
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

MULTIPLE OBJECTIVE
OPTIMISATION OF DATA

AND CONTROL PATHS IN A
BEHAVIOURAL

SILICON COMPILER

Keith Richard Baker

A dissertation submission for the title of
Doctor of Philosophy.

Department of Electronics and Computer Science,
University of Southampton.

September, 1992

U N I V E R S I T Y O F S O U T H A M P T O N

ABSTRACT

i^/icunLTif ()i;iii^(jirfE3EiiiN(] / irfD /Lppi.iE3D !Sc:[Er«:E
ElLIECrriROfTICZS /Iff!) C:C)MI»LrrER SCIENBCE

Doctor of Philosophy

MULTIPLE OBJECTIVE OPTIMISATION OF DATA AND CONTROL PATHS

IN A BEHAVIOURAL SILICON COMPILER

by Keith Richard Baker

The objective of this research was to implement an "intelligent" silicon compiler that
provides the ability to automatically explore the design space and optimise a design,
given as a behavioural description, with respect to multiple objectives. The objective has
been met by the implementation of the MOODS Silicon Compiler. The user submits
goals or objectives to the system which automatically finds near optimal solutions. As
objectives may be conflicting, trade-offs between synthesis tasks are essential and
consequently their simultaneous execution must occur. Tasks are decomposed into
behaviour preserving transformations which due to their completeness can be applied in
any sequence to a multi-level representation of the design. An accurate evaluation of the
design is ensured by feeding up technology dependent information to a cost function.
The cost function guides the simulated annealing algorithm in applying transformations
to iteratively optimise the design.

The simulated annealing algorithm provides an abstractness from the transformations
and designer's objectives. This abstractness avoids the construction of tailored heuristics
which pre-program trade-offs into a system. Pre-programmed trade-offs are used in most
systems by assuming a particular shape to the trade-off curve and are inappropriate as
trade-offs are technology dependent. The lack of pre-programmed trade-offs in the
MOODS system allows it to adapt to changes in technology or library cells. The choice
of cells and their subsequent sharing are based on the user's criteria expressed in the
cost function, rather than being pre-programmed into the system.

The results show that implementations created by MOODS are better than or equal to
those achieved by other systems. Comparisons with other systems highlighted the
importance of specifying all of a designs data as the lack of data misrepresents the
design leading to misleading comparisons.

The MOODS synthesis system includes an efficient method for automated design
space exploration where a varied set of near optimal implementations can be produced
from a single behavioural specification. Design space exploration is an important aspect
of designing by high-level synthesis and in the development of synthesis systems. It
allows the designer to obtain a perspicuous characterization of a design's design space
allowing him to investigate alternative designs.

CONTENTS

1. Introduction 8
1.1 I N P U T A N D O U T P U T S P E C I H C A T I O N 12

1.2 ARCHITECTURAL MODEL 13
1.3 I N T E R N A L R E P R E S E N T A T I O N 14

1.4 B E H A V I O U R A L S Y N T H E S I S 15

1.5 O P T I M I S A T I O N 18

1.5.1 Optimisation Strategies 19
1.5.2 Cost Function 20

1.6 H A R D W A R E S Y N T H E S I S A N D L A Y O U T 2 1

1.7 D E S I G N S P A C E E X P L O R A T I O N 2 2

1.8 PROJECT OBJECTIVES 24

2. Literature Survey of Other Synthesis Systems 25
2 .1 E A R L Y S Y S T E M S 2 6

2 . 2 A R C H I T E C T U R E SPECIFIC S Y S T E M S 2 7

2 . 3 S Y S T E M S W I T H A F I X E D M I N I M I S I N G C R I T E R I O N 2 9

2 . 4 S Y S T E M S W I T H A F I X E D C O N S T R A I N E D C R I T E R I O N 3 2

2 . 5 S Y S T E M S W I T H A C O N S T R A I N E D C R I T E R I O N 3 5

2 . 6 D E S I G N E N V I R O N M E N T S 3 6

2 .7 I N T E L U G E N T S Y S T E M S 3 8

2 . 8 S U M M A R Y O F H I G H - L E V E L S Y N T H E S I S S Y S T E M S 4 1

3. Development of the MOODS Silicon Compiler 44
3 .1 M O O D S I N P U T A N D O U T P U T S P E C I F I C A T I O N 4 5

3 . 2 M O O D S A R C H I T E C T U R A L M O D E L 4 8

3 .3 D E S I G N R E P R E S E N T A T I O N 4 9

3.3.1 The Control Graph 50
3.3.2 The Data Path Graph 57

3 . 4 M O O D S O P T I M I S A T I O N S T R A T E G Y 61

4. Transformations 64
4 .1 T R A N S F O R M A T I O N T E S T S 6 7

4.1.1 Reachability Test 68
4.1.2 Mutual Exclusion Test 69
4.1.3 Hardware Sharing Test 69
4.1.4 Dependency Test 70
4.1.5 Contention Tests 70
4.1.6 Jump Test 72
4.1.7 Move Tests 73
4.1.8 Delay Tests 74
4.1.9 Lifetime Analysis 75

4 . 2 S C H E D U L I N G T R A N S F O R M A T I O N S 7 7

4.2.1 Sequential Merge Transformation 78
4.2.2 Parallel Merge Transformation 80
4.2.3 Merge Fork and Successor Node Transformation 81
4.2.4 Group on Register Transformation 82
4.2.5 Ungrouping Transformations 82
4.2.6 Multicycle Transformation 84
4.2.7 Clock Period Transformation 85

4.3 ALLOCATION TRANSFORMATIONS 86
4.3.1 Combine Units Transformation 86
4.3.2 Uncombine Unit Transformations 88
4.3.3 Alternative Implementation Transformation 89
4.3.4 Register Sharing Transformation 89
4.3.5 Register Unsharing Transformations 90

5. Optimisation Algorithm 92
5.1 DESIGN EVALUATION 93

5.1.1 The Cost Function 93
5.1.2 Area and Power Calculations 97
5.1.3 Delay Calculations 98
5.1.4 Critical Path Analysis 99

5.2 OPTIMISATION ALGORITHMS 101
5.2.1 The General Adaptive Heuristic 102
5.2.2 Simulated Annealing 104
5.2.3 Sequence Heuristics 107
5.2.4 Automated Design Space Exploration 109

6. Results I l l
6.1 DETERMINATION OF THE SIMULATED ANNEALING

PARAMETERS 112
6.1.1 Providing a Cost Function Independence for the Annealing

Schedule 113
6.1.2 Finding the Annealing Schedule 116
6.1.3 Investigation of the Temperature Reduction Function 119
6.1.4 Investigation of the Effect of the Random Number Sequence

on Implementations 122
6.2 BENCHMARK RESULTS 123
6.3 COMPARISON OF SYNTHESIS SYSTEMS 130

6.3.1 Comparing MOODS with SCHOLYZER 131
6.3.2 Comparing MOODS with Other Systems 136

6.4 DESIGN SPACE EXPLORATION 139
6.4.1 Analysis of the Simulated Annealing Algorithm using Design

Space Exploration 139
6.4.2 Cost Function Priority Scaling 141
6.4.3 Design Analysis using Design Space Exploration 142

7. Conclusions and Further Work 147
7.1 CONCLUSIONS 148
7.2 FUTURE WORK 150

Appendix A. The Intermediate Code 154

Appendix B. Ella Simulation Example 159

Appendix C. Data Structures 169

References 180

ILLUSTRATIONS

Figure 1.1 The area-time (AT) design space 23
Figure 3.1 Example behavioural description and resulting ICODE 46
Figure 3.2 Timing diagram for the architectural model 49
Figure 3.3 Illustration of control graph nodes 52
Figure 3.4 Example of instruction group timing within a control node 54
Figure 3.5 Example of an initial control graph 55
Figure 3.6 Example of an initial data path graph 60
Figure 3.7 Design data structure showing links between control and data path

graphs and variable list 61
Figure 4.1 The general graph traversal algorithm 68
Figure 4.2 Recursive node marking procedure 69
Figure 4.3 Contention test procedure 71
Figure 4.4 Procedure to test for the creation of additional contention on

instruction serialisation 72
Figure 4.5 Instruction jump test procedure 73
Figure 4.6 Example of delay test 75
Figure 4.7 Example of lifetime analysis 76
Figure 4.8 Procedure to test for non-overlapping lifetimes 78
Figure 4.9 Example of the sequential merge transformation 79
Figure 4.10 Example of the parallel and fork merge transformations 81
Figure 4.11 Example of the ungrouping transformations 84
Figure 4.12 Example of the multicycle transformation 86
Figure 4.13 Example of the combine units transformation 88
Figure 4.14 Removal of pure data transfers by register sharing 91
Figure 5.1 Control node delay calculations 99
Figure 5.2 Critical path analysis 100
Figure 5.3 The general form of an adaptive heuristic for combinatorial

optimisation 103
Figure 5.4 A one-dimensional configuration space 105
Figure 5.5 The simulated annealing algorithm 106
Figure 5.6 The sequence heuristic procedure 109
Figure 6.1 Variation of freezing point with cost function calculated using

equation (6.1) 115
Figure 6.2 Variation of freezing point with cost function calculated using

equation (6.2) 116
Figure 6.3 Variation in cost curves with different step and iteration values 118
Figure 6.4 AT design spaces for FRISCl using various annealing schedules

with linear temperature reduction 119
Figure 6.5 AT design spaces for FRISCl design using the same schedules as in

Figure 6.4 but with a proportional temperature reduction 121
Figure 6.6 AT design spaces for FRISCl using a quenching schedule for linear

and proportional temperature reductions 122
Figure 6.7 Variation in implementations due to arbitrary random number seeds

for both area and delay optimisation objectives 122
Figure 6.8 Example behavioural description 133
Figure 6.9 Comparison of implementations for the TEST description 134
Figure 6.10 Explored AT design space for the TEST example 136
Figure 6.11 Comparison of improvement only and simulated annealing

approaches and the use of initial or previous design points 140

Figure 6.12 Illustration of how design points migrate from the initial point to the
optimised points in the simulated annealing algorithm 141

Figure 6.13 AT graphs showing the effect of scaling the change in energy AE by
its corresponding priority in the cost function 142

Figure 6.14 Automatic exploration of a three dimensional design space
consisting of area, delay and power for the FRISC2 design 144

Figure 6.15 Automatic exploration of a three dimensional design space
consisting of area, delay and number of nets for the FRISC2 design. . . 145

Figure 6.16 Design spaces illustrating the effects of module expansion 145

Table 6.1 Annealing schedules for the benchmarks 124
Table 6.2 Initial implementation data for the benchmarks 125
Table 6.3 Synthesis results of benchmark designs using the comprehensive cell

library 126
Table 6.4 Continuation of Table 6.3. Synthesis results of benchmark designs

using the comprehensive cell library 127
Table 6.5 Comparison of benchmarks synthesized by Scholyzer and MOODS. . . 132
Table 6.6 Comparison of systems for the PARKER benchmark 137
Table 6.7 Comparison of systems for the ELLIP benchmark 138
Table 6.8 Comparison of systems for the TSENG benchmark 139

ACKNOWLEDGEMENTS

The author wishes to acknowledge the following people: Professor K G Nichols for

supervision and encouragement during the initial stages of this research and in obtaining

the author's research assistantship, without which the research would not have been

possible. Mr A J Carrie for supervising the latter stages of the research and checking the

technical and grammatical content of this thesis and Dr M Zwolinski for dealing with

numerous queries and problems with the computer systems. Thanks should also go to

other members of the University and family for their help and encouragement during the

research, especially to Lynne Buddie for proof reading this thesis'.

This thesis has been written in accordance with the British Standard Recommendations for the
Presentation of thesis and dissertations, BS4821:1990, Abbreviations of titles of Periodicals, BS4148
and Specification for numbering of divisions and subdivisions in written documents (point-numbering),
BS5848: as well as the notes set out in the booklet Completion of research degree candidature.
University of Southampton, July 1991.

INTRODUCTION

K R Baker: 1992 1. Introduction 9

The design of electronic systems is a highly complex process, where each integrated

circuit (IC) may take several man years to complete. The design process starts with the

design specification and terminates in chip fabrication using a set of masking plates

containing images of the IC structures. The advances in VLSI technology mean that

computer aided design tools play an essential part in synthesizing circuits in a

reasonable time. Early tools consisted of automated layout tools, such as, mask design

rule checkers and tools for placement and routing of small frequently used logic blocks

(standard cells). The manual layout of logic blocks was later complemented by

optimisers which rearranged mask structures, subject to design rules, in order to compact

the layout. The early 80s saw the creation of a new generation of tool, the silicon

compiler, which, from a structural description of a design synthesized an implementation

using standard cells.

During the late 80s and early 90s further increases in the complexity of integrated

circuits resulted in an abstractness, from layout, of the synthesis tools and design

descriptions. The abstract design description represents the design's required behaviour

and the silicon compiler was given the ability to select components and design style in

order to optimise the design. Synthesis tools attempt to produce a hardware implement-

ation that is optimal with respect to some aspect of the design. Automated optimisation

of circuits is necessary to produce area efficient and/or fast designs. Usually the area of

the design is optimised whilst maintaining a constraint on the speed, or vice versa.

The silicon compiler should be part of a complete compilation environment that may

include other compilers and tools such as multi-level simulators, timing verifiers,

testability rule checkers and enforcers, and automatic test pattern generators [1]. Due to

the evolution of synthesis tools the definition of a silicon compiler is vague, however, it

has best been defined as follows: "a silicon compiler is an optimising transformation

program that produces manufacturable integrated circuit designs from intelligible

descriptions"^^'. The manufacturable and intelligibleloptimising aspects of the silicon

compiler often occur separately in layout tools and high-level synthesis systems

respectively. The mythical term "silicon compiler" is more usually applied to any

program that compiles a description whose output will eventually be a manufacturable

IC design and is typically classified by its input detail and architectural model. An

"intelligent" silicon compiler is one that can make trade-offs and provide the designer

with an insightful characterization of design alternatives [3].

K R Baker: 1992 1. Introduction 10

The incentives for silicon compilers include short design time and therefore reduced

cost, the possibility for the designer to explore different strategies and technologies and

correctness by construction. This makes the realisation of low-volume application

specific designs (ASICs) cost effective. In addition designers often require to explore a

range of implementations for each design specification {design space exploration) and

may not require the optimum solution but one that satisfies several simultaneous

constraints.

The silicon compiler is intended to provide access to silicon for systems designers. The

use of a behavioural description, that is, one which describes what a design does rather

than how it is implemented, places the capability of designing VLSI circuits in the

hands of those not skilled in VLSI design. It allows the designer to concentrate on the

functionality of the design. Silicon compilation should be a "non-interactive process"̂ '*^

and the majority of users "need not worry about the hardware implementation of the

description"'^'. However, the skilled user may desire to fine tune the resulting

implementation and so some optional interaction is deemed necessary.

Design is a multi-stage process of refinement through various levels of representation

(from behavioural to layout) with occasional backtracking to an earlier stage, the cause

of which is largely due to human errors. By using a design process which has been

proved to be correct the resulting implementation can be guaranteed to be correct; this is

correctness by construction. Correctness by construction given by the use of silicon

compilers ensures the final implementation to be functionally equivalent to the input

specification, that is, both interact with the environment in the same way. Therefore if

the design specification is verified to be correct by functional simulation, then the

implementation will also be correct. Correctness by construction can be guaranteed by

proving the correctness of each of the synthesis steps applied during compilation.

In addition to the above advantages silicon compilers allow early error detection by

semantic checks at high levels thus resulting in less errors. The possibility of protecting

technology knowledge will also be an important advantage in future commercial

systems.

Synthesis is the refinement of a design from an abstract level to a less abstract, lower

level, during which some optimisation usually takes place. The levels of representation

K R Baker. 1992 1. Introduction 11

range from the highest, most abstract level, the functional (behavioural) specification, to

the lowest, most specific level, the layout. Between the functional and layout levels are,

in decreasing abstractness, the architectural, register-transfer, logic, and circuit levels. In

general high-level refers to the functional through to register-transfer levels and low-

level refers to the logic through to layout levels. The earlier definition of a silicon

compiler encompasses a wide variety of tools, such as, layout, logic synthesis and high-

level synthesis tools.

High-level silicon compilation comprises the following issues;

a. definition of an input and output specification,

b. definition of an architectural model,

c. definition of an internal representation,

d. high-level synthesis,

e. hardware synthesis and layout, and

f. design space exploration.

The remainder of this chapter introduces and discusses the issues of high-level silicon

compilation and high-level synthesis in particular behavioural synthesis; the main topic

of this research. The last section describes the project objectives. Further information on

the general issues of silicon compilation can be found in references [1,6,7,8,9,10],

however, the publication date should be borne in mind as some theories and views may

be outmoded.

The rest of this thesis is organised as follows: Chapter 2 is a literature survey of

previous high-level synthesis systems and shows the current research status in the area

of silicon compilation. It describes and compares the systems and illustrates their

drawbacks and how they have been overcome in this synthesis system; the MOODS

Silicon Compiler. Chapter 3 describes the input, output and architectural models chosen

and the optimisation techniques used in this system. Chapters 4 and 5 detail the

transformations and optimisation algorithms and Chapter 6 describes the results and

compares MOODS with existing systems. Chapter 7 sums up what has been achieved

and gives suggestions for further work.

K R Baker; 1992 1. Introduction 12

1.1 INPUT AND OUTPUT SPECIFICATION

Silicon compilers are classified by their input specification which can be either

structural, architectural or behavioural (algorithmic). A structural description specifies

the circuit structure, its components and the connectivity between them. The structure

may be described at various levels of abstraction, from switch or gate level to high-level

using parameterization. Similar levels of abstraction are found in the architectural and

behavioural languages, both of which are functional languages. A functional language

specifies the circuit's input/output mapping. The structure is not explicitly specified

however algorithmic languages such as MacPitts [11] and Silc [4], have predictable

structural semantics, that is, the functional constructs imply certain structural elements in

a predictable way. Functional languages without predictable structural semantics are

behavioural languages. A language is not only defined by its semantics but also by its

interpretation by a synthesis system, for example, a behavioural language could be

interpreted as an architectural language using direct compilation where each construct

produces a pre-defined circuit structure.

A behavioural description specifies the relationship between system inputs and outputs

by describing data structures and functions to manipulate them. Their physical structure

is not described as the emphasis is on what a design does and not how to do it. A

behavioural description documents the design in a readable, technology independent

way. It frees the designer from selecting a good implementation as it does not include

design decisions such as timing and parallelism. Explicit parallelism is a useful aid in

writing readable design specifications and therefore may occur in a behavioural

description; however, explicit parallelism is not adhered to during behavioural synthesis.

In addition variables and data structures are not bound to registers or memory and

operations are not bound to functional units or control states. The lack of premature

bindings allows for more optimisation opportunities as it does not limit the design space

as in architectural or structural languages.

The input language may include parallelism, data typing, macro expansions and

subroutine calls and must be general enough to describe a large class of problems. Some

compilers limit the language to reduce the design space, this simplifies the compiler and

K R Baker: 1992 1. Introduction 13

limits it to particular design styles; for example, the First compiler [12] for digital signal

processing (DSP) applications.

The input language is usually compiled to an intermediate form and optimisations such

as dead code elimination and constant folding are done at this stage. It is usual to have

a functional simulator that uses the intermediate form as its input, thus ensuring the

correctness of the design. The intermediate code is at the register transfer level and

consists of operations, register transfers and next states. A typical example of an

intemerdiate code is the Value Trace (VT) described in Section 2.3 which is used in the

CMU-DA systems [13,14,15].

The output of a silicon compiler should, by the definition of an ideal compiler [16], be

mask layouts suitable for use in the fabrication of integrated circuits (ICs). However, the

process is often divided into synthesis and layout steps. The compiler performs the

synthesis and generates a netlist of library cells which is used to generate the final

layout. The reason for this is to limit the computational explosion that would result from

directly synthesizing mask details from high-level descriptions. Library cells are also

used to increase correctness and reduce design time by increasing the granularity of the

output. In early structural level compilers a fixed floor plan was used, for example in

MacPitts [11] and First [12], however in general high-level silicon compilers this has

proved inefficient. It is important, however, to pass information between synthesis and

layout tools, for example, constraining net lengths and/or feedback of layout effects on

performance, in order to provide predictable performance characteristics [17].

The input description and output implementation should be functionally equivalent

which can be determined by simulation. Functional equivalence is defined as follows;

for the same initial conditions and external inputs, equivalent programs must produce

exactly the same external events in the same order [18].

IJl/URClirrEKZTlltAIjAACHDEl,

The architectural model falls into set categories the most common of which are, data

path only and data path plus control unit. Data path only architecture is limited in that it

can only provide designs implementing calculations and not decisions. An example of

K R Baker: 1992 1, Introduction 14

this is DSP applications in Spaid [19] and First [12]. The data path plus control unit

architecture has operations in the data path which determine the next state of the

controller. The controller can be state or transition based, for example Scholyzer [20] or

Camad [21] respectively. The data path typically consists of functional units at the

register-transfer level which exist in soft libraries consisting of parameterized cells that

can be tailored to the desired functions.

To avoid race conditions master slave registers are often used and clocked logic changes

at the end of a cycle, therefore, a signal can only travel through at most one register per

clock cycle [22].

An effective way to cut down the search space is to make architectural decisions and

constraints. Synchronous systems use a centrally clocked controller which activates

processes at fixed time steps (for example, a micro-program as in Camad [23] or FSMs

as in Maha [24]). However, it may suffer from clock skew and the controller complexity

increases with parallelism. Asynchronous systems use many independently clocked or

self-timed modules. Self-timed modules use a delay unit for each part of combinational

logic. The output of the delay unit creates the acknowledge signal from a delayed

request signal. The delay unit has a fixed delay and for the purpose of reliability, tends

to be over estimated using worst case values. Reliability and speed, therefore, depends

on the accuracy of technology dependent delay models.

13 INTERNAL REPRESENTATION

Graphs are used as internal representations as they conveniently describe the design at

various levels of abstraction, from behavioural to structural. They are used as

intermediate representations during the synthesis processes.

A control and data flow graph can be implemented as a single graph where nodes

represent data or control operations and edges represent results. Alternatively they can

be implemented as two separate graphs, where a control graph conveys information

about the sequence of operations and a data flow graph specifies data dependencies. The

nodes of a data path graph represent variables, constants and functional units and the

arcs represent information flow. Data flow graphs may have conditions on arcs to gate

K R Baker: 1992 1. Introduction 15

data path signals; where the conditions are generated either by other data flow nodes or

by the controller.

Two methods commonly used to represent a control graph are modified Petri-nets and

precedence graphs. Petri-nets consist of places and transitions connected by directed

edges. The transitions represent actions and operations that are executed whenever flags

on places are marked as true. When an action is performed the marking from an input

place is immediately passed to the output place, thereby comprising a token passing

mechanism. Petri-nets do not include timing, only a partial ordering. Timing can be

introduced by holding a token a fixed time, long enough for operations to be completed;

for example, the extended timed Petri-net (ETPN) model in Camad [23]. The holding

time may be equal to the clock period in synchronous circuits or the delay of

combinational logic in self-timed systems. A precedence graph is a directed graph

indicating the order of its nodes, the operations, by the edges of the graph.

1.4 BEHAVIOURAL SYNTHESIS

Behavioural synthesis, the highest level synthesis, is the conversion of a behavioural

description to a structural implementation. The behavioural description contains implied

operation ordering and some specific parallelism. The ordering of operations and any

constraints, for example I/O timing, are all that must be maintained throughout

behavioural synthesis. Parallelism, unit assignments and other bindings are not made in

the description but design decisions concerning them are performed during the synthesis

process. Behavioural synthesis consists of the following sub-problems:

a. allocation of operators to functional units,

b. allocation of variables to storage elements,

c. scheduling of operations,

d. allocation of interconnects,

e. translation, and

f. binding.

These synthesis tasks are discussed individually below.

The allocation of data path operators to functional units and variables to storage

elements is a many to many mapping and involves sharing units and combining different

K R Baker: 1992 1. Introduction 16

units into ALUs. In some systems [25] allocation consists of two steps; firstly the

selection of a set of functional units to execute the operations and secondly the

assignment of operations to specific units.

The timing of units to be combined must be observed as the corresponding operations

cannot be executed concurrendy on a single merged unit. Many methods have been used

to perform allocation; from user specified as in MacPitts [11] to clique partitioning to

create ALUs as in Facet [26]. Clique partitioning is the partitioning of a graph, G, into

the minimum set of disjoint cliques; where a clique, C, is a fully connected sub-graph of

G (that is every node connects to every other node) and C is not contained within a

larger fully connected sub-graph of G. Several methods involve heuristics to determine

the order to allocate data path units. Critical path first is a common method used in

Maha [24], Slicer [27] and Hal [25], which allocates units with the lowest freedom first.

Freedom is the delay allowable in an operation without lengthening the critical path and

is equivalent to path slack in project management. The units with high freedoms will

have more opportunities to share resources as their instructions can be moved within the

time frame given by the freedom. By allocating the lowest freedom first units have a

greater possibility of sharing resources.

Scheduling involves allocating operations to time slices (time-slice allocation) or control

states (state allocation). Operations within a time step are executed concurrently, with

registers being loaded and read at the step boundaries. Dependencies between concurrent

operations results in the operations being chained, that is, one operation will follow on

from another. The scheduling of operations can be performed using various techniques,

the simplest, with the exception of relegating the task to the designer, is "as soon as

possible" (ASAP) compaction as used in Scholyzer [20]. ASAP scheduling places

operations into the earliest time slot subject to data dependencies. A refinement of this

is ASAP scheduling with conditional postponement as used in Mimola [28], where

operations are postponed whenever operator concurrency exceeds the available

resources.

List scheduling involves sorting operations in topological order, as defined by their

dependencies. The operations are then iteratively scheduling into control steps using a

priority function. The priority function determines the order in which operations are

placed in a control step. Urgency scheduling, as used in Elf [29], is a form of list

K R Baker: 1992 1. Introduction 17

scheduling whose priority function uses urgency measures based on freedoms and the

possibilities of sharing operators. Other techniques include iterative scheduling and

control graph partitioning using algorithmic methods such as clique partitioning as in

Facet [26].

Translation changes part of a design to another more useful or efficient one at the same

level of abstraction. For example, if a multiplier has been specified but it does not exist

in the cell library then it may be translated into an implementable form, such as

cascaded adders. A translation may result in an improved design by allowing for better

scheduling or the possibility to share data path units.

The allocation, scheduling and translation sub-problems are all interdependent. For

example, two operations which use a similar operator could share it given that they do

not occur concurrentiy, whereas if they do occur concurrently then the operator must be

duplicated. The sub-problems may be done in any order or simultaneously, the method

chosen will depend on the optimisation strategy adopted by the system.

Binding fixes the result of a synthesis process. In allocation a data path unit is bound to

a physical unit, while in scheduling the operations are bound to specific times. Binding

can occur during or after a process. For example, if allocation is performed one unit at a

time and once only then the binding may occur with the allocation, however if a method

such as linear integer programming is used the binding cannot occur until after. Where

binding is done in the language (as in the case of many structural specifications) the

appropriate synthesis process is not performed; this makes for a simple compiler but

restricts the compiler's optimisation opportunities. Language bindings give the user the

ability to perform area-speed trade-offs. An example of this is the explicit specification

of parallelism in MacPitts [11].

To generate architecture we require to bind elements to structural components and

operations to control states. The bindings performed are:

a. Operations to control states,

b. Operators to functional units,

c. Variables to storage elements, and

d. Nets to interconnects.

K R Baker: 1992 1. Introduction 18

1.5 OPTIMISATION

Optimisation is important as an implementation generated using direct compilation from

the design specification is likely to be far from optimal in all aspects of the design.

There are two reasons for this: Firstly, the language used to describe the design may be

limited therefore additional input is required. Secondly, the designer is unlikely to write

optimal input descriptions which will synthesize to an optimal implementation.

There are good reasons for not writing optimal design descriptions, such as, increased

readability, changes in the designer's constraints and requirements and last minute

corrections to the design. Design alterations are inevitable after functional simulation

and are part of the design process. The alterations are rarely elegantly included in the

original description but added by rather Heath Robinson methods. The changes are non-

optimal and usually include the creation of a large number of temporary registers, most

of which are superfluous.

The optimality of a design depends only on the designer's interpretation of what the

optimum implementation should be.

There are two types of optimisation, global optimisation and local optimisation. A local

optimisation produces the best result at a local region of the design, for example,

combining two control states or changing the implementation of a data path unit. A

global optimisation is one that is the best result for the whole of the design, for

example, an allocation of storage such that the total number of units is minimised. Local

optimisations can be used to provide simple incremental improvements to the design,

however, this inevitably leads to local minima and a different sequence of optimisations

could produce a better result. Global optimisations investigate trade-offs between

differing results using methods such as linear programming and clique partitioning.

Local minimum traps can be overcome by guiding local optimisations using a cost

function that takes into account the global aspects of the design. This will lead to a

global optimisation only if backtracking or design degradation is provided and local

optimisations do not bind design decisions, that is to say, they may be overruled by

subsequent design decisions.

K R Baker; 1992 1, Introduction 19

Backtracking is done when it is found that an optimisation performed earlier in the

synthesis process has resulted in the design not achieving the user's requirements. The

synthesis is reversed (backtracked) to the point where the offending optimisation was

performed, it is then reapplied in a different way that will hopefully produce a better

final result.

Design degradation is achieved by transforming the design so as to produce a worse

design with respect to the user's requirements. This allows an optimisation to be applied

that was previously restricted by the design's position in the design space. Backtracking

differs from design degradation in that the design is degraded to a previous position in

the design space whereas the latter degrades the design to a possibly new position in the

design space.

Optimisations commonly performed include the elimination of registers for temporary

variables which are stable over their use, loop unrolling, operator sharing, extracting

parallelism and serialisation.

1.5.1 OPTIMISATION STRATEGIES

As the synthesis sub-problems are interdependent, the order in which they are performed

greatly affects the resulting implementation. For example, a binding of two operations to

the same control step prevents any sharing of their operators; conversely, binding two

operators to one functional unit prevents the operations being performed concurrently. A

fixed line of reasoning can often lead to inferior results as trade-offs are not

explored [30].

There are two approaches to optimisation either iterative, by synthesizing a correct

solution and iteratively transforming it to optimise the objectives, or constructive, by

performing optimisations as the design is constructed.

In an iterative optimisation scheme, a naive implementation with no sharing of units or

control states is synthesized from the input description. The implementation is then

improved using translation steps to transform the design. The methods used include

knowledge based expert systems, heuristics and brute-force. An advantage with using an

K R Baker: 1992 1. Introduction 2 0

iterative approach is that the optimisation process can be terminated before the optimal

design, and still result in a correct solution.

In the constructive optimisation approach the implementation is constructed in such a

way as to meet the designer's objectives; if they are not reached then the design is re-

constructed with different control parameters [6]. Strategic serialisation is a common

constructive approach used in many systems (see Chapter 2). It consists of creating an

ASAP schedule and re-scheduling subject to resource constraints. Algorithmic

techniques such as mathematical programming and clique partitioning are usually

applied to single synthesis tasks with little consideration for other tasks. Constraints can

be used to give subsequent tasks an opportunity to achieve their targets. Although they

can guarantee optimal solutions to the synthesis sub-problems to which they are applied,

they are also NP-complete. This is made worse by any backtracking or re-synthesis if

the user's objectives are not met.

1.5.2 COST FUNCTION

A cost function represents the state of the design within the design space. A cost

function is required in an intelligent silicon compiler which must use it to make

decisions on how the design should be optimised. Many systems which optimise with

respect to only one criterion follow a pre-defined optimisation route where the

optimisations are programmed into the synthesis algorithms. For example, Scholyzer

[20] maximises speed and where there is a choice between functional units the smallest

is chosen. These systems do not use a cost function to direct an optimisation algorithm

as the synthesis tasks are aimed specifically at one optimisation objective; for example,

Scholyzer's synthesis tasks are aimed at extracting parallelism. However these systems

may use a cost function to inform the designer of the design's "goodness" or a local one

to aid bindings.

A cost function is used in conjunction with the optimisation criteria to guide the

synthesis process. It can help select the sub-process to perform next or help in the

evaluation of trade-offs between processes. Trade-offs are essential for producing

optimal designs when optimising more than one aspect of the design. If allocation and

K R Baker: 1992 1. Introduction 2 1

scheduling are performed separately trade-offs can not be made, therefore the interaction

between or the simultaneous execution of the sub-processes is vital.

To produce real circuits it is important to be able to specify constraints and target

objectives on various aspects of the design. These criteria should be in absolute units

and not in terms of data path unit counts or the number of control states. Characteristics

of the design must be determined, for example critical paths, which are used to aid the

evaluation of the cost function and so direct optimisations. For example, the delay can

be reduced by extracting parallelism on the critical path and area reduced by sharing

units off of the critical path. McFarland [31] demonstrates how an inadequate cost

model can distort the design space and make implementations seem optimal. He shows

that a complete cost model taking into account aspects such as wiring is important in

making the correct design decisions.

For systems that allow the user to specify various absolute target objectives the cost

function must be accurate so that the targets may be met with confidence in the final

implementation. To achieve this, technology dependent information must be fed up to

the synthesis system for use in the calculation of costs such as data path area, power

and delay. Layout factors such as interconnections have been shown [31] to have a

significant effect on hardware costs and not taking them into consideration will result in

a poor design. These can be estimated from the operations [32], however, accurate costs

can only be obtained after layout is complete [6]. Constraints are often added to the cost

function by penalising configurations which violate them.

1.6 HARDWARE SYNTHESIS AND LAYOUT

Hardware synthesis is creating a detailed implementation from the internal representation

and producing the required output, for example a netlist of parameterized cells. This

involves synthesizing the data path (data path synthesis) and the controller if the

architectural model includes one. Control synthesis selects the clocking scheme and

generates the controller according to the architectural model. Control generation has to

be done after data path synthesis as control signals are unknown [6].

K R Baker: 1992 1. Introduction 2 2

Layout of the design is done by conventional placement and routing methods. In some

compilers layout is done according to a fixed floor plan as in First [12] or columns of

fixed width cells between which are wiring channels as in the CAL-MP system [33]

used by Scholyzer [20]. General layout methods can be guided by a floor plan devised

by the synthesis system. This method is used in the Camad [21] system and although

the computational cost increases it can be justified by the availability of accurate wiring

costs for a design. Layout costs, such as wiring, can be fed up to a synthesis system, or

alternatively constraints on wiring lengths can be passed to the layout tools in order to

achieve predictable performance characteristics [17].

1.7 DESIGN SPACE EXPLORATION

The design space is an ^-dimensional space, where n is the number of different aspects

of the design monitored by the designer. For example, a 2-dimensional design space

might consist of area and time as in Figure 1.1. Each design can be represented in the

design space by a point, with better designs being closer to the origin. The design space

is divided into two regions which correspond to design points which are either

achievable or un-achievable. The curve separating these regions is the optimal design

curve which asymptotically approaches minimal values for aspects of the design as

others approach infinity, that is, a minimum value for a single objective. For a design

space with two or more dimensions the design which is considered optimal will depend

on the designer's objectives. For example, if the designer requires the design,

represented by the design space in Figure 1.1, to be the fastest given that the area

should be no more than lOOOpm^ then the optimal design is given by the intersection of

the optimal design curve and the line area=10(X)pm^.

A design is considered optimal, and therefore lies on the optimal design curve, if no

other design exists with a better value for each dimension in the design space. For a

two-dimensional design space, a design is optimal if no other occurs in the region to the

south-west of it. The optimal design "curve" is actually discrete as the implementations

consist of discrete components, therefore, the set of optimal designs (those lying on the

curve) is finite. The design space can be characterized by specifying n+l points lying on

the curve, where n is the number of dimensions in the design space. The points consist

of the n asymptotes, representing the best implementation for a single objective and the

K R Baker: 1992 1. Introduction 23

delay (ns)

actual achievable
design region

unachievable
design region

complete
achievable

design region

optimal speed
for area=1000

max
speed

optimal design curve

mm
area

1000 area (|im

Figure 1.1 The area-time (AT) design space.

point closest to the origin, representing the best overall implementation. Therefore a

two-dimensional area-time (AT) design space can be characterized by three points, the

two asymptotes indicating the minimum area and minimum delay designs and a point

closest to the origin representing a compromise design. The lower bounds of the design

space, the asymptotes, can be predicted [34]; therefore without performing any synthesis

an indication is given of whether the designer's goals can be successfully met.

In reality only a proportion of the points in the achievable design region may be

obtained as indicated by the actual achievable design region in Figure 1.1. The

limitation in design space may be due to a number of factors, which include

dependencies between design aspects, early design decisions being bound in the

synthesis system and limitations in the optimisation process caused by sequentially

performing the synthesis tasks or assumptions made in the internal representation.

Selective early binding of some design decisions can effectively reduce the search space

for an optimal design however premature binding can restrict the process

inappropriately.

The possibility for the designer to investigate different implementations of one

specification is called design space exploration. Some systems claim to perform design

K R Baker: 1992 1. Introduction 2 4

space exploration by changing the design constraints and re-synthesizing, however this

is an ability possessed by all synthesis systems using constraints. By allowing some

randomness in the synthesis tasks different implementations may result without adjusting

constraints. For manual optimisation systems, design space exploration occurs as a

consequence of the user changing the design, however he has no knowledge of the

optimality of the design. For example. Emerald [35] explores the design space by

manual manipulation of its intermediate code; the Value Trace. The exploration of the

design space should be an automatic process such that a set of designs are found which

characterize the design space for a given design. An intelligent compiler aims to provide

the user with an insightful characterization of design alternatives as well as the optimal

design (trade-off) curve [3]. In addition to illustrating the range of designs that can be

achieved from one specification the design space is an important tool in the design of

synthesis systems as it can graphically show the effect of changes to synthesis

algorithms.

1.18 PROJECT OBJECTIVES

The objective of the project is to implement an "intelligent" silicon compiler that

provides the ability to optimise a design, given as a behavioural description, with respect

to multiple objectives. The user submits goals or objectives to the system which

automatically finds an optimal solution in the context of the user specified constraints

[36]. As the objectives may be conflicting, trade-offs between synthesis tasks are

essential and consequentiy simultaneous execution of the tasks must occur. The absolute

state of the design within the design space must be accurately represented using a global

cost function. Therefore technology specific data is required so that optimisations

performed at an abstract level can be guided by a cost function that takes into account

low-level details. The compiler is more accurately described as a high-level behavioural

synthesis system as layout is not performed.

The compiler must also include an efficient method for automated design space

exploration allowing the user to investigate alternative designs on the optimal design

curve. The use of design space exploration allows the designer to obtain a perspicuous

characterization of the design space for each design and thus determine whether a design

can satisfy a variety of simultaneous constraints.

LITERATURE SURVEY

OF HIGH-LEVEL

SYNTHESIS SYSTEMS

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 2 6

High-level synthesis research can be divided into numerous categories. The following

literature survey details many high-level synthesis tools and systems, collectively known

as silicon compilers. The categories used here are based on architectural or application

restrictions and optimisation abilities. Each reference is accompanied by its year of

publication in order to chronicle them. The description of a compiler is preceded by its

name or author in emphasised text to allow ease of future reference.

2.1

A literature survey on high-level synthesis systems would not be complete without a

description of three well known systems. Bristle Blocks [37] (1979), MacPitts [11,38]

(1982,3) and First [12] (1983). Bristle Blocks is essentially a cell layout tool. A

hierarchical structural description, where the lowest level are library cells, is directly

compiled to a fixed layout. The cells are procedural and can be dimensionally

re-configured to fit a regular fixed layout. The controller is a micro-controller or Turing

machine where the micro-code, word width and encoding are supplied by the user. The

user also defines buses and core elements which are bound in the description.

The MacPitts system also has a micro-program architecture. Other restrictions include a

fixed width data path and limited parallelism. A micro-programmed machine is

generated to implement the required parallelism bound in the description and consists of

a counter and control logic implemented as a Weinberger Array. The FSM is analyzed

and similar units controlled from different states are merged (including mutually

exclusive ones). Registers are bound in the description and can not be shared.

MacPitts and First use a bit slice architecture. First uses a data path only pipelined

architecture where operator synchronisation and delay insertion are supplied by the user,

thus increasing description complexity. A fixed floor plan consisting of two rows of

operators with a central wiring channel is used.

The Bristle Blocks, MacPitts and First systems use structural descriptions with

considerable language bindings, therefore allowing no or little (in the case of MacPitts)

optimisation. The systems are akin to module assemblers and use parameterized cells or

module generators; a property common to all high-level synthesis systems. The use of

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 27

an intermediate representation compiled from the source language and the separation of

layout from synthesis are common to most subsequent high-level systems. These three

systems also have a fixed architecture rather than a general one.

2 2 ARCHITECTURE SPECIFIC SYSTEMS

Architecture or application specific systems have the advantage of a restricted design

space which can simplify the system and optimisation process, however, a

knowledgeable designer is required to select the correct system. The synthesis

community is divided, with some believing that a general behavioural synthesis system

which produces good optimised designs is not possible [1]. They choose to create a

collection of specialised systems each aimed at a particular application or architectural

target. One such set of systems is the Cathedral silicon compilers [39] (1988).

Cathedral I is for bit serial filters, II is for multi-processor based architectures with

regular interconnect and synchronous data passing protocol and III is for bit slice

architectures. Cathedral is restricted to a fixed clock and constant time functional units

therefore simplifying design trade-offs. Hardware resources are set prior to scheduling

thus minimum delay for a given set of resources is the optimisation objective.

The Appolon system [40] (1985) uses pre-defined architectural templates. The synthesis

steps performed include: architectural design consisting of simplifying complex

operations and scheduling them, one to one operator allocation, PLA/ROM based

controller synthesis and manual design of miscellaneous parts. The data path is a bit

slice structure and the parallelism bound in the description determines the number of

sub-operative parts, where an ALU is generated for each one. Both iterative and

constructive methods of data path synthesis were studied.

A pipeline architecture is the subject of other systems such as Sehwa [32] (1988) which

uses a similar method as the Maha system (described in Section 2.5) from the same

author. Both systems find designs between the highest performance and lowest cost. The

system described by Hartley and Jasica [5] (1988) generates a complete pipeline style

where all operations are in parallel, therefore scheduling and resource sharing are not

required. The input is behavioural which is translated to an intermediate level that

identifies structural elements. The order of operations is determined fi"om data

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 2 8

dependencies which can not be cyclic. After delay insertion the structure is laid out

using a standard floor plan. A linear program is used to insert delay cells to ensure

proper synchronisation of operator inputs. The minimum number of delay cells to be

added and so least area increase is determined by moving operations in their time frame

thus allowing input and output delays to be combined.

Another pipeline system described by Choi [41] (1992) uses a similar process to force

directed scheduling (see Hal in Section 2.5). This system determines a set of feasible

functional units. Critical path units are scheduled and delays are inserted to avoid

resource conflicts in parallel critical paths. The remaining operator types are iteratively

scheduled; where the order is determined using a measure based on the force and

density of operations in a control step.

Pipelining is not limited to architecture specific systems, for example, Devadas and

Newton [42] (1989) is a general system which has been extended to allow pipelining.

Similarly MOODS could produce pipelined architectures by extending the intermediate

code and using an appropriate cell library.

The above systems are application or architecture specific and are therefore not

comparable to MOODS which has a general distributed architecture aimed at a wide

range of applications. The above systems do however have similar limitations to the

general ones described below.

The synthesis process is divided into a set of synthesis tasks, as described in Section

1.4. Due to the interaction of synthesis tasks the way in which they are performed has a

significant bearing on the type of optimisation possible and the resulting designs. The

remaining compiler descriptions are categorised on their optimisation abilities; starting

with those that minimise one aspect of the design and ending with those that optimise a

number of criteria subject to user constraints. The former can only be classed as

synthesis tools as they do not perform all of the synthesis tasks, whereas the latter can

be classed as systems of which the MOODS synthesis system is a member.

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 2 9

2.3 SYSTEMS WITH A FIXED MINIMISING CRITERION

The CMU-DA suite of tools, of which the EMUCS [43] (1983) tool is one, use the

Value Trace (VT) intermediate code. The Value Trace consists of a set of directed

acyclic graphs (DAGs). The nodes represent operations and arcs are carriers representing

data flow. Each DAG may form a branch of a select operation representing IF or CASE

constructs, that is, a DAG is a block of instructions to be executed having one entry

point and one exit point. Each block is represented as a two dimensional list having all

operations in a horizontal list executed at the same time step, where the horizontal lists

are chained vertically in the order of execution.

The EMUCS tool allocates hardware and attempts to find the minimum cost design

given a Value Trace which has previously been scheduled. The cost can be any

quantitive feature (but is typically area) which is approximated by a weighted sum based

on the technology. The operators given in the scheduled VT input are iteratively bound

to abstract cells in order to gradually construct a data path. At each iteration cost tables

are constructed and an analysis made to decide what to bind. The cost tables reflect the

feasibility of binding each element by specifying the cost of changing an existing

functional unit to accommodate an additional operation. The operation to be bound and

to which unit, is selected using a min-max approach that attempts to minimise the final

cost by minimising the potential loss at each iteration. Thus the least costly operation

over a number of steps is bound based on minimising the incremental cost associated

with the cell being considered. Only functional units with equal bit widths can be

merged. This cost based greedy algorithm uses no global views of the design and allows

little backtracking; consequentially the result is only a local optimum.

Another allocator from CMU (probably the predecessor to EMUCS) is described by

Parker and Hafer [44,45] (1978,1982). This tool first allocates storage and I/O

followed by the allocation of functional units one by one. If an appropriate unit exists in

the data path it may be shared otherwise a new one is entered. Multiplexers are then

created at unit inputs where required. Allocation is in terms of generic components and

is specific to the style of data path used, either bussed or distributed.

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 0

The EMUCS tool minimises one aspect of a design, its cost, by performing one

synthesis task; allocation. The following systems also minimise one aspect of a design,

either area or delay but in addition use limited heuristics to improve a second aspect of

the design.

Facet [26] (1983) is another allocator tool, again part of the CMU-DA suite of tools.

Facet applies clique partitioning to the synthesis tasks to minimise either storage,

interconnects or operators by forming special ALU groups. The cUque partitioning

algorithm uses the common neighbourhood property to produce near minimal cliques. A

graph node is a neighbour to another if an arc exists between them. If a third node is

connected to two neighbouring nodes then it is a common neighbour of the pair. A VT

input can be compacted to form an ASAP schedule by moving operations to the point

where their inputs are defined. Graphs are formulated for each synthesis problem from

the VT and clique partitioning applied. In register minimisation for example, a

compatibility graph is constructed using lifetime analysis, where nodes represent

registers and arcs join mergable pairs. Register minimisation gives priority to combining

registers with pure data transfers between them as this increases speed and also reduces

area. VT compaction is repeated after register clustering. The synthesis tasks are

sequentially applied to the design in a fixed order with no communication between them

therefore the design space is not explored.

The Emerald system [35,46] (1984,6) allows the user to perform initial VT code

compaction by either serialising operation pairs or moving an operation to another VT

block. Other VT changes involve transformations such as converting instances of a

counter to an adder or local incrementer. In this way alternative data paths can be

achieved. The Facet tool is used by Emerald to synthesize the data path, where design

costs are represented in terms of component counts, bits or gate counts.

The Silc [4] (1985) system is similar to MacPitts. Silc performs placement and routing

and has storage and FSM states (scheduling and two level parallelism) bound in the

description. The Silc chip is a collection of FSMs communicating by an asynchronous

protocol; the first level of parallelism. The second level of parallelism occurs through

each state controlling a set of operations. Heuristics are used to improve the FSM logic

in the sum of products form. As with MacPitts, Silc shares functional units that occur on

different FSM states and takes mutual exclusion into account. However, In addition Silc

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 31

makes unit choices, for example between a carry look ahead adder and a ripple carry

adder, based on speed.

The Scholyzer system [20] uses the Scholar language [47,48] which is compiled to an

intermediate code (ICODE). The ICODE is used to create a control graph where arcs

represent control flow and each operation is assigned to a node which represents a

control state. Sequential and parallel sections of the graph are ASAP compacted subject

to contention tests and declared variables. Further compaction is achieved by applying

local transformations to fork and join type nodes, thus producing a maximally parallel

ASAP schedule. Limited functional unit sharing is performed after scheduling where

similar non-concurrent operators with common input or output variables are shared.

Registers are bound in the description therefore no register optimisations are performed,

however, some operations implementable using registers are detected.

The Yorktown Silicon Compiler [49] (1987) from IBM is an advancement from its

Elm [50] (1983) logic transformation system which provides an expansion of generic

operators to primitive boolean and register blocks. Elm's boolean algebra is manipulated

using technology dependent transforms which may be applied using various strategies

and the best result selected in light of user constraints. In the YSC the design uses

modules each with its own data path and controller distributed within the data path. The

data flow steps are scheduled to facilitate a sequential controller and a fast design is the

objective with later optimisations to reduce area. For each functional unit a

parameterized boolean expression exists. The entire boolean structure is flattened and

partitioned if it is too large for the logic synthesizer. The decomposition of a design to

the logic (gate) level results in a large data structure which may be computationally

expensive to optimise. The references on page 36 describe recent research at IBM which

has concentrated on high-level synthesis and design space exploration.

An improvement on the above method of minimising one aspect followed by another is

to take the second aspect into consideration whilst performing the initial minimisation.

This can be done by considering operator similarities or critical path and freedom

measures. The system described by Girezyc and Knight [29] (1984) considers the

critical path. It allocates a previously functionally optimised control and data flow graph

using a greedy algorithm and makes hardware assignments by adding cells composed of

a register, multiplexer and operator. During allocation the critical path is considered so

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 2

that the previous timing constraint is maintained. Both critical path and operator

similarity are utilised in the system described by Hong, et al. [51] (1987). Scheduling

uses a data flow graph with arcs specifying dependencies. The critical path is

determined and scheduled ASAP. Non-critical operations are then scheduled and an

attempt made to reduce concurrency between similar operations by delaying their

schedule. Pure data transfers are scheduled ASAP. Initially a path search algorithm

using lifetime analysis is used to group variables into registers. After scheduling,

operations are clustered into functional units taking into account variable clusters found

previously.

2.4 SYSTEMS WITH A FIXED CONSTRAINED CRITERION

The logical progression from minimising particular aspects of a design is to allow

constraints to be placed on them. The following systems allow a constraint on one

design aspect, area or delay, whilst minimising the other. Most allow an area constraint

in the form of limiting the available hardware resources and strategically serialising a

maximally parallel implementation until enough resource sharing can be performed in

order to meet the resource constraint. The main differences between the methods lie in

the way in which a synthesis task is taken into account by another in order to allow the

constraint to be met.

One of the first systems to use strategic serialisation was Mimola [28] (1979). The

Mimola language can be structural or behavioural both of which are compiled to a

design database containing all design information. The initial design is a maximally

parallel design where the parallelism is bound in the description. Hardware is allocated

at each control step (micro-instruction) using a set of hardware resources. The allocator

adds resources, modules and connections, one by one from the hardware set. It is

assumed that the hardware can be shared between micro-instructions. If no resources are

available in the set for an allocation the operation is delayed (serialised) and registers

added for intermediate results, thus allowing a resource to be shared. The designer

restricts the available resources to force sufficient serialisation to meet his goals.

Measures are given on design aspects such as area, power, speed and micro-program

requirements. To aid the designer select which resources to remove from the set.

K R Baker; 1992 2. Literature Survey of High-Level Synthesis Systems 3 3

Utilisation figures are determined by statistical analysis, where low utilised resources are

candidates for removal.

The Autonomy and Attraction tools [52,53] (1981,2) use strategic serialisation in the

synthesis of a micro-program controller. Given a data path they trade bit compaction for

word compaction to meet a cost (area) constraint. The autonomy tool, which is applied

first, uses a partitioning algorithm that isolates operations to be controlled independently

of micro-instruction encoding. It makes a dedicated field in the control word for these

operations therefore removing them from all sets of micro-operations. Operations are

selected to increase the encodeability of the others up to the point of increasing a pre-

defined word width. The attraction tool determines, subject to the constrained instruction

width, which micro-operations to execute in parallel and which to encode in separate

micro-instruction formats by forming clusters to minimise encoding. Operation pairs are

iteratively merged into clusters using attraction weights. At each iteration the weights

are calculated using the freedom measure to determine the probability of pairs of

operations occurring in the same time slot. The highest pair are merged into a cluster,

thus resulting in the least degradation in opportunity for parallelism.

Elf [29,54] (1985) uses list scheduling where the order of scheduling is based on

urgencies. A weight is determined by taking the minimum number of cycles to execute

an operation plus its maximum successor weight, that is, its ASAP time. The urgency is

the ratio of weight to spare cycles to a time constraint. Therefore when the scheduling

of an operator is delayed, to allow sharing, its urgency increases which raises its priority

for scheduling.

The Design Automation Assistant (DAA) [55,56] (1985) creates an initial data path by

allocating units by direct compilation using VT block minimum delay information.

Unchanging items such as variables and ports are allocated first followed by functional

units. A maximally parallel design is created using an ASAP schedule and the design is

strategically serialised using an expert system guided by estimators. The expert

knowledge is contained in 300 rules determined by interviewing real designers. The

rules are mostly local, for example merging registers and are technology sensitive. The

knowledge is incomplete and although more rules result in improved designs the system

becomes slower. Cost estimators determine the cost of upgrading functional units and

K R Baker; 1992 2. Literature Survey of High-Level Synthesis Systems 3 4

interconnects to contain an additional module. Module generators build technology

dependent modules specified in DAA output.

The Caddy system [57,58] (1989,90) (Carlsruhe Digital Design System) also uses rules

which form local optimisations, these use commutativity type axioms. Global

optimisations used involve folding operators, folding variables based on lifetime analysis

and loop unrolling. The optimisations are applied to data and control flow graphs which

are directly compiled from DSL a Pascal like language [9] where unnecessary registers

and data transfers have been removed. Some explicit control and parallelism is bound in

the language, however additional parallelism is extracted. The optimisations are applied

in order to minimise area subject to timing constraints. Scheduling is performed by list

scheduling using resource limits and freedom, taking into account mutually exclusive

instructions. Register minimisation is done separately using a graph colouring approach.

A graph colouring algorithm finds the minimum number of colours such that each node

when coloured is not adjacent to a similar colour. After optimisation a one to one

mapping using parameterized structure generators is performed. The output is a

hierarchical netlist which provides an interface to other Caddy tools.

The S(p)licer tools [27] (1986) also use a resource constraint, which is used to guide

scheduling. Slicer creates a preliminary ASAP schedule and determines critical paths

and operator freedom using unit times based on the fastest units. An optimised schedule

is created a state at a time by binding operations to functional units from each ASAP

state starting at the first. The operations in an ASAP state are ordered on increasing

freedom (critical path first) and each assigned to the new state until the resource limit is

reached for that state; a new state is then created. The Splicer tool uses a greedy

algorithm to assign structural components, sharing where possible. A depth first branch

and bound method is used to find a fair solution quickly and subsequent best solutions

are retained.

Raj [59] (1986) describes a system which uses operator similarities. Operations are

assigned to micro-instructions (conceptually similar to control steps) to form an ASAP

schedule. Operations are delayed where similar functional units could be shared, thus

scheduling the operations in different time steps. A hardware allocator then uses a

greedy methW which allocates operations to hardware one at a time, sharing where

possible or creating additional hardware if sharing is not possible. The allocation

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 5

continues until it is complete or a hardware constraint is reached. If the constraint is

reached, the user must move an operation to a succeeding state and re-allocate.

2^ SYSTEMS WITH A CONSTRAINED CRITERION

Similar strategic serialisation methods to those described above are used in the following

two systems which allow goals to be set on either cost (resource constraint) or speed.

The Maha system [24] (1986) creates a data flow graph and assigns delay and area

figures to elements based on the average of those components capable of implementing

the operations. Using the delay figures the operation freedoms and critical paths are

determined and a lower bound on resources and delay can be found. The data flow

graph is divided into n equal time steps, initially equal to the maximum functional unit

delay, and the timing constraint checked for violation. Operations are scheduled in order

of increasing freedom thereby allowing greater flexibility for unit sharing as operations

with a greater freedom can be scheduled later. Critical path operations are allocated on a

first come first served basis, sharing where possible. Possible states for non-critical

operations are examined in sequence and the earliest chosen with priority given to

sharing units. If the resource cost is exceeded the data flow graph is divided into more

steps, n increased and scheduling repeated. To minimise the cost n is increased up to the

point prior to timing constraint violation therefore allowing maximum unit sharing. To

minimise the delay resources are added up to the point of cost violation therefore

allowing maximum parallelism.

Hal [25,60,61] (1986,7) also allows goals to be set on cost or speed and performs

allocation and scheduling separately but not independently. Hal performs a default

allocation and ASAP scheduling similar to Slicer and Maha from which freedom figures

are determined. The timing constraint (if specified) is used to decide on the control step

partition to which operations are scheduled. The order in which to schedule operations is

not determined by freedom as in Maha but by force which attempts to balance the

distribution of operations that make use of similar resources between control states. The

force is determined thus: for each operation type in each control step the sum of the

probability that the operation is scheduled in that step is taken. For a given operator the

place to schedule it is determined using forces corresponding to the change in

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 6

probability between steps. The smallest force of all operations is scheduled in its time

slot and the process repeated excluding the already scheduled operations. After

scheduling, locally optimal hardware allocation is performed to find a set of cells to

implement the data path subject to the goals. Ceils may implement more than one

function. Lastly, register optimisation and binding of cells taking interconnects into

account is performed.

Recent research at IBM by Camposano [26] (1990) uses strategic serialisation to

determine the area-time (AT) trade-off curve. Camposano describes a method of creating

a set of designs, in order to explore the design space, by initially generating a

maximally parallel "as fast as possible" (AFAP) design and then introducing extra

control states in order to allow more hardware sharing and thus navigate the design

along the AT curve in the design space. An extra state is created by splitting an existing

one such that the area of the operations in each state are approximately equal. It is

important to note that the area considered is that of the data path only; interconnection,

storage and control areas are not considered and the delay is taken to be the number of

control states. The state splitting process does not take into account the critical path

therefore the speed may be degraded by splitting critical path nodes before non-critical

paths have been examined; thus resulting in a non-optimal AT curve. Camposano and

Bergamaschi [27] (1991) use a data path graph with control constructs which is

compacted to reduce path lengths. An AFAP schedule is created by moving operations

into parallel branches. Operations may be duplicated thus allowing one operation to be

scheduled in more than one control state. Although an innovative idea it would be of

little use in the MOODS system because if the operation can be scheduled in more than

one control state then the states would be merged thus reducing the controller.

2.6 DESIGN ENVIRONMENTS

Some of the tools and systems described above have been incorporated into larger

systems which allow the designer to control the design process. By changing the order

of the synthesis tasks or by applying transformations to the initial description the

designer can produce a variety of designs, thus exploring the design space. The

approach to high-level synthesis by CMU is to develop a collection of synthesis tools

such as those CMU-DA tools described above and those described by Balakrishnan, et

K R Baker; 1992 2. Literature Survey of High-Level Synthesis Systems 37

al. [64] (1988) and Tseng and Siewiorek [65] (1981) which provide the grouping of

variables into multi-port memories and the synthesis of buses respectively. These tools

can then be manually controlled from one system [13,14] which uses a global database

(GDB) that is derived from a register-transfer level language (ISPS) used to describe the

designs behaviour. A common graph structure, the Value Trace (VT), which is able to

describe the design at various linked levels of representation, is determined from the

GDB.

The Sugar system [66] (1985) from CMU uses heuristics to automate the application of

VT transformations previously applied interactively [13]. The transformations that can

be applied to the VT are, for example, dead code elimination, partitioning, folding, code

motion, inline expansion, flattening of nested conditionals and pipeline formation. Code

motion shapes the VT using user's goals so that hardware binding will give a design

which meets the goals. The transformations help create a more synthesizable VT with

less bias introduced in the designer's description. Sugar groups increment and decrement

operations with other arithmetic operations. It uses a "least commitment" style of

binding design decisions to reduce negative effects of interactions between synthesis

tasks. Early tasks may be used to gather information and then redone later in the design

process.

The System Architects Workbench [15] (1987) is the latest generation of the CMU-

DA system and is a group of tools that operate interactively on the VT compiled from

ISPS. The VT can be manipulated using the same code transformations used in Sugar,

after which scheduling and allocation is performed by CSteps and EMUCS respectively.

The Systems Architects Workbench includes Aparty [67] (1991) an architectural

partitioning tool which determines subsets of behaviour to implement on separate chips.

Aparty uses multi-stage clustering techniques and communicates information to other

synthesis tools.

Another design aid environment is Spaid [19] (1989) which provides tools to explore

architectural alternatives for DSP applications. The designer can specify hardware

resources and timing constraints such as throughput or latency. Transformations can be

applied to the initial description to utilise operator properties, for example the

association property, or to satisfy timing constraints, for example re-timing.

Transformations and resource selection can be performed in any order to allow

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 3 8

exploration of design alternatives. Spaid then performs an initial schedule and allocation

which is repeated depending on unit utilisation analysis. Lastly registers and

multiplexers are minimised.

The Adam synthesis system [30] (1991) is a framework manager for design tasks and is

unique as it does not create a design but constructs a design plan which is later

executed, if the constraints are met, using tools such as Sehwa and Maha. Initially the

system estimates the lower bounds of the area and delay based on maximum usage of

operators in the data path. This is similar to the prediction of design space bounds made

by Parker, et al. [34]. The estimate is used to decide on a module set and design style

thus reducing the design space. Heuristic rules are used to guide the tool choice and

select tool parameters. A plan graph is constructed where the root is the initial design

and pre-conditions aid the construction which follows a depth first search method. The

properties of each terminal state are measured and depending on the result tool

parameters are adjusted or the planning continued until the goals are met. A range of

designs can be produced with the designer's interaction. A multi-dimensional cost

function is possible, however, as estimates are used in the design plan accuracy would

be jeopardised.

2.7 INTELLIGENT SYSTEMS

The systems reviewed so far optimise a design either by minimising one or two aspects

of the design or maintaining a constraint on one aspect whilst minimising the other. If a

goal is not reached and the synthesis task fails, human interaction is necessary to adjust

the available resources, in the case of strategic serialisation methods, or alter the initial

description in methods which assume language bindings. These systems can therefore be

considered open loop systems. The remaining systems described below close the design

loop and allow trade-offs between different design aspects; therefore they are often

classed as intelligent compilers. Although trade-offs have been seen in for example the

strategic serialisation systems, the trade-offs being performed were only one way; that is,

sacrificing speed in order to improve cost or area. In those systems no provision is made

for automated backtracking, design degradation or re-design if a synthesis task fails.

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 39

The Ulysses system [68] (1985) provides the simplest way to close the design loop.

Ulysses is an interactive tool integration environment for the CMU-DA tools which

contains its own design data representation and translators between existing synthesis

tools. It contains knowledge of which tool to activate when a conflict occurs thereby

providing automated re-design. A similar approach is used by Chippe [69] (1990) in

which trade-offs are iteratively corrected using analysis of the constructed designs;

therefore it is never too late to change a design decision. The design is analyzed with

respect to the goals on area, power or delay. An appropriate action is taken by

modifying the design through changing the parameters and constraints (primarily

resource constraints) passed to the design refinement tools, which re-iterate one or more

of the synthesis tasks. The refinement tools used are Slicer and Splicer. The evaluator

gives area, power and delay measures as well as unit usages, unit dead time, unit

overlap and critical paths. Tool parameter changes are determined using rules which are

scored by the evaluator and the highest selected. Although the strategy is still one of

generating a maximally parallel design and then strategically serialising it Chippe can,

by using its rules and evaluator, provide more intelligent tool parameter choices and

optimise to a wider variety of design aspects.

Ulysses and Chippe perform re-design by global iterations, that is, complete synthesis

tasks are iterated. This is necessary because they utilise existing synthesis tools which

are incapable of two way trade-offs. Systems which use local iterations must allow two

way trade-offs and therefore perform the allocation and scheduling tasks simultaneously.

Four systems use this approach, one of which is MOODS; the other three are described

below.

The Camad system [21,22,23] (1986,7) produces an initial implementation using a

timed Petri-net model which is compiled from a Pascal-like description. The architecture

is an asynchronous one where tokens are held or delayed long enough for the operations

to be performed. Token firing conditions are used for conditional branches and

synchronisation transitions are used where a node depends on more than one

predecessor. This model is the asynchronous equivalent to the synchronous controller

model used in Scholyzer and MOODS. The design is measured using a set of matrices

which represent the design aspects and a vector of scales representing the priority of the

matrices. Goals can be placed on both area and delay. The initial implementation

assumes maximum resources and parallelism. The optimisation minimises the difference

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 4 0

between the goals and the design measure by iterative improvement. The critical paths

and signals are used to choose which sub-part of the design to transform. If the

performance goal is not reached then the critical path is shortened either by parallelising

operations or by shortening token hold times, that is, operation execution times.

Likewise if the area goal is not reached units are shared preferably off of the critical

path and operations serialised to facilitate the sharing. The algorithm is a complex

tailored heuristic one which requires a complex flagging system to prevent

transformations undoing previous improvements and thus alternating. By using the

critical path the algorithm is biased towards performance. Design partitioning can be

performed and is taken into account during optimisation.

The system described by Devadas and Newton [42] (1989) also uses local iterative

improvements which are applied to the design using a simulated annealing algorithm.

The design is compiled from a ' C description and entered into a two dimensional grid

where control states are represented by the rows and each row contains a number of

parallel items to be executed in a given state. Each item may include one or more

chained operations. The synthesis tasks are thus formulated as a 2D placement problem.

The iterations consist of generating additional rows subject to dependencies and moving

operations within the grid. The design cost is determined using estimated measures; for

example, a measure for the number of buses required would be the maximum number of

distinct sources and the number of sinks in all time slots. The cost measures are

summed and scaled by weights specifying their relative importance, as also done in

Camad. Constraints are included in the cost function by penalisation. The annealing end

condition is when the cost function has not changed for three consecutive temperature

steps. The number of moves per temperature step is reported to affect the solution

profoundly, however no mention is made of how the user determines it!

The simulated annealing system from Safir and Zavidovique [70] uses a similar cost

function to Devadas and Newton, however, time is only represented by the number of

states. The cost function also incorporates a "silicon surface time utilization" (STU)

measure which is the ratio of the sum of silicon area used during each machine cycle to

the product of total area and number of machine steps. The STU measure is similar to

the unit utilization measure which forms part of the design goodness measure in the

MOODS system. The iterations consist of shifting nodes of a control and data flow

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 4 1

graph between time steps. A parallel task allocates generic components. As with

Devadas and Newton no details are given on how the annealing schedule is determined.

SUMMARY OF HIGH-LEVEL SYNTHESIS SYSTEMS

All of the above systems suffer from one or more of the weaknesses listed below, all of

which the MOODS system attempts to overcome. Apart from these weaknesses one

major problem has been highlighted by McFarland [31] (1987) which is concerned with

the shape of the area-time curve. The AT curve is assumed to be a relatively smooth

trade-off curve running from the high cost, high speed designs to the slower less

expensive designs. This assumed shape is a result of the assumption of area being

synonymous with data path operators and speed with control path length. This basic cost

model is used by many synthesis systems from which the traditional data path versus

control path trade-offs are made. McFarland has shown that by using a more

comprehensive cost model which takes into account interconnect area, control hardware

and multiplexers the AT curve takes on a completely different shape making the

assumed trade-offs less valid. Therefore systems which include trade-off assumptions

pre-programmed in the optimisation process are likely to produce non-optimal designs.

An example system (one of many) demonstrating each of the following weaknesses is

given, followed by a brief description of how the MOODS system overcomes it.

1. Architecture or application specific (Cathedral) - MOODS is aimed at general

applications and uses a distributed data path plus controller architecture.

2. Use of language bindings and structural descriptions (Bristie Blocks) - The input to

MOODS is a behavioural one where no bindings are assumed. Parallelism and

variables may be defined in the description but are not necessarily adhered to.

Their only effect is to determine the structure of the initial un-optimised

implementation.

3. Computationally expensive and a run time explosion with design size (DAA) - The

MOODS run time is controllable and can yield a correct design if terminated

early. A trade-off can be made between the run time and design quality.

4. Limited design model, that is, synthesis tasks are applied in a fixed sequence which

limits the design strategy and results in pre-defined trade-offs (Maha) - MOODS

K R Baker: 1992 2. Literature Survey of High-Level Synthesis Systems 4 2

iteratively applies transformations using a stochastic process to simultaneously

perform the allocation and scheduling tasks. Therefore no fixed design model is

used.

5. Local rather than global minimum is found (EMUCS) - MOODS avoids local minima

by using reversible transformations allowing the design to be temporarily

degraded and thus climb out of local minima. The global minimum (or near

minimum) is found with the aid of a global cost function. Due to their limited

design model many systems do not have (or require) a cost function as trade-offs

are pre-programmed in the optimisation process.

6. Goals limited to one or two aspects or minimised aspects (HAL) - Again this is due

to the limited design model and the lack of design evaluation through a cost

function. By using a global cost function and stochastic process, which contains

no pre-programmed trade-offs, MOODS can synthesis to any design aspect. The

complex interaction between design aspects and their resulting trade-offs are

another reason why more than two goals are rarely optimised using tailored

heuristics. Encapsulating the trade-offs in an algorithm results in a complex set

of heuristics as for example in the Camad system.

7. Design decisions made too early which require re-design to correct (S(p)licer) -

MOODS uses reversible transformations therefore it is never too late to correct

an inappropriate design decision.

8. Inaccurate evaluation or estimation of the design, that is, design goals are based on

unit or bit counts rather than real quantities and do not consider control or

interconnect factors (Spaid) - Although MOODS does not currentiy take

interconnects into account there would be no algorithm changes to do so as the

interconnects would be part of the cost function. Real design quantities are used

to constrain the design, for example, area in microns rather than bits and delay in

seconds rather than control states. The design quantities in MOODS are produced

by feeding up technology dependent information to the design evaluation

procedures. The use of real quantities gives the designer realistic information; it

is unlikely that he is concerned with the type of resources utilised but would like

to know if the design will fit the chip die.

9. Restricted control model, that is, the optimisation process is bound to one controller

type which again pre-defines the trade-offs (Silc) - The costs associated with the

MOODS controller implementation are included in the cost function therefore

changes to the controller style are reflected in it and thus taken into account

K R Baker; 1992 2. Literature Survey of High-Level Synthesis Systems 4 3

during optimisation. No restrictions on parallelism are made, such as limited

depth, therefore other controller styles can be used.

10. Limited design space exploration - Due to fixed optimisation strategies and trade-off

assumptions most systems can only provide design space exploration through

manual intervention; for example, by changing the design description or available

resources. The MOODS system can automatically explore the design space and

provide a varied set of implementation from one description; a feature possessed

by no other system.

The closest systems to MOODS are those described by Devadas and Newton, and Safir

and Zavidovique, however, there cost functions are fixed, whereas, the MOODS

multiple objective cost function is specified by the designer. Devadas and Newton

estimate the cost of a design and Safir and Zavidovique approximate speed to the

number of time steps; both of which introduce opportunities for errors. MOODS

however, uses technology dependent information fed up from a cell library. The use of

technology dependent information means that variations in trade-offs caused by

technology variations are also taken into account. MOODS also provides a wider range

of transformations similar to those in Camad, however they are not applied using pre-

programmed trade-offs as in Camad.

DEVELOPMENT OF THE

M O O D S

SILICON COMPILER

K R Baker: 1992 3. Development of the MCXDDS Silicon Compiler 4 5

As mentioned in Section 1.8 the purpose of this work is to develop a silicon compiler

that optimises a design with respect to multiple objectives set by the designer and

automatically explore the design space. The system is implemented as the MOODS

Silicon Compiler, acronym for Multiple Objective Optimisation in Data path (and

control path!) Synthesis. The compiler centres around a global optimisation mechanism

that is guided by a global cost function. It is the flexibility of the optimisation

mechanism and the accuracy of the cost function which determines the optimality of a

design subject to the designer's objectives.

3.1 MOODS INPUT AND OUTPUT SPECIFICATION

The design specification is given by a behavioural description which is compiled to an

intermediate code (ICODE). A behavioural description documents the design in a

readable, technology independent way. It is an abstract representation as it avoids

premature bindings, therefore allowing more optimisation opportunities. All languages

constrain the design description to a particular style as they have a finite syntax. A

silicon compiler may detect fixed structures caused by the language syntax and translate

them into an improved form. For a large range of language constructs this would be a

difficult process, therefore the number of constructs is minimised in the intermediate

code. Operations are decomposed into two-input instructions to reduce the number of

different constructs and provide technology independence. The effect of this is to

lengthen the description when compiled to the ICODE.

For each module in the description the ICODE consists of a set of processes each with a

unique process number. Each process represents an instruction and has associated with it

an activation list, that is, a list of processes to be activated when the current process

ends. The sequencing of operations is similar to a Petri-net and uses a token passing

mechanism to activate processes. A process may start only when all preceding processes

have terminated, indicated by a token. A collect instruction is used where the preceding

processes are executed concurrentiy. Its effect is to wait for a specified number of

tokens before activating subsequent processes [47].

The ICODE represents the behaviour of the design at the register-transfer level and is

the design description input for MOODS. The ICODE is generated from a behavioural

K R Baker 1992 3. Development of the MOODS Silicon Compiler 46

source language using a language compiler. The language compiler provides syntax

checks and optimisations such as dead code elimination and constant folding. Functional

simulation tools are essential to the designer to verify the operation of his design and

are applied either to the source description or to the resulting ICODE.

The source language may be either SCHOLAR [48] or a high-level subset of

ELJLVl [71,72]. The StZHCML/Ut ini)ut is compiled to IOC)!)]: using the SKZHOOLAIt

language compiler and may be simulated using a functional simulator which is part of

the language tools. An ELLA to ICODE interface [73] allows behavioural descriptions

in high-level ELLA to be compiled to ICODE. Unfortunately ELLA is of a structural

nature, therefore behavioural constructs such as loops are difficult to implement. Despite

this, a behavioural interpretation is possible which may be correctiy simulated using the

ELLA simulator. Apart from giving the user a choice of source languages ELLA

provides access to the tools available in the ELLA environment. An example of the

SCHOLAR language and the resulting ICODE is given in Figure 3.1, where an

instruction with no activation list is assumed to activate the next instruction in the code

sequence. The full ICODE instruction set is given in Appendix A.

SCHOIAR ICODE

$ (M o v e #2 2 A c t 4 , 5

b 2 : Or 2 3 2 A c t 9

= # # # A n d 4 5 6

b 2 : = b 2 CR c3 I f n o t 6 A c t 8

I F ' (d 4 AND e 5) THEN M o v e #0 5 A c t 9
e 5 : =0 8 Move #0 4

ELSE 9 C o l l e c t 2 A c t 4r 5

d4 : =0

$] REPEAT

$)

Figure 3.1 Example behavioural description and resulting ICODE.

The final optimised implementation generated by MOODS is represented in terms of

parameterized cells, therefore it is natural for the output to be a netlist of parameterized

cells. The required cells can then be taken from a cell library to produce a layout using

conventional placement and routing methods.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 4 7

The netli. t is produced in the form of ELLA text using the simple MAKE, JOIN and

LET statements. Each cell in the cell library is described as an ELLA macro which is

instantiated in the netlist output. The clock runs to all register and control parts and is

implicit in the cell descriptions by the use of the DELAY operator. By using ELLA as

the output the designer has access to the ELLA tools allowing the final implementation

to be simulated, where the ELLA time units represent clock cycles. If the source

language used was ELLA then the same simulation vectors with little modification can

be used to simulate both the initial description and final implementation; thus their

functional equivalence can be verified. An example simulation of both initial description

and final optimised implementation is given in Appendix B. After simulation at the cell

level the design can be implemented using existing systems available from the ELLA

environment. Variable names in the initial description are maintained throughout

synthesis and are used in the netlist output thereby allowing the designer to probe

known variables during simulation.

The ELLA netlist together with the parameterized cells represent the design at the

gate/logic level. This may be flattened and further optimised by low-level logic

synthesis systems which can optimise expanded cells and across cell boundaries. The

true cost associated with the optimised cells can be represented in the cell library

database which can detail pin overheads and different combinations of ALU functions

within an ALU. For example, the cell library data takes into account the fact that the

area increase in adding a function to an ALU will not be the area of the isolated

function but will be less due to the shared resources within the ALU. A pin is a

connection to a functional unit, whereas, a port is an module I/O connection; these

definitions apply throughout the thesis.

Although the data and control parts are thought of as separate during the synthesis

processes, they are combined in the final cell netlist. This gives layout tools more

flexibility in achieving a compact layout. Separate netlists for the data and control parts

could be produced, therefore permitting, through some post-processing, different

controller implementations; such as a microcontroller.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 4 8

3.2 MOODS ARCHITECTURAL MODEL

The chosen target architecture is a general one, therefore a data path plus control unit is

used as the architectural model. The general architecture adds little restriction to the

design space and allows the design of circuits from various application areas.

MOODS implementation independence is maintained by adopting a distributed data and

control path. This distributed structure is represented by a netlist of abstract

parameterized functional units and storage elements which implement instructions in the

input description. The control path is expressed in terms of control states and control

signals. Initially the distributed structure is sufficiently implementation independent to

allow the design to be bound in a variety of ways; for example, implementing functional

units as single cells or grouping into ALUs, merging registers into memories and

implementing the control unit as a finite state machine or microcontroller.

A few implementation assumptions relating to the clocking scheme and timing of

operations must be considered before detailing the synthesis steps. The clocking scheme

adopted will match the cell library, which will typically be a single phase or two phase

non-overlapping clock. VLSI cell libraries using these are smaller, simpler and more

widely available than their multi-phase counterparts. The clock is assumed to run to all

registers and control parts. Registers are loaded by controlling the load enable inputs

and storage is assumed to occur at the end of a clock cycle, at which point the

controller changes state. Each control state has a status output signal which when high

indicates that the state is active.

The timing diagram of Figure 3.2 shows the timing for an addition operation. The

vertical bars on the clock signal signify when the controller changes state and when

registers are loaded. The time taken for an operation is dependent on the operation itself,

its implementation method and the technology used. The clock period is used during the

optimisation of the design and is assumed abitrarily long if not specified by the user.

The clock period used to drive the final implementation will be equal to or greater than

the maximum control node delay. If a clock period has been specified by the user then

an operation will be multi-cycled if its execution time exceeds the clock period. If an

operation is multi-cycled then additional control states must be added when the time

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 4 9

state 1

state 2

clock SOURCE ICODE
11: v1 = v2 + v3 plus 2 3 1

load enable reg v1

.time available,
for operation

state 1
i1:

state 2

last assignment
of v a r i c e s v2 and v3

loading of
register v1

Figure 3.2 Timing diagram for the architectural model.

between the last definition of the operation's input variables and the assignment of the

output variable is less than the execution time of the operation. Alternatively a faster

implementation of the operation can be used which may reduce the number of additional

control states but will inevitably increase the data path area. This illustrates the trade-

offs possible between control and data path area and circuit speed.

DESIGN REPRESENTATION

A design representation is required as a vehicle for applying the synthesis steps. It must

be flexible enough to represent the design throughout the synthesis process from the

initial behavioural level to the final structural level. The design is represented as two

graphs, a data path graph and a control graph. Two separate graphs are used to allow

graph manipulations on one without affecting the other. This makes it easier to trace

control or data paths and combine or split graph nodes. In addition to these graphs are

lists specifying the variables used in the ICODE, ICODE modules and control signals.

All graphs and lists have links tagging points in one graph or list to points in another.

The links aid searches through the data structures and more importantly provide a

correlation between the behavioural description contained in the instructions of the

control graph and the implementation contained in the structural representation of the

data path graph [14]. This allows a multi-level representation to be maintained

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 0

throughout the synthesis process and so reflect optimisations at both levels. An example

of the links between data structures is shown in Figure 3.7.

The control graph, variable list and module list are constructed using the ICODE

description. For each module in the ICODE a separate control graph is formed and an

entry made in the module list. The module list contains pointers to the start and end

nodes of the control graph and a pointer to the parent module in which it was declared.

Also included is the module header that lists the input and output ports to the module,

which for the main program represent external I/O connections and possibly IC pins.

The variable list contains an entry for every variable in the ICODE. Each entry has a

pointer to the data path unit storing the variable (see Figure 3.7). The list includes both

declared and compiler created variables which are treated equally throughout synthesis.

Only I/O variables are reserved, that is they can not be optimised away, thus preserving

their original roles. The only difference between the variable types is that the declared

variable has a user defined name and bit width which defines operator bit widths

whereas the compiler variable has no name and its bit width is derived from the width

of the operations using it. Compiler variables are usually created where nested

expressions existed in the source description. They are therefore only used once, that is,

their lifetime consists of a single write and single read operation thus making them good

candidates for elimination during synthesis and is the reason why some compilers (such

as Scholyzer [20]) treat them differently.

3 3 . 1 THE CONTROL GRAPH

The control graph depicts control state sequencing information and instruction

precedences. It is cyclic, where cycles represent control structures with loops. Each node

in the graph represents a distinct control state, within which is a set of instructions to be

executed.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 1

The control graph is defined as follows:

CC%NTrK)L(3FUVPH =

where S = (si,s2,...,s„) is the set of nodes and A = (a„a2,...,an) is the set of arcs, which is

a subset of the cartesian product S x S.

A node s = (type, I,, Ai„, attributes) consists of:

type An attribute indicating the node type, either general, fork, conditional,

dot, call or collect, as explained below.

I; A set of instructions, Is c K, where H is the complete set of instructions in

the ICODE.

Ai„ A set of input arcs, Ai„ c A

Aout A set of output arcs, A û, c A

attributes, these consist of:

collect_N The number of tokens for a collect node.

delay An estimate of the time taken for instructions I, to execute.

node_enable The status signal indicating an active control state.

loop_its The number of times a node is enabled during a single pass

of the control graph - used in critical path calculations.

slack The critical path slack (often called mobility or freedom).

An arc a = (s„ ŝ , c,, FBA) consists of:

s, A single start node, s, e S

Sj A single terminal node, s, e g

Cg A condition signal which gates the arc, that is, if Cg evaluates to true and

the start node is active then at the end of the current clock cycle the arc

can activate the terminal node.

FBA An attribute indicating that the arc is a feedback arc thus creating a

control loop, the removal of which renders the graph acyclic.

The node type describes the class of control unit to be used when implementing the

controller. It relates to the arc configuration connecting to the node and any special

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 52

control considerations imposed on the controller by particular ICODE instructions. The

nodes are described in order of precedence, with general being the lowest and collect

the highest. Figure 3.3 illustrates the nodes.

A general node contains ICODE instructions other than collect, module call and

conditional instructions (IPs) and has at most one input arc and one output arc. A fork

node is the same as a general node except that it has two or more output arcs and

therefore marks the start of a parallel section, where ^ its successor nodes are executed

concurrently.

1 ... p

7 1
General Fork

1 ... m

Conditional

V X
\ call \

(N tokdns j
/module V V

Call

1 ... n

Collect

Figure 3.3 Illustration of control graph nodes.

A conditional node, like a fork node has one input arc and two or more output arcs. The

output arcs of both general and fork nodes have conditions set to true, however, in

conditional and higher precedence nodes the output arc conditions depend on other

signals. The same condition may be applied to many output arcs thereby rendering the

node a fork type under that condition. The arc conditions originate from a conditional

Lnstruclioii ui die ruode, siuzh as II\ (ZDIJNT loop test), and ZSTVTnCEBON

(CASE) instructions. A dot node is similar to the conditional node except that it has two

or more input arcs and may be activated by any one of them. The dot node is equivalent

to an or-join node in other systems and is the counterpart to the conditional node.

A call node is different to all other nodes as it contains only a module call instruction.

It may have any number of input and output arcs, although the output arc conditions

will be true as the node will not contain a conditional instruction. When activated, the

call node also activates the start node of the module to be called. When this has finished

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 3

execution, indicated by the activation of its terminal node, the call node activates its

successors.

A collect node is the same as a dot node except that it contains a collect instruction

indicating that it cannot activate its successor nodes until a fixed number of tokens,

given by the collect_N attribute, have been collected. The tokens are synonymous with

active input arcs. The collect node is equivalent to an and-join node in other systems

and is the counterpart to the fork node, however, they do not necessarily bear a one-to-

one relationship; for example, nested parallel sections may terminate on a common

collect node. In general terms a "fork type" node is one with two or more output arcs

and a "join type" node is one with two or more input arcs.

The control graph for each module is a connected, cyclic, bipartite graph. The nodes are

joined by arcs indicating control flow. Control loops are represented by feedback arcs

indicated by the FBA arc attribute. The removal of all feedback arcs renders the graph

acyclic. A control graph has only one start node, from which any other node in the same

module is reachable via the feedforward arcs. If a node has no input or output arcs,

excluding feedback arcs, then it must be a module start or end node respectively. A

module may have more than one end node but only one start node. The graph can be

partitioned into sequential and parallel sections. A sequential section is a part of the

control graph where nodes are unconditionally activated, one at a time, in a sequential

manner. Each node in a sequential section has only one input arc and one output arc

except for the first and last nodes which may have any number of input and output arcs

respectively. A parallel section is a part of the graph starting with a fork type node and

ending with a dot type node. A parallel section encloses two or more sequential sections

which may be executed concurrently.

Each control node contains the set of instructions to be executed in its control state. The

instructions may be dependent on each other, that is, the output of one is the input to

another. The dependencies between instructions are represented by acyclic instruction

graphs within the control node and are used to determine the path and thus the time

required for a correct result to propagate through the data path. The instruction graphs

must be acyclic as cycles represent feedback which may cause instabilities. Each

instruction graph is given a unique group number indicating that instructions with the

same group number are in the same control state and dependent on one another.

K R B a k ^ 1992 3. Development of the MOODS Silicon Compiler 54

possibly indirectly via other instructions or control signals. Within each control state the

groups are executed concurrently, at the end of which the results of the instructions

executed are loaded into registers. Intermediate results are not stored unless they are

required by instructions in subsequent control states.

An instruction i e H contains, as well as the data specific to each ICODE instruction, a

number of attributes consisting of:

impLlink

Group No.

Delay

End time

Condition for firing, if Cf evaluates to true then instruction i is

executed.

Implementation link indicating which data path unit is

implementing the instruction.

Mutually exclusive instructions - the set of instructions which are

never executed concurrently with instruction i.

The instruction graph to which i belongs.

The time for i to execute.

The time from the start of the control state for i to end execution.

Predecessor instructions - the set of instructions within the control

state that i directly depends on.

Successor instructions - the set of instructions that depend directiy

on i within the control state.

group 1 group 2

Control Node

clock-

group 1

group 2

clock period

i1 12

4
start

13

end

register
access time t_max • register

set-up time

Instruction Timing

Figure 3.4 Example of instruction group timing within a control node.

K R Baker 1992 3. Development of the MCKDDS Silicon Compiler 55

The instruction graphs within control states are described using the predecessor and

successor instruction sets. Figure 3.4 shows the timing information for three instructions

in a control state; i, and i; are dependent and form the instruction graph, group 1, while

ig forms instruction graph, group 2. The groups within a control node execute

concurrently and for the purpose of timing calculations, instructions within a group

execute according to the instruction graph. For example, i, and i; are considered to

execute sequentially owing to their dependency. Register accesses occur at the control

state boundary as shown in Figure 3.4. If a clock period has been defined then

instructions with an execution time greater than the clock period will be multi-cycled in

the initial and subsequent control graphs. A special instruction is used to indicate the

continuation of an instruction in the successor nodes.

The initial control graph is constructed from the ICODE description by placing each

instruction in a separate control state with its condition for firing set to true. The nodes

are then linked with arcs according to the activation lists, with all arc conditions being

set to true except those with a conditional instruction in the preceding node. Dot nodes

are added where instructions have

identical activation lists containing more

than one process. An example control

graph constructed from the ICODE

example of Figure 3.1, is shown in

Figure 3.5. Note the addition of a dot

node caused by instructions i3 and i9

having equal activation lists containing

more than one process. Beside each node

is a list of the instructions (i„(Cf)) within

the node, where the condition for firing is

omitted for cptrue. For arc conditions

other than true the signal (s„) is placed

beside the appropriate arc. The node

enable signal generated by a control node

is indicated inside the node.

To complete the initial control graph a test

is made to ensure that instructions

Italicized signals
within nodes are
node enables.

c s16
collect 2

Figure 3.5 Example of an initial

control graph.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 6

executed in concurrent sections of the graph are not contentious. Additional information

is extracted from the control graph after its creation and before performing any

optimisations. This information does not change during the application of

transformations and therefore a significant reduction in computational effort can be

made by generating and retaining the information instead of generating it each time it is

required. There are two sets of information that can be extracted, firstly, the minimum

feedback arc set (MFBAS) which when removed from the control graph renders it

acyclic and secondly, mutual exclusion between instructions.

The MFBAS is generated in two stages, firstly, taking the permanent of the adjacency

matrix by recursive expansion and secondly, the construction of a boolean function

which when manipulated yields the required arc set [74,75,76,77]. For large general

graphs the computation is "hard". However, in a control graph there are few feedback

arcs, which in addition to matrix reduction methods result in a matrix where in many

cases the MFBAS can be directly obtained without any further algebraic manipulation.

The reduction methods involve removing and noting self arcs which by their definition

are feedback arcs and removing single input control nodes, where the input arc can

never be a feedback arc as the node would be inaccessible in the acyclic graph.

Mutual exclusion occurs between a pair of instructions that can never be executed

concurrently, therefore the instructions may share hardware even when executed in the

same control state as they are not executed together. For example, in Figure 3.5

instructions i7 and i8 are mutually exclusive owing to the preceding conditional node.

Mutual exclusion is determined for all instractions in conditional branches of the control

graph by recursively analyzing conditional nodes. For a given node, each instruction in

one branch with branch condition Sy is mutually exclusive to all instructions in all other

branches with branch condition

After optimisation the control graph is likely to take on a different appearance. Many

instructions may occur in a control state and arc conditions and conditions for firing will

have changed.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 7

3 J . 2 THE DATA PATH GRAPH

The data path graph is constructed from the variable and module lists and the ICODE

instructions in the control graph. It describes the data dependencies and paths between

the functional units which implement the instructions. Each instruction and variable is

initially assigned its own data path unit, however as the structure is optimised this may

no longer be true as unit sharing may occur.

The implementation of a design is divided into two parts, the control part, implementing

the controller and the data part, implementing functional units and storage. The control

part is implicit in the control graph described in the previous section and does not,

therefore, require representing in the data path graph. It is assumed to exist as an

implicit unit with clock and data path control signals as inputs and control signals, such

as state enable, register load and register clear, as outputs.

The nodes of the data path graph represent functional, storage, boolean and interconnect

units and the arcs represent constants and input, output and control connections. Each

graph node is parameterized according to the bit width and contains a pointer to the

library cell which implements the unit. Functional t>'pe nodes represent data path units

that implement arithmetic or logical functions. Storage type units implement registers,

ROM, RAM, or I/O ports, as well as some ICODE instructions specific to the control

inputs of storage units; these are the MOVE, TRUE, HIGHZ and COUNT instructions.

The recognition of storage functions is important for cost effective designs [44].

Boolean type units are used as an alternative representation to a network of simple logic

gates. The network is converted from the data path representation to a condition signal

representation which can be implemented with the controller condition signals. The

interconnect units depict multiplexers (MUX) as defined by the architectural model;

however they could depict buses in a bus based architectural model. Initially

multiplexers are only required on register inputs, where variables are assigned more than

one value. No other multiplexers are required as no unit sharing occurs in the initial

data path graph. The need for an interconnect unit is apparent by the connection of more

than one signal to an input of a unit. It is therefore implicit in the graph structure and

can be added after optimisation to avoid excessive graph manipulations during

optimisation.

K R Baker 1992 3. Development of the MOODS Silicon Compiler 58

The data path graph is defined as:

Data Path Graph = (HJ, N)

where HJ = (u,,U2,...,Un) is the set of data path units and N = (n„n2,...,nn) is the set of

nets.

A unit u = (node_type, celLtype, Ni„, Qonw,!. impljinks, n_bits, lo_bit, area,

power) consists of:

node_type An attribute indicating the node type, which can be: functional,

storage, boolean or interconnect.

celLtype A pointer to the cell database indicating the parameterized cell

used to implement unit u.

Nin A set of input nets, c N

Nout A set of output nets, c N

Qoniroi A set of control signal inputs as described below.

impl_links A set of links indicating which instructions are implemented by

the data path unit.

n_bits A parameter indicating the number of bits.

lo_bit A parameter indicating the index of the lower bit, the index of the

upper bit is given by: lo_bit + n_bits - 1.

area An attribute indicating the estimated area occupied by the unit

when implemented using the cell given by celLtype.

power An attribute indicating the estimated power consumed by the unit

when implemented using the cell given by celLtype.

iiet n = (tyi)eb^ \ralu(%o, ningrek, tyixSow, vTiluCou., pirk**, Lc* i*.*, iMir)

consists of the following attributes:

value-

The type of input that is connected to the net, it can be: a unit, a

control signal or a constant.

The input value; its interpretation depends on the type attribute.

For a unit it is a pointer to a unit, for a control signal it is a signal

number and for a constant it is a value.

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 5 9

rangCin The output bit range for a unit input.

pittjn The output pin type for a unit input.

tyP^out The type of input that the net connects to, it can be: a unit or

control signal.

valuCout The item that the net drives, it is dependent on the type attribute.

For a unit it is a pointer and for a control signal it is a signal

number.

range^ut The input bit range of the connecting unit.

pin^ut The input pin type of the connecting unit.

The instruction number that has caused the net to be created. This

may be used later for the generation of MUX control inputs,

i^^t The instruction number that reads from the net. For nets to

registers this will equal i^ . This is used to keep track of ALU

inputs and may be used later for the generation of interconnection

control signals.

var The variable number and relevant active period (see Section 4.1.9)

transmitted over the net.

A control signal c e Qowroi is used to direct a condition signal to a control input of a

data path unit. The control signal c = (c„ pin, range, consists of the following

attributes:

c. Condition signal which when true activates the relevant control

input on the unit.

pin The input pin type that the control signal activates.

range The bit range to be activated on the input pin.

igct The instruction number causing the control input.

An example data path is shown in Figure 3.6 and represents the initial data path for the

example ICODE given in Figure 3.1. The control of data flow through the graph can be

determined by identifying node enable and control signals in the control graph of

Figure 3.5 with those used and generated in the data path.

The initial mapping of ICODE to data path elements is similar to that used in

Scholyzer [20], except that all signals are stored. Input variables to all modules and

K R Bake: 1992 3. Development of the MOODS Silicon Compiler 60

•— s14

constant #2

slO select

I MUX

Sl1

s9 + s10

OR
AND

register
LO

register
d4

register

register
temp

register

Figure 3.6 Example of an initial data path graph.

output variables from internal modules are mapped to ports, where, ports connecting to

internal modules are later mapped to nets. Output variables from the main program are

mapped to registers. Storage nodes such as registers and counters are tailored according

to the instructions which write to them. A common destination (CD) list is created for

each variable and consists of the set of instructions that write to the variable. The CD

list is analyzed to determine the type of storage unit required and any control attributes.

Instructions which represent reset or set operations (for example a:=0 or a:=2°-l, where

n is the bit width of the variable a) are mapped to the appropriate set and reset control

pins. A variable whose CD list contains only set, reset and increment (a:=a+l) or

decrement (a:=a-l) operations is mapped to a counter and the count control pin set

accordingly.

ICODE operations are mapped to units which are implemented by a set of basic library

cells that are assumed to exist in the cell library. As the implementation is optimised the

units may be implemented by non-basic cells which the user may enter into the cell

library.

Between instructions in the control graph and nodes in the data path graph are

implementation links, these indicate which data path units are implementing which

K R Baker 1992 3. Development of the MOODS Silicon Compiler 61

predecessor control nodes

I
in_arc_list

Control node

out_arc_K#* r
successor control nodes

predecessor and #ucc##0Of
dependent instrucdwe

0

Instruction
11: a - b -f 3

impUWm
ipl: b I ip2: #3 | opilT

CONTROL PART

Variable

Variable
hardware

"a"

T
lmplem#nWion Link,

VARIABLE LIST

DATA PART

J_JL
DP node

r#gl«Wf un#

DP node
mdd#funK

Net

DP node -
wghWf un#

r r

Net % —0

.0
"̂ 0

mdd#f Rbwy c##
r#gW#f
library

cell

2. AB M widths ara equai in M s example and t o ant net d
3 . Linked W poinlara tanning coniral, variabie. nei, data p

and Bbrary ceB M b are not ahown.

Figure 3.7 Design data structure showing links between control and

data path graphs and variable list.

instruction(s). They provide a fast method of determining whether units are shared

between instructions, which would otherwise require computationally expensive

searches. Figure 3.7 gives an example of the implementation link and other data

structure links between the data structures associated with a control node containing a

single instruction. The single instruction forms its own instruction graph and therefore

has no dependencies in the control node, shown by the null (0) pointer.

3.4 MOODS OPTIMISATION STRATEGY

When selecting the optimisation strategy a number of requirements have to be taken into

consideration. The first and most important is the ability to perform the synthesis tasks

simultaneously, thereby facilitating trade-offs between tasks. The trade-offs are essential

for producing optimal designs when optimising with respect to more than one aspect of

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 6 2

the design. The second consideration is the ability to explore the design space quickly.

This can be done by re-synthesizing the design. The re-synthesis computation time can

be reduced by synthesizing from the current control and data path graphs rather than the

initial control and data path graphs. This is based on the assumption that most practical

optimal solutions in the design space will be closer to the current design space position

than the initial position, therefore requiring less computation to reach them from the

current position. A third consideration is to allow the designer to manually adjust the

implementation to include his quirks or refine the implementation.

Algorithmic approaches using linear programming have been reported as having a

computational explosion for even the smallest of practical designs. For multiple

objectives integer goal programming [78] must be used. Linear programming is a special

case of goal programming, therefore the use of goal programming would be impractical

from the computational point of view. Other algorithmic approaches, such as clique

partitioning, were considered and although they are applied to individual synthesis tasks,

they can take constraints into account which allow for better results from subsequent

synthesis tasks. However, the problem arises whereby the constraints may not be the

best ones to achieve a particular goal in subsequent processes or there may be too many

or too few of them. This is due to the lack of feedback from later synthesis processes to

earlier ones and because of this a global optimum cannot be achieved. In addition, the

constraints are not in terms of real circuit parameters such as area and delay and would

therefore be meaningless to the user.

Design space exploration in the algorithmic methods must be achieved by

re-synthesizing the design from the initial point in the design space. Re-synthesizing is

normally done from the initial design point, however, in very few circumstances a

partially synthesized design between synthesis tasks can be used which avoids

performing preceding tasks.

An iterative optimisation strategy is used in MOODS as it overcomes the problems

described above. Iterative optimisation is achieved by breaking the synthesis tasks into a

number of local transformations, some associated with allocation and others with

scheduling and translation. This allows the simultaneous consideration of the synthesis

tasks which is recognised as being extremely difficult [79] and can result in complex

algorithms or simplified design models. However any implementation can be obtained

K R Baker: 1992 3. Development of the MOODS Silicon Compiler 6 3

by manipulating a directly compiled design [9] and the opportunistic design

modifications in the iterative method show the greatest power [69].

The transformations are considered as non-binding, allowing previous design decisions

to be overruled, therefore providing the opportunity for design degradation and so the

basis for global optimisation. Transforms may be applied at either the behavioural or

structural level as the use of a multi-level representation reflects changes to the design

at both levels. The transforms are complete, that is, a transform applied to a correct

design will always result in a correct design; this eliminates interaction between

transformations and allows them to be applied to the design in any sequence. To achieve

global optimisation a global cost function is required to steer an optimisation algorithm

in applying the transformations. The separation of the transforms, cost function and

optimisation algorithm means that different optimisation techniques and strategies can be

developed and incorporated in the MOODS system. The transformations, cost function

and optimisation algorithms are the subject of subsequent chapters.

As the strategy is iterative design space exploration can be efficientiy achieved by

stopping the optimisation algorithm, changing the objectives and continuing from the

current design point. This constitutes dynamic design space exploration. The use of non-

binding transformations ensures that design degradation can be done, which may be

necessary in reaching the new objectives. The transformations can also be applied

manually to the design. This gives the designer the ability to make accurate local

modifications without the need for blindly adjusting objectives or applying inaccurate

constraints and re-synthesizing from the initial design.

Binding is assumed to take place after the design has been optimised and the final

implementation proved to be to the designer's requirements and can be considered as

delayed binding [66]. The design is then written to the design files and hardware

synthesis and layout performed.

TRANSFORMATIONS

K R Baker: 1992 4. Transformations 6 5

This chapter describes the transformations used in the MOODS synthesis system. All

references to program code are shown in the Cour i e r typeface, where the data

structures are listed in Appendix C and program examples are written in pseudo-C.

For multiple objective optimisation and fast design space exploration, trade-offs between

synthesis tasks are essential. To facilitate trade-offs and avoid local minimum traps

caused by their sequential execution, the synthesis tasks, scheduling, allocation and

translation, must be performed simultaneously. This is achieved by dividing the

synthesis tasks into a number of transformations which may be iteratively applied to the

design in any sequence. The transforms may occur at either the behavioural or structural

level as changes at one level are reflected in the other by the use of a multi-level

representation.

To allow the application of transformations in any order each must be complete, that is,

it transforms the graph structures from one valid implementable design to another

without the need to apply additional transformations to tidy the effects of the previous

ones. Therefore a transformation to remove parallel control path arcs does not exist as a

separate transformation but as a sub-transform used in transformations that generate

parallel arcs as a consequence of removing control nodes.

The correctness of the transformations is essential to ensure the design remains

functionally equivalent to the original specification throughout the synthesis process.

The semantic preserving properties of transformations should be easy to prove if they

are simple [22]. Mathematical models of behaviour have been devised elsewhere [18,80]

which can be used to prove the correctness and functional equivalence of a design after

the application of transformations.

The transformations are considered non-binding, allowing the effects of previous

transformations to be overridden, therefore delaying the binding of design

decisions [66]. Each transformation will affect many aspects of the design and are

general in that they are not directed towards improving a particular aspect of the design.

They may improve one aspect of the design while degrading other aspects. However,

they can be associated with a particular synthesis task.

K R Baker: 1992 4. Transformations 6 6

The amount of improvement, if any, is dependent on the section of the design to which

the transform is appUed, as well as the user's objectives represented by the cost function

and technology dependent data. It is the purpose of the optimisation algorithm to apply

the transformations in such a way that the user's criteria are met. To give the

optimisation algorithm many stratagems, the generality of the set of transformations is

important. For this reason some transformations produce a design degradation by

undoing the effects of previous transformations. This provides the basis for global

optimisation in the same way as simulated annealing does through degradations by "hill

climbing" moves [81]. None of the transformations make assumptions concerning

possible trade-offs. For example, the statements "trade-offs on storage are not

s ign i f i can t "and "short bit width operations are ignored because it is not profitable to

share hardware among them"^^^ are only half truths as the costs and therefore the trade-

offs depend on technology dependent information. Assumptions such as these cause

premature bindings and unnecessarily restrict the design space.

Most of the transformations are local, that is, they are applied to a small part of the

design. Each transformation consists of four distinct steps:

1. Data selection. Data selection involves selecting a transformation and the design

data on which to apply it. The transformation type and associated data are

entered into the appropriate fields of a transformation data structure which is

used as a vehicle to pass information between the program procedures. In the

parameter list of procedures given here the transformation data structure is called

td. In the manual optimisation mode the user sets the fields by interacting with

the program in the s e l e c t _ t r a n s (td) procedure, whereas in the automatic

optimisation mode the information is created by the a u t o _ s e l e c t _ t r a n s (td)

procedure according to the requirements of the optimisation algorithm.

2. Testing. The information entered in the data selection step is minimal, with

additional data required to perform the allotted transformation being generated

during the testing stage. All of the information is tested by the procedure

t e s t _ t r a n s (td) and appropriate error codes given when the transformation

cannot be performed.

3. Estimation. The estimation step, performed by the procedure

e s t i m a t e _ t r a n s (t d) , takes the transform data and estimates the effect the

selected transform will have on the cost function. This estimation is used by the

K R Baker: 1992 4. Transformations 6 7

optimisation algorithm to determine whether the transform would be instrumental

in reaching the user's objectives.

4. Execution. The selected transformation is performed by procedure

p e r f o r m _ t r a n s (td) only if the optimisation procedures, after evaluating the

estimation, consider it appropriate.

Each of the five procedures associated with the above steps consist of a case statement

which selects the appropriate data selection, testing, estimation or execution procedures

according to the transformation type initially chosen in the data selection step. For

example, if the sequential merge transform is selected then t e s t _ t r a n s (td) will call

the t e s t _ s e q _ m e r g e (td) procedure. If any error occurs due either to incorrect data

selection or the selected data failing the testing step then a suitable error code is

returned. The error code is used to issue an error message to the user in the manual

mode or to direct the automated optimisation algorithm. The first three steps, data

selection, testing and estimation, provide more information to the user and/or

optimisation algorithm and do not make any permanent changes to the design. If an

error code is generated during these steps then the transformation is prevented from

being performed by the final execution stage.

The remainder of this chapter describes the tests performed on the design data structures

and each of the transformations. Section 4.1 describes a collection of the important tests

which are used during the testing stage of the transformations. The scheduling and

allocation transformations are described in Sections 4.2 and 4.3 respectively, with the

translation transformations being in the appropriate sections. Some of the

transformations are similar to those used in other systems [20,23].

4.1 TRANSFORMATION TESTS

To determine the pending success of a transformation the selected data is checked using

an appropriate collection of tests. Many of the tests and calculations performed during

the synthesis process involve traversing graph structures in order to determine various

characteristics of the design and validate transformation data; for example, critical path

analysis in the control path, delay calculations in the instruction graphs or reachability

and variable lifetime tests. The general recursive graph traversal algorithm used to

K R Baker: 1992 4. Transformations 6 8

perform these tasks is shown in Figure 4.1. The algorithm shown traverses a graph

forwards from a given start node in a depth first fashion. An equivalent algorithm that

traverses a graph backwards from a given end node is obtained using predecessor

instead of successor nodes. This procedure is similar to those used in other graph theory

applications [82].

traverse^^gEaph (node)

i f {Inode j j node has been evaluated) r e t u r n ;
i f {insufficient data to evaluate node) r e t u r n ;
evaluate node;

f o r (each valid successor node}

t r a v e r s e _ g r a p h { s u c c e s s o r) ;

Figure 4.1 The general graph traversal algorithm.

The tests and analysis described here represent the most significant analysis topics

employed in all high-level synthesis systems. Some of the tests described are utilised in

more general cases. In addition to these, numerous simple tests are also used during

synthesis, however these are mentioned where necessary and require no explanation as

they only involve testing single fields in the data structures. For example, to determine

whether a control path arc is a feedback arc only requires its FBA field to be checked.

4.1.1 REACHABILITY TEST

A control node nj is reachable from node n̂ if there exists a path from n̂ to in the

acyclic control graph, that is, the path does not include any feedback arcs. The

reachability test is performed by the i s _ r e a c h a b l e (n^, n^) procedure which marks all

nodes after n̂ in the acyclic graph. If has been marked then it is reachable from nj and

true is returned. If nj has not been marked then it is not reachable and false is returned

indicating nj precedes n̂ or both nodes are in parallel branches of the graph. The

marking is done by the recursive procedure t r a c e _ t e m p _ f o r w a r d (s t a r t) shown in

Figure 4.2 which is derived from the general graph traversal procedure, where s t a r t is

the control node to mark forward from. The field temp is used as a "visited" flag which

K R Baker: 1992 4. Transformations 6 9

is initially set to false; the evaluation of each node consists of setting temp to true. A

valid successor node is one that is not reached via a feedback arc.

trac®__t®n?>_foxwaxd (s t a r t >
s t r u c t c o n t r o l _ n o d e *node;

I f (! n o d e) r e t t i r n ;

i f { s t a r t - > t e m p > r e t u r n ; / * a l r e a d y v i s i t e d * /

3 t a r t - > t e m p " t r n e ;

f o r { e a c h o u t p u t a r c i n t h e l i s t s t a r t - > o u t _ a r c _ i i s t)

i f (! o u t _ a r c - > i s _ F B A)

t r ace_ t emp_fo rward{ou t_a rc ->succ_node} ;

Figure 4.2 Recursive node marking procedure.

4.1.2 MUTUAL EXCLUSION TEST

Mutual exclusion occurs between a pair of instructions which can never be executed

concurrently owing to their occurrence in different branches of a conditional construct.

Mutual exclusion is determined as described in Section 3.3.1; where for each instruction

a set of mutually exclusive instructions is obtained. The set of mutually exclusive

instructions is stored in a linked list of pointers in the instruction data structure.

The mutual exclusion test is performed by the t e s t _ m u t u a l _ e x c l u s i o n (i^, i„)

procedure which tests the mutual exclusion list associated with instruction ij for a

pointer to the instruction ij,, that is î e Mj, where Mj is the set of instructions mutually

exclusive to instruction ij. The order of the instructions given in the procedure

parameters is not important as if î e Mj then the converse ij e is also true.

A pair of data path units may also be mutually exclusive if every instruction using one

unit is mutually exclusive to every instruction using the other unit, that is, the units are

never active at the same time. Procedure t e s t _ r e g _ m u t u a l _ e x c l (r^, r^) tests two

registers, r, and Zg, for being mutually exclusive.

K R Baker: 1992 4. Transformations 7 0

4 . U HARDWARE SHARCVG TEST

To permit the concurrent execution of a pair of instructions they must not share a data

padi unit in their implementation, unless they are mutually exclusive. The hardware

sharing test is performed by the procedure t e s t _ s h a r i n g (l i s t l , l i s t 2) , where listl

and listl are two sets of instructions that are to be executed in the same control node.

The procedure tests each instruction in listl against each instruction in listl. If the

instruction pair is not mutually exclusive and a data path unit is shared between them,

indicated by the implementation list, then a true is returned. Otherwise the next pair are

tested until the end of the lists whereupon a false is returned.

4.1 .4 DEPENDENCY TEST

The dependency test determines whether there is a dependency arc between a pair of

instructions, ij and i„. A dependency arc is created between two instructions that are in

the same control state, where the result of one affects the operation of the other, that is,

it may be an input or a term in the firing condition. The dependency list is similar to the

mutual exclusion list in that each instruction has a linked list of pointers to dependent

instructions. However as the dependency arcs describe the instruction graph, which

changes during synthesis, so the arcs themselves must also change.

The dependency test is performed by the i s _ d e p e n d e n t (i j , i ^) procedure which tests

the dependency list of ij for the successor dependent instruction î , that is î e where

HDSj is the set of successor dependents of ij. The order of the instructions given in the

procedure parameters is important as if î e ©Sj then the converse ij € is not tme

and may never be true due to the restriction that the instruction graph is acyclic.

However using the predecessor dependent list Dp, \ e is the same as ij e Bgn,.

4.1 .5 CONTENTION TESTS

Two instructions ij and î , ij precedes î , may be executed concurrently if their

concurrent result is equal to the original result. For example, given the following pair of

sequential instructions:

K R Baker: 1992 4. Transformations 7 1

i,; a=b+c;

i;] d=a+l;

and that a=0, b=2 and c=3 the values of a and d for their sequential execution will be 5

and 6 respectively. However, for the concurrent execution of the instructions the values

of a and d will be 5 and 1 respectively. The variation in the value of d indicates that

instruction ij is dependent on the output of instruction ij and that contention exists when

they are executed concurrently. Contention occurs when there is a dependency or a

variable access violation between the instructions. An access violation occurs when the

instructions write to the same variable, which for concurrent execution will give

conflicting results. Note that if the instructions are mutually exclusive then contention

between them cannot exist as they are never executed concurrently.

Contention is determined by testing the instruction's variables in the following way [52]:

Let SV(ip) = {v I v e set of source variables of ip, ip e II} and

DV(ip) = {v I v g set of destination variables of ip, ip € H}

be the set of inputs and outputs, respectively, for an ICODE instruction. The source

variables include the input variables for the firing condition of instruction ip as well as

its input variables.

c o n t e n t i o n _ i j _ i k (i j , 1%)

s t r u c t i n s t r u c t i o n * i j ,

i f (t e s t _ m u t t i a l _ _ e x c l i i s i Q n (i j , i ^)) r e t u r n 0 ;

i f (D V (i j) n D V (i ; ,) 0) r e t u r n 2 ; / * a c c e s s v i o l a t i o n * /

i f (D V (i j) n S V { i n } 0) r e t u r n 1 ; / * d e p e n d e n c y * /

r e t u r n 0 ; / * n o c o n t e n t i o n * /

Figure 4.3 Contention test procedure.

The procedure c o n t e n t i o n _ i j _ i k (i ^ , i ^) returns a 0, 1, or 2 for no contention,

dependency or access violation respectively, thus giving an indication of the type of

contention between the instructions tested. A further test is necessary if the inputs to

both instructions are from single port memory variables. The test, SV(ij) n SV(iJ = 0

ensures that both instructions do not read from the same memory.

K R Baker: 1992 4. Transformations 7 2

The procedure shown in Figure 4.3 is used in further contention test procedures which

test an instruction against a node and a node against a node. The test performed is

indicated by the latter part of the procedure name. For example, the procedure

c o n t e n t i o n _ n j _ n k (n ^ , n,;) tests the contention of all instructions in node n, against

all instructions in node % and returns the highest contention test result.

The contention test is used to determine the insertion of dependency arcs in the

instruction graphs and thus indicate the implied ordering of concurrent instructions. The

dependency arcs are important to maintain the correct instruction ordering when

serialising concurrent instructions; for example if instruction î depends on i, then ij must

precede i,,̂ when serialised. However, the lack of a dependency arc between concurrent

instructions does not imply the instructions can be serialised in any order. Consider the

concurrent instructions:

i j : a = b + c ; igi d = a + l ;

and that in the previous control state a=0, b=2 and c=3, thus after execution a=5 and

d=l. The two possible serialisations, precedes ij and ig precedes i, would produce the

results a=5, d=6 and a=5, d=l respectively; the latter being the correct result as it is the

same as that produced by the concurrent instructions. The correct result is obtained if

and only if the serialisation does not result in any dependency between the instructions.

t e s t _ c o n t a n t i o n (l i s t) , l i s t *)
s t r u c t i n s t r u c t i o n * l i s t) f ^ X i s t i ^ ;

f o r {each instruction 1^ in list^)
f o r (each instruction ij(in list,^)

i f { l i s _ d e p e n d e n t (i j , i j) && c o n t e n t i o n _ i j _ i k (i j , ij^) }

r - e t u r n t r u e ;

r e t u r n f a l s e ;

Figure 4.4 Procedure to test for the creation of additional contention

on instruction serialisation.

The procedure t e s t _ c o n t e n t i o n (l i s t j , l i s t „) shown in Figure 4.4, takes two

concurrent sets of instructions with any dependency arcs between them intact and

determines whether the correct behaviour is maintained by the serialisation listj precedes

listu. Each instruction in list, is tested for contention with each instruction in list^. If the

K R Baker: 1992 4. Transformations 7 3

instructions are contentious and a dependency arc does not exist between them then the

serialisation will result in additional dependencies and thus a change in behaviour. Each

instruction pair is tested until either extra contention is found, whereupon true is

returned or all instructions have been tested whereupon false is returned. Note that the

dependency test is performed first as it is less computationally intensive.

4.1.6 JUMP TEST

The jump test is used to determine whether a pair of consecutive instructions (ij, î) can

be executed in reverse order without affecting the results. This is only possible if the

instructions are independent of each other or they are mutually exclusive, in which case

they are independent in time rather than in terms of variable accesses. An independence

in time has a higher priority than a variable independence, as a time independence

implies no conflicting variable access occurs. A warning is issued if the instructions are

found to write to the same variable. This indicates that no instruction previously tested,

when jumping many instructions, was found to access the variable, therefore the first

instruction may be superfluous.

jTa«£p_i_i (i j , ik)

s t r u c t i n s t r u c t i o n * i j f * i k ;

i f (t e s t _ m u t u a l _ e x c l u s i o n (i j / i k)) r e t u r n t r u e ;

i f (D V (i j) n S V { i k) 0) r e t u r n f a l s e ;

i f (S V (i j) n D V (i | () 94 0) r e t u r n f a l s e ;

i f (D V { i .) n D V (i J # 0) {

p r i n t f (" s u p e r f l u o u s i n s t r u c t i o n i j ") ;

r e t u r n f a l s e ;

r e t u r n t r u e ;

Figure 4.5 Instruction jump test procedure.

Let SV and DV be as defined on page 71. The j u m p _ i _ i (i j , i ^) test shown in

Figure 4.5 returns true if the order in which the instructions are executed can be

swapped. This procedure is used in further jump tests to determine whether an

instruction may jump a node or a node jump a node. For example, the procedure

K R Baker: 1992 4. Transformations 7 4

j u m p _ n _ n (n^ , n j determines whether all instructions in node nj can jump all

instructions in node n ;̂ if so, the control nodes may be swapped.

4 .1 .7 MOVE TESTS

The move test determines whether an instruction i can be moved from node nj to node

where nj precedes n .̂ The test is performed by the procedure

t e s t _ m o v e _ o n e _ i n s t (i , n ^ , n , ,) . For the test to succeed three conditions must be

met:

1. There must be a non-divergent path between the pair of nodes. This is

determined by traversing the graph from n, to each node visited (excluding nJ

must have a single feed-forward output arc.

2. Instruction i must be able to jump each node visited in condition 1 (excluding nj

and nJ. This is determined using the j u m p _ i _ n (i , n) procedure.

3. There must be no access violation between instruction i and the final node n .̂

This is tested for using the c o n t e n t i o n _ i j _ n k (i j , %) procedure. A

dependency may exist between them in which case the instruction is placed at

the start of the dependent instruction graph.

The instruction is not tested with nj and therefore it is assumed that all instructions

dependent on i in the same node will also be moved. The procedure

t e s t _ m o v e _ i n s t s (i , n^) tests each instruction in the list given by i for moving

from node nj to node %.

4 .1 .8 DELAY TESTS

Delay tests are required to ensure that an instruction or set of instructions when inserted

in a control node will not make the control node exceed the clock period. There are two

procedures for delay testing a single instruction and an instruction graph,

c o m b i n e _ i _ n _ d e l a y _ t e s t (i , n , t i m e) a n d i n s t s _ d e l a y _ t e s t (i , n , t i m e)

respectively. The instmction(s) are added to the given node using the

a d d _ i n s t _ g r o u p (i , n) procedure which inserts the dependency arcs that make up the

instruction graphs.

K R Baker 1992 4. Transformations 75

The a d d _ i n s t _ g r o u p (i , n) procedure operates as follows: when inserting the

instructions the contention test is made between each instruction to be added to the node

and all instructions in the node. The result of the test determines how the instruction is

to be inserted. If no contention exists then the instruction is entered in the node as a

separate instruction graph with its own group number. If a dependency exists then the

instruction is added to the instruction graph to which it depends by inserting a

dependency arc. The group number for the instruction will be the same as the

instruction graph group number to which it depends. If an access violation occurs then

the test fails as instructions cannot be inserted into the node, in this case an "instruction

insertion" error code is returned from the procedure.

Once all instructions have been successfully added to the node its new delay is

determined using the c a l c _ n o d e _ d e l a y (n) procedure. If the new node delay exceeds

the parameter time then a "delay test failure" error code is returned, otherwise a "delay

test pass" code is returned. In all cases the instruction(s) are removed from the node and

the graph structure reverts to as it was before calling the delay test procedure.

i1: a = b + c; 20ns
12: d = a + e; 30ns
13: z = w; 40ns

i1 13

Figure 4.6 Example of delay test.

Figure 4.6 illustrates the delay test involved in merging a pair of control nodes. The set

of instructions in node N2 are tested for inclusion in node Nl . Instruction 12 is

dependent on il through variable a, resulting in an instruction graph which establishes

the new node time of 50ns. The delay test will fail for times of less than 50ns. Note that

if the destination variable of 13 had been a instead of z then an access violation would

occur and the test would fail regardless of time.

K R Baker 1992 4. Transformations 76

4.1.9 LIFETIME ANALYSIS

The problem of lifetime analysis is well understood in the area of software compilation

[83] and some similarity to lifetime analysis in silicon compilation exists. A variable is

live when it contains data which is required by subsequent instructions and if destroyed

would affect the behaviour of the design. A live period starts fi-om the time when the

data is created, written to the variable, t^, to the time when it is last used, read from the

variable, t,. The lifetime of a variable, 1^^ may consist of many such live periods (t^j-

tri, ... , t^n-U between which occur the dead periods. A register is active over

the times that the variables stored by it are live, that is the register active time is the

union of the lifetimes of its variables.

Figure 4.7 shows a sequence of control nodes containing instructions that write to or

read from variables a, b or c. The instructions themselves are not relevant in illustrating

lifetime analysis, only the variable and read or write operation performed by the

instruction, shown by the r or w subscript, are important. The time slot, t, to which a

control state belongs is determined by numbering the control nodes using a variation of

the traverse graph procedure shown in

Section 4.1 (page 68). The start node is given

the time slot t=\ and the evaluation

m a x (p r e d e c e s s o r t) + 1 is used to

determine the subsequent node time slots.

Using the time slot information the variable

lifetimes can be determined (see Figure 4.7).

The register active times are determine using

the f i n d _ a c t i v e _ t i m e s (r e g) procedure

which returns a linked list of active periods

for the given data path register. The input,

output and some selected control nets are

used to determine the register active times.

Each net contains fields specifying the

variable transmitted and the instructions

writing to and reading from the net, that is,

the source and sink instructions. The time

II 18

A Z .
a Lo -i1 + 18

y r \
12 14 19

15: bw

17: b,

t=7

t=8) i 9 : Br

La = (1-5, 7-8)
Lb = (5-6)
Lc = (3-6)

Figure 4.7 Example of lifetime

analysis.

K R Baker: 1992 4. Transformations 7 7

slot for each instruction is found by locating the control node containing it. The

instruction and variable information are entered into the list of register access times in

time order. Register a and the instructions accessing it are shown in the top right comer

of Figure 4.7.

Additional access times must be entered to accommodate control loops and register

controls such as count or shift. Control loops must be taken into account to ensure that

data used from one iteration to the next is preserved. If a loop starts at a time slot

within a register active period then the first access to the register within the loop must

be a read; therefore the variable being read must be maintained to the end of the control

loop so that it is correct on the next iteration. This is achieved by entering an additional

read at the end of the loop. The feedback arcs, which mark the start and end of control

loops, are used to determine where additional read accesses are required.

Register control inputs are associated with write operations, as in the case of set and

clear controls. However, register controls such as count or shift represent the

modification of data held by the register. As count and shift controls imply the use of

existing data a read access must be entered into the access list with the write access.

The register access list is pruned to remove unnecessary accesses; there are three cases

where accesses can be removed:

1. a read can be removed if another read follows it and it is not the first,

2. a write can be removed if another precedes it and it is not the last, or

3. both a read and write can be removed if they occur at the same time slot,

thereby concatenating two abutting live periods.

Case 2 implies that the earlier write is redundant, however this may not be the case as

the second could be a conditional operation.

The final pruned list of register access times consists of alternate write/read accesses

where live periods occur from write to read times. The access list details the live

periods for all variables stored by the register. Access times for specific variables could

be obtained by filtering the variables when scanning the register nets by using their

variable transmitted fields.

K R Baker: 1992 4. Transformations 7 8

In register sharing it is necessary to test whether two registers have overlapping live

periods; this is done by the procedure test_non_overlapping_times (â , aj) as

shown in Figure 4.8. As a register write occurs at the end of a control state and reads

within control states, the end of one live period, the read, may occur in the same time

slot as the start of another, the write, without overlapping. This is the case with the non-

overlapping lifetimes L, and Ly of Figure 4.7, where the end of the first live period of

L, and the start of Ly occur at t=5. The lifetime overlaps with both L, and Ly.

t e s t_noa_ov«r l app ing_ t i a i©s (&!, m,)
s t r u c t . a c c e s s _ l i s t

get first write-read pair from a^ (wr^^rdi);

get first write-read pair from (wr^, rd;) ;

w h i l e (w r i t e ' - r e a d p a i r s) {

i f { (w r i < = w r 2 && r d . > = w r 2) M (w r i > = w r 2 && r d 2 > = w r i))

r e t u r n f a l s e ; / * o v e r l a p * /

i f { w r i < w r 2) get next write-read pair from (w r ^ , r d ^) ;

e l s e g e t next write-read pair from (w r ^ , r d g) ;

r e t u r n t r u e ; / * n o o v e r l a p * /

Figure 4.8 Procedure to test for non-overlapping lifetimes.

4 2 SCHEDULING TRANSFORMATIONS

The scheduling transformations are primarily concerned with changes in the control path

graph. Their only effect on the data path is to add or change control signals and

registers and to change the state machine implementing the control path. These effects

are taken into account when calculating the cost function.

K R Baker 1992 4.̂ Transformations 79

4.2.1 SEQUENTIAL MERGE TRANSFORMATION

The sequential merge transformation attempts to merge two control graph nodes, nj and

n .̂ The two nodes are tested to ensure that they are in the same sequential section of the

control graph and that nj precedes n .̂ The instruction lists associated with each node are

tested for hardware sharing using the t e s t _ s h a r i n g (i j , i j procedure and the

instructions in nj tested for moving to % using the t e s t _ m o v e _ i n s t s (i j , n ^ , n j

procedure. If the move is possible then the i n s t s _ d e l a y _ t e s t (i , , n „ , c k) procedure

is performed to ensure the clock period is not exceeded when the nodes are merged. If

any of the tests fail then an appropriate error code is returned.

The transformation is performed by calling the procedure m e r g e _ s e q _ n o d e s (t d)

which adds the instructions in n̂ to % using the procedure a d d _ i n s t _ g r o u p n „) . It

also calculates the new node delay using c a l c _ n o d e _ d e l a y (n*) and attempts to

remove node n̂ from the control graph using r e m o v e _ c o n t r o l _ _ n o d e (n ^) . Figure 4 . 9

shows the successful application of the sequential merge transformation on nodes N1

and N3. Note that instruction il has jumped node N2 and formed an instruction graph

with i3.

| \ j "I J i1: a=b+c;

N2) '2: z=w;

N 3) i3:a+e;

Control path Data path

a. Before Merge

N 2 i2

Control path Data path

No*: dm* path lof 12 nol #hown b. After Merge

Figure 4.9 Example of the sequential merge transformation.

In addition to the operation of the procedure a d d _ i n s t _ g r o u p (i , n) as described

above, the procedure has a parameter (not shown) which indicates when the instruction

group to be added will be a permanent change to the design, as in the execution of

transformations, rather than a temporary change as in their testing. When the parameter

K R Baker: 1992 4. Transformations 8 0

indicates a permanent change the register on which a dependency between two

instructions exists will be bypassed (see Figure 4.9b). The register must be bypassed to

ensure the correct behaviour is maintained, that is the dependency arc between i, and i,

indicates that the new value of variable a is input to ij rather than the previous value.

As registers are loaded at the end of each clock cycle the new value of a would not

have replaced the previous value until the end of the control state, thus leaving

insufficient time to complete the dependent instruction.

To bypass a register the variable access for the reading instruction is made from the

output of the writing instruction and not the register output. This transformation is only

performed in some systems [20] when the variable is a temporary one generated by the

compiler and has single read and write instructions. This is because a distinction is

made between user defined and compiler generated variables. Therefore in these systems

the pair of instructions would have originally been one in the form: d = b + c + e;

whereas in MOODS the instructions may have been written as separate instructions with

variable a being user defined. The MOODS compiler therefore performs a behavioural

optimisation that merges equations in the original description. The register is retained in

the data path and loaded with the value taken by a. However, if no further accesses are

made from it, shown by a null output netlist, then it is not included in the cost

calculations and is removed from the data path after optimisation.

The remove_control_node (n) procedure attempts to remove an empty control node,

that is one containing no instructions, from the control graph while maintaining the

correct graph structure. The node must have a single input or single output arc. Once the

node has been deleted the input and output arcs are connected. If the node had a single

input arc then it is deleted and the output arc list connected to its start node. Similarly,

if the node had a single output arc then this is deleted and the input arc list connected to

its end node. The newly re-connected list of arcs is analyzed and if any arc connects a

fork node to a collect node and has a true gate condition then it is deleted and the

collect N tokens reduced by one. The collect function is not required when the number

of tokens reaches one. Parallel arcs, that is arcs having the same start and end nodes,

may have been created by the removal of the node. These are merged using the

procedure merge_para_out_arcs (n) which combines the arc gate conditions and

deletes all but one of the parallel arcs. If only one arc remains between the start and end

nodes then their role as fork and join nodes is no longer necessary therefore the

K R Baker 1992 4. Transformations 81

procedure attempts to remove them by calling remove_control_node (n). The

recursive nature of the remove_control_node (n) procedure ensures that all

unnecessary nodes are removed.

4 2 2 PARALLEL MERGE TRANSFORMATION

The parallel merge transformation attempts to merge a subset of the successor nodes of

a given fork type node that are connected through arcs having the same activation

condition. Each successor node with the chosen input arc condition is tested for only

having one input arc (that from the fork node) and is marked for merging.

If the tests are successful and more than one node is marked for merging then the

instructions in each marked node other than the first are moved into the first node, see

Figure 4.10a and Figure 4.10b. The instruction graphs in the nodes will remain executed

in parallel therefore no hardware sharing or contention tests require to be performed.

The output arcs of the empty nodes are concatenated with those of the first node and the

empty nodes removed using the remove_control_node (n) procedure as in

Figure 4.10b. As a result of the concatenation of output arcs any parallel arcs which

exist will be merged by the merge__para_out_arcs (n) procedure. The delay of the

resulting node will be the maximum delay of the individual nodes.

N5 i5 N6)I6

N7
collect 3

N2) i2, i3, i4

Parallel Kterge Transform
on node N1 using true arc condition

12,13, i4
i5(s6)

12,13.14
[N2) ®(s6)

16(3)
true I

Merge Fork Transform Merge Fork Transform
on rKide N5 on node N6

c. d .

Figure 4.10 Example of the parallel and fork merge transformations.

K R Baker: 1992 4. Transformations 8 2

2-3 MERGE FORK AND SUCCESSOR NODE TRANSFORMATION

This transformation merges a node, n,, given as a successor to a fork type node with the

fork node itself. The instructions, î , in node n^ are tested for contention with those in

the preceding fork node, n̂ , using the contention_nj_nk (î , i„) procedure. If an

access violation occurs then the transformation fails. A dependency type contention will

cause dependency arcs to be added by the add_inst_group (!„,) procedure when

the transform is performed. The tests test_sharing and

inst_delay_test n̂ , clock) are also performed to ensure that no hardware

sharing violation occurs and that the resulting node delay is shorter than the clock

period.

If the tests are successful then the transformation may be performed by calling the

add_inst_group (in, Rf), calc_node_delay (rif) and remove_control_node (n̂)

procedures. For example. Figure 4.10c, shows N5 merged with N2; note that instruction

i5 now has a condition for firing s6 and that the arc with the gating condition of s6 has

not been deleted. However, on merging N6 with N2, as in Figure 4.10d, N6 is removed

and the resulting parallel arcs between N2 and N7 are merged (by procedure

merge_para_out_arcs (n)) causing the combined gate condition to be a tautology,

indicated by the presence of a single arc from N2. In addition, the empty node N7,

previously a join type node, is also removed.

4 2 . 4 GROUP ON REGISTER TRANSFORMATION

This transformation is primarily concerned with reducing the number of registers in the

data path. As described in Section 4.2.1 (page 79), a register can be bypassed if the

writing and reading instructions are in the same control state. If the register is only used

by these instructions (as in register a of Figure 4.9) then it can be removed from the

data path. This transformation takes a register with one writing instruction and one

reading instruction and attempts to combine the instruction groups to which they belong

into the same control node. The groups must be moved rather than the instruction as by

moving an instruction from a group to another node requires the insertion of a register,

therefore no overall gain would be made. The instruction group associated with the

writing instruction is tested for (a) sharing hardware with the instructions in the node

K R Baker: 1992 4. Transformations 8 3

containing the reading instruction, (b) moving to the reading node and (c) the combined

instructions exceeding the clock period.

If the tests are successful then when the transform is executed the writing instruction

group is added to the node containing the reading instruction. If this results in the

writing node having an empty instruction list then an attempt is made to remove it from

the control graph. Figure 4.9 shows the result of the group on register transformation

when applied to register a. Note that the transformation is equivalent to a behavioural

transformation which expands instructions. For example in Figure 4.9 the separate

instructions il and i3 have been combined into one (13) shown by the dependency arc in

the resulting instruction graph, therefore 13 becomes d=b+c+e.

This transformation is similar to grouping in Scholyzer [20], however in MOODS it is

applied during optimisation and not as a separate stage before. It can be applied to any

register having one read and one write instruction regardless of whether it is user

defined or compiler generated. The advantage of applying this transform during

optimisation can be seen in reference to Figure 4.9. In Scholyzer the grouping is done

before optimisation therefore eliminating the possibility of sharing, the adders used by

instructions il and 13, whereas MOODS may perform either grouping or sharing during

optimisation, the final decision being dependent on the user's objectives.

4 j . 5 UNGROUPING TRANSFORMATIONS

The ungrouping transformations allow a degradation in the control graph by splitting

nodes into sequential sections. This may then allow hardware sharing between the

ungrouped instructions and so facilitate trade-offs between objectives in the cost

function. There are two ungrouping procedures ungroup_group {n,g) and

ungroup_time (n, t) which ungroup the instructions in a given node n either by

extracting a given group g or dividing the node into a set of nodes each having a delay,

for groups of more than one instruction, no longer than time t. In the latter ungroup

transformation more than one control node may be created.

The procedure extract_inst_group (n, g) is used to extract the instruction group g

from the given node. Instructions extracted from the control node are tested against the

K R Baker: 1992 4. Transformations 84

instructions remaining in the node using the test_contention (i , ^ , i„) procedure to

ensure no extra dependency is created between them when the extracted instructions are

executed before the control node. If no dependencies are created, a new control node is

inserted before node n and the extracted group is entered as its instruction list.

In procedure ungroup_time (n, t) a subset of the instructions in the node are

extracted by the procedure extract_insts_greater (n, t) such that their end times

are less than time t or they have no predecessor dependent instructions. The subset of

instructions are tested for creating additional dependencies. If none are created a new

control node is inserted before node n and the subset of instructions entered into it. The

ungrouping of node n is repeated until the set remaining after extracting the instructions

becomes the empty set. The testing stage of the transformation extracts subsets of

instructions and tests for the creation of extra contention; each subset is added to a

dummy node which at the end of testing is transferred back to the original control node.

When performing the transformation each subset is entered into its own node. The

dependency arcs between the subset and other subsets are removed and the

corresponding registers included in the data path. To include a register access back into

the data path requires a further test to ensure that the register is not in use during the

execution of the control node. The additional use of the register may occur if the

register had been shared.

Execution times

i1: 5ns
i2:10ns
13: 30ns

i4:15ns
15:15ns
16:15ns

11
/\

12 i3
\ /

14

15

I
16

group 1 group 2

a. Initial Node Structure

0 i /)
14

15

i
16

b. Ungroup_group(N1,g1)

11 15

N 3 13 16

13 i6

1 St node N2 extracted 2nd node N3 extracted

c. Ungroup_time(N1,20ns)

Figure 4.11 Example of the ungrouping transformations.

K R Baker: 1992 4. Transformations 85

An example of both ungrouping procedures is shown in Figure 4.11. In the ungrouping

a group transform, group 1 has been extracted into the preceding control node N2. In

the ungroup on time transform, the time chosen was 20ns resulting in two extra control

nodes being generated. Note that instruction i3, having an execution time of 30ns, was

selected for node N3 because it was the start of the instruction graph after the first node

was extracted and not selected on its endjime.

4 2 . 6 MULTICYCLE TRANSFORMATION

Multicycled instructions are continued into successor control nodes by the addition of

dummy instructions. The dummy instructions are given instruction numbers equal to the

negative of the original instruction and point to the data held by the original.

The multicycle transformation, multicycle_control_node (n, ck), is not strictly a

transformation to be used on its own. It is used to maintain the clock period given by

the user which is considered an absolute objective that must be met whatever the cost.

The transformation is applied to the set of instructions within a control node. Each

instruction to be multicycled is assumed to be in a separate group which can be ensured

by ungrouping the node into time slices using the procedure ungroup_time (n, ck).

For each instruction whose endjime exceeds the given clock period the instruction is

flagged and the number of additional cycles required to execute the instruction is

calculated (given by trunc(endjime/clock)). The maximum number of cycles is noted.

For the maximum number of cycles a new control node is created and each flagged

instruction if analyzed.

If the delay of i, is less than t, where t equals twice the clock period minus the register

access time for if, then a final dummy instruction -if is created and entered into the new

node. The instruction if is un-flagged and the delay of -if set to the delay of if minus the

clock period ck. If the result of this is less than or equal to zero then it was the register

access time for the instruction that caused the violation of the clock period. In this case

the delay of -if should be set to zero. This will cause the output registers for the

instruction to be loaded on the clock cycle following the original instruction. If,

however, the result is positive then the original instruction delay is set to the clock

K R Baker: 1992 4. Transformations 86

period minus the register access time. That is, the original instruction utilises all of the

clock cycle and the dummy instruction completes the instruction's execution.

If the delay of if is greater than t then the delay of -if is set to the clock period ck and

the original delay decremented by ck. Figure 4.12 illustrates the multicycle

transformation for two instructions whose register access times are assumed to be zero.

= multicycle flag
clock = 30ns

H 12
N 1) 30ns 40ns

(N 1) '1 '2
35ns 70ns

a. Original node

MO \ -i1 -i2

IMZ j 5ns 30ns

b. 1 St node a d d e d

11 12
30ns 30ns

-11 -12
5ns 30ns

-12
10ns

c. 2nd node added

Figure 4.12 Example of the multicycle transformation.

The clock period chosen is 30ns therefore an additional two control nodes are required.

Figure 4.12b and Figure 4.12c show the sub-graph created after the addition of each

node.

4 2 . 7 CLOCK PERIOD TRANSFORMATION

The clock period transformation is used to set or change the clock period. The only test

performed is to ensure that the period chosen is greater than the register access time

plus its set up time. The transformation is performed by firstly un-multicycling each

instruction using the procedure un_multicycle_inst (i), which deletes the dummy

instructions -i and resets the delay of the original instruction i. Next, if the clock period

is being decreased (which it is when being set as the clock period is assumed to be

arbitrarily long when not set) then each control node must be ungrouped to the clock

period by calling the procedure ungroup_time (n, clock). Lastly each control node

that exceeds the clock period must be multicycled using the transformation,

m u l t i c y c l e c o n t r o l _ n o d e {n, clock), described in Section 4.2.6.

K R Baker: 1992 4. Transformations 87

ALLOCATION TRANSFORMATIONS

The allocation transformations are primarily concerned with changes in the data path. As

the data path is a structural representation of the design the transformations involve

manipulating the units and cells that implement them. As mentioned in Section 3.3.2 on

page 60 the instructions are mapped to a set of data path units which are implemented

using a basic set of parameterized cells. The mapping is done by direct compilation

which produces the initial data path graph. In addition to the basic cell set, the user may

add additional cells to the cell database using the cell database editor. Using the editor

the user enters technology dependent details such as area, power, inherent delay, input

pin capacitances and delay factors. In addition to the technology dependent data the user

also enters behavioural data such as the functions that the cell implements. From this the

program can determine which cells can be used to implement a given set of functions.

4 3 . 1 COMBINE UNITS TRANSFORMATION

Both hardware sharing and ALU creation are performed by the combine units transform.

The transformation takes as its input a pair of data path units and attempts to combine

them. Its success is highly dependent on the comprehensiveness of the cell database.

The procedure t e s t _ c o m b i n e _ u n i t s (td) tests the data path units. The units must be

functional types and the instructions that they implement must be non-concurrent. The

non-concurrency of the instructions means that no two instructions can be executed

together, which is determined by testing every pair of instructions. If they are mutually

exclusive then they are never executed together and no further tests are made. If not

then they are tested for occupying control nodes which are reachable but different using

the reachability test. If this test fails for any instruction pair, the transformation fails and

the procedure returns an appropriate error code.

When the tests have been successful the test procedure searches the cell database for the

subset of cells which implement the set of functions implemented by the units to be

combined. This is defined as:

C(u„u2) = {c I c € set of cells which satisfy (f(ui) u fCug)) C f(cj , c„ e C}

where f(Ui 2) are the sets of functions that each unit implements, f(c„) is the set of

functions cell c„ implements and C is the set of cells in the database. If CCu^Uj) = 0

K R Baker: 1992 4. Transformations 88

then no cell exists in the cell library to implement the combination of functions

f(ui) u fCuj) and a "units can not be combined" error code is returned from the

procedure.

If cells exist then the cell c e CCui.Uz) implementing the least number of functions is

selected as the combined cell. The reason for this selection is so that when combining

units of equivalent function, as in hardware sharing, the same or equivalent cell will be

selected that implements the one function. For example, two adders will be combined

into an adder and not an ALU implementing the addition function. The cell selection

process can combine any mixture of ALUs and basic cells to form new ALUs as long as

a suitable cell is contained in the cell database.

To perform the transformation the procedure c o m b i n e _ u n i t s (td) is used. This

concatenates the lists of input nets, output nets, control signals and implementation links

into one unit and deletes the other. The execution time of the instructions implemented

by the new unit must also be updated and any multicycling must be performed. If an

ALU has been created then its select inputs must be added. These are control signals

which select the appropriate ALU function and are also used to maintain the correlation

between the unit function and the instructions. Figure 4.13 shows the creation of an

ALU implementing plus and minus functions. Note that the implementation links of

instructions il and i2 now point to the same data path unit thereby preventing them

from being merged into the same control node.

N1) i1: a=b+c:

N2) i2: d=e-f;

Q LD ̂ "42 a LD«—n

a. Initial data structure b. After combine unit transform

Figure 4.13 Example of the combine units transformation.

K R Baker: 1992 4. Transformations 89

UNCOMBINE UNIT TRANSFORMATIONS

There are two transformations which uncombine data path units that were previously

combined using the combine units transform described in Section 4.3.1. No tests are

required, except for checking the entered data, as the changes made to the design deal

with the design at only the structural level. The first transformation is performed by the

procedure uncombine_single_unit (td), which divides the original unit into two

separate units. A new unit is created by removing an instruction implemented by the

original unit and implementing it using a basic cell. The inputs, outputs, control signals

and implementation links associated with the instruction are moved to the new unit. The

select control signal is no longer required as the new unit only implements one

instruction and can therefore be deleted.

The second transform is performed by the procedure uncombine_uni t (td), which for

each instruction implemented by the original unit, indicated by the implementation links,

creates a basic data path unit. That is n units, implemented by basic cells, are created

where n is the number of instructions implemented by the original unit. The inputs,

outputs and control signals associated with each instruction are moved to their

corresponding units and all select control signals are deleted. The separation of nets and

control signals is straightforward as each data structure has fields indicating the variable

transmitted on it and the instruction which creates and uses it.

For both uncombine transformations each instruction's execution time is reset and

multicycling is performed where necessary. In the example shown in Figure 4.13 the

uncombine transform is the opposite of the combine transform and in this case the

transformation from Figure 4.13b to Figure 4.13a could have been performed by either

of the uncombine transformations.

4 J J ALTERNATIVE IMPLEMENTATION TRANSFORMATION

An alternative cell may be found by selecting one from the set of cells that implements

the functions performed by the unit. A different cell may be selected which better

utilises the clock period. For example, a cell may be chosen to reduce the slack or spare

time within a control node and so provide a further trade-off mechanism with other

K R Baker: 1992 4. Transformations 9 0

design aspects such as area. Alternatively a cell may be chosen that reduces the delay of

the maximum delay control node which sets the clock period thereby allowing a

reduction in the clock period and circuit delay. Like the uncombine unit transform the

changes to the design occur at the structural level, however a test must be made to

ensure an alternative cell exists.

The set of alternative cells is determined using the method described in Section 4.3.1,

which finds the subset of cells capable of implementing a combined unit For example,

the alternative implementation to a carry propagate adder would be a carry look-ahead

adder as both implement the same PLUS operation. The alternative cells found will

depend on the comprehensiveness of the cell database. If an alternative implementation

is found then the implementation of the data path unit can be changed by altering its

cell pointer and updating its technology dependent data. The execution time of

instructions implemented by the unit are updated as before.

4 J . 4 REGISTER SHARING TRANSFORMATION

The register sharing transformation, performed by the share_registers (td)

procedure, combines two storage units, that is registers and counters. Memory (ROM

and RAM), module ports or I/O registers may not be shared. In order to share two

storage units they must either be mutually exclusive or have non-overlapping lifetimes;

the tests being performed by the procedures test_reg_mutual_excl (r^, r^) and

test_non_overlapping_times a;) respectively. If the units can be shared then

the implementation links and input, output and control nets for both units are

concatenated. The nets are assigned to one of the units which becomes the shared unit

and the other one is deleted. The bit width of the resulting unit is made wide enough to

accommodate all variables stored in it. Ideally all variables should be normalised to a

common low bit in order to minimise the bit width of shared storage units.

As a result of register sharing pure data transfers may be removed from the behavioural

specification. This is illustrated in Figure 4.14, where registers storing variables a and c

have been combined. The resulting register has a self load caused by the pure data

transfer, 12. Self loads are retained in the data structure during synthesis to maintain the

correlation between nets and instructions, however they are marked for deletion after

K R Baker: 1992 4. Transformations 91

i1: a=z+1;

\2: b=a;

self load
LD

a/b

Figure 4.14 Removal of pure data transfers by register sharing.

optimisation. It is interesting to note that the same final data path would be obtained if

instruction i2 had been moved to node N1 causing register a to be bypassed.

4 J . 5 REGISTER UNSHARING TRANSFORMATIONS

As with the uncombine unit transforms there are two transformations which unshare

storage units that were previously combined using the register sharing transformation

described in Section 4.3.4. Again no tests are required, except for checking the entered

data, as the changes made to the design deal with the design at only the structural level.

The checks consist of ensuring the hardware exists and that it stores more than one

variable. The first transformation is performed by the unshare_single_reg (td)

procedure which separates a single variable from a storage unit. The implementation

links and input, output and control nets relating to the given variable are extracted from

the storage unit pointed to by the hardware field of the variable structure. A new storage

unit is created and the extracted nets and variable hardware pointer assigned to it. Both

the original and new units require the bit widths, cell type and area to be set.

The second register unsharing transformation, performed by the unshare_reg (td)

procedure, unshares all variables stored in a given storage unit The variable list is

scanned and the unshare_single_reg (td) procedure called for each variable with a

hardware pointer pointing to the given unit.

OPTIMISATION ALGORITHM

K R Baker: 1992 5. Design Optimisation 9 3

In the context of intelligent silicon compilation the iterative optimisation of a design can

be divided into two parts, the evaluation of the design and the optimisation algorithm.

The algorithm applies the transformations, described in Chapter 4, to the design based

on its evaluation. This chapter is divided into two parts corresponding to the evaluation

of the design and the optimisation algorithms.

5.1 DESIGN EVALUATION

5.1.1 THE COST FUNCTION

The design is evaluated with the aid of the cost function, which represents the state of

the design within the design space. It is used in conjunction with the user's multiple

objectives to guide the optimisation algorithm. As described in Section 1.5.2, the cost

function must be accurate and in terms of absolute design aspects, rather than control

state or device counts, although these are useful in providing a comparison between

synthesis systems. The design aspects to be monitored by the cost function must be

global, that is, they evaluate the design as a whole and not a sub-section of it.

The accuracy of the cost function is ensured by feeding up technology dependent

information from the cell database. The area and power used by each control and data

path unit and the execution time of each instruction are calculated using this

information, which in turn is used in the cost function. An entry exists in the cell

database for each parameterized cell that the MOODS system may use in an

implementation. The database information consists of the cell bit width, area, power,

propagation delays and pin overheads including delay factors and input capacitances.

Register set-up times and some special information particular to certain ceUs is also

included.

For multiple objectives the cost function must be flexible in giving the user freedom to

specify objectives on any number of design aspects that the system monitors. It should

also incorporate information on the optimisation priority given to the selected design

aspects, which can be used by the optimisation algorithm to indicate the effectiveness of

a transformation and determine how trade-offs should be performed. For these reasons a

K R Baker: 1992 5. Design Optimisation 9 4

cost function similar to that used in goal programming applications [78] was used. Goal

programming attempts to satisfy objectives as closely as possible rather than absolutely

as in traditional linear programming methods. The cost function (achievement function

in goal programming terms) consists of a priority vector, where each priority element

specifies design aspects on which objectives have been set In goal programming only

objectives expressed in common units can be assigned the same priority as no

comparison can be made between different quantities.

Each objective function Gj is expressed as a function of the data structure describing the

design's data and control path, dcp, which is analogous to decision variables in

mathematical programming; thus:

G. = f-idcp) (5.1)

In goal programming terms an objective function is expressed as follows:

f-(dcp) + (n. - p) = b. where n., p., 6. > 0 (5.2)

bj is the goal or target value which fi(dcp) must either satisfy, exceed or be less than, n̂

and Pi are the negative and positive deviations of fiidcp) from its target, bj, respectively.

In general it is desired to select dcp such that f^dcp) is either, (a) greater or equal to b;,

(b) less than or equal to bj or (c) equal to bj which is achieved by minimising a linear

function of the deviation variables, g(n,p); that is, either (a) minimise nj, (b) minimise p,

or (c) minimise n, + p,, respectively.

To formulate the achievement function, the function g(n,p) for each objective is

associated with a priority level, therefore:

a = fJZKZzO*,?)], _ C5.3)

where Gk(n,p) is the k'̂ ' linear function of deviation variables. The size of a is equal to

the number of priorities which is less than or equal to the number of objectives. As a is

an ordered vector the P's can be dropped, therefore:

a = (G,(Mf), CfzCnjp), C5.4)

which is minimised by the optimisation algorithm. Gi(n,p) is the highest priority

function, which in goal programming represents absolute objectives, that is, ones which

K R Baker: 1992 5. Design Optimisation 9 5

must be achieved. An achievement function a, is considered better than 8% if the first

non-zero component of a, - a , is negative given that all components of a, and a^ are

non-negative.

The MOODS cost function is a variation of the goal programming achievement function

and allows any objective to be associated with a priority. As objectives measured in

different units are not directly comparable the function of deviation variables, G^(n,p), is

replaced by a vector of g(n,p) functions for the objectives associated with priority k,

therefore, Gk(n,p) becomes:

ar. == fjaCKz*?,),

where each gw(ni,Pi) represents an objective given by equation (5.2) above.

In synthesis not only is it required to know whether one cost function is better than

another but also by how much. Typically the two cost functions are c f ^ and cfp^

representing the cost functions for the next and present designs respectively. The

difference between the two cost functions, AE, represents the change in energy between

the functions and thus the design. AE is determined by constructing a third vector, E,

the energy change vector, whose elements represent the change in energy at each

priority, thus:

E,(g,) 05.6)

where E^(gJ is the combined objective change for priority k. For each g^ in c(^ and

cfpres the change between them, Ac^, is evaluated and for each priority level, k, their

average is taken, thus:

EAc.. h (5.7)

m

where m is the number of objectives at priority k. The function used to determine Ac^

may take into account other objective factors such as initial or target values, however

their difference was initially taken, thus:

du:* := - ghOZmP,)*,, OSJS)

K R Baker: 1992 5. Design Optimisation 9 6

The change in energy, AE, between the cost functions is given by the first non-zero

component, E^, of the energy change vector, E. The cost function c f^ is considered

better than cfp̂ es if AE is negative.

In synthesis it is desired to select dcp such that fi(dcp) is less than or equal to b, which

is achieved by minimising p,, therefore equation (5.8) becomes.

= Pk. (5.9)

The use of the positive deviation in equation (5.9) to determine Acy allows changes in

objectives that have already reached their target, that is negative deviations, to be

ignored and thus permits lower priority objectives to influence AE. The methods used to

determine Aĉ ; and whether one cost function is better than another will greatly

influence the choices made by the optimisation algorithm and therefore the final design.

Experiments to find a better change in energy function are described in the results

Section 6.1.1.

The data structure representing the cost function contains both cfp̂ es and cf^ , as well as

the initial and target values for each objective (see struct cost_fn in Appendix C).

The evaluation of the next cost function with respect to the current is performed by the

evaluate (cost_fn) procedure which returns the value AE. The evaluation is done

whenever estimating the cost of a transformation, thereby providing information on the

effect of the transformation on the user's objectives. A negative value of AE indicates

that the transform improves the design.

From the graphical method of solving linear and goal programming problems an

objective may be termed reachable if the area bounded by it, the axis and any higher

priority objectives intersects with the achievable region of the design space, otherwise

the objective is termed minimising. The n-dimensional design space can be

characterized, as described in Section 1.7. Each of the n asymptotes is found by

optimising the design with a cost function having one of the objectives at priority one

with a minimising target, such as zero. All other objectives are at a lower priority, again

with minimising targets. The final characterization point lies as close to the origin as

possible indicating a good all round implementation. It is found using a cost function

with all objectives at the same priority with minimising targets, thus giving them an

equal opportunity for improvement. The characterization of the design space by the

K R Baker: 1992 5. Design Optimisation 9 7

system indicates the range of designs achievable by the system rather than by manual

methods or other systems.

The aspects of the design currently monitored by the system and therefore available as

cost function objectives are area, power and delay. In addition to these a net count

objective can be used which counts the number of one source, one sink interconnects

used in the implementation. Any aspect of the design could be monitored and included

in the cost function by including the relevant cost calculation procedures. The area,

power and delay calculations are described below.

5 . 1 2 AREA AND POWER CALCULATIONS

The area of the design is calculated as follows:

area = Z a , + S a + E a . (5.10)
dp cp I

where a^, â p and a, are the areas for a data path unit, a control unit implementing a

control node and an interconnection respectively. At present the interconnect costs are

not taken into account in the cost calculations as it is difficult to obtain accurate

estimations prior to complete layout, however it is recognised that interconnect costs

have a significant effect on hardware costs (see Section 7.2).

The area of a data path unit is a function of its type, bit width and the cell that

implements it. The area of each unit is calculated as it is created, initially during the

construction of the initial data path and subsequentiy as a result of applying

transformations. There are two components that make up the area of a data path unit,

the main area and the area overhead of additional connections, "pins". The main area is

a multiple {n) of the cell area implementing the unit's combination of functions'. The

multiple n is derived such that n times the cell bit width is equal to or greater than the

bit width of the unit that it implements. Pin overheads may be specified in the cell

database to indicate the area overhead incurred if the pin is used\ The unit's netlist is

' A ceil may have different area and delays for different combinations of the functions it is capable of implemmting. tlm h to take into

account optimisations perfonned by low-level optimisation tools which would remove unused fiuK^tioos from a parametaized cell.

Similarly pin overheads specify the additional cost of retaining a pin which would otherwise be optimked away by low-level tools.

K R Baker: 1992 5. Design Optimisation 9 8

scanned for pins that incur an overhead which is calculated as a multiple n of the pin

area.

The power used by a design and by a data path unit is calculated in an identical way to

the area described above except that the data structure fields relating to power are used.

5 . 1 3 DELAY CALCULATIONS

The delay of an instruction is a function of the inherent propagation delay of the

operator and the propagation delay factor of the output, that is:

^ + fW&Cp * ZiiCj (5.]L1)

where ipd^p is the inherent propagation delay of the operator, pdf^p is the propagation

delay factor of the output and ic^ is the input capacitance of the data path unit that the

operator drives. These parameters are provided by the cell database. To determine the

time required to execute an instruction graph, instruction delays are accumulated as the

graph is traversed using a variation of the graph traversal algorithm shown in Figure 4.1

on page 68. The evaluation of an instruction consists of determining its completion time

which is given by;

= m^ipredecessor + r. (5.12)

where the predecessor instructions are given by the predecessor dependency arcs. The

completion time for the instruction graph, Tq, is given by the maximum time within

the graph. The maximum graph time, T (^ , is used to determine the time required to

execute a control state. The register accesses, which occur at the control state boundaries

as dictated by the architectural model, are taken into account when determining the

delay of a control node, as follows:

ST. = + 7'c__ + (5.1:;)

where ipdR^^ and are the inherent propagation delay and propagation delay

factor for the input register, R^„, to the first instruction in group G, the maximum delay

instruction graph. iCop̂ ax is the total input capacitance driven by register and is

the set up time for the output register written to by the last instruction in group G.

K R Baker: 1992 5. Design Optimisation 99

Figure 5.1 illustrates the control node delay calculation for a node containing two

dependent instructions (one instruction graph).

i1: a = b + c
i2; d = a - e

control state

register

Control Node Data Path

Figure 5.1 Control node delay calculations.

The execution time for a design is defined as the product of the clock period and the

number of cycles required to traverse the critical path, as described below. The clock

period is taken to be either the maximum control node delay or a user defined clock

period which may be specified as an absolute objective.

5.1.4 CRITICAL PATH ANALYSIS

Critical path analysis can only be performed on an acyclic graph such as an activity

graph used in project management. In an activity graph the nodes represent events and

the timing constraints are represented by the arcs. It is necessarily acyclic, for if a cycle

did exist, some of the activities could never commence. The calculation of the critical

path may be determined using graph algebra [82] and linear programming or the more

traditional forward and backward pass methods [84]. The latter method was chosen

owing to its simplicity when recursively programmed using the graph traversal

algorithms. The forward pass establishes earliest end times and the backward pass the

latest end times. From these the slack can be determined and so the critical paths, given

by nodes with zero slack.

The main difference between the control graph and an activity graph is that the control

graph is cyclic. Therefore it must be made acyclic to allow critical path analysis to be

performed. The acyclic graph is created by the removal of the minimum feedback arc

K R Baker: 1992 5. Design Optimisation 100

set as described in Section 3.3.1 on page 56. Although this results in a usable graph i t

would be somewhat naive to assume that its critical path represents that of the design.

This is because the nodes enclosed by the loops formed by the feedback arcs may be

executed many times. The number of iterations of each loop can be taken into account

by the use of the loopjts field in the control path data structure. Initially all loopjts are

set to one, indicating that each node is executed once in the acyclic graph. A user

specified loop iteration file is read immediately after creating the initial control graph.

The file indicates whether a loop is to be taken into account and how many iterations

the loop performs. For all the nodes contained in the loop the loopjts field is multiplied

by the number of iterations performed by that loop. When determining the critical path

the number of clock cycles required to execute a node is given by the loopjts field.

Nodes on the critical path are those with a slack of zero. There will be at least c critical

paths, where c is the number of end nodes in the control graph. The slack for node n is

given by;

slackg = latest end time (let^) - earliest end time (eetj

eet. = max(eetp^ + loop_its„

let. = min(le t^ - l o o p j t s , ^)

Critical path analysis consists of four stages:

1. recursively determine earliest end times,

2. for all end nodes set latest time

equal to earliest time,

3. recursively determine latest end

times, and

4. set slack to latest end time minus

earliest end time (let - eet).

Figure 5.2 shows the critical path analysis for a

simple control graph containing a loop of three

iterations. The execution time for this example

is five clock cycles and the critical path consists

of nodes Nl , N3 and N5.

earliest end time / latest end time / slack

1/1/0

2/3/1 loopjts = 3

3/4/1
FBA

Figure 5.2 Critical path analysis.

K R Baker: 1992 5. Design Optimisation 101

It is worth noting that the length of the critical path can be found by performing stage 1

of the critical path analysis and is given by the maximum end time of the end nodes in

the control graph. All four stages are performed as the slack information may be helpful

during optimisation in selecting the transformation data.

In the MOODS synthesis system the design may be optimised either manually or

automatically using an iterative optimisation algorithm. The manual method entails the

user to manually apply transformations to improve the design. The user has access to

the cost function and evaluation routines to guide him, however it is essential that the

user can visualise the design as it is being optimised. This requires the user to draw the

initial implementation and update it as transformations are successfully applied. This

results in a laborious process when optimising a complete design, however the manual

option is essential for making adjustments to an already optimised design either to

improve it or to include some of the designer's quirks.

Iterative optimisation consists of selecting transformations and applying them to the

design in such a way that the user's criteria are met. The method of selecting and

applying transformations constitutes the optimisation algorithm. There are two

approaches to iterative optimisation, namely tailored and adaptive heuristics [81]. In the

tailored heuristic approach the cost function is analyzed and a transformation chosen and

applied depending on the current position of the design within the design space relative

to the required position set by the user's objectives. For example, if the user has set an

area objective which has not yet been met then a transformation which performs an area

reduction is selected. This approach is used in Camad [23] and Chippe [69]. The

adaptive heuristic method arbitrarily selects a transformation and its effect on the design

is estimated. The transformation is applied depending upon the analysis of the

estimation with respect to the user's objectives. This approach is used by Devadas and

Newton [42].

There are advantages to both approaches. For example, the tailored heuristic approach

guarantees an improvement with each iteration, when no improvement occurs the

optimisation ends. However, this leads to local minima. The adaptive heuristic approach

K R Baker: 1992 5. Design Optimisation 102

may also suffer from local minima traps if a straightforward iterative improvement

method, such as pairwise exchange, is adopted where only improvements are accepted.

By occasionally applying transforms that have an adverse effect on the design,

transitions out of local minima are possible, this is the basis of more advanced adaptive

heuristic methods such as simulated annealing [85,86,87]. Transitions out of local

minima can not be done in the tailored heuristic approach as transformations are chosen,

using a "tuned" heuristic method, to improve the design.

The tailored heuristic approach has the disadvantage that the method used to select a

transformation must be changed when incorporating extra design aspects and must

survey all changes that each transformation makes to a design. As can be seen in the

Camad and Chippe systems this leads to a complex heuristic selection process even for

only two or three objectives. In these traditional "tuned" heuristic approaches an

essential subtle structure that underlies the problem must be found. Using this

knowledge a heuristic solution tuned to the nuances of the structure can be crafted. For

multiple objectives the problem becomes "dirty", with numerous, contradictory

constraints and complex cost functions [85].

An adaptive heuristic method was chosen for the optimisation algorithm as, by its

abstractness from both the design and the transformations, it avoids the construction of

complex "tuned" heuristics. This abstraction allows any number of different objectives to

be incorporated into the cost function with additional objectives requiring the minimum

of program changes. When adding new objectives only the estimation and cost

calculation routines require updating, the optimisation algorithm will remain unchanged.

Adaptive heuristics although "no substitute for a well designed tailored heuristic"'®*',

offer the only solution to many "hard" problems such as high-level synthesis; where

synthesis tasks are performed simultaneously in order to provide automated design space

exploration and multiple objective optimisation.

5JL1 THE GENERAL ADAPTH^ HEURISTIC

For any optimisation problem we require to find a solution that minimises a cost

function cf subject to particular constraints. A maximisation problem is solved by

minimising the negative of the cost function. Solutions that satisfy the constraints are

K R Baker: 1992 5. Design Optimisation 103

feasible solutions and the feasible solution with the minimum cost function is the

optimal solution, that is cf is optimal. In the context of iterative synthesis a feasible

solution is one that when implemented will correctly perform the original design

specification. In the MOODS system the transformations are complete therefore every

solution is a feasible solution, however this is not true in the Devadas and Newton

system [42] whose transforms may result in non-feasible solutions which must be

determined using constraints that check the design's correctness. For example two

instructions writing to the same register may be made to execute concurrentiy, this error

violates a constraint which is enforced by making the cost function arbitrarily high. In

the MOODS system the transformation would be filtered out at the testing stage.

The general form of an adaptive heuristic to find a feasible solution with a near optimal

cost function is shown in Figure 5.3. The significant components used in this algorithm

are described in the following paragraph.

G e n e r a l
/* general form of an adaptive heuristic for

combinatorial optimisation */

S = S(j; /* initial solution */

Initialise heuristic parameters;

NewS - perturb(S);

i f accept (NewS/ S) S = NewS;

} while I Itime to adapt parameters);

Adapt parameters;

} while I(terminating criterion);

Figure 5.3 The general form of an adaptive heuristic for combinatorial optimisation.

The initial feasible solution, Sq, must first be generated, from which other feasible

solutions are iteratively obtained, the current one being S. In synthesis any feasible

solution can be obtained by manipulation of a directly compiled design [9]. The

manipulation of the current solution is performed by the perturb (S) function which

generates a new solution. The accept (News, S) function determines whether or not to

accept the new solution and make it the current working solution, accept (NewS, S) is

K R Baker: 1992 5. Design Optimisation 104

a function of the cost functions for both S and NewS and of the heuristic parameters.

The adapt parameters section changes the heuristic parameters which may include the

perturbation function, acceptance function, S or the criterion time to adapt parameters.

The parameters are changed so that the solution converges on a near optimal solution.

This modification of the parameters gives rise to the term adaptive, where changes may

be made by the algorithm using some learning mechanism or by the user using his own

learning mechanism.

Many algorithms may be obtained from the general adaptive heuristic, two of which are

described here. The simulated annealing approach was selected as the primary algorithm

as it has been used with varying success in numerous other applications [85,86]. Some

problems have the "right character"'^^' for simulated annealing and as with all adaptive

heuristics the "proof of the pudding is in the eating"'® '̂; suggesting that the algorithm

must be implemented in order to determine its suitability to solving a problem.

Simulated annealing is an intriguing instance of artificial intelligence as the computer

can arrive almost uninstructed at a good solution. In addition, the connection between

natural phenomena and problem solving in simulated annealing can provide useful

insights into optimisation which can be used to develop alternative algorithms such as

the sequence heuristic described in Section 5.2.3.

ZJZ SmULATED ANNEALING

Simulated annealing [81,85,86,87] is best explained with the aid of a configuration

space. The optimisation problem is to find some configuration of n parameters that

minimises the cost function. The configuration space indicates the cost evaluated by the

cost function for particular configurations. The configuration space for n parameters

defines an n-dimensional surface. Figure 5.4 shows a configuration space for n=\. To

change the solution a small random perturbation is made to the current configuration. If

only good perturbations are accepted, as with iterative improvement, the final solution is

likely to be a local minimum, as would occur in Figure 5.4. In simulated annealing bad

or "uphill" configurations are probabilistically accepted based on a temperature

parameter. For high temperatures the probability of acceptance is large whereas at low

temperatures it is small. For a given temperature all configurations with a cost less than

and a band of configurations with a cost greater than the current configuration will be

K R Baker: 1992 5. Design Optimisation 105

A

Cost
greater range of

configurations with
large temp

current
configuration

global minimum

gopher hole

Configurations

Figure 5.4 A one-dimensional configuration space.

accepted. The width of the band is dependent on the temperature, a high temperature

gives a wide band and a low temperature a narrow band. As can be seen on the

configuration space of Figure 5.4, for a small uphill perturbation a high temperature

encloses a wider set of configurations defined by the band than does a low temperature.

This means that for high temperatures less steps are required to exit minima therefore

the configuration has a higher probability of moving between adjacent local minima. As

the temperature is decreased the solution will settle in the deepest local minimum, the

global minimum. The reason for this is that the probability of moving from a local

minimum is controlled by the width of the band, therefore as the global minimum is

deepest there is less chance of the solution moving from it. The success of simulated

annealing depends on the landscape of the configuration surface. A mostly flat

landscape, as in placement problems, will anneal well, however one with "gopher holes"

(deep, steep-sided local minima) may be impossible to anneal as moves will result in

falling into these holes which will be increasingly difficult to get out of as the

temperature decreases, thus trapping the solution in a local minimum.

The difficulty of moving fi-om local minima is also dependent upon the transformations

applied to the design. This was found to be the case when a high priority was given to

the area objective in early tests of the system, which did not include the

uncombine_s ing le_un i t () transform. Units were merged into ALUs which

K R Baker: 1992 5. Design Optimisation 106

invariably improved the area, however when an attempt was made to uncombine an

entire ALU the degradation in area exceeded the band defined by the temperature. This

prevented the acceptance of the transform and so a move out of the local minimum.

auto_optim (td)

for {temp=Tstart; temp>=Tend; temp*=Tstep)

for (iterations==0; iterations<Is'tep; iterat,ions++) {

auto_select_tirans (td);

estimate_trans(td);

if (E <= 0 11 randO < exp(-E/temp))

Figure 5.5 The simulated annealing algorithm.

The simulated annealing algorithm, auto_optim(td), is shown in Figure 5.5, where

the initial solution and parameters are set outside the procedure. The perturbation

function is implemented by the auto_select_trans (td) procedure which selects a

transformation and its associated data to apply to the design using random selection with

heuristic steering methods. The selection process consists of firstly determining the

transformation type, either scheduling or allocation; an equal probability is given to

each. Secondly, a node is selected on which to perform the transformation, yet to be

determined. A data path node is selected for allocation type transformations and a

control node for scheduling type transformations. Given the node and transform type,

the transform itself and any additional data are selected by random selection and

steering heuristics. For example, suppose that a scheduling type transform is to be

selected and a general node (one input and one output arc) has been chosen. The

heuristics used dictate that either an ungrouping or sequential merge transform must be

selected, as the parallel merge and merge fork and successor transforms require the

selected node to be a fork type. The group on register transform is considered by the

selection routine to be an allocation transfomiation applied to a register data path unit.

Out of the possible transformations one is randomly selected; suppose it is the

K R Baker: 1992 5. Design Optimisation 107

sequential merge transform. A further steering heuristic may be used which dictates that

the second node to be selected must be in the same sequential section as the first node

and reachable from the first node. The steering heuristics used do not bias the selection

of the transformation data as any other data used would result in failure during the

testing step; therefore its only effect is to reduce the quantity of unsuitable selected data

reaching the test_trans (td) procedure.

The effect of the transform is estimated by the es t imate_trans (td) procedure and

the change in cost function calculated by the e v a l u a t e (cost_fn) procedure described

in Section 5.1.1. The value returned from this procedure is analogous to the change in

energy, AE, in the Metropolis procedure [88]. If AE < 0, the transform is accepted and

performed. The case AE > 0 is treated probabilistically: the probability that the

transform is accepted is P(AE) = e ' ^ . A random number uniformly distributed in the

interval (0,1) is used to determine the probabilistic outcome. A random number is

generated by procedure rand () and compared with P(AE). If it is less than P(AE), the

transform is accepted and performed; if not a new transform is selected.

The simulated annealing process consists of raising the temperature of the design such

that it "melts", that is, transforms that degrade the design are accepted almost as often as

ones that improve it. The temperature is then lowered in slow stages until the design

"freezes" and no further changes occur. At each temperature the simulation must

continue long enough for a steady state to be reached. The sequence of temperatures and

the number of transformations per temperature is the annealing schedule. Simulated

annealing establishes gross features of the design at higher temperatures and fine details

at lower temperatures.

The annealing schedule in the auto_optim{td) procedure is set by the variables

Tstart, Istep, Tstep and Tend which set the starting temperature, the number of iterations

per temperature step, the reduction between temperatures and the termination

temperature. These parameters are currently set by the user where the start and end

temperatures represent the boiling and freezing temperatures of the design. The value of

Tstep should be fine enough to avoid "quenching" the design. Experiments to establish a

procedure to determine the best annealing schedule for a design are shown in

Section 6.1.2.

K R Baker: 1992 5. Design Optimisation 108

S 2 J SEQUENCE HEURISTICS

Despite the success of simulated annealing it has a few major disadvantages; firstly, as

demonstrated in Chapter 6, the algorithm parameters which describe the annealing

schedule are difficult to obtain. It may be possible to automate the process such that the

algorithm finds the schedule, however, this should only be done if an optimisation

algorithm which produces better designs or executes in a shorter design time can not be

found. Secondly, simulated annealing is slow compared to other optimisation methods.

The reason for this is that bad perturbations are accepted on a random basis, therefore a

design is degraded before it reaches a local minimum in order to find the global

minimum. However, there are often many near optimal local minima which represent

suitable near optimal design configurations. The design bounces between these near

optimal minima eventually settling in one of them, which is in theory the deepest and

therefore the global minimum.

The simulated annealing approach of occasionally accepting bad perturbations has a

great deal of worth. There are, however, other ways to accomplish this, such as the

sequence heuristic, which can avoid the disadvantages of simulated annealing. The use

of sequence heuristics has been shown to be an improvement over simulated annealing

[81,89], however the proof of the pudding is, once again, in the eating! The sequence

heuristic algorithm is shown in Figure 5.6. The sequence heuristic accepts a bad

perturbation only if a good perturbation has not been found over a sequence of attempts.

The current length of the bad perturbation sequence is given by the variable length.

The accept (NewS, S) function of the general adaptive heuristic shown in Figure 5.3

operates as follows: a new solution NewS with cf(NewS) >= cf(S), that is a positive AE,

is accepted if and only if the last L perturbations on S failed to generate a solution with

cf(NewS) < cf(S), that is a negative AE. If L perturbations have failed then the current

bad perturbation is accepted and the length parameter updated. The adapt parameters

phase also keeps track of the best solution found so far before applying the bad

perturbation. The sequence length L can be updated by increasing it to LxP or L+P as in

this case. The process terminates when the sequence length reaches the maximum value.

Lend.

K R Baker; 1992 5. Design Optimisation 109

s e c j j h e u r i s t i c <td)

L - Lstart; /* initial sequence length */

length = 0;

auto_select_trans{td};

if <test_trans<td)) {

estimate^tj:ans (td);

E - evaluate (cost__fn} ;

perform_trans(td) ;

length - 0;

else length+4-;

} while (length<»L);

save design if best so far:

length - 0;

perform_trans(td) ;

} while (L<=Lend);

Figure 5.6 The sequence heuristic procedure.

Unlike simulated annealing the sequence heuristic approach does not rely on the

artificial notion of temperature and has fewer parameters to adjust, therefore making it

more elegant. The acceptance of degradations only when found to be in a local

minimum, as opposed to the random acceptance of degradations as in simulated

annealing, is likely to result in a faster algorithm as the degradations are applied in a

controlled fashion. Before applying a degradation the current design is saved; after a set

computation time the process ends and the best design saved is selected. This approach

is in fact an elegant variation on the Monte Carlo method where a set of designs are

generated using iterative improvement and the best one f rom the set is selected. The

difference lies in the choice of the starting point for each Monte Carlo run: in the Monte

Carlo approach the initial implementation is used, whereas in the sequence heuristic

method a slightly degraded version of the last design is used. This ensures that the

probability of finding a better design is greater. In addition the length of the sequence is

K R Baker: 1992 5. Design Optimisation 110

increased each time a degradation takes place, thus gradually increasing the probability

of finding a better design before applying a degradation.

5.2 .4 AUTOMATED DESIGN SPACE EXPLORATION

As mentioned in Section 1.7 the exploration of the design space by an intelligent silicon

compiler provides the user with an insightful characterization of design alternatives as

well as trade-off curves [3]. The synthesis system designer can also use the design space

to improve and develop new optimisation algorithms.

Design space exploration entails finding a number of near optimal designs, each a point

in the design space. In the MOODS system, a two or three dimensional design space is

characterized by creating a two or three objective cost function respectively. A number

of designs are generated for cost functions consisting of each objective at a high priority

while other objectives are at a low priority. The target value of the high priority

objective is varied from 25% to 100% of the initial value in order to generate a range of

designs. The initial design used to generate each design point may be either the initial

design generated from the intermediate code or a previous design; where the latter

constitutes dynamic design space exploration. A previous design point can be used as

the transformations are reversible thereby allowing the degradation necessary to trade

design aspects and move to a different design point. For each design point the

automated design space exploration procedure creates an appropriate cost function,

initialises the adaptive heuristic parameters and calls the optimisation algorithm. The

resulting designs not only show the variation possible but also give a useful insight into

the effectiveness of the optimisation algorithm.

The set of design points is analyzed and a subset extracted such that each point in the

set is better in at least one criterion than all the others in the set, that is, the subset

consists of only points on the optimal design "curve".

RESULTS

It It IBakcr: ISKKZ 6. FUxndts 11])

This chapter is divided into a number of sections each concerned with a particular

aspect of behavioural synthesis using the MOODS synthesis system. The sections are as

follows:

6.1 Determination of simulated annealing parameters in order to obtain

correct annealing schedules and reliable results. This includes an

investigation of: changes to the cost function in order to provide a stable

start temperature for a given design, temperature reduction methods, a

method to establish annealing schedules and the effect of the random

number sequence on implementations.

6.2 Initial and optimised results for a selection of benchmark designs [90]

using a comprehensive cell library.

6.3 Comparison of the MOODS system to other synthesis systems, where cell

libraries and cost functions comparable to those used in the other systems

are used.

6.4 The use of design space exploration to investigate the optimisation

process and characterization of designs.

The MOODS synthesis system consists of approximately 22000 lines of ' C and runs on

a MicroVax 3100 workstation. On execution MOODS either creates an initial design

implementation or restores a previously saved design. MOODS then displays the

MOODS prompt, from which the user may examine the design, specify a cost function,

initialise the algorithm parameters and start either optimisation or automatic design

space exploration. After manipulating the design the user exits MOODS which causes

bindings to take place and netlist files to be generated [91].

6.1 DETERMINATION OF THE SIMULATED ANNEALING

PARAMETERS

The simulated annealing parameters comprise those that describe the annealing schedule,

the temperature reduction function used to determine the next temperature step and the

function used to calculate the energy change vector. As described in Section 5.2.2 the

annealing schedule parameters are;

K R Baker 1992 6. Results 113

the initial temperature,

Tend the final temperature,

Iŝ p the number of iterations to apply at each temperature step, and

Tstep the reduction made to the temperature in order to reach from

6.1.1 PROVIDING A COST FUNCTION INDEPENDENCE FOR THE

ANNEALING SCHEDULE

One of the problems associated with the simulated annealing algorithm is the

determination of the annealing schedule. It would be desirable if the schedule was

consistent for all designs and all cost functions. However due to the dependence of AE

on the design through technology dependent data, an independence from this is not

possible. A partial independence from the cost function would be desirable, therefore

giving one annealing schedule for each design. The most fundamental annealing

parameter is the start temperature T,^ . The following section explains how the cost

function was changed so as to provide an independence of T^^ from the cost function.

The cost function consists of a prioritised list of criteria each with its associated goals

(targets). The use of a prioritised cost vector ensures that criteria are optimised in the

order specified. The effect a transformation has on the design is given by the first non-

zero element of the energy change vector (see Section 5.1.1). The energy change vector

is determined by averaging the change in energy of all criteria at each priority, thus

resulting in a single value for each priority. How the change in energy is calculated will

affect the annealing schedule between different designs and cost functions. The change

in energy for a given criterion, c, is given by:

^ WLl)

where and Pp^ are the positive deviations from the target for the estimated and

present positions of the design in the design space respectively.

In order to show and thus attempt to reduce the variations in the annealing schedule

with differing cost functions, four typical cost functions were selected for application to

an average design. The Kalman filter benchmark [90] was chosen as it represented an

average design used later in the results. The four typical cost functions selected were:

K R Baker; 1992 6. Results 114

1. delay at priority 1 and area at priority 2 (d(§>pl, a@p2),

2. area at priority 1 and delay at priority 2 (a(S>pl, d@p2),

3. area and delay criteria at priority 1 (a@pl, d@pl), and

4. delay at priority 1 with a target of 4000ns and area at priority 2

(d@pl to 4000, a@p2).

Targets other than those specified above are minimising to zero.

The start temperature of the annealing schedule should be relative to the freezing point

of the design, therefore it is the freezing point which must be determined. This is given

by the point where the degradations applied to the design start to reduce significantly.

For each temperature step during the annealing schedule the cost of the degradations

applied to the design was plotted on a temperature-cost graph. The cost of a

transformation is given by AE (as defined in Section 5.1.1) where the cost of

degradations is given by positive AE and cost of improvements by negative AE. For

each temperature step the positive and negative AE are tallied and used in the

temperature-cost graphs. Note that AE was scaled resulting in larger cost figures in order

that temperature figures were not excessive. The cost of the degradations is used as it

represents the actual change to the design. The number of degradation transforms

applied to the design does not correspond to the actual change occurring to the design.

This is due to the variation in AE depending on which transformation has been selected

and on what part of the design it is to be applied. This is demonstrated in the graph of

Figure 6.1b where both the number of degradation transformations (marked by triangles

and scaled by x40) and the cost associated with them (marked by squares) have been

plotted. This shows that transformations which have a large effect on the design are

applied early in the optimisation process and those having a small effect, thus refining

the design, are applied later; a characteristic of simulated annealing.

The temperature-cost graphs for the cost functions given above are shown in Figure 6.1;

note that as the optimisation process proceeds the temperature is being reduced, that is,

in the temperature-cost graphs the design advances from right to left. A linear

temperature reduction function is used, that is, the temperature is reduced by a fixed

amount each step (T=T-T:^, thereby giving an even distribution of points along the

x-axis. The vertical lines represent the start of freezing which is taken to be 85% of the

maximum of the smoothed curves (the solid lines). For the cost functions with delay

included as a major objective, ie, at priority 1, the freezing point is in the range 125-

K R Baker: 1992 6. Results 115

a: d<@>p1. atg>p2 b: , d(̂ p2

. No. d®gs'40 / V'-'l'
V '' 1

temperature
c:m@pl. d#pl

temperature
d: d#pl to 4000. #&p2

0̂x10"

0.6x10"

0.4x10*

1.5x10*

^ 2W
l#mp#f#Iure

Z \ -

s/^

2M
!#mp#rmnw#

Figure 6.1 Variation of freezing point with cost function calculated

using equation (6.1).

155, whereas with area as the only major objective the freezing point increases to 235.

Delay is the dominant objective as its change in energy, Ac, is small compared to that of

the area objective.

To make AE less vulnerable to variations in Ac for various criteria and thus less

vulnerable to changes in the cost function, the change in energy for each criterion (Ac)

was normalised with respect to its initial value, Cini,. Therefore equadon (6.1) becomes:

Ac (6.2)

The above evaluations were repeated using equation (6.2) to determine AE. The

resulting graphs are shown in Figure 6.2. The freezing point for the area objective at

priority 1 has moved into the range of the other three freezing points. All four cost

functions have freezing points in the range 125-160 which is considered acceptable.

For each of the benchmark designs used in the results the freezing point was determined

using the above method by performing an initial optimisation using an estimated

preliminary schedule. The freezing points were used to calculate the start temperatures,

shown in the table of annealing schedules, Table 6.1 on page 124.

K R Baker 1992 6. Results 116

m: d#pl.m#p2 b:aOpi.d#p2
1.5x10*

^ 1 . 0 X 1 0 '

0̂ 10*

\

100 200

wmp«mtur#
e: a^pl. d̂ pl

1.0x10̂

0.8x10*

8 0.6x10*

c

9 0/^^

SmoothMCDST
B - - — O Deqraaaton COS)

y

0
100 200

tempera ture

2500

2000

1500

1000

f

A nr
/

tempwatum
d: d@p1 to 4000. a#p2

100 200

Figure 6.2 Variation of freezing point with cost function calculated

using equation (6.2).

6.1.2 FINDING THE ANNEALING SCHEDULE

QL
f .

.K

V

The annealing parameter T , ^ is determined using the temperature-cost graph as

described in Section 6.1.1. Throughout the experiments and results the end temperature

Tgnd will be set to zero where only improving transforms would be applied to a design.

The end temperature could be determined by monitoring the changes in the cost

function. For example, in the Devadas and Newton system [42] the annealing process is

terminated when the cost function has not changed for three consecutive temperature

points. It is possible that this approach may lead to premature termination if the design

becomes trapped in a local minimum which is difficult to get out of. It is unknown how

long it would take to select the appropriate transformation in order to exit such a gopher

hole, however it will vary with the complexity of the design as the probability of

selecting a particular part of the design will decrease with increasing design complexity.

Therefore a greater number of iterations will be required to exit a gopher hole for larger

designs. The zero temperature terminating condition is therefore a safer option that

introduces no additional parameters which would affect the determination of the

annealing schedule and so the evaluation of the optimisation algorithm.

K R Baker: 1992 6. Results 117

The other annealing parameters (T,^ and Î p̂) are difficult to determine, however an

estimate of the total number of iterations, given by equation (6.3), can be made by

examining the cost of improvements measure.

L w = (1 + <«-3)

The set of temperature-cost graphs in Figure 6.3 show how the cost of improvements

(the lower curve) and cost of degradations (the upper curve) vary with parameters T,^,

and Itotai for the FRISCl benchmark design. The values chosen for T , ^ and T ^

were 200 and 0 respectively. T , ^ was chosen to include the freezing point which was

previously found to be 100. The values for T,̂ p were 2, 10 and 20 for the left, middle

and right columns of graphs respectively and was chosen such that the total number

of iterations, applied to the design was approximately 10000, 15000 and 20000 for

the top, middle and bottom rows of graphs respectively. The resulting costs shown were

summed over a range of temperature steps equal to the largest step used thereby giving

comparable graphs. The cost curves were then smoothed as shown by the solid curves.

In optimising a design to a particular cost function the design cost will be reduced by a

particular value equal to the distance between the initial and optimised design points in

the design space. The costs at temperature point T=0 are a good aid in determining

whether sufficient iterations have been performed in order to optimise the design. If

transformations were applied to the design at this point (only improvements are applied

at T=0) then the design may not be optimal. On the other hand if sufficient iterations

have been performed then few improvements will be possible at T=0. This is

demonstrated in Figure 6.3 where in the graphs of the top row insufficient iterations

have been performed thus the design was still being improved at T=0. As the total

number of iterations is increased the bulk of the improvements to the design (shown by

a bulge between the smoothed curves) occur at a higher temperature, with improvements

at lower temperatures being applied only to counteract the effect of degradations. The

value of where the number of improvements applied at T=0 becomes a minimum is

the minimum total number of iterations required to optimise the design. This value

appeared to be independent of the size of T̂ t̂ p, however the quality of the design was

not. Using this method the minimum value of 1,̂ .̂ , was determined for each benchmark

and entered into the table of annealing schedules, Table 6.1 on page 124. Given and

a value for T̂ ^̂ p, 1;,̂ ^ was calculated using equation (6.3).

aw
lemperalure

1CX) 150 200

lompera tu re

9 '''siop"̂ .

100 150 200

t empera tu re

50 100 190

lemperalure

aooo

t empe ra tu re

I

M 1M 1M 2M
t empera tu re

W 1M 1M 2Mi
t e m p e r a t u r e

t-^-20. I.Wp-1364
5000

4000

3000

^ 2000

1000

M 1M UW 2M
t empe ra tu re

i: T.,^-20. I.,^-1810

I
4500

3000

1500

t empera tu re

Figure 6.3 Variation in cost curves with different step and iteration values.

Total number of iterations are KKKX), 15000 and 20000 for the top, middle and bottom rows respectively.

K R Baker 1992 6. Results 119

6.1 J INVESTIGATION OF THE TEMPERATURE REDUCTION FUNCTION

According to simulated annealing theory better designs will be produced by using fine

temperature steps as quenching would be avoided. The set of designs produced from the

schedules used in Figure 6.3 produced the opposite effect, that is a coarse value of T ,^

resulted in better designs. To verify this and to show that a better design is achieved by

using more iterations, the annealing schedules of graphs b, d, f and h of Figure 6.3 were

each used to extensively explore an area-time design space using the automatic design

space characterization ability of MOODS. The set of designs which characterized each

design space were limited to 25 design points and the resulting design spaces are shown

in Figure 6.4.

a: T .10, I„„-477, I_,,.10000 b : T ^ - 2 0 . U - 1 3 6 4 , 5000

2x10'

1̂ .20000
4 X 1 0 '

2 x 1 0 '

4x10'

1x10'

4x10'

3 0 0 0 4500

Figure 6.4 AT design spaces for FRISCl using various annealing schedules with linear

temperature reduction.

The design space of Figure 6.4a compared to that of Figure 6.4c show that better

designs result when more iterations are applied. Also, the design space of Figure 6.4d

compared to Fisure 6.4b clearly shows that worse designs have been found when a Oner

K R Baker: 1992 6. Results 120

temperature step has been used. The reason for this is that as optimisation progresses it

becomes considerably easier to degrade the design than improve it. This suggests that

the improvement of using the coarser temperature step is due to the greater number of

iterations being applied at T=0. Thus for large T^^p, is also large giving more

opportunity at T=0 to compensate for previous degradations. Conversely, when T ,^ is

small, Istep is also small therefore allowing less opportunity for compensation and

resulting in a worse design space. The finer T ,^ in Figure 6.4d allows for a few

degradations at the extra T?>K) steps (steps t=2, 4, 6 and 8) and the reduced value of I,

means that insufficient iterations are applied at T=0 to compensate for them. The

implication of this is that more iterations require to be performed at the low temperature

points and so the linear temperature reduction method used to obtain the temperature-

cost graphs is inadequate for optimisation.

To increase the number of iterations applied at low temperatures either the number of

iterations per temperature step can be increased with decreasing temperature or more

low temperature steps created by reducing the temperature in a non-linear fashion. The

latter method is in line with traditional simulated annealing approaches and involves

proportionally reducing the temperature using the reduction function:

X P

where p is the proportional counterpart of T^q,. The proportional temperature reduction

function of equation (6.4) was used to generate the design spaces of Figure 6.5. The

graphs are at the same scale as those in Figure 6.4 and use equivalent schedules. The

value of p was chosen so that the number of temperature steps between the start and end

temperatures were the same. T,,^ and T^^ were 200 and 0 respectively, thus making

design spaces a through to d of Figure 6.4 comparable with design spaces a through to d

of Figure 6.5.

By comparing the AT design spaces of Figure 6.4 with those of Figure 6.5 it can be

seen that the function used to determine the next temperature step plays a significant

role in the quality of the resulting design spaces. In all four design spaces the

proportional temperature reduction has resulted in a better clustering of design points

therefore it was made the default reduction method in the MOODS system. The linear

reduction method can be optionally selected when producing temperature-cost graphs.

An improvement can still be seen for an increase in the value of between

K R Baker 1992 6. Results 121

a: p.0.754 (20st®ps), 1^^10000 b; p-0,56a (10 I tsfa j . 1 ^ 1 5 0 0 0

I

4x10'

3x10"

2x10"

1x10*

4x10"

3*10*

2x10"

1*10*

a
o o

2.5x10' 3.0x10' 3.5x10* 4.0x10* 4.5x10'

c: p-0.754 (20 steps), I ,-20000

25x10* 3.0x10* 3.5x10' 4.0x10*

d : p - 0 . 9 4 5 (100 steps), I . 15000

4.5x10*

4x10*

3x10*

2x10*

1x10*

2.5x10* 3.0x10*

4x10*

3x1 C

2X10*

1x10*

8

8 o

3.5x10' 4.0x10* 4.5x10* 3.0x10* 3.5X10* 4.5x10'

Figure 6.5 AT design spaces for FRISCl design using the same schedules as in

Figure 6.4 but with a proportional temperature reduction.

Figure 6.5a and Figure 6.5c; however no reduction in quality can be seen in Figure 6.5d

when compared to Figure 6.5b as previously observed in Figure 6.4. As there is little

difference between Figure 6.5b and Figure 6.5d it would seem that the value of I, is

less significant. This is illustrated in Figure 6.6 where quenching schedules have been

used. As expected the linear temperature reduction produced a good design space.

Figure 6.6a, due to the increased iterations at T=0 and the proportional temperature

reduction produced a slightly worse design space, Figure 6.6b, due to quenching. As the

design spaces are still quite good it not only implies to be less significant but also

that the temperature reduction function could be improved by applying more iterations at

temperatures in the region of T=0.

The results produced by the experiments relating to linear temperature reduction show

that iterations applied at T=0 are an important fine refinement process in the

optimisation of a design. For this reason iterations are made to occur at T=0 even

though start and step values may not have resulted in T=0 being achieved.

K R Baker 1992 6. Results 122

a; (linsar) T^^-SO, l„^,.15000 b: (proportional) p - 0 . 3 2 3 , 1 - 1 5 0 0 0

4x10'

3x10 '

2x10'

1x10*

4x10*

3x10'

2x10'

1x10'

2.5x10' 3.0x10* 3.5x10' 4.0x10* 4.5x10' 2.5x10' 3.0x10' 3.5x10' 4.0x10* 4.5x10'

Figure 6.6 AT design spaces for FRISCl using a quenching schedule for linear and

proportional temperature reductions.

6.1 .4 INVESTIGATION OF THE EFFECT OF THE RANDOM NUMBER

SEQUENCE ON IMPLEMENTATIONS

The simulated annealing algorithm is a stochastic process where the selection of

transformations and their subsequent application are dependent on random numbers.

Consequently the question arises: "Does the random number sequence influence the

resulting implementations?". In order to determine this a typical design was optimised

using different seeds in the random number generator to produce varied random number

sequences. Figure 6.7 shows the design points for 20 area optimised and 20 delay

4 x 1 0 *

3 x 1 0 r

2 x 1 0 *

&

a trnm imptemwntaten

6' o o

1x10" 2xicr

delay

3X10* 4X10̂

Figure 6.7 Variation in implementations due to arbitrary random number seeds

for both area and delay optimisation objectives.

K R Baker: 1992 6. Results 123

optimised implementations. Half of the designs (10 each of the area and delay optimised

implementations) were generated using the initial implementation and the other half

using previous implementations.

The close grouping of design points for both the area and delay optimised

implementations show that the random number seed and its resulting sequence has a

minimal influence on the ability of the optimisation algorithm to consistently reach a

point in the design space. Implementations generated using previous rather than initial

implementations have resulted in slightly improved design points due to their already

optimised starting points. There is a high, but not 100% probability that an achievable

design point can be consistently reached. Therefore in the reporting of results it is fair to

select the best result, that is one that best achieves the original objectives, from an

exploration of the design space. The results of implementations of benchmark designs

given in Sections 6.2 and 6.3 have been selected from explorations of the design space.

The best implementations have been reported due to the high probability of obtaining

those results although this can not be guaranteed due to the stochastic nature of the

simulated annealing algorithm.

6.2 BENCHMARK RESULTS

The results given in this and subsequent chapters use the annealing schedules shown in

Table 6.1 as determined using the methods described in Section 6.1.2. is always set

to zero and the number of temperature steps was chosen to be 50 to avoid quenching.

Table 6.1 gives the correct values of T,^, the linear reduction quantity and p, the

proportional reduction factor, for the 50 temperature steps which includes the additional

step, T=0. The schedules derived represent the minimum schedule required to achieve

reasonable results, the number of iterations may be increased to improve the design

points, however the law of diminishing returns applies. There seems to be littie

correlation between design size and any part of the annealing schedule. The schedule is

probably more dependent on the complexity of the design and the number and type of

operations used rather than the design size. Some correlation would be expected due to

the relationship between design size and complexity, however this may be only apparent

for very large designs.

K R Baker 1992 6. Results 124

No. of

ICODE

lines

Start

temp

Tcxal No.

iterations

Temp step for 50 steps with linear or

proportional temp reduction.

T ^ f o r L T R p f o r P T R

No. of iterations

per temp step.

~ Iww / 5 0

CBM2 47 66 13000 1.35 0.910 260

CHIP 474 44 50000 0.90 0.919 1000

FRISCl 117 100 12000 2.04 0.903 240

FRISC2 181 121 33600 2.47 0.899 672

KALMANIO 83 176 36300 3.59 0.893 726

KALMANI02 83 137 42900 2.80 0.897 858

E L U P 55 110 33000 2.24 0.903 660

MC6845 91 154 28500 3.14 0.896 570

TAXI 37 143 7000 2.92 0.897 140

PARKER 30 210 18200 4.29 a889 364

TSENG 47 220 15400 4.49 0.888 308

W m O G R A D 92 (46)* 82 20800 1.67 0.906 416

f Hall ot the instructions are register transters caused by the ELLA to ICUUh translator.

Table 6.1 Annealing schedules for the benchmarks.

The design data for the initial un-optimised implementation of each benchmark is shown

in Table 6.2. All of the subsequent implementations reported in this and the following

sections are derived from the same initial implementations. Using the annealing

schedules in Table 6.1 the benchmark designs were optimised and the results derived as

described in Section 6.1.4. The design data for the smallest (area optimised) and fastest

(delay optimised) implementations of each benchmark are reported in Table 6.3 and

Table 6.4. In generating the optimised results of Table 6.3 and Table 6.4, a

comprehensive cell library was used. This consisted of the set of basic cells and

included ALUs implementing plus and minus operations (+, -), shift operations (SR, SL)

and comparison operations (=, <, >, !=). Alternative cells were also included in the

library which implemented most functional type units including the (+, -) ALU. The

alternative cells implement functions either faster and larger or slower and smaller than

their basic counterparts. In the results tables the cells chosen to implement functional

units are depicted by s or f indicating whether small or fast cells have been selected.

Area (pm") Delay (ns)
Maximum

ccmtrol node
delay (ns)

Number of
cailrol
nodes

Critical
path

length

MOG usage measures

(*)

Number of
nets

Number of registers
comltn. rams (wordf),

{total bit width)

Number of
MUX

units (btts): i%uts

Functional Units
Area (pm") Delay (ns)

Maximum
ccmtrol node

delay (ns)

Number of
cailrol
nodes

Critical
path

length
clock legs units

Number of
nets

Number of registers
comltn. rams (wordf),

{total bit width)

Number of
MUX

units (btts): i%uts
Total

unite (bits)
Nismbcr of units and type

CBM2 30697 1168.7 40.3 45 29 38 20 2 137 18r, (169) 8 (79) 26 47(250) 1 neg, 32 =, 3 RS, 8 LS, 3 +

CHIP 1640204 8651.8 47.8 457 181 5 21 1 748 235r. 14c. 3a {3k),
(2569)

21 (302) 114 194 (2622) 4 not, 13 <=, 42 =, 10 !-, 30 +, 30 -,
22 or, 1 RS, 6 LS, 19 and

FRISCl 43867 2866.5 44.1 114 65 4 30 11 121 15r, (165) 12 (177) 44 31 (Z44) 3 +, 1 not, 20 =, 2 !=, 3 RS, 1 -, 1 and

FRISC2 82257 3132.0 58.0 155 54 6 35 0 138 15r, (165) 8 (128) 45 41 (434) 1 not, 18 =, 2 !=, 3 RS, 12+, 4 - , 1 and

KALMANIO 297088 5397.6 69.2 73 78 20 20 1 101 19r, 10c, 6a (673), (399) 10 (105) 28 21 (200) 1 <=, 10 =, 5 •. 5 +

KALMANI02 297128 5397.6 69.2 81 78 20 9 0 101 19r, 10c, 6a (673), (399) 10 (105) 2S 21 (200) 1 <=, 10 =, 5 *, 5 +

ELUP 149285 3051.0 67.8 53 45 8 22 1 125 44r. (689) 7 (122) 14 34 (544) 8*. 26 +

MC6845 32254 2448.5 41.5 90 59 3 29 0 121 42r, 4c, (213) 5 (60) 11 36(187) 29 =, 6 +, 1 and

TAXI 8506 1136.2 43.7 38 26 18 19 0 42 13r, Ic, (31) 1 (8)4 13(37) 7 =, 3 and, 3 +

PARKER 35453 738.0 41.0 29 18 21 8 2 70 14r, (70) 4 (32) 12 22 (176) 9 -, 7 +, 6 !=

TSENG 23386 6975.0 225.0 46 31 1 46 0 55 16r, (121) 12 (96) 24 8(64) 1 div, 1 -, 1 *, 3 +, 1 (K, 1 and

WINOGRAD 167588 10983.6 67.8 172 162 29 7 0 224 132r. (1520) 0(0) 0 46 (460) 12 *, 20 +, 14 -

Table 6.2 Initial implementation data for the benchmarks.

Co#t Amctioa
pdonty

delay area

Area
Oim®)

Delay
(ns)

Maximum
control

node delay

Number
of

control
node:

CriUcal
path

length

Maximum
chain
kngth

MOO usage mcasureg
(%)

clock

No.
of

nets

Number of
rcgwten

comien. rams
(words)

(total tnt width)

Number of
MUX

mia (WM):
inpuLs

Functional Units
m iniiial design for both implemenimioM not ibown

Total
imitt (bits)

No. of uniu and lypc
ALUs in braciets./=f8Si,

CBM2
20149 51&7 39.9 13 13 49 56 119 ^ # 0 6 (61) 27 44(203) 1 +/. 6 SI/. 3 SRf. 1 (shift)

17142 604.5 40.3 15 15 44 80 108 5r. (52) 4M%# 43 (197) 1 +/, 1 SI/, 7 S U 1 Sty

CHIP'
1546876 10775.8 125.3 180 86 2 5 681 160r, 4c, 3a

(3k), (1642)
40 (646) 160 180

(2509)

9 (+.),. 7 (+,-)/; 17 -f, 2 >, I0<, 40 :
8 !=, 10 <=. 1 SI/, 5 SU. 1 SRf.

19 &, 12 comp. 13

1529843 12682.5 169.1 172 75 27 675 152r. 4c. 3a
(3k). (1381)

40 (646) 162 180
(2465)

7 (+. X 10 (+.-y, 20 -i, 3 >, 12<,
38 =. 8 !=. 8 <=. 1 SI/. 5 SU. 1 SRf.

18 &. 13 comp, 10 +.

FRISCl
33334 1209.0 52.7 42 26 12 36 44 111 13r, (133) 11 (161) 41 29 (212) 1 (+ . -) J . 1 (+ . - y , 2 S R / , I S R j

31498 1475.6 46.5 42 28 12 37 44 111 13r. (133) 13 (193) 45 2 7 (1 8 0) 1 (+ .X 1 +f, 1 SR/

FRISC2
59818 735.0 52.5 14 14 53 40 123 13r. (133) 11 (176) 51 32 (290) 3 +/, 4 3 SR/

26663 1440.6 68.6 21 21 49 52 102 13r. (133) 12 (192) 46 24 (162) 1 (+.-)s. ISRf

KALMANIO
286671 2937.6 81.6 37 36 27 45 97 14r. 2c. 6a

(673). (250)
11 (184) 34 21 (200) 1 4 +s. 2 */. 3 *s. 1 comp

269778 3747.4 93.0 42 41 23 37 86 16r. 2c. 6a
(673), (248)

12 (200) 38 14 (88) 2 +i. 1 *s, 1<=

KALMANI02
284529 2101.8 67.8 31 31 40 46 99 14r. 6a

(673), (220)
13 (216) 40 2 0 (1 8 4) 5 +s, 4 • /

268062 3 2 6 4 . 0 81.6 40 40 3 4 19 87 12r, 6a
(673). (214)

13 (232) 42 13 (85) 1 (+,->5, 1 *S

t Design intomutlon titim linuted design space expioniuon due to system crrw.

Table 6.3 Synthesis results of benchmark designs using the comprehensive cell library.

Cost function
priority Area

(pm')
Delay
(ns)

Maximum
control

node delay

Number
of

control
nodes

Critical
path

length

Maidmum
chain
length

MOG usage measures

(*)

No.
of

nets

Number of
registers

counlers, rsnu
(words)

(lolal bit width)

Number of
MUX

imilB (bits): iiqjuts

Functional Units
unils S8me as imlisj design for both implemeotslioiis not shown

delay area

Area
(pm')

Delay
(ns)

Maximum
control

node delay

Number
of

control
nodes

Critical
path

length

Maidmum
chain
length

clock rcgs units

No.
of

nets

Number of
registers

counlers, rsnu
(words)

(lolal bit width)

Number of
MUX

imilB (bits): iiqjuts
Total

units (bits)
No. of units and type

ALUs in brackets. jt=sniall

ELUP
1 2 135638 531.2 142.1 4 4 7 92 40 18 118 20r(305) 22 (352) 53 23 (368) 3(+,-)f, 1 1 + / . 3 + J . 4 » / . 2 * J

ELUP
2 1 38282 4302,0 119 5 36 36 2 43 45 15 87 20r(305) 16 (256) 62 3(49)

MC6845'
1 2 28176 193.2 55.5 4 4 6 76 15 2 115 35r, Ic. (151) 7 (70) 15 35 (195) 4 (+,-y. 2 3 CMnp, 25 =

MC6845'
2 1 23230 316.8 105.6 3 3 13 49 9 3 109 33r, Ic, (139) 6 (67) 12 35 (190) 1 (+,-)i, 4 +i, 29 =

TAXI
1 2 6022 219.6 37.0 6 6 5 69 33 1 37 k C 5) 5 (18) 11 10(20) 1 +/. 6 =

TAXI
2 1 4262 360.0 60.0 6 6 5 54 33 1 35 :r(25) 3 (10) 7 n p U 1 7 =

PARKER
1 2 226X9 317.7 105.9 3 3 5 92 4 20 58 8r(22) 7 (56) 20 15 (120) 3 +s. 7 -/, 5 !=

PARKER
2 1 8627 541.1 77.3 7 7 3 71 27 16 53 9t(30) 6 (48) 28 ^ ^) 1+i, 1 6 !=

TSENG
1 2 22166 1406.4 234.4 6 6 6 31 33 4 55 16r (121) 12 (96) 24 ((64) 3 +s, 1 -s

TSENG
2 1 17980 1707.2 213.4 8 8 5 29 48 5 56 !6r(121) 14 (112)31 5(40) 1 (+.-)i

WINOGRAD
1 2 133300 1286.6 91.9 14 14 5 54 13 7 171 66r (752) 11 (132) 22 43 (430) 8 (+.- / 2 (+,-% 3 +/. 10 +^. 8 7 •/,

4 ""j WINOGRAD

2 1 57812 14698.5 119.5 123 123 3 24 41 5 184 43r(512) 23 (322) 133 7(70) 1 (+,-)j, 6 ' s

Table 6.4 Continuation of Table 6.3. Synthesis results of benchmark designs using the comprehensive cell library.

R EkUcer 1992 6. Readts IjZg

In all implementations the area and delay of the controller, as described by control cells

in the cell library, was made small compared with that of functional units therefore

results will show the typically accepted controller versus data path trade-offs. It should

be noted that MOODS will adapt to different trade-off curves which are dependent on

and thus defined by the cell library data. As described in Chapter 2 this is a capability

possessed by very few synthesis systems.

The area and delay optimised implementations reported in Table 6.3 and Table 6.4 show

a trade-off between area and delay. The least trade-off occurred in the CHIP and

KALMANIO designs both of which contain RAMs. The RAMs used are limited to

single port memories and can not be bypassed as with registers; these restrictions limit

merging and sharing optimisations and thus limit the actual achievable design region. In

general more variation occurs where ROM/RAM is not used and functional units

implement either similar operations or operations common to individual cells both of

which can be easily merged.

The delay of an implementation is the product of the critical path length and maximum

control node delay. In many cases the critical path length is short and maximum node

delay (the clock period) is long for delay optimised designs. A long clock period does

not necessarily produce a slow design, as demonstrated by the CHIP and MC6845

designs where the faster implementations have a longer critical path length than their

area optimised designs. Therefore it is insufficient when reporting data for delay

optimised designs to give either critical path length or node delay; both figures are

required in order to compare the real speed of implementations.

In comparing register numbers the total bit width (the sum of storage bit widths) is

proportional to the area occupied and so is a more representative figure for area than the

number of units. The number of registers in both the area and delay optimised

implementations have been reduced by similar amounts, however, the mechanism used

to optimise registers is different. Registers are required to store data between control

states, therefore for a given design a greater number of states requires more registers to

store data used by instructions spread among them. Fewer control states require fewer

registers which are optimised away using the bypassing mechanism described in Section

4.2.1. When there are many control states and registers, the registers are optimised using

the sharing mechanism performed by the register sharing transformation. It may be

K R Baker: 1992 6. Results 129

thought that due to the similar reduction in registers caused by bypassing and sharing,

register optimisation can be performed as a separate synthesis task; however this is not

the case as the optimisation opportunities for registers are highly dependent on the

scheduling of instructions.

The number of multiplexers used in an implementation has increased in the optimised

implementations due to the increase in unit sharing shown by the total number of

functional units. In comparing the area of units used in a design the total number of bits

is a good representation of the area used. For multiplexers the number of inputs is also

an important figure. The units which make up each design have been selected in the

implementations such that a greater proportion of fast cells are used in the delay

optimised design than in the area optimised design.

An attempt has been made to determine how good a design is without reference to the

user's objectives. The measure of goodness (MOG) measures give a guide as to how

well the clock period, registers and units are utilised and are similar to other utilization

measures [28,70]. For the clock period this consists of analyzing the slack time in each

control state. The slack time is given by the difference between the end time of the

maximum instruction graph and the clock period. The register and unit usages are

determined by calculating the ratio of the number of control steps during which they are

in use, to the critical path length. The unit usages are scaled by the probability of

execution given by the conditional branch probabilities to allow for the possibility of

mutually exclusive instructions sharing functional units. As a consequence of this the

unit usage figures are small. In all designs the clock period is better utilised in the delay

optimised implementations as would be required in achieving a fast design; similarly the

unit usage should reflect the optimisation of the area, however this is not apparent due

to the small unit usage figures. In all except the Kalman filter design the register usage

is better for the area optimised implementations. This is not due to register sharing as

indicated by similar register figures for both implementations but due to the increased

critical path length which would increase the register active times compared to their

inactive times.

To determine the effect of inline expansion two design descriptions which use modules,

FRISCl and KALMANIO, were transformed such that the modules were expanded

inline resulting in the FRISC2 and KALMANI02 descriptions. The modules in the

K R Baker: 1992 6. Results 130

FRISCl description are called more than once which causes an increase in the number

of instructions in the expanded description; as a consequence an increase occurs in the

area and delay of the initial implementation (see Table 6.2). Alternatively, the

KALMANIO description only calls its modules once therefore in the expanded

description no increase in the number of instructions occurs and there is little increase in

the area and delay of the initial implementation. Despite the initial increases in area and

delay the optimised implementations for the expanded designs are better than those for

the un-expanded designs. The results shown in Table 6.3 demonstrate that inline

expansion produces better implementations and where modules are called more than

once, as in FRISC, a wider range of implementations occur. Better implementations will

always result from inline expansion as optimisation restrictions, caused by module

boundaries, are removed. In the area optimised FRISC2 design the user defined ALU

module in FRISC 1 which was expanded in the FRISC2 has been recreated by the

system as it reduces the area most, this is shown by the single (+,-) ALU in the

functional units column. The effect of inline expansion is illustrated further using design

space exploration in Section 6.4.3.

6J COMPARISON OF SYNTHESIS SYSTEMS

In order to compare the designs produced by different synthesis systems sufficient data

must be available which correctly describes the implementations. As mentioned earlier it

is not enough just to count units and the critical path length when the objective is

reducing area and/or delay. The results of popular benchmarks produced by other

systems have been extracted from relevant papers with the exception of Scholyzer which

was available for actual use.

When comparing with another system the MOODS cost function was set to the

equivalent optimisation criteria of the other system. The cell library used by MOODS

was constructed such that it reflected the cells and units available to the system being

compared. Where the other system used ALUs, as in the TSENG example, a similar

ALU was added to the MOODS cell library and given competitive parameters so that

there was a good chance of it being used; of course this can not be guaranteed due to

the stochastic nature of the MOODS system.

K R Baker; 1992 6. Results 131

63.1 COMPARING MOODS WITH SCHOLYZER

A detailed comparison of MOODS can be made with the Schoiyzer system as it uses the

same intermediate code (ICODE), generates a similar initial implementation, creates the

output as a netlist of parameterized cells and all of the implementation data is available.

The MOODS cost function was set such that delay was the high priority objective with

area as the low priority objective, which is similar to the built in optimisation criteria of

Schoiyzer. The MOODS cell library contained only basic cells as assumed available by

Schoiyzer. The cell library data was used to calculate, using the same methods, the

actual area and delay of the implementations produced by both systems; therefore the

results shown in Table 6.5 are directly comparable. Most of the implementations

produced by MOODS are of a similar speed or faster than the Schoiyzer

implementations. This is primarily due to the lack of binding by MOODS of user

defined variables in the input description.

Both systems were run on a MicroVax 3100 workstation. Schoiyzer's execution times

varied from 9s for the TAXI design to 150s for the FRISCl design; the execution time

being highly correlated to the design size. MOODS execution times varied from 30s for

the TAXI design to lOOmins for the MC6845 design and are highly dependent on the

annealing schedule. Although in general the MOODS execution times are an order of

magnitude greater than those of Schoiyzer the variety and quality of implementations

achieved is considered more important. The MOODS execution times are also degraded

by the fact that the current version of MOODS was compiled using no compiler

optimisations.

Further improvements of the MOODS system over the Schoiyzer system can be seen by

examining the implementations produced from a simple small example (TEST). The cell

library used was the comprehensive one as described in Section 6.2. The behavioural

description shown in Figure 6.8 was compiled using the SCHOLAR language compiler.

The resulting ICODE was then used to generate circuits from both the MOODS

synthesis system and the Schoiyzer system. A short behavioural description was used so

that the resulting implementations could be shown graphically. Despite its shortness the

implementations produced illustrate the major differences between the MOODS

synthesis system and the Schoiyzer system.

Synthesis

system

Area

W ')

Delay

(ns)

Maximum

control

node delay

(ns)

Number

of

craitrol

nodes

Critical

path

length

/short

Maximum

chain

length

Number

of nets

Number of registers,
couotcM, mm* (word*)

(totaJ bit width)

Number of

MUX
units (biu): inputs

Functional Units (basic cells)
Synthesis

system

Area

W ')

Delay

(ns)

Maximum

control

node delay

(ns)

Number

of

craitrol

nodes

Critical

path

length

/short

Maximum

chain

length

Number

of nets

Number of registers,
couotcM, mm* (word*)

(totaJ bit width)

Number of

MUX
units (biu): inputs

Total
units (bits)

Number of units and type

CBM2 SCHOLYZER 28782 384.0 38.4 10 10 1 82 18r. (169) 8 (79) 26 15 (134) 3 +. 8 LS, 3 RS, 1 neg CBM2

MOODS 16094 705.6 50.4 14 14 3 101 5 ^ 0 % 5 (52) 18 40 (167) 2 +, 3 LS, 3 RS, 1 neg, 32 =

FRISCl SCHOLYZER 36949 1050.4 40.4 43 2 6 / 9 2 146 H r , Ic, (147) 12 (177) 40 18 (153) 1 +, 1 -, 10 &, 2 !=, 3 RS, 1

not

FRISCl

MOODS 38187 1035.0 41.4 39 25 4 114 I3n, 0 3 3) 13 (193) 44 29 (212) 2 +, 1 1 &. 2 !=, 2 RS, 1 not,

20 =

KALMANIO SCHOLYZER 286577 2460.5 66.5 37 39 3 148 9r. 9c. 6a (673), (187) 9 (8 9) 2 6 17 (143) 4 +, 5 *, 7 &, 1 < = KALMANIO

MOODS 272840 2423.5 65.5 38 37 2 88 17r, 2c, 6a (673), (276) 13 (216) 38 14 (88) 2 +, 1 *, 10 =, 1 <=

E L U P SCHOLYZER 150039 1130.5 66.5 17 17/3 1 175 4Sr. (705) 7 (1 1 2) 14 34 (544) 2 6 + , 8 * E L U P

MOODS 87057 618.0 224.8 3 3 7 121 16r, (241) 30 (480) 72 17 (272) 13 + , 4 *

MC684S SCHOLYZER 22696 243.6 40.6 6 6/2 2 86 20r, 6c, (167) 4 (56) 8 13 (88) 2 +, 10 =, 1 & MC684S

MOODS 24112 226.0 50.9 4 4 8 108 31r, 4c, (143) 7 (K 0 I 6 32 (155) 2 +, 29 =, 1 &

TAXI SCHOLYZER 4039 284.2 40.6 7 7 2 31 3r, Ic, (21) 1 (0 3 2 (1 2) 1 +. 1 = TAXI

MOODS 4106 285.6 56.9 6 6 5 35 7 ^ (2 1) 3 (10) 7 11 (24) 1 +, 7 =, 3 &

PARKER SCHOLYZER 30472 307.2 38.4 10 8/3 1 77 & \ (M) 11 (8 8) 2 3 17 0 3 Q 5 +, 6 -, 6 != PARKER

MOODS 22689 317.7 105.9 3 3 5 58 7 (56) 20 15 (120) 3 +, 7 -, 5 !=

TSENG SCHOLYZER 23326 2237.0 223.7 10 10/3 1 87 16r, (121) 12 (96) 24 8 (6 4) 3 +, 1 -, 1 *, 1 div, 1 or, 1 & TSENG

MOODS 23186 1446.0 241.0 6 6 5 55 16r. (121) 12 (96) 24 8 (6 4) 3 +, 1 -, 1 *, 1 div, 1 or, 1 &

Table 6.5 Comparison of benchmarks synthesized by Scholyzer and MOODS.
A basic cell library and delay optimising cost function has been used in MOODS for comparison with Scholyzer.

K R Baker 1992 6. Results 133

program test{b,c/k) 1 PROGRAM "test" 2 3 / 1 ACT 2
$(define $(VAR "a" 4 <10 : 0>

a<10:0> VAR "b" 2 <10 : 0>

b<10:0> VAR "c" 3 <10 : 0>

c<10:0> VAR "j" 5 <10 : 0>

VAR "k" 1 <10 : 0>
k<10r0> 2 PI,n5 2 *4 4

3 GR 3 #10 6

4 IFMOT 6 ACT 6

a b + 4 5 PLUS 4 3 5 ACT 7

if (c>10) then <5 MINUS 4 3 5

j ;= a + c 7 MINUS 5 #3 1
else 8 ENDMODULE 1

j := a - c

i := j - 3

$)

SCHOLAR XCODK

Figure 6.8 Example behavioural description.

Figure 6.9 illustrates the implementations achieved. Control signals are used to select the

control paths and as multiplexer selectors and are shown next to the appropriate arcs and

nets in the control and data path graphs respectively. Control signals are also used to

load registers and select ALU functions and are shown on the data path graph by a

horizontal arrow next to the appropriate unit. Node enable signals are shown in the

control node that generates them and are used in conjunction with other control signals

to select multiplexer inputs and ALU functions. Figure 6.9a shows the initial

implementation created by both the MOODS and Scholyzer systems, as previously

described in Chapter 3, where each instruction occurs in a unique control state.

Figure 6.9b shows the implementation created by Scholyzer and Figure 6.9c and

Figure 6.9d show two implementations created by MOODS.

The design created by Scholyzer (Figure 6.9b) seems hardly improved when compared

to the initial circuit. Scholyzer optimised the design in the following manner; firstly the

control graph was compacted using an ASAP scheme. This resulted in nodes N2, N3

and N4 in the initial control graph being merged. The parallel section of the graph

(nodes N5 and N6) could not be merged by Scholyzer as both instructions 15 and i6

K R Bako-: 1992 6. Results 134

#4, #10

is12

s6 —

control path data path

a. Initial circuit

control path

#4, #10

conW#8

'#73

•— #75

a

data path

b. Circuit created by SCHOLYZER

#10

#4

control

#3

I5(S6) i6(s6)

«— Sis

12 13

' I I5(S6) i6(s6)

control path data path

c. Fast circuit created by MOODS

i6(s6)

3 #4 #10

control path data path

d. Small circuit created by MOODS

Figure 6.9 Comparison of implementations for the TEST description.

write to the same register (although not concurrently). The mutually exclusiveness of the

writes is not detected by Scholyzer and so the merge cannot take place. The parallel

nodes cannot be combined with their predecessor node as a dependency exists between

instruction 12 and instructions i5 and 16. In Scholyzer this is taken to be contentious as

register a (the variable causing the dependency) is user defined. A distinction is made

between user defined and compiler created variables. Only compiler generated registers

(temp) can be removed, user defined registers cannot be optimised by bypassing as in

the MOODS system. The second step in optimisation was to share operators. This

*[]& BkdoEK 1992 (X FkHRUts i:S5

resulted in no operators being shared as Scholyzer's sharing is extremely Umited; only

similar operators with common inputs or outputs can be shared and an area

improvement must also result. This last condition is pre-programmed into the system as

no cost function is used.

The designs generated by MOODS overcome all of the problems encountered with

Scholyzer. In both designs produced by MOODS in Figure 6.9, the parallel instructions

15 and i6 have been merged into a common control state. This is allowed despite writing

to the same register as MOODS detects that the instructions are mutually exclusive. In

the fast implementation (Figure 6.9c) the dependency between instruction i2 and

instructions i5 and i6 has been detected and on merging the instructions into the same

control node, register a has been bypassed and dependency arcs added to the instruction

graph. A similar situation occurs with instruction i7 and register}. The operators in the

data path have also been implemented using fast cells, thus ensuring the fastest design

has been created.

In the small implementation (Figure 6.9d) all control nodes have not been merged as

sharing data path units was found by the system to improve the cost function greatest;

instructions implemented by a common data path unit cannot occur concurrently. All of

the plus and minus operators have been merged into one ALU. Out of the two ALUs in

the database the smallest was selected. The MOODS system has detected that

instructions i5 and i6 are mutually exclusive and may therefore share a data path

operator even though they occur in the same control state. If the basic cell library had

been used in generating the MOODS implementations then the ALU would have

remained single plus and minus operators; the creation of the ALU demonstrates

MOODS superior operator merging.

The above implementations were found by exploring the area-time design space for the

design. The AT design space is shown in Figure 6.10, where the solid marks represent

the implementations shown in Figure 6.9 and the two extreme designs on the optimal

design curve are those shown in Figure 6.9c and Figure 6.9d. The position of

Scholyzer's implementation in the design space was calculated using the information

contained in the MOODS cell database, thus ensuring a fair comparison. A range of

implementations were found between the fastest and smallest implementations as can be

seen from the design points of Figure 6.10. The AT design space for TEST can be

K R Baker 1992 6. Results 136

SMALLTEST design

1800

1500

9 0 0

600

Initial

0
Fastest

SCHOLYZER
(9 o

@

Smallest

o

o

00 cP

0.3x10^ 0.6x10^ 0 .9x10^ 1 .2x10^ 1.6x10^ 1.8x10^

area

Figure 6.10 Explored AT design space for the TEST example.

characterized using the three points method described in Section 1.7 by specifying the

points representing the fastest and smallest design points and the design point nearest

the origin. Note that the optimal design curve is the set of best designs using these

systems and not necessarily the best obtainable manually or otherwise.

<;.3k2 TRTiTni fSirssTricAdK;

The following tables, Table 6.6, Table 6.7 and Table 6.8 show the results of the

PARKER, ELLIP and TSENG benchmarks respectively. Each table consists of a

compilation of the results given in various relevant papers as well as the results of

comparable implementations generated by MOODS. The implementations generated by

MOODS are in general competitive with those produced by the other systems. However,

it should be noted that the MOODS system optimises a design with respect to real

aspects of the design such as area (cost) and delay and as shown earlier the number of

units and critical path lengths do not necessarily reflect these, therefore the relative real

costs of implementations may be different from that implied in the tables below.

The results generated by MOODS for the PARKER design show that for the fast

implementation the speed, if taken to be proportional to critical path length, is equal to

the best produced by the other systems and for the small implementation the area, if

taken to be the number of functional units, is also equal to the best produced by other

systems. If both area and speed are taken into account, the secondary objective, that is,

K R Baker: 1992 6. Results 137

Synthesis system

and/OT reference

Opdmiwdon

goal

No. of

adders

No. of

subtracts

No. of

states

Control path length

long / short

Maximum

chain length

MAHA [24]

Critical p B h fint

scheduling

speed 2 3 4 4 3 MAHA [24]

Critical p B h fint

scheduling cost 1 1 8 8 2

[63]

Path based

speed 2 3 4 3/1 5 [63]

Path based

cost 1 1 9 5/7 2

HAL [60]

w i A mutual

exclusioQ detection

speed 2 2 3 3 3 HAL [60]

w i A mutual

exclusioQ detection average 2 1 4 4 3

HAL [60]

w i A mutual

exclusioQ detection

cost 1 1 S 8 2

SCHOLYZER speed 5 6 10 8/3 I

MOODS with

bmic cell library

speed 4 6 3 3/3 5 MOODS with

bmic cell library

cost 1
•

9 9/9 4

Table 6.6 Comparison of systems for the PARKER benchmark.

area for the fast implementation and speed for the small implementation, is not as good

as that produced by other systems. However, the real aspects of the implementations,

taking into account the delay of individual units and area of registers and control, would

result in different relative merit for the implementations.

The results generated by MOODS for the ELLIP design (see Table 6.7) show that faster

and smaller implementations have been produced, however the argument given in the

previous paragraph applies equally well to both the ELLIP and TSENG benchmarks.

The number of nets shown in Table 6.7 can not be compared as the net count for

MOODS relates to single ended nets, that is, nets having one source and one sink,

whereas, nets in other systems are often counted as wired trees, that is, having one

source and many sinks. In addition both control and data path nets are counted in

MOODS but other systems count only data path nets.

The increase in multiplexer inputs is inevitable as no multiplexer optimisation is done

by MOODS. The increase in registers is caused by the constraint that a design's output

registers are not optimised in order to preserve their intended function.

K R Baker: 1992 6. Results 138

Synthesis system

and/or reference

Optimisation

goal

No. of FSM /

controller steps

No. of

adders

No. of

mults

No. of

MUX inputs

No. of

registers

No of

nets'

[9 5] Source ref. speed 17 4 4 — — --

HAL [60] speed 17 3 3 31 12 56 HAL [60]

cost 21 2 1 — ~ -

[42] speed 17 3 2 — —
„

SPLICER [95] cost 21 2 1 43 - —

SPAID [19] speed 17 3 2 26 17 22 SPAID [19]

cost 21 2 1 19 19 14

MOODS

Using bmmic cell

librwy.

speed 14 3 3 79 22 113 MOODS

Using bmmic cell

librwy. cost 37 1 1 68 25 97

Including ALU cell in cell Ubraiy ALU (+. *)

APARTY [67] speed 19 4 614 bits 192 bits 32 Hts

MOODS speed 15 3 224 bits 657 bits 1658 bits

t count not compmimble, see text.

Table 6.7 Comparison of systems for the ELLIP benchmark.

Table 6.8 compares the implementations of the TSENG benchmark produced by various

systems. The implementations produced by MOODS were constrained to use particular

ALUs to provide useful comparisons and the restriction on optimising I/O registers was

removed so that register optimisations were comparable. Comparisons with other

systems are difficult even though benchmarks are available and sometimes used. In

comparing implementations it is important to know what other ALUs are available to

the system from which to construct alternative implementations and what the costs

associated with these units are compared to the ones used. In forcing MOODS to use

particular ALUs for comparison of the TSENG benchmark the ALU costs were made

low compared with other cells, however MOODS recognised this and often used more

than one ALU as this was advantageous in reducing the overall cost of the design.

K R Bakmi 1992 6. Results 139

Synthesis system

and/or reference

Optimisation

goal

FUs and ALUs used

in implementation

No. of

registers

MUX data

uxiits (inputs)

No. of

control states

No. of

nets

FACET [26] Some.

ref. speed

FACET ALUs

(+, AND)

(*. +.()R)

(DIV)

8 6 0 9 4 31

HAL [25]

speed

FACET ALUs

(+, AND)

(*. +.()R)

(DIV)
5 6 03) 4 26

SPLICER [27]

speed

FACET ALUs

(+, AND)

(*. +.()R)

(DIV)

7 4(8) 4 14

MOODS

speed

FACET ALUs

(+, AND)

(*. +.()R)

(DIV)

6 2 0 Q 6 22

HAL [25] speed HAL ALUs

(+. AND, OR, EQ)

(*) . (DIV)

6 - (6) 4 28 HAL [25]

cost

HAL ALUs

(+. AND, OR, EQ)

(*) . (DIV) 5 - (K) >5 28

MOODS speed

HAL ALUs

(+. AND, OR, EQ)

(*) . (DIV)

3 1 (2) 6 19 MOODS

cost

HAL ALUs

(+. AND, OR, EQ)

(*) . (DIV)

5 1 (2) 6 19

[51] Path search alg speed (+. -). (+. OR).

(DIV, AND)

5 4 (9) 4 22

MOODS speed

(+. -). (+. OR).

(DIV, AND)
5 4(8) 6 25

[42] SA alg area (+, *. DIV, AND,

OR). (EQ)

8 2 (9) bus 8 ~

MOODS

area (+, *. DIV, AND,

OR). (EQ)
6 5(10) 6 27

[42] SA alg delay (+.-./UfCO

(OR. DIV, *), (EQ)

8 4 (12) bus 5 —

MOODS

delay (+.-./UfCO

(OR. DIV, *), (EQ)
5 2(4) 6 23

Table 6.8 Comparison of systems for the TSENG benchmark.

6.4 DESIGN SPACE EXPLORATION

The ability to explore the design space is an important aspect in both the development

of a synthesis system and the optimisation and evaluation of a design. The design space

has been used in Section 6.1.3 (pages 119 and 120) to determine an appropriate

temperature reduction method and in Section 6.1.4 (page 122) to show the variation in

design points due to different random number sequences. This section illustrates further

how the design space may be used. In the context of optimisation a good design space

is not only one that contains optimal designs but where the design points are clustered

about the optimal design curve thus showing that near optimal designs can be

consistently achieved.

K R Baker: 1992 6. Results 140

6 / k l ANALYSIS OF THE SIMULATED ANNEALING ALGORITHM USING

DESIGN SPACE EXPLORATION

Figure 6.11 illustrates design spaces for the FRISCl design. 25 design points were

found and the same number of iterations were applied for each design space. Design

spaces a and b used a schedule where T^=Tg^=0 (no schedule), that is, no degradations

were applied to the design whereas design space c used the schedule given in Table 6.1.

Design spaces a and c used a previously found design point in order to generate the

a: no #ch#dW*. prevtotn poNHs
b: no mdwduW. MM p e n s

I" 15x10*

gAKiy 34*1̂ 4*1̂ WkWf WkW* lUklOf WkM* Wklf 2.5x10* 3,0x10* 3 5 x 1 0 * 4.0x10* 4 £ x 1 0 *

Figure 6.11 Comparison of improvement only and simulated annealing

approaches and the use of initial or previous design points.

next whereas design space b used the initial implementation. Figure 6.7 showed that the

starting point used, either initial or previous, has little effect of the position on the final

design point. The slight improvement of design space c over b is therefore due to the

annealing algorithm and as the difference is small, little backtracking (by design

degradation) is required in reaching the design points. Design space a shows the

importance and effectiveness of backtracking by design degradation inherent in the

simulated annealing algorithm. With no schedule a previously optimised design point

can not be degraded in order to find the next point therefore many points in design

space a occur at the same position. The simulated annealing approach therefore finds

slightiy improved and a greater number of distinct design points than a no schedule

(improvement only) approach.

The six graphs of Figure 6.12 illustrate how design points migrate fi"om the initial

design point to the optimised design points. The design spaces are shown at equal

intervals of iterations. At the start of the schedule the temperature is high therefore both

K R Bako: 1992 6. Results 141

a: 1.5600, 7-51.6 6:1-11200,7 .22 .0 e i-Mmoo.

I axis' I MO"

IxW*

Q2@KlO* OAMO" OJMO*

d: U22400. T>4.0

oahiô ôMoP ojwwf

#[W#000LT.1J

OaMXf 0.80:10* OJMOP

l:M3IOO.T.O

3x10* aiio*

I aio*

1x10*

ojaiio" ôoxio" o.Mxio' o a b i o * 0.80x10' 0.79x10* OaMO* 0 . 9 * 1 0 * 079x10*

Figure 6.12 Illustration of how design points migrate from the initial point to the

optimised points in the simulated annealing algorithm.

degradations and improvements are equally applied to the designs whose points

consequentially lie between the worst (initial) design point and the optimal design curve

(see Figure 6.12 graph a). A range of targets along the axis are used in automated

design space exploration and as the number of iterations increases the design points

become closer to their targets causing the points to spread out (graphs b to d). The

optimal design points are obtained as the designs freeze (graph e). The points are

improved further by iterations at T=0 causing some target values to be over reached;

this is shown by the compression of points along the delay axis in graph f.

Both Figure 6.11 and Figure 6.12 show that most of the optimisation is done at the

lower temperature steps, however, optimisation can not start at lower temperatures as the

degradations which can be applied are temperature dependent. The results indicate that

few design degradations are required in order to optimise a design. Some iterations are

wasted in arbitrarily applying degradations, for example, there is little change between

graphs b and c in Figure 6.12 despite applying 5 6 0 0 iterations and a large temperature

drop. This further illustrates the importance of the non-linear temperature reduction

method.

K R Baker 1992 6. Results 142

6 . 4 2 COST irijTK:Tn()Pf PRIORITY SCALING

Analysis of early design spaces explored using a high and low priority, area/delay cost

function showed that for an increase in the number of iterations per temperature step the

high priority target was reached with greater accuracy. The fact that the higher priority

objective had been met and was closer to the target should have resulted in more

optimisation opportunities for the lower priority objective to be improved, however this

was not always the case. The reason for this was thought to be in the determination of

the change in energy, which is the first non-zero element in the energy change vector.

The value returned is not dependent on its priority level therefore the design freezes at

the same temperature for all priorities (due to the normalisation to stabilise T,^, see

Section 6.1.1), which may result in a lower priority objective not being optimised as the

design had frozen for all priorities. To allow lower priority objectives to be further

optimised the change in energy was scaled by its priority thus lowering its freezing

point.

Figure 6.13 shows the effect of scaling the change in energy AE by the cost function

priority at which the change occurs. The annealing schedule shown in Table 6.1 was

used for both design spaces. The two graphs have a spread of points covering similar

areas of the AT design space. Two major differences are apparent; firstly, the best

overall designs, that is the ones nearest the origin, do not occur in the "scaled" design

space and secondly, a few faster designs have been found in the "scaled" design space.

3x10*

4 x l f

2 .5x10' 3.0x1 (T 3 j x 1 0 ' 4 .0x10'

zxicr

Ixiy
S.OxlO' 3.5x10^ 4.5x10*

Figure 6.13 AT graphs showing the effect of scaling the change in energy AE by its

corresponding priority in the cost function.

K R Baker: 1992 6. Results 1 4 3

It would seem that the good overall designs have migrated to good designs in single

design aspects. This may be due to small errors in estimating the effect of

transformations. In comparing design spaces the clustering of designs about the optimal

design curve is more important than the individual designs themselves. All the designs

should be achievable using either the scaled or un-scaled methods as the transformations

which produce designs have not changed only their application sequence. The priority

scaled method for calculating the change in energy is not the default method used in the

MOODS system; however the user may initiate its use if required using a command line

parameter.

6 . 4 3 DESIGN ANALYSIS USING DESIGN SPACE EXPLORATION

As shown by design spaces illustrated throughout this chapter the exploration of the

design space gives the designer an insight into the trade-offs and consequentially the

range of designs that can be achieved for a given design description. As described in

Section 1.7 the design space may consist of any number of the design aspects monitored

by the system. The two dimensional area-time (AT) design space is the archetypical

design space where trade-offs are usually assumed to occur. Trade-offs between other

design aspects are possible, however these are rarely seen in other systems. Synthesis

systems are usually limited to an approximation of area and/or delay criteria and use

pre-programmed trade-offs, resulting a high probability that real area-time trade-offs are

not seen.

The MOODS synthesis system is capable of exploring an n-dimensional design space

and can automatically explore two (as seen earlier) and three dimensions. Figure 6.14

shows a three dimensional design space consisting of area, delay and power. It can be

seen that trade-offs occur between the area and delay criteria and the delay and power

criteria; however almost no trade-off has occurred between the area and power

objectives. This high correlation between the area and power criteria had been noted by

Leive and Thomas [92]. The area and power criteria are related by cell construction and

device characteristics and also by their method of calculation where both criteria are the

sum of their respective area and power costs for each cell used. A further area-delay-

power design space was created where additional cells that traded area and power were

introduced into the cell library. The additional cells produced littie improvement in area-

K R Baker: 1992 6. Results 144

2.5*10*

aoxio*

1,5x10*

1.0x10*

0° o o

"•^'^aOxlO* 3.5x10* 5.0x10* 6.5x10* aOxlO* 9.5x10*

7.5x10*

6.0x10*

4.5x10*

3.0x10*

1,5x10*

7.5x10*

6.0x10*

4.5x10*

3,0x10*

1.5*10*
o o

0.5*10* 1.0*10* 1.5*10* 2.0*10* 25*10*

doiay

pO*#f
Z

ZOKlO* ISxIO* 5.0x10* 6.5x10* 8.0x10* 9.5x10*

Figure 6.14 Automatic exploration of a three dimensional design space consisting of

area, delay and power for the FRISC2 design.

power trade-offs thus indicating that the method of calculation has a greater influence on

the correlation of criteria than the cells. Another three dimensional design space was

generated using the area, delay and number of nets criteria. Again, a high correlation

between the area and the number of nets was expected as the number of nets is closely

related to the number of registers and shared units in the design. The resulting design

space is shown in Figure 6.15.

As well as showing the range of designs and trade-offs between design aspects, the

exploration of the design space can also be used to illustrate the effect of changes to the

design description. As an example, module inline expansion was shown by the results of

Table 6.3 to improve the design, however the improvement can be graphically illustrated

using the design space. Figure 6.16 shows the design spaces for the descriptions without

and with their modules inline expanded on the left and right of the figure respectively.

The KALMANIO design has modules which are only called once, therefore by

expanding the modules no additional units are created; however, by removing the

module boundaries further optimisation opportunities are generated as optimisations

K R Baker: 1992 6. Results 145

2.4x10*

lAlO*

laiKT

IkhIO*

gAlO* 3Ai1(r 5.0x10* Mxio* a.0%10* K&IO*
9 0
OjiMlO* 0 ^ 1 0 * lAlO* 1.8x10* zono* 2.4X10*

dWay

Z
net*

20x10* 3.5x10* 5.0x10* 6 ^ 0 * 8.0x10* 9.5x10*

Figure 6.15 Automatic exploration of a three dimensional design space consisting of

area, delay and number of nets for the FRISC2 design.

b : KALMANIC52

5x10"

4 x 1 0 "

3x10'

2X10' 2 . 5 X 1 0 ' 2 . 6 x 1 0 ' 2 - 7 x 1 0 ' 2 .8X10 ' 2 . 9 X 1 0 ' 3 . 0 x 1 0 '

2 . 5 x 1 0 *

2 . 0 x 1 0 *

S 1 . 5 x 1 0 '

1 0 x 1 0 *

^ o o
o ° oS°

3 x 1 0 '

2x101

o J

2.5x10' 2.6x10' 2.7x10' 28x10' 2.8x10' 3.0x10'

d: FHISC2

• f " 1 . 5 x 1 0 '

2x10' 4 X 1 0 ' 6x10' 8x10' 4x10̂ 8x10*

Figure 6.16 Design spaces illustrating the effects of module expansion.

K R Baker: 1992 6. Results 1 4 6

between modules can not occur. The lack of additional units and the increased

optimisation opportunities caused by module expansion are shown in the KALMANI02

design space by the similar spread of design points which have been shifted towards the

origin. In contrast to the KALMANIO design, the FRISC design calls its modules more

than once therefore their expansion causes additional units to be created which can be

used in further optimisations; this is shown by the increased range of implementations in

the FRISC2 design space. The design points are closer to the origin, as in the

KALMANI02 design space, due to the removal of the module boundaries.

CONCLUSIONS

AND FURTHER WORK

K R Baker: 1992 7. Conclusions and Future Work 1 4 8

7.1 CONCLUSIONS

The objective of the project has been met by the implementation of an "intelligent"

silicon compiler, named MOODS, that provides both automated design space exploration

and the ability to optimise a design, given as a behavioural description, with respect to

multiple objectives. The modularity of the program and the completeness of the

optimising transformations allows further optimisation algorithms to be easily

incorporated into the system. This provides the conditions for concise controllable

comparisons between different optimisation techniques.

The MOODS synthesis system, unlike many other systems, does not rely on pre-

programmed optimisations. Many systems use tailored heuristics or algorithmic

approaches based on a particular shape for the trade-off curve, as highlighted in

Chapter 2. This has been shown by McFarland [31] to be inappropriate as trade-offs are

technology dependent. The lack of pre-programmed optimisations in the MOODS

system is possible through the abstractness of the simulated annealing algorithm, a

specific case of the general adaptive heuristic. The MOODS system does not assume a

shape to the trade-off curve but uses technology dependent information fed up from the

cell library to evaluate its cost function which is used to determine the effectiveness of a

transformation. Allocation is dependent on the cell library, where the choice of cells and

their subsequent sharing are based on the user's criteria expressed in the cost function,

rather than being pre-programmed into the system. In this way the system adapts to

changes in technology and to the availability of cells in the cell library. The MOODS

system can use any cell described in the cell library which implements one or more of

the basic instructions, the most suitable ones being selected in order to met the user's

objectives.

The results in Chapter 6 show that implementations found using the MOODS system are

better than or equal to those achieved by other systems and that a varied set of

implementations can be produced from a single behavioural specification. The varied set

of good implementations is achieved through the generality of a comprehensive range of

transformations, as well as by the "hill climbing" ability of the simulated annealing

process. The results confirm that the opportunistic design modifications of the iterative

method show the greatest power [69] and that larger designs allow more optimisation

K R Baker: 1992 7. Conclusions and Future Work 1 4 9

opportunities [44]. Experiments in Section 6.1 have shown that iterations applied at T=0

are an important fine refinement process and that the temperature reduction method is

critical to the design quality.

The comparison of the results with those generated by other systems illustrates the

importance of knowing all the design data in order to do a proper comparison; for

example, a short clock period does not necessarily mean a fast implementation. The

conditions for synthesis are also important in the comparison of systems; for example,

some systems require the user to select the hardware from which to build an

implementation, whereas other systems, including MOODS, select their own hardware.

This should be taken into account when comparing systems as by specifying hardware

the user is biasing, or in some cases binding, the hardware used in the final

implementation.

Despite the execution time of MOODS being longer than that of other systems the

improved variety and quality of the resulting implementations is considered more

important. A design time of one minute or one hour is still faster than a hand crafted

design.

The results of Section 6.4 show that design space exploration is an important aspect of

designing by high-level synthesis and in the development of synthesis systems. The

MOODS synthesis system includes an efficient method for automated design space

exploration. It allows the designer to obtain a perspicuous characterization of the design

space for a design and thus allows him to investigate alternative designs and determine

whether a design can satisfy a variety of simultaneous constraints. The design spaces

show that there are many near optimal implementations for a given description. A

characterized design space can be used, as shown in Section 6.4, to investigate the effect

of changes to the synthesis system. A design space shows graphically the impact of

system changes, giving a better overall view of their effect than is obtained by

individually synthesising designs.

The exploration of design spaces illustrates that there is a high correlation between some

criteria, in particular area, power and the number of nets. This fact could be put to use

in some systems to optimise criteria not explicitly optimised by the system; however, it

would require an experienced designer to know how one criterion is related to another.

K R Baker: 1992 7. Conclusions and Future Work 1 5 0

This would limit the system's potential users, defeating the object of high-level

behavioural synthesis which is to provide a route to silicon for systems engineers. The

ability of MOODS to simultaneously optimise a variety of criteria is therefore an

important quality of a real synthesis system.

The MOODS system uses a general distributed architecture which is not targeted

towards a specific application. Although good results have been achieved for a variety

of applications it is considered that some applications requiring completely different

design styles would benefit from application specific compilers.

The measure of goodness (MOG) which gives the usage of resources in a design has

been shown to be an effective measure of the design's optimality without reference to

particular objectives. In the compilation of the results it was noted that the designs

flagged as being optimal by the automated design space exploration procedures had a

better MOG than the non-optimal designs.

Register splitting, that is the separation of variable active times into distinct registers,

would give an improvement in register sharing and reduce the bias introduced by the

designer in the design description but only if variables in the description have more than

one active period. However, this is rarely the case as the programming style used in

writing behavioural descriptions means that users create additional variables when

required rather than re-using existing ones. Of all the descriptions used in this project,

which were written by a variety of designers, none had variables with sufficient active

periods to allow better register sharing if the active periods had occurred in unique

registers.

7.2 FUTURE WORK

Although MOODS is currently successful and can produce a range of implementations

there is scope for further improvement. Possible improvements can be loosely divided

into two areas, (a) improving the performance of the system, both in terms of producing

better implementations and increasing its computational efficiency, and (b) promoting

the use of the system by making it more user friendly and easier to integrate with other

synthesis tools.

K R Baker: 1992 7. Conclusions and Future Work 1 5 1

Changes to the system in order to produce better implementations can be subdivided

into improvements to the transformations and improvements to the optimisation

algorithm. Further transformations could be incorporated into the system, however, they

would be increasingly specific to special cases, that is, they would be more like the

rules in a rule based system. A rule applying transform could be devised which searches

for a rule and a data structure pattern on which to apply it. Detailed studies would be

required to determine effective rules that could be applied. Rules are usually concerned

with translation, that is, replacing a sub-structure of the design with an equivalent one

which improves the cost function or increases subsequent optimisation opportunities; for

example, replacing a<(b+l) by a<=b or loop (un)winding. Additional transformations are

required to perform multiplexer optimisation which although dependent on the other

synthesis tasks can be effectively performed after the iterative optimisation of the

design.

Changes to the optimisation algorithm comprise further investigation into the cost

function and the method used to accept design degradations. As most transforms affect

many design criteria it is unlikely that changes to low priority objectives would be

returned from the evaluate (cost_fn) function. A two level cost function would

therefore be adequate, thus providing a simpler cost function which could be more

easily utilised in any additional optimisation algorithms. The results demonstrate that

few degradations require to be performed in order to find a near optimal

implementation, consequentially the simulated annealing algorithm may be wasting

computational effort by randomly applying design degradations. The degradations

require to be performed in a more controlled fashion in order to save design time.

Sequence heuristics as described in Section 5.2.3 apply degradations only when no

transformations that improve the design can be found. A tentative implementation of the

sequence heuristic produced design times which were considerably longer than those of

the simulated annealing algorithm. The reason for this is thought to be that the sequence

heuristic wastes time in trying to find transformations which specifically improve or

degrade the design, whereas, simulated annealing finds any transform and conditionally

applies it. An alternative reason could be an implementation error, however a detailed

investigation of the sequence heuristic was beyond the scope of the project. A great deal

of research could be done in studying the sequence heuristic and in finding new

adaptive heuristics that improve on simulated annealing, which despite its critics has

proved to be a competitive approach to high-level synthesis. A good approach would be

K R Baker: 1992 7. Conclusions and Future Work 1 5 2

to combine tailored and adaptive heuristics; for example, during optimisation control

graphs are often reduced to a sequential section by merging parallel nodes, this could be

performed by a fast tailored heuristic prior to iterative optimisation.

Further improvements in the speed of the system could be obtained by determining all

data dependencies before synthesis and either storing them using the present data

stmcture but with an active flag or using look-up tables. This would help speed up

contention tests which are computationally expensive procedures.

The addition of timing constraints is required in order to allow the user to specify a

particular timing between events. This could be included by the addition of time

dependency links between instructions in control states. These links could also be used

to maintain multicycled instructions during optimisation. Although multicycled

instructions can be generated they are not fully integrated with the transformations.

Timing constraints which must be met may be difficult to integrate into the

transformations and are likely to limit the optimisation opportunities. Timing links could

also be used in the generation of pipelined architectures where the pipeline cells would

be represented in the cell library.

Layout effects require taking into account in order to increase the confidence of an

implementation reaching specific goals. Wiring effects can be estimated using a macro

cell floorplanner as in Fasolt [93] or fed up from layout tools. Alternatively, synthesis

tools can specify maximum wire lengths thus providing a predictable performance.

In order to improve the usability of the MOODS system and ensure its continued use,

additional language interfaces and tools are required. At present the behavioural

description may be written using either the ELLA or SCHOLAR languages. Although

ELLA is suitable as the output structural netlist, as it can be simulated using the ELLA

simulator, it is not an appropriate language for writing behavioural descriptions as it

lacks simple algorithmic constructs such as loops. The SCHOLAR language, although a

good functional language with is own simulator, is not widely used. Subsets of

VHDL [94] would be a valuable improvement for both the behavioural input and

structural output. Further structural output formats would also be a benefit as a range of

logic and layout tools could be used.

K R Baker: 1992 7. Conclusions and Future Work 1 5 3

Extra tools which would aid the designer in producing an implementation could include

automated test structure and test pattern generation [95] and automated methods in

finding the annealing schedule or other adaptive heuristic parameters. Additional

flexibility would be achieved if the designer could define operators to be used in the

description that could subsequently be optimised by the system. At present user defined

modules can be described, however their instances are not optimised.

Currently the user interface for the MOODS system is a textual one. Once initiated the

system creates an initial implementation and displays the MOODS prompt. The user

issues commands at the MOODS prompt and data scrolls up the screen. When satisfied

with the implementation the user exits the system whereupon output files are created.

An improvement could be made in the presentation of the implementation to the

designer. At present the data and control paths of the implementation are described in a

number of output files and their nodes can be examine from the MOODS prompt.

Alternative methods of design representation could either be textural, by back-annotation

of the implementation to the original behavioural description, or by graphical output.

Textural back-annotation would be useful as the designer could see how the original

description had been altered by the system and could be useful in the development of

new algorithms. Graphical output would also be valuable in order for the designer to

visualise the implementation. By using platforms with graphical interfaces the user could

watch the design being optimised and interact with it to produce the required

implementation.

APPENDIX A

THE INTERMEDIATE CODE

K R Baker 1992 Appendix A: The Intermediate Code 1 5 5

The intermediate code (ICODE) is input to the MOODS system in the form of a binary

file. The ICODE represents the design as non-recursive modules described at the

register-transfer (RT) level. Each module has a variable declaration part and a process

part. Each process part consists of a set of processes each with a unique process

number. Each process represents an instruction and associated with it is an activation

list, that is, a list of processes to be activated when the current process ends. A process

may start only when all preceding processes have terminated, indicated by a token. A

collect instruction is used where the preceding processes are executed concurrently. Its

effect is to wait for a specified number of tokens before activating subsequent processes.

Each instruction is specified by its name, the set of inputs and outputs and the activation

list, where conditional instructions have two or more condition dependent activation

lists. The ICODE is stored in a binary file, however a textural representation of the

ICODE can also be created.

The ICODE Instruction Set and Binary File

1. Logical and Arithmetic Operators.

AND 2 - inputs

3 3 ^ I,

n - outputs

n Oj, Oj, ... 0„

process list

P A.,, Az, ... Ap

OR 2 - inputs

3 4 I, lo

n - outputs

n Oj, Og, ... O^

process list

p Aj, Ag, ... Ap

Similarly the following operators are defined in the same way:

JKOR 3 5

3 2

fLUS M

EG 20

ATE 2 3

18

NOT (1 INPUT) 30

11

15

21

C E 2 4

DIV 19

LSHIFT 31

ROR 12

NEG (1 INPUT) 17

LE 22

GV? 2 5

K R Baker: 1992 Appendix A: The Intermediate Code 1 5 6

2. Variable Access and Modification.

50

1 - input

I,

n - outputs

n Oi, O2, ... 0„

process list

p A], A ,̂ ... Ap

4

n - outputs

n Oj, O2, ... 0„

process list

p A], A2, ... Ap

HIGHZ

16

n - outputs

n 0 | , Og; •••

process list

p Aj, A2, ... Ap

9 I,

index n - outputs

n Oj, O ,̂ ... On

process list

P A] , A ; , . . . A p

4 4 I, L

input variable

I,

process list

P A], A2, ... Ap

3. Conditional Branching.

57 / 58 Ii

process list (true)

n A|5 A29 ... A^

process list (false)

m Ai, A^,... A ,

SWITCHON input No. cases Default label No.

70 I, M •^default

(case const, label No.) l..m

(CI, L J (Q , W ... (C . , L J

COUNT 2 - inputs

^ line Itemi

process list (eq)

n Aj, A2, ... A^

process list (ne)

m Ai, Az, ... Am

4. Directives.

VAR "name" var No. upper bit lower bit

109 n <n chars> V„ upb Iwb

K R Baker: 1992 Appendix A: The Intermediate Code 157

ALIAS "name" var No. upper bit lower bit parent var upb Iwb

108 n <n chars> V„ upb Iwb V„ pupb plwb

ROM "name" var No. upper bit lower bit low address values L.n

41 n <n chars> V„ upb Iwb Iwaddr n V ,̂ Yj, ... V„

RAM "name" var No. upper bit lower bit low address high address

42 n <n chars> V, upb Iwb Iwaddr hiaddr

COUNTER "name" var No. upper bit lower bit

106 n <n chars> V„ upb Iwb

COUNTDN "name" var No. upper bit lower bit

107 n <n chars> V, upb Iwb

ZJNE

28

line No.

Ln

LABEL label No. process list

54 Lj n A], A2, ... A„

5. Special Instructions.

(XNUURZr Ab. qfm&ww

53 T

process list

n Aj, A2, ... Ajj

PROGRAM "name" n - inputs m - outputs process list

76 n <n chars> n A;, A;, ... A^ m A,, A;, ... A^ p A,, A;, ... Ap

MODULE "name" n - inputs m - outputs process list

74 n <n chars> n Ai, A;, ... A^ m A,, A;, ... A^ p A,, A;, ... Ap

MODULEAP Label

51 L

n - inputs m - outputs process list

n Ajj A ,̂ ... A^ m Aj, A2, ... A^ p Aj, A2, ... Ap

K R Baker: 1992 Appendix A: The Intermediate C o d e 1 5 8

ENDMODULE process No.

77 A,

REMARKS:

1. A process number is either a single number or a label. If it is a label this is indicated

by a preceding zero byte.

2. An input is either a constant or a variable number. When it is a constant it is

preceded by a zero.

APPENDIX B

ELLA SIMULATION EXAMPLE

K R Baker: 1992 Appendix B: ELLA Simulation Example 1 6 0

Behavioural Synthesis using MOODS
The 5-point Winograd Fourier Transform (WIN) example has been used to generate area

and delay efficient implementatons. The correctness of the resulting implementations are

verified by simulation and comparison to the simulation of the source description; thus

demonstrating that for this design correctness by construction has been achieved. The initial

ELLA behavioural description of the Winograd Fourier Transform is shown below.

INT word_width = 6.

INT inter_word__width = 10.

INT real = 1, imag = 2.

Winograd Multiplication constants #

CONST coeffs_positive = {b"0100000000",

b"1011000000",

b"0010001111",

b"0110001010",
b"0010010110",

b"0001011101").

CONST coeffsnegative = (b"1100000000",

b"0101000000'\

b"1101110001'\

b"1001110110",

b"1101101010",

b"1110100011").

CONST inlt = b"0000000000".

FN WINOGRADS = ([10]STRING[word_width]bit: ip_short) ->

([10]STRING[word_wldth]bit):

(SEQ

Extend the internal word length to avoid overflows in the calculation #

Using sign extension #

VAR ip ;= [10]init;

[INT]=1..10]

ip[j] := STRING [4]ip_short[j][1] CONC ip_short[j];

Premultiplication additions #

LET

si = (ip[(l*2)+real] PLUS_STR ip[(4*2)+real],

ip[(l*2)+lmag] PLUS_STR lp[(4*2)+imag]),

s2 = (ip[(l*2)+real] MINUS_STR ip[(4*2)+real],

ip[(l*2)+imag] MINUS_STR ip[(4*2)+imag]),

s3 = (lp[(3*2)+real] PLUS_STR lp[(2*2)+real],

lp[(3*2)+imag] PLUSSTR ip[(2*2)+lmag]),

s4 = (ip[(3*2)+real] MINUSSTR lp[(2*2)+real],

ip[(3*2)+.lmag] MINUS_STR lp[(2*2)+lmag]),

s5 = (si[real] PLUS_STR s3[real],

si[Imag] PLUS_STR s3[lmag]),

s6 = (si[real] MINUSSTR s3[real],

si[imag] MINUSSTR s3[imag]).

K R Baker; 1992 Appendix B; ELLA Simulation Example 161

s7 = (s2[real] PLUS_STR s4[real],

s2[imag] PLUS_STR s4[lmag]),

s8 = (s5[real] PLUS_STR lp[(0*2)+real],

s5[imag] PLUS_STR ip((0*2)+imag]).

Perform multiplications #

mO = ((coeffs ̂ positive 1] MULT_ STR s8[real]),

(coeffs positive 1] MULT_ _STR s8(imag])),

ml = ((coeffs ̂ positive 2] MULT_ STR s5[real]),

(coeffs positive 2] MULT_ STR s5[imag])),

m2 = ((coeffs _positive 3] MULT_ STR s6[real]),

(coeffs _positive 3] MULT_ STR s6[imag])),

m3 = ((coeffs _negative 4] MULT_ STR s2[imag]),

(coeffs positive 4] MULT_ STR s2 [real])),

m4 = ((coeffs ̂ negative[5] MULT_ STR s7[imag]),

(coeffs positive 5] MULT_ STR s7 [real])) ,

m5 = ((coeffs _negative 6] MU1T_ STR s4[imag]),

(coeffs _positlve1 5] MULT_ ̂ITR s4[real])),

s9 = (mO[real] [2..inter_word_wldth+l] PLUS_STR ml[real] (2..inter_word_width+l],

mO[imag][2..inter_word_width+l] PLUS_STR ml[imag][2..inter_word_width+l]>,

slO = {s9[real] PLUS_STR m2[real][2..inter_word_width+l],

s9[imag] PLUS_STR m2[imag][2..inter_word_width+l]),

sll = {s9[real] MINUS_STR m2[real][2..inter_word__width+l],

s9[imag] MINUS_STR m2 [imag] [2 . . inter_word__width+l]) ,

sl2={m3[real] [2..inter_word_width + l] MINOS_STR m4 [real] [2..inter_word_width+l],

m3[imag][2..inter_word_width+l] MINUS_STR m4[imag][2..inter_word_width+l]),

sl3={m4[real] [2..inter_word_width+l] PLUS_STR m5[real] [2..inter_word_width+l],

m4[imag] [2..inter_word_width+l] PLUS_STR m5[imag] [2..inter_word_width+l]),

sl4 = (slO[real] PLUS_STR sl2[real],

slO[imag] PLUS_STR sl2[imag]),

sl5 = (slO[real] MINUS_STR sl2[real],

slO[imag] MINUSSTR sl2[imag]),

sl6 = (sll[real] PLUS_STR sl3[real],

sll[imag] PLUS_STR s13[Imag]),

sl7 = (sll[real] MINUS_STR sl3[real],

sll[imag] MINUS_STR sl3[imag]);

Assemble output at full internal precision #

LET long_output = (mO[real][2..inter_word_width+l],

mO [imag] [2. . inter_word__width+l] ,

sl4[real],sl4[imag],sl6[real],sl6[imag],

sl7[real] , sl7[imag],sl5[real],sl5[imag]);

Select only word_length for each output #

LET output = [INT 1^1..10]

long output[i][inter_word_width-word_width+l..inter_word_width];

OUTPUT output

) .

K R Baker: 1992 Appendix B: ELLA Simulation Example 1 6 2

Simulation of the Behavioural Description

To simulate the initial behavioural description the Winograd description was compiled

into an ELLA context with the arithmetic and shell functions. The shell functions

convert the bit string inputs and outputs into integers. Using integers makes the

simulation results easier to interpret.

Simulating the design gave the following results:

FN WINOGRAD_TC

*** time = 0 ***

Sim <- ma

WINOGRADTC = ? ? ? ? ? ? ? ? ? ?

Sim <- cp i/0 i/0 i/0 i/0 i/0 i/0 1/0 1/0 1/0 1/0

WINOGRAD_TC = 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

Sim <- cp 1/25 1/25 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

WINOGRADTC = 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

Sim <- cp 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

WINOGRADTC = 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/-1 1/-6 1/0

Sim <- cp 1/10 1/10 1/10 1/9 1/8 1/4 1/3 1/2 1/2 1/1

WINOGRAD TC = 1/16 1/13 1/-4 1/10 1/-1 1/1 1/3 1/3 1/6 1/-2

Moods Synthesis

To synthesis the design the description was compiled in the ELLA environment and

then converted to ICODE using the ELLA to ICODE interface. The ICODE is the input

to MOODS from which a variety of implementations can be produced using different

cost functions in the optimisation process.

The MOODS cell library was changed to include only the basic cells and one ALU

performing the plus and minus operations. Two implementations were generated one

optimsied for area, the other for delay. The annealing schedule used for both optimised

designs was similar to the schedule derived in the results chapter and the main objective

was given a priority of 1 and a minimising target (zero). The remaining objective was

given a priority of 3 also with a minimising target.

K R Baker: 1992 Appendix B; ELLA Simulation Example 163

The information on each design was extracted from the appropriate design analysis files

(. d a f) that were generated by MOODS during synthesis. To simulate the

implementation the generated ELLA netlist was compiled into the ELLA environment

with the basic and user parameterized cell macros and shell functions. When simulating

a design each ELLA time step corresponds to a change in the state of the controller. It

is important to know when the outputs are valid; this can be determined by studying the

control graph file. In the implementations generated the outputs became valid at the

end/start of the controller cycle. The start control node enable signal was monitored,

therefore when this becomes true the output is valid.

Design data for the un-optimised implementation;

CELLS USED IN UN-OPTIMISED DESIGN

14 subtract

132 register

10 10 port (temp)

172 general Ctrl cell

20 adder

12 multiply

active area (approx) =

UN-OPTIMISED DESIGN DATA

storage: 132 units 1520 bits

functional: 46 units 460 bits

ports; 10 units 60 bits

interconnects: 0 units 0 bits

TOTAL: 188 units 2040 bits

Control: 172 units

Critical Path Length: 162

Max Control Node Delay = 111.600 ns

MOG - elk use: 20%, Reg use: 7%, Unit use: 0%, AVG: 9%

Area Optimised Design

Design data for the area optimised implementation:

active area =

active area =

active area =

active area =

8 2 0 8 0 . 0 0 0 sq urn

86280.000 sq urn

0.000 sq um

0.000 sq um

active area = 168360.000 sq um

860.000 sq um

CELLS USED IN FINAL DESIGN

29 multiplexer

106 general Ctrl cell

1 adder

4 ALU -,+

1 subtract

94 register

10 10 port (temp)

9 multiply

DESIGN DATA AFTER OPTIMISATION

storage:

functional:

ports:

interconnects:

TOTAL:

Control:

94 units

15 units

10 units

29 units

148 units

106 units

1107 bits active area = 59778.000 sq um

150 bits active area = 20140.000 sq um

60 bits active area = 0.000 sq um

347 bits active area = 24984.000 sq um

1664 bits active area = 104902.000 sq um

active area (approx) 530.000 sq um

K R Baker: 1992 Appendix B; ELLA Simulation Example 1 6 4

Critical Path Length: 105

Max Control Node Delay = 120.900 ns

MOG - Clk use; 29%, Reg use: 0%, Unit use: 2%, AVG: 10%

FINAL COST FUNCTION

COST FUNCTION VECTOR

CRITERION I area {sq urn)

PRIORITY I 1

INITIAL 1165980.000

TARGET I 0.000

PREVIOUS 1102187.000

PRESENT 1102192.000

ESTIMATE 1102192.000

T delay (ns)

3

18079.199

0 . 0 0 0

12573.600

12694.500

12694.500

Simulation results for area optimised moods design:

FN WINOGRAD_TC

*** time = 0 ***

Sim <- mc WIN0GRAD_5.c71

c71 = b'O

Sim <- mc

WINOGRADTC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0

S ^ n < - c # i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b ' ^ t i + 1

*** time = 1 ***

c71 := b'l

Sim < op i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +102

*** time = 2 ***

c71 :=b'0

*** time = 103 ***

all := b'l, WINOGBAD_TC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0

Sim <- cp i/25 i/25 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +102

*** time = 104 ***

c71 := b'O

*** time = 197 ***

WINOGRADTC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 i/0 i/0 i/0

*** time = 198 ***

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 i/0 1/0 1/12

*** time = 199 ***

WINOGRAD_TC := i/0 1/0 1/12 i/12 1/0 1/0 i/12 i/0 1/0 1/12

*** time = 202 ***

WINOGRAD_TC := 1/0 1/0 1/12 i/12 1/12 i/0 1/12 1/0 1/0 1/12

*** time = 203 ***

WINOGRAD_TC := i/0 1/12 1/12 1/12 1/12 1/0 1/12 1/0 i/0 1/12

*** time = 205 ***

o71 b'l, WINOGRAD TC := i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12

K R Baker 1992 Appendix B: ELLA Simulation Example 165

Sim <- cp i/1 i/2 i/3 i/4 i/5 i/6 i/7 i/8 i/9 i/10 b'O, ti +102

*** time = 206 ***

c71 := b'O

*** time = 299 ***

WINOGRAD_TC := i/12 1/12 i/12 1/-6 1/12 1/12 1/-3 1/12 1/12 1/12

*** time = 300 ***

WINOGRADTC := 1/12 1/12 1/12 1/-6 1/12 1/12 1/-3 1/12 1/12 1/0

*** time = 301 ***

WINOGRADTC := 1/12 1/12 1/0 1/-6 1/12 1/12 1/-3 1/12 1/12 1/0

*** time = 304 ***

WINOGRADTC := 1/12 1/12 1/0 1/-6 1/-3 1/12 1/-3 1/12 1/12 1/0

*•** time = 305 ***

WIN0GRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/12 1/-3 1/12 1/12 1/0

*** time = 307 ***

o71 b'l, WINOGRAD_TC := i/12 i/15 i/0 i/-6 i/-3 i/-5 i/-3 i/-l i/-6 i/0

Sim <- cp i/10 i/10 i/10 i/9 i/8 i/4 i/3 i/2 i/2 i/1 b'O, ti +102

*** time = 308 ***

c 71 := b'O

*** time = 401 ***

WINOGRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/0

*** time = 4 02 ***

WIN0GRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/-2

*** time = 403 ***

WINOGRAD_TC := 1/12 1/15 1/-4 1/10 1/-3 1/-5 1/3 1/-1 1/-6 1/-2

* * * t ime = 406 * * *

WINOGRAD_TC := 1/12 1/15 1/-4 1/10 1/-1 1/-5 1/3 1/-1 1/-6 1/-2

*** time = 407 ***

WINOGRAD_TC 1/12 1/13 1/-4 1/10 1/-1 1/-5 1/3 1/-1 1/-6 1/-2

*** time = 409 ***

o71 := b'l, WIHOGRAD TC := i/16 i/13 i/-4 i/10 i/-l i/1 i/3 i/3 i/6 i/-2

Delay Optimised Design

Design data for the delay optimised implementation:

CELLS USED IN FINAL DESIGN

27 multiplexer

97 general Ctrl cell

6 adder

9 ALU -,+

5 subtract

98 register

10 10 port (temp)

11 multiply

DESIGN DATA AFTER OPTIMISATION

storage: 98 units 1184 bits active area = 63936, .000 sq urn

functional: 31 units 310 bits active area = 50270, .000 sq um

ports: 10 units 60 bits active area = 0, ,000 sq um

interconnects: 27 units 354 bits active area = 25488, ,000 sq um

TOTAL: 166 units 1908 bits active area = 139694, ,000 sq um

Control: 97 units active area (approx) = 485. ,000 sq um

Critical Path Length: 95

Max Control Node Delay = 111.600 ns

K R Baker: 1992 Appendix B: ELLA Simulation Example 1 6 6

MOG - elk use: 34%, Reg use: 0%, Unit use: 1%, AVG: 11%

FINAL COST FUNCTION

COST FUNCTION VECTOR

CRITERION I T delay (ns) I area (sq um)

PRIORITY I 1 I 3

INITIAL I 18079.199 1165980.000

TARGET I 0.000 | 0.000

PREVIOUS I 10602.000 1137659.000

PRESENT I 10602.000 1136939.000

ESTIMATE I 10602.000 1136939.000

Simulation results for delay optimised moods design:

FN WINOGRAD_TC

*** time = 0 ***

Sim <- mc WIN0GRAD_5.c22

c22 = b'O

Sim <- mc

WINOGRAD_TC = i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0

Sim <- cp i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'l, ti +1

*** time = 1 ***

c22 := b'1

Sim < op i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +90

*** time = 2 ***

c22 := b'O

*** time = 91 ***

c22 := b'l, WINOGRAD_TC = i/0 i/0 i/0 i/O i/0 i/O i/0 i/0 i/0 i/0

*** time = 92 ***

*** time = 181 ***

c22 := b' 1

Sim <- op i/25 i/25 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 b'O, ti +90

*** time = 182 ***

c22 := b'O

*** time = 266 ***

WINOGRAD_TC := i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/12

*** time = 267 ***

WINOGRAD_TC := i/0 i/0 i/0 i/0 i/0 i/0 i/0 i/12 i/0 i/12

*** time = 268 ***

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/O i/12 i/0 1/12

*** time = 269 ***

WINOGRAD_TC := i/0 i/0 i/0 i/12 i/0 i/0 i/12 1/12 i/0 i/12

*** time = 270 ***

WINOGRAD_TC := i/0 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12 i/12

*** time = 271 ***

c22 := b'l, WINOGRAD TC := 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

K R Baker; 1992 Appendix B: ELLA Simulation Example 1 6 7

Sim <- op i/1 i/2 i/3 i/4 i/5 i/6 i/7 i/8 i/9 i/XO b'O, ti +90

*** time = 272 ***

c22 ^ b'O

*** time = 356 ***

WINOGRAD_TC := i/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/0

*** time = 357 ***

WINOGRAD_TC := 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/-1 1/12 1/0

*** time = 35 8 ***

WINOGRAD_TC := 1/12 1/12 1/12 i/-6 1/12 1/12 1/12 1/-1 1/12 1/0

*** time = 359 ***

WINOGRAD_TC := 1/12 1/12 1/12 1/-6 1/12 1/12 1/-3 1/-1 1/12 1/0

*** time = 3 60 ***

SIKOGRaD_TC := i/12 i/15 i/0 i/-6 i/-3 i/-5 i/-3 i/-l i/-6 i/0

*** time = 361 ***

c22 := b'l

Sim <- op i/10 i/10 i/10 i/9 i/8 i/4 i/3 i/2 i/2 i/1 b'O, ti +90

*** time = 362 ***

c22 b'O

*** time = 44 6 ***

WINOGRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/-1 i/-6 1/-2

*** time = 447 ***

WINOGRAD_TC := 1/12 1/15 1/0 1/-6 1/-3 1/-5 1/-3 1/3 1/-6 1/-2

*** time = 44 8 ***

WINOGRAD_TC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/-3 1/3 1/-6 1/-2

*** time = 44 9 ***

WINOGRADTC := 1/12 1/15 1/0 1/10 1/-3 1/-5 1/3 1/3 1/-6 1/-2

*** time = 4 50 ***

WINOGRAD_TC := 1/12 1/13 1/-4 1/10 i/-l 1/1 1/3 1/3 1/6 1/-2

*** time = 451 ***

o22 := b'l, WINOGRAD TC := i/16 i/13 i/-4 i/10 i/-l i/1 i/3 i/3 i/6 i/-2

Remarks

The final cost functions of the two optimised designs show that a trade-off between area

and delay has occurred. The major trade-off is between the length of the control graph

and the sharing of data path units. Operations sharing a data path unit can not be

executed concurrently and therefore must be in non-concurrent control states.

Conversely, concurrent operations can not share the same data path unit. (Mutually

exclusive operations are a special case exception which is recognised by MOODS.) The

number of functional units (implemented by the add, subtract, ALU and multiply cells)

indicate the amount of sharing. The initial number of functional units (in the un-

optimised implementation) is 46. This is equal to the number of operations in the

description as in the un-optimised design each operation is allocated one functional unit.

In the area optimised design the number of functional units is 15 indicating that each

unit shares on average 3 operations; its critical path length is 105. In the delay

K R Baker: 1992 Appendix B: ELLA Simulation Example 168

optimised design the number of functional units is 31, twice that in area optimised

design (1-2 operations per functional unit). The reduction in sharing is accompanied by

(traded off against) a decrease in critical path length to 95.

APPENDIX C

DATA STRUCTURES

K R Baker: 1992 Appendix C: Data Structures 1 7 0

/*== */

/* structure definitions 21/7/89 */

/* Keith R Baker Southampton University */
/ * = * /

/* Structure containing all list heads for use in main program and for */

/* passing information to and from procedures. */

struct all_heads {

int high_sig,hi_group_no;

struct module_node *mod_head;

struct IGR_node *IGR_head;

struct IO_arcs *arc_list;

struct variable_node *var_head;

struct DP_node *DP__head;

struct condition_list *cond_head;

struct label_node *label_head;

struct net_data *net_list;

/* Structure containing all technology lists such as cell data. */

struct cell_data *cell__head; /* list of all cells */

struct techno_units *units;

struct cell_data *mux_cell,*reg_cell; /* pointers to these basic cells */

};

/* ICR linked list node, also indicates petri-net arcs. */

struct IGR__node {

int node_no,delay;

int temp; /* this is used in the find critical path procedures, */

/* the output of module start nodes, the resetting of the module ends, */

/* the setting of loop its, the is_reachable and trace_temp_forward */

/* procedures and the multicycling of a node. */

int slack; /* slack in critical path analysis */

int node en; /* node enable output signal */

int loop its; /* no. of loop iterations */

/* if loop its is zero then it is not considered in CP calcs */

char nodetype;

int node_en_net_no; /* net no given to carry node enable */

/* for a CALL cell the token net no is node_en_net_no + 1 and the activate +2 */

int in_module;

struct instruction *inst_list; /* list of insts in the ICR node */

struct IO_arcs *in_arc_list;

struct IO_arcs *out_arc_list;

struct IGR_node *next;

int call_collect_n; • /* call node n or collect n */

struct cell data *control cell;

K R Baker: 1992 Appendix C: Data Structures 1 7 1

/* Instruction list node used in ICR node. */

struct instruction {

int inst_no; /* neg No. indicates dummy instruction to No */

int inst_type;

int group_no; /* group Inst is in within an IGR node */

int delay; /* delay of this instruction */

int end__time; /* this is set to the time inst will end within the node */

int chain_no; /* AEAP position in dependency graph */

int prob_exec; /* this indicates the probability of execution as % age */

struct impl_llnks

struct mutual_links *mutual_list;

struct conditionalist *inst_cond;

int const_ipl;

union {

int constant; /* used for constants, memwrite II(var no), module No. */

struct variable_node *var; /* used for var or switchon operand */

) inputl;

int const_lp2;

union {

int constant;/* used for constants, end count, memwrite 12 add if const */

struct variable_node *var; /* used for vars, memwrite 12 add if var */

struct inst_IO_list *in_list; /* I/Ps for program, module, moduleap */

) lnput2;

union {

int count_eq_sig; /* out sig No for count = end count in2 */

struct comp_list *sw_comp_list; /* switch comparison list */

struct inst_IO_list *out_list; /* 0/P destination list or memwrite IP */

} output;

struct inst_depend_list *pre_insts; /* this inst depends on these */

struct inst_depend_list *succ_insts; /* these depend on this inst */

struct instruction *next;

};

/* the structure below is an arc that connects instructions within each IGR

node. It is used to maintain the order of instructions based on their

dependencies. The resulting graph will represent maximum parallelism. */

struct inst_depend_list (

struct instruction *pre_inst; /* inst at start of arc */

struct instruction *succ_inst; /* inst at end of arc */

struct inst_depend_list *next_pre; /* next inst that succ_inst depends on */

struct inst_depend_list *next__succ; /* next inst that pre_inst relies on */

};

/* list of links that represent mutually exclusive pairs of instructions, note

that there must also be a corresponding link from inst pointing to the inst

that holds this link, ie, this is half of a link. */

struct mutual_links {

struct instruction *inst;

struct mutual_links *next;

};

K R Baken 1992 Appendix C: Data Structures 172

/* ICR combined input and output arcs listy condition list, lnsC_IO_list and */

/* comp__list nodes. */

struct IO__arcs {

int arcno;

int is_FBA;

struct IGR_node *pre_node;

struct IO_arcs *next_in;

struct IGR_node *succ_node;

struct condition_list *cond;

struct IO_arcs *next_out;

struct IO_arcs *next;

};

/* unique are no in list a r c n o */

/* indicates if the arc is a feedback arc */

/* node arc comes from */

/* next arc in an input list */

/* node arc goes to */

/* act cond of arc */

/* next arc in output list */

/* next arc in arc list */

/* The signal no in a condition will always be positive, however a reference

to it may be for an inverted signal, ie, -sig_no. For these sigs an inverter

is assumed to be available. In many cases the inverter output is entered

into the condition list as a seperate signal, eg, s333 = /s3. Therefore

a reference to /s3 could be made as /s3 or s333. */

struct condition_list {

struct equation_node *cond;

int signal_no,flag;

int net_no;

struct condition list *next;

/* flag is used in within adjust_cont_sigs() */

/* the net number given when numbering nets */

struct equation_node { /* tree format as in WAG */

int value; /* Value represents fn or var if leaf node, -ve for inv */

int flag; /* tested flag used in comp_equations{) */

struct equation node *parent,*next,*child;

struct inst_IO_list {

int const_IO;

union {

int constant;

struct variable node *var;

} 10;

struct inst_IO_llst *next;

};

struct comp_list {

int const_value;

int signal_no;

struct comp_list *next;

/* const value set to -1 for default sig */

/* structure used in variable list, structure depends on variable type.

struct variable_node {

int var_no;

int var_type;

int lo bit, hi bit;

K R Baker 1992 Appendix C; Data Structures 173

char *name;

int in_module_no;

struct DP_node *hardware;

union {

struct {

int Io_index,hi_index;

int *data;

) memory;

struct {

int hi_bit,lo_bit;

struct variable_node *parent;

1 alias;

) type;

struct variable node *next;

/* all vars have names after tidy_lists() pore */

/* Module list points to the start and end of programs and modules. '/

/* process no of module instruction */

/* 10 instruction */

/* last is node before end */

struct module_node {

int module_no;

char *name;

struct instruction *header;

struct IGR_node *start,*last;

struct end_llst *ends;

struct module_node *parent,*next;

int CP_length; /* if CP_length = 0 then it has not been calculated */

int optim_order; /* Gives the order for optimising modules */

struct call_list *called_bys; /* list of modules which call this module */

int CP_calc_type; /* CP calc technique to use, between or total */

};

struct call_list {

struct module_node *called by;

struct caH__list *next;

};

/* list of dependents to module */

struct end___list {

struct IGR_node *end;

struct end_list *next;

};

/* list of end nodes to module */

/* Label list indicates which label points to which set of processes.

struct label node {

int label__no;

struct to ^process;

struct label node *next;

struct to {

int is_label;

int number;

struct to *next;

K R Baker: 1992 Appendix C; Data Structures 1 7 4

/* Data path list node depends on type and points to 10 data path nodes. */

struct DP_node {

int node no;

char node___type;

struct cell_data *DP_cell; /* this has replaced celltype */

int n_bits,lo_bit,out_bits,temp;/* temp stores var expected in include reg */

int area,twos_comp,power;

struct impl__links *impl_list;

int max_addresses; /* max no of addresses = hi__index for memory */

struct equation_node *boolean__eq;

struct control_sig *control_sigs;

struct netdata *input_list;

struct netdata *output_list;

struct DP_node *next;

};

/* list of pointers to instructions implemented using a data path node */

struct lmpl_links { /* hardware to instruction links */

struct DP_node *impl_by; /* hardware */

struct instruction *impl_of; /* instruction */

struct impl links *next impl of,*next_impl_by;

/* The data path net data and control inputs are associated with the */

/* instructions activating them. Conditions are not set until after */

/* optimisation as they are dependant on the node enable signals. */

struct control_sig {

int pin_type; /* pin that control signal connects to */

int act_inst_no; /* if <1 and signal=null cond is true */

int var_no; /* variable being affected by control */

int active_no; /* variable active no associated with var_no */

struct conditionalist *signal; /* else if signal=null cond on inst */

int range_hi_bit,range_lo_bit; /* not used for mem rd/wr, cnt/shft, select */

int select_fn; /* used for ALUs to select a particular function/inst */

int delete; /* see delete in net_data */

struct control_sig *next;

};

struct net_data {

int net_no; /* initially = signal no therefore not unique to net! */

int flag; /* used in adjust_cont_sigs() and add_inst_group() only */

int delete; /* used to indicate if a net may be deleted after optim,

eg, for inputs to bypassed registers. NB. the load

corresponding to this net will not be labeled, so we

must explicitly find and delete it. */

int in_hi_bit,in_lo_bit; /* indicates connecting bit range for input */

/* in_??_bit is the bit range of the output of the module that the input

of the net that connects to. */

/* or for consts the bit range if it was set or clear on a register */

int in type; /* input net type */

int out__pin; /* output pin on DP unit that input of net connects to */

K R Baker: 1992 Appendix C: Data Structures 1 7 5

union (/* input to net, output from DP node */

struct DP_node *start_node;

int constant;

int cont_sig;

) in;

int wr_act_inst_no; /* inst writing to net */

int wr_var_no; /* variable number writing to net (const=-l) */

int wr_active_no; /* active no associated with wrvar no */

int in_pln; /* input pin on DP unit that output of net connects to */

int out_hi_bit,out_lo_bit; /* indicates connecting bit range for output */

int out_type; /* that is output from net, input to DP node */

union {

struct DP_node *end_node;

int cont_sig;

) out;

int act_inst_no; /* inst reading from net, if zero then permanent I/P */

int rd_var_no; /* variable number reading from net */

int rd__active_no; /* active no associated with rd_var_no */

struct condition_list *act_cond; /* is not set until gen_control_sigs() */

/* only one act_cond as a conds to read and write for a net is not required */

struct net_data *next_out_net,*next_in_net,*next;

/* next_in is the next net connecting to an Input of the data path unit */

/* Common destination list used in instruction analysis. */

struct common_dest_list {

struct instruction *inst;

struct common_dest_list *next;

);

struct IO_var_list (

int var_no; /* -Ve var_no indicates memory and extra contention tests */

struct 10 var list *next;

struct access_list { /* list used to indicate register active times */

int var_no; /* wr_var__no for reads and rd_var_no for writes */

int inst_no; /* act_inst_no for reads and wr_act_inst_no for writes */

int clock_no;

int is_read;

int active_no; /* sub lifetime active no */

struct access_list *next;

};

/* Data used in transformation routines is stored in the structure below.

In manual operation it is set up by the select transformation procedure

and in auto mode it is set up by the optimisation alg.

The fields are used as follows:

->trans_type Transformation selected to use

->test_OK If true it passed tests

->clock period of clock

->nodel node for multi-c. Write node in group T

node to ungroup in ungroup time t and ungroup_group_t.

K R Baker: 1992 Appendix C: Data Structures 176

->node2

->varl

->instl

->inst2

->insts

->time

->n

->n_regs

->new_delay

->DP nodel

->DP_node2

-> cond

->functions

->cell

->delta_E

->priority

->temp__T

->end_T

->T_step

->max_its,its

->da_file;

->is_alloc

->is_schedule

->selected[16]

->tested_OK[16]

->p_improve[16]

->p_degrade[16]

int estimate_analysi

first node to merge in seq_merge_t.

successor node in LT_123_t.

fork node for parallel merge in LT_423_t.

Read node in group T

second node to merge in seq_merge_t.

preceeding node in LT_123_t.

Var asociated with group reg T

variable to unshare from reg in unshare_reg_single_t

Writing inst in group reg T

Inst to unshare from unit in unshare_single_t

Reading inst in group reg T

group of insts to move for grouping and seq_merge_t

node time for ungroup_tlme_t

group no for ungroup_group_t

var_no to remove in unshare_reg_single_t

number of nodes created by ungroup_time_t, inc present

number of nodes with condition cond in parallel merge,

value of old clock in ck_change_t.

set by the by_pass and include register procedures

which increment it for each register change. Used by

merge and ungroup estimates, but generated by tests.

this is the delay of the resulting node when insts

are added to a node. It is used in the group register,

fork merge (LTD and seq merge transform estimations.

It is also used in the ungroup_time_t transform, to

indicate the max delay for the new nodes to be created.

First DP node for sharing or ALU combination

DP unit to apply alternative cell selection on

DP node to unshare in all unsharing transforms

Second DP node for sharing or ALU combination

Condition of arc for merge parallel 423.

List of functions implemented by DP nodes for sharing

fn_delays struct is used in common with calc_combo_no()

Combined cell to implement fns in sharing transform

New cell for alternative cell selection

This is the change in energy of the system

This is the priority that delta_E refers to

Simulated annealing current temperature

temperature to end simulation

Quantity to reduce temp after each temp sim

if the upgrade is true then this must be less than

1 as it is multiplied with current temp.

The maximum and present no of iterations at temp T

Pointer to the design analysis file.

Below is for auto select and optimisation only

how many times are these selected, including failures

No of times transform has been selected/estimated

No of selected transforms pass the tests

No of times transform has performed improvement

No of times transform has performed degradation

s[max_no_trans][nets_crit+l][3][2]

The array 16 is for each transform type and the array 2

for the criterion, the array 3 stores the number of

K R Baker: 1992 Appendix C; Data Structures 1 7 7

occurances of the errors on p211, if the estimate was

exactly correct then no error is recorded.

The errors are recorded as under or over estimates

in the last array, ie, if estimate is less than pres

then it is an under estimate and if more it is over

The first element is over estimates the second under. */

struct transform_data {

struct cost_fn_ele *cost_fn;

int trans_type;

int test_OK;

int clock;

struct IGR_node *nodel;

struct IGR_node *node2;

struct variable_node *varl;

struct instruction *instl;

struct instruction *inst2;

struct instruction *insts;

int time,n,new_delay,n_regs;

struct DP_node *DP_nodel,*DP_node2;

struct conditionalist *cond;

struct fn__delay *functions;

struct cell_data *cell;

float delta_E;

int priority, in_progress;

float temp_T, end_T, T_step;

int max_its, its;

FILE *da_file;

int selected[max_no_trans] ;

int p_improve[max_no_trans] ;

int p_degrade[max_no_trans];

int tested_OK[max_no_trans] ;

int is_alloc,is_schedule;

int estimate_analysis[max_no_trans][nets_crit+l][3][2];

};

/* Cost function vector is stored as a list of priorities, each consisting of */

/* a list of criteria associated with that priority. */

struct cost_fn_ele {

int priority;

struct criterion_ele *criteria;

struct cost_fn_ele *next;

};

struct criterion ele (

int criterion;

int initial;

int target; /* target value (tv): reached according to optotype */

int previous; /* last value for criterion */

int present; /* present value for criterion */

int estimate;

struct instruction *start,*end; /* insts specified for between CP calcs */

K R Baker: 1992 Appendix C: Data Structures 178

struct crlterion_ele *next;

In-

struct optim_cost {

int no,power,area,delay,nets,mog,is_optim, cpu_time;

int error; /* indicates % error in reaching target,

struct optim_cost *next;
};

-ve = not reached */

/* Cell info data structure. Cell data is stored as a linked list with pin */

/* lists joined to it. The cell info file has cell_no, IPs_com, area, */

/* inh delay, and delay_factor for every cell. Following this is the number */

/* of pin data sections, these consist of pin_type and fields specific to */

/* that pin type. At present this is IPcap for inputs only. */

struct cell_data {

int cell_no, n_fns, IPs_com, n_bits, op_bit_type, quantity;

char *name;

int reg_set_up;

struct combo_data *combined_fns; /* always at least one of these */

struct pin_data *pins; /* also collect n penalty in control cells */

struct cell_data *next;

struct cell_alt *cell_alts;/* alts for cell, cells that cover all cell fns */

struct cell_fn *cell_fns; /* all insts implementable by cell, at least 1 */

);

struct combo_data {

int combine_no;

struct fn_delay *fn_delays;

int area, delay factor, power;

struct combo data *next;

/* delays for each fn in combo */

struct fn delay (

int fn_no;

int inh_delay;

/* this is the inherent delay for a function in a combo */

/* one is entered for each inst for this combination */

struct fn_delay *next;

struct pin_data (

int pin_type;

int IP_cap;

int area_penalty;

int power_penalty;

struct pin_data *next;

/* input capacitance */

struct cell_fn {

int fn_no;

struct cell_fn *next;

);

/* first one is LSB when converting to combo no. */

K R Baker: 1992 Appendix C; Data Structures 1 7 9

struct cell_alt {

int alt_no;

struct cell_alt *next;

In-

struct techno_units { /* see techno reader for info on these */

char *time_str, *cap_str, *delay_factor_str, *power_str, *area_str;

int time_off, cap_off, delay_factor_off, power_off, area off;
};

/ * = E N D OF FILE=

REFERENCES

K R Baker: 1992 References 1 8 1

1 Goldberg, A V - Hirschhom, S S - Lieberherr, K J, "Approaches Toward Silicon

Compilation.", IEEE Circuits and Devices, May 1985, pp. 29-39.

2 VLSI Design, Staff, "Silicon Compilers. Part 1; Drawing a Blank.", VLSI

Design. September 1984.

3 Allen, Jonathan, "Performance-Directed Synthesis of VLSI Systems.", Proc.

IEEE, Vol. 78, No. 2. Feburary 1990. pp 336-355.

4 Blackman, Timothy - Fox, Jeffrey - Rosebrugh, C, "The SILC Silicon Compiler:

Language and Features.", Proc. 22nd DAC. 1985 IEEE. Paper 17.1, pp. 232-237.

5 Hartley, Richard I - Jasica, Jeffrey R, "Behavioural to Structural Translation in a

Bit-Serial Silicon Compiler.", IEEE Trans, on CAD. Vol 7. No 8. August 1988.

pp. 877-886.

6 Parker, Alice C, "Automated Synthesis of Digital Systems.", IEEE Design &

Test, November 1984. pp. 75-81.

7 Werner, Jerry [editor], "Progress Toward the 'Ideal' Silicon Compiler. Part 1:

The Front End.", VLSI Design. September 1983.

8 Werner, Jerry [editor], "Progress Toward the 'Ideal' Silicon Compiler. Part 2;

The Layout Problem.", VLSI Design. October 1983.

9 Camposano, Raul, "Synthesis Techniques for Digital Systems Design.", Proc.

22nd DAC, 1985 IEEE. pp. 475-481.

10 Gajski, Daniel D - Dutt, Nikil D - Pangrle, Barry M, "Logic Design and Silicon

Compilation for VLSI Design. Silicon Compilation (A Tutorial).", Proc. IEEE

1986 Custom IC Conf. NY. May 1986, pp. 102-110.

11 Southard, Jay R, "MacPitts: An Approach to Silicon Compilation.", IEEE

Computer, December 1983, pp. 74-82.

12 Bergmann, Neil, "A Case Study of the F.I.R.S.T Silicon Compiler. ", Third

Caltech Conf. VLSI, March 1983, pp. 413-430.

13 Walker, Robert A - Thomas, Donald E, "Behavioural Level Transformations in

the CMU-DA System.", Proc. of the 20th DAC, ACM/IEEE, Miami, FL,

June 1983.

14 Thomas, Donald E - Blackburn, Robert L - Raj an, J, "Linking the Behavioural

and Structural Domains of Representation for Digital Systems Design.", IEEE

Trans. CAD, Vol. 6, No. 1, 1987. pp. 103-110.

15 Walker, Robert A - Thomas, Donald E, "Design Representation and

Transformation in the System Architect's Workbench.", Proc. Int. Conf.

Computer Design (ICCD) 1987. pp. 166-9.

K R Baker: 1992 References 1 8 2

16 Werner, Jerry [editor], "The Silicon Compiler: Panacea, Wishful Thinking, or

Old Hat?", VLS I Design, Vol. 3, No. 5, Sept/Oct 1982, pp. 46-52.

17 Hauge, Peter S - Nair, Ravi - Yoffa, Ellen J, "Circuit Placement For Predictable

Performance.", Proc. Int. Conf. Computer Design (ICCD) 1987. pp. 88-91.

18 McFarland, Michael C, "On Proving the Correctness of Optimising

Transformations in a Digital Design Automation System.", Proc. 18th DAC,

IEEE Comp. Soc. DATC, June 1981, pp. 90-97.

19 Haroun, Baher S - Elmasry, Mohamed I, "Architectural Synthesis for DSP

Silicon Compilers.", IEEE Trans, on CAD. Vol 8. No 4. April 1989,

pp. 431-447.

20 Bergamaschi, Reinaldo A, "The Development of a High Level Synthesis System

for Concurrent VLSI Systems.", PhD Thesis. Southampton University.

December 1988.

21 Peng, Zebo, "Synthesis of VLSI Systems with the CAMAD Design Aid.", Proc.

23rd DAC, 1986 IEEE. pp. 278-284.

22 Peng, Zebo, "A Formal Approach to the Synthesis of VLSI Systems From Their

Behavioural Descriptions.", Proc. 19th Hawaii Int. Conf on Sys. Sci, January

1986. pp. 160-7.

23 Peng, Zebo, "A Formal Methodology for Automated Synthesis of VLSI

Systems.", PhD Thesis. Linkoping University, 1987.

24 Parker, Alice C - Mlinar, Mitch - Pizarro, Jorge, "MAHA: A Program for

Datapath Synthesis.", Proc. 23rd DAC, Las Vagas, July 1986, pp. 461-466.

25 Paulin, P G - Knight, J P - Girczyc, E F, "HAL: A Multi-Paradigm Approach to

Automatic Data Path Synthesis.", Proc. 23rd DAC, July 1986, pp. 263-270.

26 Tseng, Chia-Jeng - Siewiorek, Daniel P, "Facet: A Procedure for the Automated

Synthesis of Digital Systems.", Proc. 20th DAC, 1983 IEEE. pp. 490-496.

27 Pangrl, Barry M - Gajski, Daniel D, "State Synthesis and Connectivity Binding

for Microarchitecture Compilation.", IEEE 1986. pp. 210-213.

28 Zimmermann, G, "The MIMOLA Design System: A Computer Aided Digital

Processor Design Method.", Proc. 16th Design Automation Conf., June 1979,

pp. 53-58.

29 Girezyc, E F - Knight, J P, "An ADA to Standard Cell Hardware Compiler

Based on Graph Grammers and Scheduling.", Proc. ICCD, 1984. October 1984.

30 Knapp, David W - Parker, Alice C, "The ADAM Design Planning Engine.",

IEEE Trans, on C A D Vol. 10 No. 7, July 1991. pp. 829-846.

K R Baker: 1992 References 1 8 3

31 McFarland, Michael C, "Reevaluating the Design Space for Register-Transfer

Hardware Synthesis.", Proc. Int. Conf. Computer Design (ICCD) 1987.

pp. 262-265.

32 Park, Nohbyung - Parker, Alice C, "Sehwa: A Software Package for Synthesis of

Pipelines from Behavioral Specifications.", IEEE Trans, on CAD. Vol 7. No 3.

March 1988. pp. 356-370.

33 Silvar Lisco, "CAL-MP 10 - General Overview.", Document No: MO 14-3,

March 1984.

34 Jain, Rajiv - Mlinar, Mitchell J - Parker, Alice, "Area-Time Model for Synthesis

of Non-Pipelined Designs.", Proc. Int. Conf. Computer Design (ICCD) 1988.

pp. 48-51.

35 Tseng, Chia Jeng - Siewiorek, Daniel P, "Emerald; A Bus Style Designer.", Proc,

21st Design Automation Conf., June 1984.

36 Johannson, D L - McElvain, K - Tsubota, S K, "Intelligent Compilation.", VLSI

Syst. Design. Vol. 8, No. 4, pp. 40-46. April 1987.

37 Johannsen, D, "Bristle Blocks: A Silicon Compiler.", Proc. 16th DAC June 1979,

pp. 310-313.

38 Siskind, J M - Southard, J R - Crouch, K W, "Generating Custom High

Performance VLSI Designs from Succinct Algorithmic Descriptions.", Proc.

Conf. Advanced Reseach in VLSI, January 1982, pp. 28-40.

39 Claesen, L - Catthoor, F - Goossens, G - et al, "Automatic Synthsis of Signal

Processing Benchmark using the CATHEDRAL Silicon Compilers.", Draft

version 22/1/88, Proc. IEEE 1988 CICC.

40 Jamier, R - Jerraya, A A, "APOLLON, A Data-Path Silicon Compiler.", IEEE

Circuits and Devices Magazine, May 1985.

41 Choi, Y H, "Synthesis of pipelined data paths.", CAD Butterworth. Vol. 24,

No. 1, January 1992. pp. 36-40.

42 Devadas, Srinivas - Newton, A. Richard, "Algorithms for Hardware Allocation in

Data Path Synthesis.", IEEE Trans, on CAD. Vol. 8, No. 7. July 1989.

pp. 768-81.

43 Hitchcock, Charles Y - Thomas, Donald E, "A Method of Automatic Data Path

Synthesis.", Proc. 20th DAC. 1983 IEEE. pp. 484-489.

44 Hafer, Louis J - Parker, Alice C, "Automated Synthesis of Digital Hardware.",

IEEE Trans, on Computers, Vol. 31, No. 2, February 1982. p93.

K R Baker: 1992 References 1 8 4

45 Parker, Alice C - Hafer, Lou, "The Application of a Hardware Description

Language for Design Automation.", January 1978, pp. 349-355.

46 Tseng, Chia Jeng - Siewiorek, Daniel P, "Automated Synthesis of Data Paths in

Digital Systems. IEEE Trans. CAD, Vol. 5, pp. 379-395, July 1986.

47 Allerton, D J - Batt, D A - Currie, A J, "Second Progress Report: Silicon

Compiler Project.", University of Southampton, dept. of Electronics. April 1983.

48 Jong, Ivan C. C., "SCHOLAR User Manual (vl.O).", Southampton University,

Dept. Electronics and Comp. Sci. July 1988.

49 Camposano, Raul - van Eijndhoven, J T J, "Combined Synthesis of Control

Logic And Data Path.", Proc. Int Conf Computer Design (ICCD) 1987.

pp.327-329.

50 Bendas, J B, "Design Through Transformation.", Proc. 20th DAC, Miami, FL.

June 1983.

51 Hong, Youn Sik - Park, Kyu Ho - Kim, Myunghwan, "Automatic Synthesis of

Data Paths based on the Path-Search Algorithm.", Proc. Int Conf Computer

Design (ICCD) 1987. pp. 270-273.

52 Nagle, Andrew W - Cloutier, Richard - Parker, Alice C, "Synthesis of Hardware

for the Control of Digital Systems.", Trans. CAD of ICs and Systems, No. 4,

October 82, pp. 201-12.

53 Nagle, Andrew W - Parker, Alice C, "Algorithms for Multiple-Criterion Design

of Micro- Programmed Control Hardware.", Proc. 18th DAC, (Nashville, TN),

June 1981. pp. 486-493.

54 Girczyc, E F - Buhr, R J A - Knight, J P, "Applicability of a Subset of Ada as

an Algorithmic Hardware Design Language for Graph-Based Hardware

Compilation.", IEEE Trans on CAD, Vol. CAD-4, No. 2, April 1985.

55 Kowalski, T J - Thomas, D E, "The VLSI Design Automation Assistant: What's

in a Knowledge Base.", DAC, 1985, pp. 252-258.

56 Kowalski, T J - Geiger, D J - Wolf, W - Fichtner W , "The VLSI Design

Automation Assistant: From Algorithms to Silicon.", IEEE Design & Test,

August 1985, pp. 33-43.

57 Camposano, Raul - Rosenstiel, Wolfgang, "Synthesizing Circuits From

Behavioural Descriptions.", IEEE Trans, on CAD. Vol 8. No 2. February 1989.

pp. 171-180.

58 Hienrich, Kramer - Rosenstiel, Wolfgang, "System Synthesis using Behavioural

Descriptions.", IEEE Proc. of EDAC, 25-28 February 1990, pp. 277-282.

K R Baker: 1992 References 1 8 5

59 Raj, Vijay K, "Another Automated Data Path Designer.", IEEE 1986.

60 Paulin, P G - Knight, J P, "Force-Directed Scheduling in Automated Data Path

Synthesis.", Pmc. 24th ACM/IEEE D A C 1987, pp. 195-202.

61 Paulin, P G - Knight, J P, "Extended Design-Space Exploration in Automatic

Data Path Synthesis.", Proc. Canadian Conf. on VLSI, October. 1986,

pp. 221-226.

62 Camposano, Raul - Bergamaschi, Reinaldo A, "Redesign Using State Splitting.",

EDAC 1990, Glasgow, March. IBM, Research Report.

63 Camposano, Raul, "Path-Based Scheduling for Synthesis.", IEEE Trans on CAD,

Vol 10, No 7, January 1991. pp. 85-94.

64 Balakrishnan, M - Majumdar, A - Banerji, D - et al, "Allocation of Multiport

Memories in Data Path Synthesis.", IEEE Trans, on CAD. Vol 7. no 4. April

1988. pp. 536-540.

65 Tseng, Chia Jeng - Siewiorek, Daniel P, "The Modeling and Synthesis of Bus

Systems.", Proc. 18th DAC, June 1981 IEEE. pp. 471-478.

66 Rajan, Jayanth V - Thomas, Donald E, "Synthesis By Delayed Binding Of

Decisions.", 22nd Design Automation Conf. IEEE. 1985. pp. 367-373.

67 Lagnese, E D - Thomas, D E, "Archetectural Partitioning for System Level

Synthesis of Intergrated Circuits", IEEE Trans on CAD, Vol. 10, No 7, July

1991. pp. 847-860.

68 Bushnell, M L - Director, S W, "ULYSSES; An expert-system based VLSI

design environment.", in Proc. ISCAS 85, 1985.

69 Brewer, Forrest - Gajski, Daniel, "Chippe: A System for Constraint Driven

Behavioral Synthesis.", IEEE Trans, on CAD. Vol 9. No 7. July 1990.

pp. 681-695.

70 Safri, A - Zavidovique, B, "Towards a Global Solution to High Level Synthesis

Problems.", IEEE Proc. of EDAC, 25-28 February. 1990, pp. 283-288.

71 Morison, J D - Peeling, N E - Thorp, T L, "ELLA: A Hardware Description

Language.", IEEE conf. on Circuits and Computers, September 1982.

72 Morison, J D - Peeling, N E - Whiting, E V, "Sequential Programming

Extensions to ELLA, with Automatic Transformation to Structure.", Proc. ICCD

1987, pp. 571-576, Rye Brook, N Y , October 1987.

73 Baker, Keith R, "The ELLA to ICODE Interface.", Southampton University,

DepL Electronics & Comp. Sci. June 1990.

K R Baker: 1992 References 1 8 6

74 Younger, D H, "Minimum Feedback Arc Sets for a Directed Graph.", IEEE

Trans. Circuit Theory. June 1963. pp. 238-245.

75 Lempel, A - Cederbaum, I, "Minimum Feedback Arc and Vertex Sets of a

Directed Graph.", IEEE Trans. Circuit Theory, December 1966. pp. 399-403.

76 Yau, S S, "Generation of all Hamiltonian Circuits, Paths and Centers of a Graph,

and Related Problems.", IEEE Trans. Circuit Theory, March 1967. pp 79-80.

77 Divieti, L - Grasselli, A, "On the Determination of Minimum Feedback Arc and

Vertex Sets.", IEEE Trans. Circuit Theory, March 1968. pp. 87-89.

78 Ignizio, James P, "Goal Programming and Extensions.", Lexington Books. 1976.

79 McFarland, Michael C - Parker, Alice C - Camposano, Raul, "Tutorial on

High-Level Synthesis.", Proc. IEEE 25th DA Conf., 1988, pp. 330-336.

80 Koelmans, A M - Bums, F P - Kinniment, D J, "Use of a Theorem Prover for

Transformational Synthesis.", Computing and Control Division, 21st January

1991. No: 1991/014.

81 Nahar, Surendra - Sahni, Sartaj - Shragowitz, E, "Simulated Annealing and

Combinatorial Optimization.", IEEE, 23rd DAC 1986. Paper 16.1, p. 293.

82 Carre, Bernard, "Graphs and Networks.", Oxford University Press 1979.

83 Ullman, J D - Aho, A V - Sethi, R, "Compilers: Principles, Techniques and

Tools.", Addison-Wesley, Mass, 1986.

84 Moder, Joseph J - Phillips, Cecil R - Davis, E W, "Project Management with

CPM, PERT and Precedence Diagramming. 3rd edition.", Van Nostrand

Reinhold Company.

85 Rutenbar, Rob A, "Simulated Annealing Algorithms: An Overview.", IEEE

Circuits and Devices Mag. January 1989. pp. 19-26.

86 Kirkpatrick, Scott - Gelatt Jr., C D - Vecchi, M P, "Optimization by Simulated

Annealing.", Science. 13 May 1983, Volume 220, No. 4598. pp. 671-680.

87 Kirkpatrick, Scott, "Optimization by Simulated Annealing; Quantitive Studies.",

Jml of Statical Phys, Vol 34, Nos 5/6, 1984. pp. 975-986.

88 Metropolis, N - Rosenbluth, A - Teller A & E, "Equation of State Calculations

by Fast Computing Machines.", Jr. Chem. Phys., Vol 21. p. 1087. 1953.

89 Nahar, S - Sahni, S - Shragowitz, E, "Experiments with Simulated Annealing.",

22nd Design Automation Conference, 1985, pp. 748-752.

90 Microelectronics Centre of Northern California, "High-Level Synthesis Workshop

Benchmarks.", 1989, 1991.

K R Baker: 1992 References 1 8 7

91 Baker, Keith R, "The MOODS Synthesis System - User Manual V2.0.",

Southampton University, Dept. Electronics & Comp. Sci. October 1992.

92 Leive, G - Thomas, D, "A Technology Relative Logic Synthesis and Module

Selection System.", Proc. 18th DAC. IEEE Comp Soc DATC, June 1981,

pp. 479-85.

93 Knapp, David W, "Datapath Optimization Using Feedback.", IEEE Proc. of

EDAC, 12-15 March 1991, pp. 129-134.

94 Hands, J P, "What is VHDL?", CAD, Buttenvorth. Vol 22. No 4. May 1990.

pp. 246-9.

