)+lmag]), 

s5 = (si[real] PLUS_STR s3[real], 

si[Imag] PLUS_STR s3[lmag]), 

s6 = (si[real] MINUSSTR s3[real], 

si[imag] MINUSSTR s3[imag]). 
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s7 = (s2[real] PLUS_STR s4[real], 

s2[imag] PLUS_STR s4[lmag]), 

s8 = (s5[real] PLUS_STR lp[(0*2)+real], 

s5[imag] PLUS_STR ip((0*2)+imag]). 

Perform multiplications # 

mO = ((coeffs ̂ positive 1] MULT_ STR s8[real]), 

(coeffs positive 1] MULT_ _STR s8(imag])), 

ml = ((coeffs ̂ positive 2] MULT_ STR s5[real]), 

(coeffs positive 2] MULT_ STR s5[imag])), 

m2 = ((coeffs _positive 3] MULT_ STR s6[real]), 

(coeffs _positive 3] MULT_ STR s6[imag])), 

m3 = ((coeffs _negative 4] MULT_ STR s2[imag]), 

(coeffs positive 4] MULT_ STR s2 [real])), 

m4 = ((coeffs ̂ negative[5] MULT_ STR s7[imag]), 

(coeffs positive 5] MULT_ STR s7 [real])) , 

m5 = ((coeffs _negative 6] MU1T_ STR s4[imag]), 

(coeffs _positlve1 5] MULT_ ̂ITR s4[real])), 

s9 = (mO[real] [2..inter_word_wldth+l] PLUS_STR ml[real] (2..inter_word_width+l], 

mO[imag][2..inter_word_width+l] PLUS_STR ml[imag][2..inter_word_width+l]>, 

slO = {s9[real] PLUS_STR m2[real][2..inter_word_width+l], 

s9[imag] PLUS_STR m2[imag][2..inter_word_width+l]), 

sll = {s9[real] MINUS_STR m2[real][2..inter_word__width+l], 

s9[imag] MINUS_STR m2 [ imag] [2 . . inter_word__width+l ]) , 

sl2={m3[real] [2..inter_word_width + l] MINOS_STR m4 [real] [2..inter_word_width+l], 

m3[imag][2..inter_word_width+l] MINUS_STR m4[imag][2..inter_word_width+l]), 

sl3={m4[real] [2..inter_word_width+l] PLUS_STR m5[real] [2..inter_word_width+l], 

m4[imag] [2..inter_word_width+l] PLUS_STR m5[imag] [2..inter_word_width+l]), 

sl4 = (slO[real] PLUS_STR sl2[real], 

slO[imag] PLUS_STR sl2[imag]), 

sl5 = (slO[real] MINUS_STR sl2[real], 

slO[imag] MINUSSTR sl2[imag]), 

sl6 = (sll[real] PLUS_STR sl3[real], 

sll[imag] PLUS_STR s13[Imag]), 

sl7 = (sll[real] MINUS_STR sl3[real], 

sll[imag] MINUS_STR sl3[imag]); 

# Assemble output at full internal precision # 

LET long_output = (mO[real][2..inter_word_width+l], 

mO [imag] [2. . inter_word__width+l ] , 

sl4[real],sl4[imag],sl6[real],sl6[imag], 

sl7[real] , sl7[imag],sl5[real],sl5[imag]); 

# Select only word_length for each output # 

LET output = [INT 1^1..10] 

long output[i][inter_word_width-word_width+l..inter_word_width]; 

OUTPUT output 

) . 
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Simulation of the Behavioural Description 

To simulate the initial behavioural description the Winograd description was compiled 

into an ELLA context with the arithmetic and shell functions. The shell functions 

convert the bit string inputs and outputs into integers. Using integers makes the 

simulation results easier to interpret. 

Simulating the design gave the following results: 

FN WINOGRAD_TC 

*** time = 0 *** 

Sim <- ma 

WINOGRADTC = ? ? ? ? ? ? ? ? ? ? 

Sim <- cp i/0 i/0 i/0 i/0 i/0 i/0 1/0 1/0 1/0 1/0 

WINOGRAD_TC = 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 

Sim <- cp 1/25 1/25 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 

WINOGRADTC = 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 

Sim <- cp 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 

WINOGRADTC = 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/-1 1/-6 1/0 

Sim <- cp 1/10 1/10 1/10 1/9 1/8 1/4 1/3 1/2 1/2 1/1 

WINOGRAD TC = 1/16 1/13 1/-4 1/10 1/-1 1/1 1/3 1/3 1/6 1/-2 

Moods Synthesis 

To synthesis the design the description was compiled in the ELLA environment and 

then converted to ICODE using the ELLA to ICODE interface. The ICODE is the input 

to MOODS from which a variety of implementations can be produced using different 

cost functions in the optimisation process. 

The MOODS cell library was changed to include only the basic cells and one ALU 

performing the plus and minus operations. Two implementations were generated one 

optimsied for area, the other for delay. The annealing schedule used for both optimised 

designs was similar to the schedule derived in the results chapter and the main objective 

was given a priority of 1 and a minimising target (zero). The remaining objective was 

given a priority of 3 also with a minimising target. 
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The information on each design was extracted from the appropriate design analysis files 

( . d a f ) that were generated by MOODS during synthesis. To simulate the 

implementation the generated ELLA netlist was compiled into the ELLA environment 

with the basic and user parameterized cell macros and shell functions. When simulating 

a design each ELLA time step corresponds to a change in the state of the controller. It 

is important to know when the outputs are valid; this can be determined by studying the 

control graph file. In the implementations generated the outputs became valid at the 

end/start of the controller cycle. The start control node enable signal was monitored, 

therefore when this becomes true the output is valid. 

Design data for the un-optimised implementation; 

CELLS USED IN UN-OPTIMISED DESIGN 

14 subtract 

132 register 

10 10 port (temp) 

172 general Ctrl cell 

20 adder 

12 multiply 

active area (approx) = 

UN-OPTIMISED DESIGN DATA 

storage: 132 units 1520 bits 

functional: 46 units 460 bits 

ports; 10 units 60 bits 

interconnects: 0 units 0 bits 

TOTAL: 188 units 2040 bits 

Control: 172 units 

Critical Path Length: 162 

Max Control Node Delay = 111.600 ns 

MOG - elk use: 20%, Reg use: 7%, Unit use: 0%, AVG: 9% 

Area Optimised Design 

Design data for the area optimised implementation: 

active area = 

active area = 

active area = 

active area = 

8 2 0 8 0 . 0 0 0 sq urn 

86280.000 sq urn 

0.000 sq um 

0.000 sq um 

active area = 168360.000 sq um 

860.000 sq um 

CELLS USED IN FINAL DESIGN 

29 multiplexer 

106 general Ctrl cell 

1 adder 

4 ALU -,+ 

1 subtract 

94 register 

10 10 port (temp) 

9 multiply 

DESIGN DATA AFTER OPTIMISATION 

storage: 

functional: 

ports: 

interconnects: 

TOTAL: 

Control: 

94 units 

15 units 

10 units 

29 units 

148 units 

106 units 

1107 bits active area = 59778.000 sq um 

150 bits active area = 20140.000 sq um 

60 bits active area = 0.000 sq um 

347 bits active area = 24984.000 sq um 

1664 bits active area = 104902.000 sq um 

active area (approx) 530.000 sq um 
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Critical Path Length: 105 

Max Control Node Delay = 120.900 ns 

MOG - Clk use; 29%, Reg use: 0%, Unit use: 2%, AVG: 10% 

FINAL COST FUNCTION 

COST FUNCTION VECTOR 

CRITERION I area {sq urn) 

PRIORITY I 1 

INITIAL 1165980.000 

TARGET I 0.000 

PREVIOUS 1102187.000 

PRESENT 1102192.000 

ESTIMATE 1102192.000 

T delay (ns) 

3 

18079.199 

0 . 0 0 0 

12573.600 

12694.500 

12694.500 

Simulation results for area optimised moods design: 

FN WINOGRAD_TC 

*** time = 0 *** 

Sim <- mc WIN0GRAD_5.c71 

c71 = b'O 

Sim <- mc 

WINOGRADTC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 

S ^ n < - c # i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b ' ^ t i + 1 

*** time = 1 *** 

c71 := b'l 

Sim < op i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +102 

*** time = 2 *** 

c71 :=b'0 

*** time = 103 *** 

all := b'l, WINOGBAD_TC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 

Sim <- cp i/25 i/25 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +102 

*** time = 104 *** 

c71 := b'O 

*** time = 197 *** 

WINOGRADTC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 i/0 i/0 i/0 

*** time = 198 *** 

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 i/0 1/0 1/12 

*** time = 199 *** 

WINOGRAD_TC := i/0 1/0 1/12 i/12 1/0 1/0 i/12 i/0 1/0 1/12 

*** time = 202 *** 

WINOGRAD_TC := 1/0 1/0 1/12 i/12 1/12 i/0 1/12 1/0 1/0 1/12 

*** time = 203 *** 

WINOGRAD_TC := i/0 1/12 1/12 1/12 1/12 1/0 1/12 1/0 i/0 1/12 

*** time = 205 *** 

o71 b'l, WINOGRAD TC := i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 
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Sim <- cp i/1 i/2 i/3 i/4 i/5 i/6 i/7 i/8 i/9 i/10 b'O, ti +102 

*** time = 206 *** 

c71 := b'O 

*** time = 299 *** 

WINOGRAD_TC := i/12 1/12 i/12 1/-6 1/12 1/12 1/-3 1/12 1/12 1/12 

*** time = 300 *** 

WINOGRADTC := 1/12 1/12 1/12 1/-6 1/12 1/12 1/-3 1/12 1/12 1/0 

*** time = 301 *** 

WINOGRADTC := 1/12 1/12 1/0 1/-6 1/12 1/12 1/-3 1/12 1/12 1/0 

*** time = 304 *** 

WINOGRADTC := 1/12 1/12 1/0 1/-6 1/-3 1/12 1/-3 1/12 1/12 1/0 

*•** time = 305 *** 

WIN0GRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/12 1/-3 1/12 1/12 1/0 

*** time = 307 *** 

o71 b'l, WINOGRAD_TC := i/12 i/15 i/0 i/-6 i/-3 i/-5 i/-3 i/-l i/-6 i/0 

Sim <- cp i/10 i/10 i/10 i/9 i/8 i/4 i/3 i/2 i/2 i/1 b'O, ti +102 

*** time = 308 *** 

c 71 := b'O 

*** time = 401 *** 

WINOGRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/0 

*** time = 4 02 *** 

WIN0GRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/-2 

*** time = 403 *** 

WINOGRAD_TC := 1/12 1/15 1/-4 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/-2 

* * * t ime = 406 * * * 

WINOGRAD_TC := 1/12 1/15 1/-4 1/10 1/-1 1/-5 1/3 1/-1 1/-6 1/-2 

*** time = 407 *** 

WINOGRAD_TC 1/12 1/13 1/-4 1/10 1/-1 1/-5 1/3 1/-1 1/-6 1/-2 

*** time = 409 *** 

o71 := b'l, WIHOGRAD TC := i/16 i/13 i/-4 i/10 i/-l i/1 i/3 i/3 i/6 i/-2 

Delay Optimised Design 

Design data for the delay optimised implementation: 

CELLS USED IN FINAL DESIGN 

27 multiplexer 

97 general Ctrl cell 

6 adder 

9 ALU -,+ 

5 subtract 

98 register 

10 10 port (temp) 

11 multiply 

DESIGN DATA AFTER OPTIMISATION 

storage: 98 units 1184 bits active area = 63936, .000 sq urn 

functional: 31 units 310 bits active area = 50270, .000 sq um 

ports: 10 units 60 bits active area = 0, ,000 sq um 

interconnects: 27 units 354 bits active area = 25488, ,000 sq um 

TOTAL: 166 units 1908 bits active area = 139694, ,000 sq um 

Control: 97 units active area (approx) = 485. ,000 sq um 

Critical Path Length: 95 

Max Control Node Delay = 111.600 ns 



K R Baker: 1992 Appendix B: ELLA Simulation Example 1 6 6 

MOG - elk use: 34%, Reg use: 0%, Unit use: 1%, AVG: 11% 

FINAL COST FUNCTION 

COST FUNCTION VECTOR 

CRITERION I T delay (ns) I area (sq um) 

PRIORITY I 1 I 3 

INITIAL I 18079.199 1165980.000 

TARGET I 0.000 | 0.000 

PREVIOUS I 10602.000 1137659.000 

PRESENT I 10602.000 1136939.000 

ESTIMATE I 10602.000 1136939.000 

Simulation results for delay optimised moods design: 

FN WINOGRAD_TC 

*** time = 0 *** 

Sim <- mc WIN0GRAD_5.c22 

c22 = b'O 

Sim <- mc 

WINOGRAD_TC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 

Sim <- cp i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'l, ti +1 

*** time = 1 *** 

c22 := b'1 

Sim < op i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +90 

*** time = 2 *** 

c22 := b'O 

*** time = 91 *** 

c22 := b'l, WINOGRAD_TC = i/0 i/0 i/0 i/O i/0 i/O i/0 i/0 i/0 i/0 

*** time = 92 *** 

*** time = 181 *** 

c22 := b' 1 

Sim <- op i/25 i/25 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +90 

*** time = 182 *** 

c22 := b'O 

*** time = 266 *** 

WINOGRAD_TC := i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/12 

*** time = 267 *** 

WINOGRAD_TC := i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/12 i/0 i/12 

*** time = 268 *** 

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/O i/12 i/0 1/12 

*** time = 269 *** 

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 1/12 i/0 i/12 

*** time = 270 *** 

WINOGRAD_TC := i/0 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 

*** time = 271 *** 

c22 := b'l, WINOGRAD TC := 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 
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Sim <- op i/1 i/2 i/3 i/4 i/5 i/6 i/7 i/8 i/9 i/XO b'O, ti +90 

*** time = 272 *** 

c22 ^ b'O 

*** time = 356 *** 

WINOGRAD_TC := i/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/0 

*** time = 357 *** 

WINOGRAD_TC := 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/-1 1/12 1/0 

*** time = 35 8 *** 

WINOGRAD_TC := 1/12 1/12 1/12 i/-6 1/12 1/12 1/12 1/-1 1/12 1/0 

*** time = 359 *** 

WINOGRAD_TC := 1/12 1/12 1/12 1/-6 1/12 1/12 1/-3 1/-1 1/12 1/0 

*** time = 3 60 *** 

SIKOGRaD_TC := i/12 i/15 i/0 i/-6 i/-3 i/-5 i/-3 i/-l i/-6 i/0 

*** time = 361 *** 

c22 := b'l 

Sim <- op i/10 i/10 i/10 i/9 i/8 i/4 i/3 i/2 i/2 i/1 b'O, ti +90 

*** time = 362 *** 

c22 b'O 

*** time = 44 6 *** 

WINOGRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/-1 i/-6 1/-2 

*** time = 447 *** 

WINOGRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/3 1/-6 1/-2 

*** time = 44 8 *** 

WINOGRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/-3 1/3 1/-6 1/-2 

*** time = 44 9 *** 

WINOGRADTC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/3 1/-6 1/-2 

*** time = 4 50 *** 

WINOGRAD_TC := 1/12 1/13 1/-4 1/10 i/-l 1/1 1/3 1/3 1/6 1/-2 

*** time = 451 *** 

o22 := b'l, WINOGRAD TC := i/16 i/13 i/-4 i/10 i/-l i/1 i/3 i/3 i/6 i/-2 

Remarks 

The final cost functions of the two optimised designs show that a trade-off between area 

and delay has occurred. The major trade-off is between the length of the control graph 

and the sharing of data path units. Operations sharing a data path unit can not be 

executed concurrently and therefore must be in non-concurrent control states. 

Conversely, concurrent operations can not share the same data path unit. (Mutually 

exclusive operations are a special case exception which is recognised by MOODS.) The 

number of functional units (implemented by the add, subtract, ALU and multiply cells) 

indicate the amount of sharing. The initial number of functional units (in the un-

optimised implementation) is 46. This is equal to the number of operations in the 

description as in the un-optimised design each operation is allocated one functional unit. 

In the area optimised design the number of functional units is 15 indicating that each 

unit shares on average 3 operations; its critical path length is 105. In the delay 
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optimised design the number of functional units is 31, twice that in area optimised 

design (1-2 operations per functional unit). The reduction in sharing is accompanied by 

(traded off against) a decrease in critical path length to 95. 
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/*============================================================================ */ 

/* structure definitions 21/7/89 */ 

/* Keith R Baker Southampton University */ 
/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = * / 

/* Structure containing all list heads for use in main program and for */ 

/* passing information to and from procedures. */ 

struct all_heads { 

int high_sig,hi_group_no; 

struct module_node *mod_head; 

struct IGR_node *IGR_head; 

struct IO_arcs *arc_list; 

struct variable_node *var_head; 

struct DP_node *DP__head; 

struct condition_list *cond_head; 

struct label_node *label_head; 

struct net_data *net_list; 

/* Structure containing all technology lists such as cell data. */ 

struct cell_data *cell__head; /* list of all cells */ 

struct techno_units *units; 

struct cell_data *mux_cell,*reg_cell; /* pointers to these basic cells */ 

}; 

/* ICR linked list node, also indicates petri-net arcs. */ 

struct IGR__node { 

int node_no,delay; 

int temp; /* this is used in the find critical path procedures, */ 

/* the output of module start nodes, the resetting of the module ends, */ 

/* the setting of loop its, the is_reachable and trace_temp_forward */ 

/* procedures and the multicycling of a node. */ 

int slack; /* slack in critical path analysis */ 

int node en; /* node enable output signal */ 

int loop its; /* no. of loop iterations */ 

/* if loop its is zero then it is not considered in CP calcs */ 

char nodetype; 

int node_en_net_no; /* net no given to carry node enable */ 

/* for a CALL cell the token net no is node_en_net_no + 1 and the activate +2 */ 

int in_module; 

struct instruction *inst_list; /* list of insts in the ICR node */ 

struct IO_arcs *in_arc_list; 

struct IO_arcs *out_arc_list; 

struct IGR_node *next; 

int call_collect_n; • /* call node n or collect n */ 

struct cell data *control cell; 
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/* Instruction list node used in ICR node. */ 

struct instruction { 

int inst_no; /* neg No. indicates dummy instruction to No */ 

int inst_type; 

int group_no; /* group Inst is in within an IGR node */ 

int delay; /* delay of this instruction */ 

int end__time; /* this is set to the time inst will end within the node */ 

int chain_no; /* AEAP position in dependency graph */ 

int prob_exec; /* this indicates the probability of execution as % age */ 

struct impl_llnks 

struct mutual_links *mutual_list; 

struct conditionalist *inst_cond; 

int const_ipl; 

union { 

int constant; /* used for constants, memwrite II(var no), module No. */ 

struct variable_node *var; /* used for var or switchon operand */ 

) inputl; 

int const_lp2; 

union { 

int constant;/* used for constants, end count, memwrite 12 add if const */ 

struct variable_node *var; /* used for vars, memwrite 12 add if var */ 

struct inst_IO_list *in_list; /* I/Ps for program, module, moduleap */ 

) lnput2; 

union { 

int count_eq_sig; /* out sig No for count = end count in2 */ 

struct comp_list *sw_comp_list; /* switch comparison list */ 

struct inst_IO_list *out_list; /* 0/P destination list or memwrite IP */ 

} output; 

struct inst_depend_list *pre_insts; /* this inst depends on these */ 

struct inst_depend_list *succ_insts; /* these depend on this inst */ 

struct instruction *next; 

}; 

/* the structure below is an arc that connects instructions within each IGR 

node. It is used to maintain the order of instructions based on their 

dependencies. The resulting graph will represent maximum parallelism. */ 

struct inst_depend_list ( 

struct instruction *pre_inst; /* inst at start of arc */ 

struct instruction *succ_inst; /* inst at end of arc */ 

struct inst_depend_list *next_pre; /* next inst that succ_inst depends on */ 

struct inst_depend_list *next__succ; /* next inst that pre_inst relies on */ 

}; 

/* list of links that represent mutually exclusive pairs of instructions, note 

that there must also be a corresponding link from inst pointing to the inst 

that holds this link, ie, this is half of a link. */ 

struct mutual_links { 

struct instruction *inst; 

struct mutual_links *next; 

}; 
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/* ICR combined input and output arcs listy condition list, lnsC_IO_list and */ 

/* comp__list nodes. */ 

struct IO__arcs { 

int arcno; 

int is_FBA; 

struct IGR_node *pre_node; 

struct IO_arcs *next_in; 

struct IGR_node *succ_node; 

struct condition_list *cond; 

struct IO_arcs *next_out; 

struct IO_arcs *next; 

}; 

/* unique are no in list a r c n o */ 

/* indicates if the arc is a feedback arc */ 

/* node arc comes from */ 

/* next arc in an input list */ 

/* node arc goes to */ 

/* act cond of arc */ 

/* next arc in output list */ 

/* next arc in arc list */ 

/* The signal no in a condition will always be positive, however a reference 

to it may be for an inverted signal, ie, -sig_no. For these sigs an inverter 

is assumed to be available. In many cases the inverter output is entered 

into the condition list as a seperate signal, eg, s333 = /s3. Therefore 

a reference to /s3 could be made as /s3 or s333. */ 

struct condition_list { 

struct equation_node *cond; 

int signal_no,flag; 

int net_no; 

struct condition list *next; 

/* flag is used in within adjust_cont_sigs() */ 

/* the net number given when numbering nets */ 

struct equation_node { /* tree format as in WAG */ 

int value; /* Value represents fn or var if leaf node, -ve for inv */ 

int flag; /* tested flag used in comp_equations{) */ 

struct equation node *parent,*next,*child; 

struct inst_IO_list { 

int const_IO; 

union { 

int constant; 

struct variable node *var; 

} 10; 

struct inst_IO_llst *next; 

}; 

struct comp_list { 

int const_value; 

int signal_no; 

struct comp_list *next; 

/* const value set to -1 for default sig */ 

/* structure used in variable list, structure depends on variable type. 

struct variable_node { 

int var_no; 

int var_type; 

int lo bit, hi bit; 
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char *name; 

int in_module_no; 

struct DP_node *hardware; 

union { 

struct { 

int Io_index,hi_index; 

int *data; 

) memory; 

struct { 

int hi_bit,lo_bit; 

struct variable_node *parent; 

1 alias; 

) type; 

struct variable node *next; 

/* all vars have names after tidy_lists() pore */ 

/* Module list points to the start and end of programs and modules. '/ 

/* process no of module instruction */ 

/* 10 instruction */ 

/* last is node before end */ 

struct module_node { 

int module_no; 

char *name; 

struct instruction *header; 

struct IGR_node *start,*last; 

struct end_llst *ends; 

struct module_node *parent,*next; 

int CP_length; /* if CP_length = 0 then it has not been calculated */ 

int optim_order; /* Gives the order for optimising modules */ 

struct call_list *called_bys; /* list of modules which call this module */ 

int CP_calc_type; /* CP calc technique to use, between or total */ 

}; 

struct call_list { 

struct module_node *called by; 

struct caH__list *next; 

}; 

/* list of dependents to module */ 

struct end___list { 

struct IGR_node *end; 

struct end_list *next; 

}; 

/* list of end nodes to module */ 

/* Label list indicates which label points to which set of processes. 

struct label node { 

int label__no; 

struct to ^process; 

struct label node *next; 

struct to { 

int is_label; 

int number; 

struct to *next; 
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/* Data path list node depends on type and points to 10 data path nodes. */ 

struct DP_node { 

int node no; 

char node___type; 

struct cell_data *DP_cell; /* this has replaced celltype */ 

int n_bits,lo_bit,out_bits,temp;/* temp stores var expected in include reg */ 

int area,twos_comp,power; 

struct impl__links *impl_list; 

int max_addresses; /* max no of addresses = hi__index for memory */ 

struct equation_node *boolean__eq; 

struct control_sig *control_sigs; 

struct netdata *input_list; 

struct netdata *output_list; 

struct DP_node *next; 

}; 

/* list of pointers to instructions implemented using a data path node */ 

struct lmpl_links { /* hardware to instruction links */ 

struct DP_node *impl_by; /* hardware */ 

struct instruction *impl_of; /* instruction */ 

struct impl links *next impl of,*next_impl_by; 

/* The data path net data and control inputs are associated with the */ 

/* instructions activating them. Conditions are not set until after */ 

/* optimisation as they are dependant on the node enable signals. */ 

struct control_sig { 

int pin_type; /* pin that control signal connects to */ 

int act_inst_no; /* if <1 and signal=null cond is true */ 

int var_no; /* variable being affected by control */ 

int active_no; /* variable active no associated with var_no */ 

struct conditionalist *signal; /* else if signal=null cond on inst */ 

int range_hi_bit,range_lo_bit; /* not used for mem rd/wr, cnt/shft, select */ 

int select_fn; /* used for ALUs to select a particular function/inst */ 

int delete; /* see delete in net_data */ 

struct control_sig *next; 

}; 

struct net_data { 

int net_no; /* initially = signal no therefore not unique to net! */ 

int flag; /* used in adjust_cont_sigs() and add_inst_group() only */ 

int delete; /* used to indicate if a net may be deleted after optim, 

eg, for inputs to bypassed registers. NB. the load 

corresponding to this net will not be labeled, so we 

must explicitly find and delete it. */ 

int in_hi_bit,in_lo_bit; /* indicates connecting bit range for input */ 

/* in_??_bit is the bit range of the output of the module that the input 

of the net that connects to. */ 

/* or for consts the bit range if it was set or clear on a register */ 

int in type; /* input net type */ 

int out__pin; /* output pin on DP unit that input of net connects to */ 
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union ( /* input to net, output from DP node */ 

struct DP_node *start_node; 

int constant; 

int cont_sig; 

) in; 

int wr_act_inst_no; /* inst writing to net */ 

int wr_var_no; /* variable number writing to net (const=-l) */ 

int wr_active_no; /* active no associated with wrvar no */ 

int in_pln; /* input pin on DP unit that output of net connects to */ 

int out_hi_bit,out_lo_bit; /* indicates connecting bit range for output */ 

int out_type; /* that is output from net, input to DP node */ 

union { 

struct DP_node *end_node; 

int cont_sig; 

) out; 

int act_inst_no; /* inst reading from net, if zero then permanent I/P */ 

int rd_var_no; /* variable number reading from net */ 

int rd__active_no; /* active no associated with rd_var_no */ 

struct condition_list *act_cond; /* is not set until gen_control_sigs() */ 

/* only one act_cond as a conds to read and write for a net is not required */ 

struct net_data *next_out_net,*next_in_net,*next; 

/* next_in is the next net connecting to an Input of the data path unit */ 

/* Common destination list used in instruction analysis. */ 

struct common_dest_list { 

struct instruction *inst; 

struct common_dest_list *next; 

); 

struct IO_var_list ( 

int var_no; /* -Ve var_no indicates memory and extra contention tests */ 

struct 10 var list *next; 

struct access_list { /* list used to indicate register active times */ 

int var_no; /* wr_var__no for reads and rd_var_no for writes */ 

int inst_no; /* act_inst_no for reads and wr_act_inst_no for writes */ 

int clock_no; 

int is_read; 

int active_no; /* sub lifetime active no */ 

struct access_list *next; 

}; 

/* Data used in transformation routines is stored in the structure below. 

In manual operation it is set up by the select transformation procedure 

and in auto mode it is set up by the optimisation alg. 

The fields are used as follows: 

->trans_type Transformation selected to use 

->test_OK If true it passed tests 

->clock period of clock 

->nodel node for multi-c. Write node in group T 

node to ungroup in ungroup time t and ungroup_group_t. 
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->node2 

->varl 

->instl 

->inst2 

->insts 

->time 

->n 

->n_regs 

->new_delay 

->DP nodel 

->DP_node2 

-> cond 

->functions 

->cell 

->delta_E 

->priority 

->temp__T 

->end_T 

->T_step 

->max_its,its 

->da_file; 

->is_alloc 

->is_schedule 

->selected[16] 

->tested_OK[16] 

->p_improve[16] 

->p_degrade[16] 

int estimate_analysi 

first node to merge in seq_merge_t. 

successor node in LT_123_t. 

fork node for parallel merge in LT_423_t. 

Read node in group T 

second node to merge in seq_merge_t. 

preceeding node in LT_123_t. 

Var asociated with group reg T 

variable to unshare from reg in unshare_reg_single_t 

Writing inst in group reg T 

Inst to unshare from unit in unshare_single_t 

Reading inst in group reg T 

group of insts to move for grouping and seq_merge_t 

node time for ungroup_tlme_t 

group no for ungroup_group_t 

var_no to remove in unshare_reg_single_t 

number of nodes created by ungroup_time_t, inc present 

number of nodes with condition cond in parallel merge, 

value of old clock in ck_change_t. 

set by the by_pass and include register procedures 

which increment it for each register change. Used by 

merge and ungroup estimates, but generated by tests. 

this is the delay of the resulting node when insts 

are added to a node. It is used in the group register, 

fork merge (LTD and seq merge transform estimations. 

It is also used in the ungroup_time_t transform, to 

indicate the max delay for the new nodes to be created. 

First DP node for sharing or ALU combination 

DP unit to apply alternative cell selection on 

DP node to unshare in all unsharing transforms 

Second DP node for sharing or ALU combination 

Condition of arc for merge parallel 423. 

List of functions implemented by DP nodes for sharing 

fn_delays struct is used in common with calc_combo_no() 

Combined cell to implement fns in sharing transform 

New cell for alternative cell selection 

This is the change in energy of the system 

This is the priority that delta_E refers to 

Simulated annealing current temperature 

temperature to end simulation 

Quantity to reduce temp after each temp sim 

if the upgrade is true then this must be less than 

1 as it is multiplied with current temp. 

The maximum and present no of iterations at temp T 

Pointer to the design analysis file. 

Below is for auto select and optimisation only 

how many times are these selected, including failures 

No of times transform has been selected/estimated 

No of selected transforms pass the tests 

No of times transform has performed improvement 

No of times transform has performed degradation 

s[max_no_trans][nets_crit+l][3][2] 

The array 16 is for each transform type and the array 2 

for the criterion, the array 3 stores the number of 
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occurances of the errors on p211, if the estimate was 

exactly correct then no error is recorded. 

The errors are recorded as under or over estimates 

in the last array, ie, if estimate is less than pres 

then it is an under estimate and if more it is over 

The first element is over estimates the second under. */ 

struct transform_data { 

struct cost_fn_ele *cost_fn; 

int trans_type; 

int test_OK; 

int clock; 

struct IGR_node *nodel; 

struct IGR_node *node2; 

struct variable_node *varl; 

struct instruction *instl; 

struct instruction *inst2; 

struct instruction *insts; 

int time,n,new_delay,n_regs; 

struct DP_node *DP_nodel,*DP_node2; 

struct conditionalist *cond; 

struct fn__delay *functions; 

struct cell_data *cell; 

float delta_E; 

int priority, in_progress; 

float temp_T, end_T, T_step; 

int max_its, its; 

FILE *da_file; 

int selected[max_no_trans] ; 

int p_improve[max_no_trans] ; 

int p_degrade[max_no_trans]; 

int tested_OK[max_no_trans] ; 

int is_alloc,is_schedule; 

int estimate_analysis[max_no_trans][nets_crit+l][3][2]; 

}; 

/* Cost function vector is stored as a list of priorities, each consisting of */ 

/* a list of criteria associated with that priority. */ 

struct cost_fn_ele { 

int priority; 

struct criterion_ele *criteria; 

struct cost_fn_ele *next; 

}; 

struct criterion ele ( 

int criterion; 

int initial; 

int target; /* target value (tv): reached according to optotype */ 

int previous; /* last value for criterion */ 

int present; /* present value for criterion */ 

int estimate; 

struct instruction *start,*end; /* insts specified for between CP calcs */ 
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struct crlterion_ele *next; 

In-

struct optim_cost { 

int no,power,area,delay,nets,mog,is_optim, cpu_time; 

int error; /* indicates % error in reaching target, 

struct optim_cost *next; 
}; 

-ve = not reached */ 

/* Cell info data structure. Cell data is stored as a linked list with pin */ 

/* lists joined to it. The cell info file has cell_no, IPs_com, area, */ 

/* inh delay, and delay_factor for every cell. Following this is the number */ 

/* of pin data sections, these consist of pin_type and fields specific to */ 

/* that pin type. At present this is IPcap for inputs only. */ 

struct cell_data { 

int cell_no, n_fns, IPs_com, n_bits, op_bit_type, quantity; 

char *name; 

int reg_set_up; 

struct combo_data *combined_fns; /* always at least one of these */ 

struct pin_data *pins; /* also collect n penalty in control cells */ 

struct cell_data *next; 

struct cell_alt *cell_alts;/* alts for cell, cells that cover all cell fns */ 

struct cell_fn *cell_fns; /* all insts implementable by cell, at least 1 */ 

); 

struct combo_data { 

int combine_no; 

struct fn_delay *fn_delays; 

int area, delay factor, power; 

struct combo data *next; 

/* delays for each fn in combo */ 

struct fn delay ( 

int fn_no; 

int inh_delay; 

/* this is the inherent delay for a function in a combo */ 

/* one is entered for each inst for this combination */ 

struct fn_delay *next; 

struct pin_data ( 

int pin_type; 

int IP_cap; 

int area_penalty; 

int power_penalty; 

struct pin_data *next; 

/* input capacitance */ 

struct cell_fn { 

int fn_no; 

struct cell_fn *next; 

); 

/* first one is LSB when converting to combo no. */ 
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struct cell_alt { 

int alt_no; 

struct cell_alt *next; 

In-

struct techno_units { /* see techno reader for info on these */ 

char *time_str, *cap_str, *delay_factor_str, *power_str, *area_str; 

int time_off, cap_off, delay_factor_off, power_off, area off; 
}; 

/ * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = E N D OF FILE= 
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