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1. Introduction

Progress in software engineering over the past two decades has been made through
the development of increasingly powerful and natural high-level abstractions with
which to model and develop complex systems. Procedural abstraction, abstract data
types, and, most recently, objects and components are all examples of such abstrac-
tions. It is our belief that agents represent a similar advance in abstraction: they may
be used by software developers to more naturally understand, model, and develop
an important class of complex distributed systems.

If agents are to realise their potential as a software engineering paradigm, then it
is necessary to develop software engineering techniques that are specifically tailored
to them. Existing software development techniques (for example, object-oriented
analysis and design [2, 6]) are unsuitable for this task. There is a fundamental
mismatch between the concepts used by object-oriented developers (and indeed, by
other mainstream software engineering paradigms) and the agent-oriented view [32,
34]. In particular, extant approaches fail to adequately capture an agent’s flexible,
autonomous problem-solving behaviour, the richness of an agent’s interactions, and
the complexity of an agent system’s organisational structures. For these reasons, this
article introduces a methodology called Gaia, which has been specifically tailored
to the analysis and design of agent-based systems.1
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The remainder of this article is structured as follows. We begin, in the following
sub-section, by discussing the characteristics of applications for which we believe
Gaia is appropriate. Section 2 gives an overview of the main concepts used in Gaia.
Agent-based analysis is discussed in section 3, and design in section 4. The use of
Gaia is illustrated by means of a case study in section 5, where we show how it
was applied to the design of a real-world agent-based system for business process
management [20]. Related work is discussed in section 6, and some conclusions are
presented in section 7.

Domain characteristics

Before proceeding, it is worth commenting on the scope of our work, and in par-
ticular, on the characteristics of domains for which we believe Gaia is appropriate.
It is intended that Gaia be appropriate for the development of systems such as
adept [20] and archon [19]. These are large-scale real-world applications, with the
following main characteristics:

• Agents are coarse-grained computational systems, each making use of significant
computational resources (think of each agent as having the resources of a unix
process).
• It is assumed that the goal is to obtain a system that maximises some global

quality measure, but which may be sub-optimal from the point of view of the
system components. Gaia is not intended for systems that admit the possibility of
true conflict.2

• Agents are heterogeneous, in that different agents may be implemented using
different programming languages, architectures, and techniques. We make no
assumptions about the delivery platform.
• The organisation structure of the system is static, in that inter-agent relationships

do not change at run-time.
• The abilities of agents and the services they provide are static, in that they do not

change at run-time.
• The overall system contains a comparatively small number of different agent types

(less than 100).

Gaia deals with both the macro (societal) level and the micro (agent) level aspects
of design. It represents an advance over previous agent-oriented methodologies in
that it is neutral with respect to both the target domain and the agent architecture
(see section 6 for a more detailed comparison).

2. A conceptual framework

Gaia is intended to allow an analyst to go systematically from a statement of require-
ments to a design that is sufficiently detailed that it can be implemented directly.
Note that we view the requirements capture phase as being independent of the
paradigm used for analysis and design. In applying Gaia, the analyst moves from
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Figure 1. Relationships between Gaia’s models.

abstract to increasingly concrete concepts. Each successive move introduces greater
implementation bias, and shrinks the space of possible systems that could be imple-
mented to satisfy the original requirements statement. (See [21, pp. 216–222] for
a discussion of implementation bias.) Analysis and design can be thought of as a
process of developing increasingly detailed models of the system to be constructed.
The main models used in Gaia are summarised in Figure 1

Gaia borrows some terminology and notation from object-oriented analysis and
design, (specifically, fusion [6]). However, it is not simply a naive attempt to apply
such methods to agent-oriented development. Rather, it provides an agent-specific
set of concepts through which a software engineer can understand and model a
complex system. In particular, Gaia encourages a developer to think of building
agent-based systems as a process of organisational design.

The main Gaian concepts can be divided into two categories: abstract and con-
crete; abstract and concrete concepts are summarised in Table 2. Abstract entities
are those used during analysis to conceptualise the system, but which do not nec-
essarily have any direct realisation within the system. Concrete entities, in contrast,
are used within the design process, and will typically have direct counterparts in the
run-time system.

3. Analysis

The objective of the analysis stage is to develop an understanding of the system
and its structure (without reference to any implementation detail). In our case, this
understanding is captured in the system’s organisation. We view an organisation as a
collection of roles, that stand in certain relationships to one another, and that take
part in systematic, institutionalised patterns of interactions with other roles—see
Figure 2.
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Table 1. Abstract and concrete concepts in Gaia

Abstract concepts Concrete concepts

Roles Agent Types
Permissions Services
Responsibilities Acquaintances
Protocols
Activities
Liveness properties
Safety properties

Figure 2. Analysis concepts.
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The most abstract entity in our concept hierarchy is the system. Although the term
“system” is used in its standard sense, it also has a related meaning when talking
about an agent-based system, to mean “society” or “organisation”. That is, we think
of an agent-based system as an artificial society or organisation.

The idea of a system as a society is useful when thinking about the next level
in the concept hierarchy: roles. It may seem strange to think of a computer system
as being defined by a set of roles, but the idea is quite natural when adopting an
organisational view of the world. Consider a human organisation such as a typi-
cal company. The company has roles such as “president,” “vice president,” and so
on. Note that in a concrete realisation of a company, these roles will be instantiated
with actual individuals: there will be an individual who takes on the role of pres-
ident, an individual who takes on the role of vice president, and so on. However,
the instantiation is not necessarily static. Throughout the company’s lifetime, many
individuals may take on the role of company president, for example. Also, there
is not necessarily a one-to-one mapping between roles and individuals. It is not
unusual (particularly in small or informally defined organisations) for one individ-
ual to take on many roles. For example, a single individual might take on the role of
“tea maker,” “mail fetcher,” and so on. Conversely, there may be many individuals
that take on a single role, e.g., “salesman.”3

A role is defined by four attributes: responsibilities, permissions, activities, and
protocols. Responsibilities determine functionality and, as such, are perhaps the key
attribute associated with a role. An example responsibility associated with the role of
company president might be calling the shareholders meeting every year. Respon-
sibilities are divided into two types: liveness properties and safety properties [27].4

Liveness properties intuitively state that “something good happens.” They describe
those states of affairs that an agent must bring about, given certain environmental
conditions. In contrast, safety properties are invariants. Intuitively, a safety property
states that “nothing bad happens” (i.e., that an acceptable state of affairs is main-
tained across all states of execution). An example might be “ensure the reactor
temperature always remains in the range 0–100.”

In order to realise responsibilities, a role has a set of permissions. Permissions
are the “rights” associated with a role. The permissions of a role thus identify the
resources that are available to that role in order to realise its responsibilities. In the
kinds of system that we have typically modelled, permissions tend to be information
resources. For example, a role might have associated with it the ability to read a
particular item of information, or to modify another piece of information. A role
can also have the ability to generate information.

The activities of a role are computations associated with the role that may be
carried out by the agent without interacting with other agents. Activities are thus
“private” actions, in the sense of [28].

Finally, a role is also identified with a number of protocols, which define the way
that it can interact with other roles. For example, a “seller” role might have the
protocols “Dutch auction” and “English auction” associated with it; the Contract
Net Protocol is associated with the roles “manager” and “contractor” [30].

Thus, the organisation model in Gaia is comprised of two further models: the
roles model (section 3.1) and the interaction model (section 3.2).
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3.1. The roles model

The roles model identifies the key roles in the system. Here a role can be viewed
as an abstract description of an entity’s expected function. In other terms, a role is
more or less identical to the notion of an office in the sense that “prime minister,”
“attorney general of the United States,” or “secretary of state for Education” are
all offices. Such roles (or offices) are characterised by two types of attribute5:

• The permissions/rights associated with the role.
A role will have associated with it certain permissions, relating to the type and

the amount of resources that can be exploited when carrying out the role. In our
case, these aspects are captured in an attribute known as the role’s permissions.
• The responsibilities of the role.

A role is created in order to do something. That is, a role has a certain func-
tionality. This functionality is represented by an attribute known as the role’s
responsibilities.

Permissions. The permissions associated with a role have two aspects:

• they identify the resources that can legitimately be used to carry out the role—
intuitively, they say what can be spent while carrying out the role;
• they state the resource limits within which the role executor must operate—

intuitively, they say what can’t be spent while carrying out the role.

In general, permissions can relate to any kind of resource. In a human organisation,
for example, a role might be given a monetary budget, a certain amount of person
effort, and so on. However, in Gaia, we think of resources as relating only to the
information or knowledge the agent has. That is, in order to carry out a role, an
agent will typically be able to access certain information. Some roles might generate
information; others may need to access a piece of information but not modify it,
while yet others may need to modify the information. We recognise that a richer
model of resources is required for the future, although for the moment, we restrict
our attention simply to information.

Gaia makes use of a formal notation for expressing permissions that is based
on the fusion notation for operation schemata [6, pp. 26–31]. To introduce our
concepts we will use the example of a CoffeeFiller role (the purpose of this
role is to ensure that a coffee pot is kept full of coffee for a group of workers).
The following is a simple illustration of the permissions associated with the role
CoffeeFiller:

reads coffeeStatus // full or empty
changes coffeeStock // stock level of coffee

This specification defines two permissions for CoffeeFiller: it says that the agent
carrying out the role has permission to access the value coffeeStatus, and has per-
mission to both read and modify the value coffeeStock. There is also a third type of
permission, generates, which indicates that the role is the producer of a resource



analysis and design 291

(not shown in the example). Note that these permissions relate to knowledge that
the agent has. That is, coffeeStatus is a representation on the part of the agent of
some value in the real world.

Some roles are parameterised by certain values. For example, we can generalise
the CoffeeFiller role by parameterising it with the coffee machine that is to be
kept refilled. This is specified in a permissions definition by the supplied keyword,
as follows:

reads supplied coffeeMaker // name of coffee maker
coffeeStatus // full or empty

changes coffeeStock // stock level of coffee

Responsibilities. The functionality of a role is defined by its responsibilities. These
responsibilities can be divided into two categories: liveness and safety responsibilities.

Liveness responsibilities are those that, intuitively, state that “something good
happens.” Liveness responsibilities are so called because they tend to say that
“something will be done”, and hence that the agent carrying out the role is still
alive. Liveness responsibilities tend to follow certain patterns. For example, the
guaranteed response type of achievement goal has the form “a request is always fol-
lowed by a response.” The infinite repetition achievement goal has the form “x will
happen infinitely often.” Note that these types of requirements have been widely
studied in the software engineering literature, where they have proven to be neces-
sary for capturing properties of reactive systems [27].

In order to illustrate the various concepts associated with roles, we will continue
with our running example of the CoffeeFiller role. Examples of liveness respon-
sibilities for the CoffeeFiller role might be:

• whenever the coffee pot is empty, fill it up;
• whenever fresh coffee is brewed, make sure the workers know about it.

In Gaia, liveness properties are specified via a liveness expression, which defines the
“life-cycle” of the role. Liveness expressions are similar to the life-cycle expression of
fusion [6], which are in turn essentially regular expressions. Our liveness expressions
have an additional operator, “ω,” for infinite repetition (see Table 3.1 for more
details). They thus resemble ω-regular expressions, which are known to be suitable
for representing the properties of infinite computations [32].

Liveness expressions define the potential execution trajectories through the vari-
ous activities and interactions (i.e., over the protocols) associated with the role. The
general form of a liveness expression is:

RoleName = expression

where RoleName is the name of the role whose liveness properties are being
defined, and expression is the liveness expression defining the liveness properties
of RoleName. The atomic components of a liveness expression are either activi-
ties or protocols. An activity is somewhat like a method in object-oriented terms, or
a procedure in a pascal-like language. It corresponds to a unit of action that the
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Table 2. Operators for liveness expressions

Operator Interpretation

x · y x followed by y
x � y x or y occurs
x∗ x occurs 0 or more times
x+ x occurs 1 or more times
xω x occurs infinitely often
�x� x is optional
x � y x and y interleaved

agent may perform, which does not involve interaction with any other agent. Proto-
cols, on the other hand, are activities that do require interaction with other agents.
To give the reader some visual clues, we write protocol names in a sans serif font
(as in xxx), and use a similar font, underlined, for activity names (as in yyy).

To illustrate liveness expressions, consider again the above-mentioned responsi-
bilities of the CoffeeFiller role:

CoffeeFiller = (Fill. InformWorkers. CheckStock. AwaitEmpty)ω

This expression says that CoffeeFiller consists of executing the protocol Fill, fol-
lowed by the protocol InformWorkers, followed by the activity CheckStock and the
protocol AwaitEmpty. The sequential execution of these protocols and activities is
then repeated infinitely often. For the moment, we shall treat the protocols simply
as labels for interactions and shall not worry about how they are actually defined
(this matter will be discussed in section 3.2).

Complex liveness expressions can be made easier to read by structuring them.
A simple example illustrates how this is done:

CoffeeFiller = �All�ω

All = Fill. InformWorkers. CheckStock. AwaitEmpty

The semantics of such definitions are straightforward textual substitution.
In many cases, it is insufficient simply to specify the liveness responsibilities of

a role. This is because an agent, carrying out a role, will be required to maintain
certain invariants while executing. For example, we might require that a particular
agent taking part in an electronic commerce application never spends more money
than it has been allocated. These invariants are called safety conditions, because
they usually relate to the absence of some undesirable condition arising.

Safety requirements in Gaia are specified by means of a list of predicates. These
predicates are typically expressed over the variables listed in a role’s permissions
attribute. Returning to our CoffeeFiller role, an agent carrying out this role will
generally be required to ensure that the coffee stock is never empty. We can do this
by means of the following safety expression:

• coffeeStock > 0
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Role Schema: name of role
Description short English description of the role
Protocols and Activities protocols and activities in which the role plays

a part
Permissions “rights” associated with the role
Responsibilities

Liveness liveness responsibilities
Safety safety responsibilities

Figure 3. Template for role schemata.

By convention, we simply list safety expressions as a bulleted list, each item in
the list expressing an individual safety responsibility. It is implicitly assumed that
these responsibilities apply across all states of the system execution. If the role is of
infinitely long duration (as in the CoffeeFiller example), then the invariants must
always be true.

It is now possible to precisely define the Gaia roles model. A roles model is
comprised of a set of role schemata, one for each role in the system. A role schema
draws together the various attributes discussed above into a single place (Figure 3).
An exemplar instantiation is given for the CoffeeFiller role in Figure 4. This
schema indicates that CoffeeFiller has permission to read the coffeeMaker para-
meter (that indicates which coffee machine the role is intended to keep filled), and
the coffeeStatus (that indicates whether the machine is full or empty). In addition,
the role has permission to change the value coffeeStock.

3.2. The interaction model

There are inevitably dependencies and relationships between the various roles in
a multi-agent organisation. Indeed, such interplay is central to the way in which
the system functions. Given this fact, interactions obviously need to be captured
and represented in the analysis phase. In Gaia, such links between roles are repre-
sented in the interaction model. This model consists of a set of protocol definitions,
one for each type of inter-role interaction. Here a protocol can be viewed as an
institutionalised pattern of interaction. That is, a pattern of interaction that has
been formally defined and abstracted away from any particular sequence of execu-
tion steps. Viewing interactions in this way means that attention is focused on the
essential nature and purpose of the interaction, rather than on the precise order-
ing of particular message exchanges (cf. the interaction diagrams of objectory [6,
pp. 198–203] or the scenarios of fusion [6]).

This approach means that a single protocol definition will typically give rise to
a number of message interchanges in the run time system. For example, consider
an English auction protocol. This involves multiple roles (sellers and bidders) and
many potential patterns of interchange (specific price announcements and corre-
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Role Schema: CoffeeFiller

Description:
This role involves ensuring that the coffee pot is kept filled, and informing
the workers when fresh coffee has been brewed.

Protocols and Activities:
Fill, InformWorkers, CheckStock, AwaitEmpty

Permissions:
reads supplied coffeeMaker // name of coffee maker

coffeeStatus // full or empty
changes coffeeStock // stock level of coffee

Responsibilities
Liveness:

CoffeeFiller = (Fill. InformWorkers. CheckStock. AwaitEmpty)ω

safety:
• coffeeStock > 0

Figure 4. Schema for role CoffeeFiller.

sponding bids). However at the analysis stage, such precise instantiation details are
unnecessary, and too premature.

A protocol definition consists of the following attributes:

• purpose: brief textual description of the nature of the interaction (e.g., “informa-
tion request”, “schedule activity” and “assign task”);
• initiator: the role(s) responsible for starting the interaction;
• responder: the role(s) with which the initiator interacts;
• inputs: information used by the role initiator while enacting the protocol;
• outputs: information supplied by/to the protocol responder during the course of

the interaction;
• processing: brief textual description of any processing the protocol initiator per-

forms during the course of the interaction.

As an illustration, consider the Fill protocol, which forms part of the Cof-
feeFiller role (Figure 5). This states that the protocol Fill is initiated by the
role CoffeeFiller and involves the role CoffeeMachine. The protocol involves
CoffeeFiller putting coffee in the machine named coffeeMaker, and results in
CoffeeMachine being informed about the value of coffeeStock. We will see further
examples of protocols in section 5.

3.3. The analysis process

The analysis stage of Gaia can now be summarised:
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Figure 5. The Fill protocol definition.

1. Identify the roles in the system. Roles in a system will typically correspond to:

• individuals, either within an organisation or acting independently;
• departments within an organisation; or
• organisations themselves.

Output: A prototypical roles model—a list of the key roles that occur in the
system, each with an informal, unelaborated description.

2. For each role, identify and document the associated protocols. Protocols are the
patterns of interaction that occur in the system between the various roles. For
example, a protocol may correspond to an agent in the role of Buyer submitting
a bid to another agent in the role of Seller.

Output: An interaction model, which captures the recurring patterns of inter-
role interaction.

3. Using the protocol model as a basis, elaborate the roles model.
Output: A fully elaborated roles model, which documents the key roles

occurring in the system, their permissions and responsibilities, together with the
protocols and activities in which they participate.

4. Iterate stages (1)–(3).

4. Design

The aim of a “classical” design process is to transform the abstract models
derived during the analysis stage into models at a sufficiently low level of abstrac-
tion that they can be easily implemented. This is not the case with agent-oriented
design, however. Rather, the aim in Gaia is to transform the analysis models into
a sufficiently low level of abstraction that traditional design techniques (including
object-oriented techniques) may be applied in order to implement agents. To put
it another way, Gaia is concerned with how a society of agents cooperate to realise
the system-level goals, and what is required of each individual agent in order to do
this. Actually how an agent realises its services is beyond the scope of Gaia, and
will depend on the particular application domain.

The Gaia design process involves generating three models (see Figure 1). The
agent model identifies the agent types that will make up the system, and the agent
instances that will be instantiated from these types. The services model identifies the
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main services that are required to realise the agent’s role. Finally, the acquaintance
model documents the lines of communication between the different agents.

4.1. The agent model

The purpose of the Gaia agent model is to document the various agent types that will
be used in the system under development, and the agent instances that will realise
these agent types at run-time.

An agent type is best thought of as a set of agent roles. There may in fact be
a one-to-one correspondence between roles (as identified in the roles model—see
section 3.1) and agent types. However, this need not be the case. A designer can
choose to package a number of closely related roles in the same agent type for
the purposes of convenience. Efficiency will also be a major concern at this stage: a
designer will almost certainly want to optimise the design, and one way of doing this
is to aggregate a number of agent roles into a single type. An example of where such
a decision may be necessary is where the “footprint” of an agent (i.e., its run-time
requirements in terms of processor power or memory space) is so large that it is
more efficient to deliver a number of roles in a single agent than to deliver a number
of agents each performing a single role. There is obviously a trade-off between the
coherence of an agent type (how easily its functionality can be understood) and the
efficiency considerations that come into play when designing agent types. The agent
model is defined using a simple agent type tree, in which leaf nodes correspond to
roles, (as defined in the roles model), and other nodes correspond to agent types.
If an agent type t1 has children t2 and t3, then this means that t1 is composed of the
roles that make up t2 and t3.

We document the agent instances that will appear in a system by annotating agent
types in the agent model (cf. the qualifiers from fusion [6]). An annotation n means
that there will be exactly n agents of this type in the run-time system. An annotation
m · · ·n means that there will be no less than m and no more than n instances of
this type in a run-time system (m < n). An annotation ∗ means that there will be
zero or more instances at run-time, and + means that there will be one or more
instances at run-time (see Table 4.1).

Note that inheritance plays no part in Gaia agent models. Our view is that agents
are coarse grained computational systems, and an agent system will typically contain
only a comparatively small number of roles and types, often with a one-to-one
mapping between them. For this reason, we believe that inheritance has no useful

Table 3. Instance qualifiers

Qualifier Meaning

n there will be exactly n instances
m: : n there will be between m and n instances
∗ there will be 0 or more instances
+ there will be 1 or more instances
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part to play in the design of agent types. (Of course, when it comes to actually
implementing agents, inheritance may be used to great effect, in the normal object-
oriented fashion.)

4.2. The services model

As its name suggests, the aim of the Gaia services model is to identify the services
associated with each agent role, and to specify the main properties of these services.
By a service, we mean a function of the agent. In OO terms, a service would corre-
spond to a method; however, we do not mean that services are available for other
agents in the same way that an object’s methods are available for another object to
invoke. Rather, a service is simply a single, coherent block of activity in which an
agent will engage. It should be clear there every activity identified at the analysis
stage will correspond to a service, though not every service will correspond to an
activity.

For each service that may be performed by an agent, it is necessary to document
its properties. Specifically, we must identify the inputs, outputs, pre-conditions, and
post-conditions of each service. Inputs and outputs to services will be derived in
an obvious way from the protocols model. Pre- and post-conditions represent con-
straints on services. These are derived from the safety properties of a role. Note
that by definition, each role will be associated with at least one service.

The services that an agent will perform are derived from the list of protocols,
activities, responsibilities and the liveness properties of a role. For example, return-
ing to the coffee example, there are four activities and protocols associated with
this role: Fill, InformWorkers, CheckStock, and AwaitEmpty. In general, there will
be at least one service associated with each protocol. In the case of CheckStock,
for example, the service (which may have the same name), will take as input the
stock level and some threshold value, and will simply compare the two. The pre-
and post-conditions will both state that the coffee stock level is greater than 0. This
is one of the safety properties of the role CoffeeFiller.

The Gaia services model does not prescribe an implementation for the services
it documents. The developer is free to realise the services in any implementation
framework deemed appropriate. For example, it may be decided to implement ser-
vices directly as methods in an object-oriented language. Alternatively, a service
may be decomposed into a number of methods.

4.3. The acquaintance model

The final Gaia design model is probably the simplest: the acquaintance model.
Acquaintance models simply define the communication links that exist between
agent types. They do not define what messages are sent or when messages are
sent—they simply indicate that communication pathways exist. In particular, the
purpose of an acquaintance model is to identify any potential communication bot-
tlenecks, which may cause problems at run-time (see section 5 for an example). It
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is good practice to ensure that systems are loosely coupled, and the acquaintance
model can help in doing this. On the basis of the acquaintance model, it may be
found necessary to revisit the analysis stage and rework the system design to remove
such problems.

An agent acquaintance model is simply a graph, with nodes in the graph cor-
responding to agent types and arcs in the graph corresponding to communication
pathways. Agent acquaintance models are directed graphs, and so an arc a → b
indicates that a will send messages to b, but not necessarily that b will send mes-
sages to a. An acquaintance model may be derived in a straightforward way from
the roles, protocols, and agent models.

4.4. The design process

The Gaia design stage can now be summarised:

1. Create an agent model:

• aggregate roles into agent types, and refine to form an agent type hierarchy;
• document the instances of each agent type using instance annotations.

2. Develop a services model, by examining activities, protocols, and safety and live-
ness properties of roles.

3. Develop an acquaintance model from the interaction model and agent model.

5. A case study: agent-based business process management

This section briefly illustrates how Gaia can be applied, through a case study of
the analysis and design of an agent-based system for managing a British Telecom
business process (see [20] for more details). For reasons of brevity, we omit some
details, and aim instead to give a general flavour of the analysis and design.

The particular application is providing customers with a quote for installing a
network to deliver a particular type of telecommunications service. This activity
involves the following departments: the customer service division (CSD), the design
division (DD), the legal division (LD) and the various organisations who provide
the out-sourced service of vetting customers (VCs). The process is initiated by a
customer contacting the CSD with a set of requirements. In parallel to capturing the
requirements, the CSD gets the customer vetted. If the customer fails the vetting
procedure, the quote process terminates. Assuming the customer is satisfactory,
their requirements are mapped against the service portfolio. If they can be met by
a standard off-the-shelf item then an immediate quote can be offered. In the case
of bespoke services, however, the process is more complex. DD starts to design
a solution to satisfy the customer’s requirements and whilst this is occurring LD
checks the legality of the proposed service. If the desired service is illegal, the
quote process terminates. Assuming the requested service is legal, the design will
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Role Schema: CustomerHandler (CH)

Description:
Receives quote request from the customer and oversees process to ensure
appropriate quote is returned.

Protocol and Activities:
AwaitCall, ProduceQuote, InformCustomer

Permissions:
reads supplied customerDetails // customer contact

information
supplied customerRequirements // what customer wants
quote // completed quote or nil

Responsibilities
Liveness:

CustomerHandler = (AwaitCall. GenerateQuote)ω

GenerateQuote = (ProduceQuote. InformCustomer)
Safety:
• true

Figure 6. Schema for role CustomerHandler.

eventually be completed and costed. DD then informs CSD of the quote. CSD, in
turn, informs the customer. The business process then terminates.

Moving from this process-oriented description of the system’s operation to an
organisational view is comparatively straightforward. In many cases there is a one-
to-one mapping between departments and roles. CSD’s behaviour falls into two
distinct roles: one acting as an interface to the customer (CustomerHandler, Fig-
ure 6), and one overseeing the process inside the organisation (QuoteManager,
Figure 7). Thus, the VC’s, the LD’s, and the DD’s behaviour are covered by the
roles CustomerVetter (Figure 8), LegalAdvisor (Figure 9), and NetworkDe-
signer (Figure 10) respectively. The final role is that of the Customer (Figure 11)
who requires the quote.

With the respective role definitions in place, the next stage is to define the associ-
ated interaction models for these roles. Here we focus on the interactions associated
with the QuoteManager role. This role interacts with the Customer role to obtain
the customer’s requirements (GetCustomerRequirements protocol, Figure 12c) and
with the CustomerVetter role to determine whether the customer is satisfactory
(VetCustomer protocol, Figure 12a). If the customer proves unsatisfactory, these
are the only two protocols that are enacted. If the customer is satisfactory then
their request is costed. This costing involves enacting activity CostStandardService
for frequently requested services or the CheckServiceLegality (Figure 12b) and
CostBespokeService (Figure 12d) protocols for non-standard requests.

Having completed our analysis of the application, we now turn to the design
phase. The first model to be generated is the agent model (Figure 13). This shows,
for most cases, a one-to-one correspondence between roles an agent types. The
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Role Schema: QuoteManager (QM)

Description:
Responsible for enacting the quote process. Generates a quote or returns
no quote (nil) if customer is inappropriate or service is illegal.

Protocols and Activities:
VetCustomer, GetcustomerRequirements, CostStandardService,
CheckServiceLegality, CostBespokeService

Permissions:
reads supplied customerDetails // customer contact

information
supplied customerRequirements // detailed service

requirements
creditRating // customer’s credit

rating
serviceIsLegal // boolean for bespoke

requests
generates quote // completed quote

or nil
Responsibilities
Liveness:

QuoteManager = QuoteResponse
QuoteResponse = (VetCustomer � GetcustomerRequirements) �

(VetCustomer � GetcustomerRequirements).
CostService = CostStandardService �

(CheckServiceLegality � CostBespokeService)
Safety:
• creditRating = bad⇒ quote = nil

• serviceIsLegal = false⇒ quote = nil

Figure 7. Schema for role QuoteManager.



analysis and design 301

Role Schema: CustomerVetter (CV)

Description:
Checks credit rating of supplied customer.

Protocols and Activities:
VettingRequest, VettingResponse

Permissions:
reads supplied customerDetails // customer contact

information
customerRatingInformation // credit rating information

generates creditRating // credit rating of customer
Responsibilities
Liveness:

CustomerVetter = (VettingRequest. VettingResponse)

Safety:
• infoAvailable(customerDetails, customerRatingInformation)

Figure 8. Schema for role CustomerVetter.

Role Schema: LegalAdvisor (LA)

Description:
Determines whether given bespoke service request is legal or not.

Protocols and Activities:
LegalCheckRequest, LegalCheckResponse

Permissions:
reads supplied customerRequirements // details of proposed

service
generates serviceIsLegal // true or false

Responsibilities
Liveness:

LegalAdvisor = (LegalCheckRequest. LegalCheckResponse)

Safety:
• true

Figure 9. Schema for role LegalAdvisor.
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Role Schema: NetworkDesigner (ND)

Description:
Design and cost network to meet bespoke service request requirements.

Protocols and Activities:
CostingRequest, ProduceDesign, ReturnCosting

Permissions:
reads supplied customerRequirements // details of proposed

service
serviceIsLegal // boolean

generates quote // cost of realising
service

Responsibilities
Liveness:

NetworkDesigner = (CostingRequest. ProduceDesign.
ReturnCosting)

Safety:
• serviceIsLegal = true

Figure 10. Schema for role NetworkDesigner.

Role Schema: Customer (CUST)

Description:
Organisation or individual requiring a service quote.

Protocols and Activities:
MakeCall, GiveRequirements

Permissions:
generates customerDetails // Owner of customer

information
customerRequirements // Owner of customer

requirements
Responsibilities
Liveness:

Customer = (MakeCall.GiveRequirements)+

Safety:
• true

Figure 11. Schema for role Customer.
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Figure 12. Definition of protocols associated with the QuoteManger role: (a) VetCustomer, (b) Check-
ServiceLegality, (c) GetCustomerRequirements, and (d) CostBespokeService.
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Figure 13. The agent model.

exception is for the CustomerHandler and QuoteManager roles which, because
of their high degree of interdependence are grouped into a single agent type.

The second model is the services model. Again because of space limitations
we concentrate on the QuoteManager role and the Customer Service Division
Agent. Based on the QuoteManager role, seven distinct services can be identified
(Table 4). From the GetCustomerRequirements protocol, we derive the service
“obtain customer requirements.” This service handles the interaction from the per-
spective of the quote manager. It takes the customerDetails as input and returns
the customerRequirements as output (Figure 12c). There are no associated pre- or
post-conditions.

The service associated with the VetCustomer protocol is “Vet customer.” Its
inputs, derived from the protocol definition (Figure 12a), are the customerDetails
and its outputs are creditRating. This service has a pre-condition that an appropri-
ate customer vetter must be available (derived from the TenderContract interaction
on the VetCustomer protocol) and a post-condition that the value of creditRating
is non-null (because this forms part of a safety condition of the QuoteManager
role).

The third service involves checking whether the customer is satisfactory (the cred-
itRating safety condition of QuoteManager). If the customer is unsatisfactory then
only the first branch of the QuoteResponse liveness condition (Figure 7) gets exe-
cuted. If the customer is satisfactory, the CostService liveness route is executed.

The next service makes the decision of which path of the CostService liveness
expression gets executed. Either the service is of a standard type (execute the service
“produce standard costing”) or it is a bespoke service in which case the CheckSer-
viceLegality and CostBespokeService protocols are enacted. In the latter case, the
protocols are associated with the service “produce bespoke costing”. This service
produces a non-nil value for quote as long as the serviceIsLegal safety condition
(Figure 7) is not violated.

The final service involves informing the customer of the quote. This, in turn,
completes the CustomerHandler role.

The final model is the acquaintance model, which shows the communication path-
ways that exist between agents (Figure 14).

6. Related work

In recent times there has been a surge of interest in agent-oriented modelling tech-
niques and methodologies. The various approaches may be roughly grouped as
follows:
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Figure 14. The acquaintance model.

• those such as [4, 24] which take existing OO modelling techniques or methodolo-
gies as their basis, seeking either to extend and adapt the models and define a
methodology for their use, or to directly extend the applicability of OO method-
ologies and techniques, such as design patterns, to the design of agent systems,
• those such as [3, 17] which build upon and extend methodologies and modelling

techniques from knowledge engineering, providing formal, compositional mod-
elling languages suitable for the verification of system structure and function,
• those which take existing formal methods and languages, for example Z [31],

and provide definitions within such a framework that support the specification of
agents or agent systems [26], and
• those which have essentially been developed de novo for particular kinds of agent

systems. cassiopeia [7], for example, supports the design of Contract Net [29]
based systems and has been applied to Robot Soccer.

These design methodologies may also be divided into those that are essentially
top-down approaches based on progressive decomposition of behavior, usually
building (as in Gaia) on some notion of role, and those such as cassiopeia that are
bottom-up approaches which begin by identifying elementary agent behaviours. A
very useful survey which classifies and reviews these and other methodologies has
also appeared [16].

The definition and use of various notions of role, responsibility, interaction, team
and society or organization in particular methods for agent-oriented analysis and
design has inherited or adapted much from more general uses of these concepts
within multi-agent systems, including organization-focussed approaches such as [9,
14, 18] and sociological approaches such as [5]. However, it is beyond the scope
of this article to compare the Gaia definition and use of these concepts with this
heritage.

Instead, we will focus here on the relationship between Gaia and other
approaches based that build upon OO techniques, in particular the KGR approach
[23, 24]. But it is perhaps useful to begin by summarizing why OO modelling
techniques and design methodologies themselves are not directly applicable to
multi-agent system design.
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6.1. Shortcomings of object oriented techniques

The first problem concerns the modelling of individual agents or agent classes.
While there are superficial similarities between agents and objects, representing
an agent as an object, i.e., as a set of attributes and methods, is not very useful
because the representation is too fine-grained, operating at an inappropriate level of
abstraction. An agent so represented may appear quite strange, perhaps exhibiting
only one public method whose function is to receive messages from other agents.
Thus an object model does not capture much useful information about an agent, and
powerful OO concepts such as inheritance and aggregation become quite useless as
a result of the poverty of the representation.

There are several reasons for this problem. One is that the agent paradigm is
based on a significantly stronger notion of encapsulation than the object paradigm.
An agent’s internal state is usually quite opaque and, in some systems, the
behaviours that an agent will perform upon request are not even made known until
it advertises them within an active system. Related to this is the key characteristic
of autonomy: agents cannot normally be created and destroyed in the liberal man-
ner allowed within object systems and they have more freedom to determine how
they may respond to messages, including, for example, by choosing to negotiate
some agreement about how a task will be performed. As the underlying commu-
nication model is usually asynchronous there is no predefined notion of flow of
control from one agent to another: an agent may autonomously initiate internal
or external behaviour at any time, not just when it is sent a message. Finally, an
agent’s internal state, including its knowledge, may need to be represented in a
manner that cannot easily be translated into a set of attributes; in any case to do
so would constitute a premature implementation bias.

The second problem concerns the power of object models to adequately cap-
ture the relationships that hold between agents in a multi-agent system. While the
secondary models in common use in OO methodologies such as use cases and
interaction diagrams may usefully be adapted (with somewhat different semantics),
the Object Model, which constitutes the primary specification of an OO system,
captures associations between object classes that model largely static dependen-
cies and paths of accessibility which are largely irrelevant in a multi-agent system.
Only the instantiation relationship between classes and instances can be directly
adopted. Important aspects of relationships between agents such as their repertoire
of interactions and their degree of control or influence upon each other are not
easily captured. The essential problem here is the uniformity and static nature of
the OO object model. An adequate agent model needs to capture these relation-
ships between agents, their dynamic nature, and perhaps also relationships between
agents and non-agent elements of the system, including passive or abstract ones
such as those modelled here as resources.

Both of these are problems concerning the suitability of OO modelling tech-
niques for modelling a multi-agent system. Another issue is the applicability of
OO methodologies to the process of analyzing and designing a multi-agent system.
OO methodologies typically consist of an iterative refinement cycle of identifying
classes, specifying their semantics and relationships, and elaborating their interfaces
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and implementation. At this level of abstraction, they appear similar to typical AO
methodologies, which usually proceed by identifying roles and their responsibilities
and goals, developing an organizational structure, and elaborating the knowledge
and behaviours associated with a role or agent.

However, this similarity disappears at the level of detail required by the models,
as the key abstractions involved are quite different. For example, the first step of
object class identification typically considers tangible things, roles, organizations,
events and even interactions as candidate objects, whereas these need to be clearly
distinguished and treated differently in an agent-oriented approach. The uniformity
and concreteness of the object model is the basis of the problem; OO methodologies
provide guidance or inspiration rather than a directly useful approach to analysis
and design.

6.2. Comparison with the KGR approach

The KGR approach [23, 24] was developed to fulfill the need for a principled
approach to the specification of complex multi-agent systems based on the belief-
desire-intention (BDI) technology of the Procedural Reasoning System (prs) and
the Distributed Multi-Agent Reasoning System (dmars) [8, 25]. A key motivation
of the work was to provided useful, familiar mechanisms for structuring and manag-
ing the complexity of such systems.

The first and most obvious difference between the approach proposed here and
KGR is one of scope. Our methodology does not attempt to unify the analysis and
abstract design of a multi-agent system with its concrete design and implementation
with a particular agent technology, regarding the output of the analysis and design
process as an abstract specification to which traditional lower-level design method-
ologies may be applied. KGR, by contrast, makes a strong architectural commitment
to BDI architectures and proposes a design elaboration and refinement process that
leads to directly executable agent specifications. Given the proliferation of available
agent technologies, there are clearly advantages to a more general approach, as
proposed here. However, the downside is that it cannot provide a set of models,
abstractions and terminology that may be used uniformly throughout the system life
cycle. Furthermore, there may be a need for iteration of the AO analysis and design
process if the lower-level design process reveals issues that are best resolved at the
AO level. A research problem for our approach and others like it is whether and
how the adequacy and completeness of its outputs can be assessed independently
of any traditional design process that follows.

A second difference is that in this work a clear distinction is made between the
analysis phase, in which the roles and interaction models are fully elaborated, and
the design phase, in which agent services and acquaintance models are developed.
The KGR approach does not make such a distinction, proposing instead the pro-
gressive elaboration and refinement of agent and interaction models which capture
respectively roles, agents and services, and interactions and acquaintances. While
both methodologies begin with the identification of roles and their properties, here
we have chosen to model separately abstract agents (roles), concrete agents and
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the services they provide. KGR, on the other hand, employs a more uniform agent
model which admits both abstract agents and concrete agent classes and instances
and allows them to be organized within an inheritance hierarchy, thus allowing
multiple levels of abstraction and the deferment of identification of concrete agent
classes until late in the design process.

While both approaches employ responsibilities as an abstraction used to decom-
pose the structure of a role, they differ significantly as to how these are repre-
sented and developed. Here responsibilities consist of safety and liveness properties
built up from already identified interactions and activities. By contrast, KGR treats
responsibilities as abstract goals, triggered by events or interactions, and adopts a
strictly top-down approach to decomposing these into services and low level goals
for which activity specifications may be elaborated. There are similarities however,
for despite the absence of explicit goals in our approach, safety properties may
be viewed as maintenance goals and liveness properties as goals of achievement.
The notion of permissions, however, is absent from the KGR approach, whereas
the notion of protocols may be developed to a much greater degree of detail, for
example as in [22]. There protocols are employed as more generic descriptions
of behaviour that may involve entities not modelled as agents, such as the coffee
machine.

To summarize the key differences, the KGR approach, by making a commitment
to implementation with a BDI agent architecture, is able to employ an iterative
top-down approach to elaborating a set of models that describe a multi-agent sys-
tem at both the macro- and micro-level, to make more extensive use of OO mod-
elling techniques, and to produce executable specifications as its final output. The
approach we have described here is a mixed top-down and bottom-up approach
which employs a more fine-grained and diverse set of generic models to capture the
result of the analysis and design process, and tries to avoid any premature commit-
ment, either architectural, or as to the detailed design and implementation process
which will follow. We envisage, however, that our approach can be suitably special-
ized for specific agent architectures or implementation techniques; this is a subject
for further research.

7. Conclusions and further work

In this article, we have described Gaia, a methodology for the analysis and design of
agent-based systems. The key concepts in Gaia are roles, which have associated with
them responsibilities, permissions, activities, and protocols. Roles can interact with
one another in certain institutionalised ways, which are defined in the protocols of
the respective roles.

There are several issues remaining for future work.

• Self-interested agents.
Gaia does not explicitly attempt to deal with systems in which agents may not

share common goals. This class of systems represents arguably the most impor-
tant application area for multi-agent systems, and it is therefore essential that a
methodology should be able to deal with it.
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• Dynamic and open systems.
Open systems—in which system components may join and leave at run-time,

and which may be composed of entities that a designer had no knowledge of
at design-time—have long been recognised as a difficult class of system to engi-
neer [13, 15].
• Organisation structures.

Another aspect of agent-based analysis and design that requires more work is
the notion of an organisational structure. At the moment, such structures are only
implicitly defined within Gaia—within the role and interaction models. However,
direct, explicit representations of such structures will be of value for many appli-
cations. For example, if agents are used to model large organisations, then these
organisations will have an explicitly defined structure. Representing such struc-
tures may be the only way of adequately capturing and understanding the organi-
sation’s communication and control structures. More generally, the development
of organisation design patterns might be useful for reusing successful multi-agent
system structures (cf. [12]).
• Cooperation protocols.

The representation of inter-agent cooperation protocols within Gaia is cur-
rently somewhat impoverished. In future work, we will need to provide a much
richer protocol specification framework.
• International standards.

Gaia was not designed with any particular standard for agent communication
in mind (such as the fipa agent communication language [11]). However, in the
event of widescale industrial takeup of such standards, it may prove useful to
adapt our methodology to be compatible with such standards.
• Formal semantics.

Finally, we believe that a successful methodology is one that is not only of prag-
matic value, but one that also has a well-defined, unambiguous formal semantics.
While the typical developer need never even be aware of the existence of such a
semantics, it is nevertheless essential to have a precise understanding of what the
concepts and terms in a methodology mean [33].
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Notes

1. In Greek mythology, Gaia was the mother Earth figure. More pertinently, Gaia is the name of an
influential hypothesis put forward by the ecologist James Lovelock, to the effect that all the living
organisms on the Earth can be understood as components of a single entity, which regulates the
Earth’s environment. The theme of many heterogeneous entities acting together to achieve a single
goal is a central theme in multi-agent systems research [1], and was a key consideration in the
development of our methodology.
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2. To be more precise, we believe such systems will require additional models over and above those
that we outline in the current version of the methodology.

3. The third case, which we have not yet elaborated in the methodology, is that a single role represents
the collective behaviour of a number of individuals. This view is important for modelling cooperative
and team problem solving and also for bridging the gap between the micro and the macro levels in
an agent-based system.

4. The most widely used formalism for specifying liveness and safety properties is temporal logic, and in
previous work, the use of such formalism has been strongly advocated for use in agent systems [10].
Although it has undoubted strengths as a mathematical tool for expressing liveness and safety prop-
erties, there is some doubt about its viability as a tool for use by everyday software engineers. We
have therefore chosen an alternative approach to temporal logic, based on regular expressions, as
these are likely to be better understood by our target audience.

5. For the moment, we do not explicitly model the creation and deletion of roles. Thus roles are
persistent throughout the system’s lifetime. In the future, we plan to make this a more dynamic
process
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17. C. Iglesias, M. Garijo, J. C. González, and J. R. Velasco, “Analysis and design of multiagent systems
using MAS-CommonKADS,” in Intelligent Agents IV (LNAI Volume 1365), M. P. Singh, A. Rao, and
M. J. Wooldridge, (Eds.), Springer-Verlag: Berlin, Germany, 1998, pp. 313–326.

18. T. Ishida, L. Gasser, and M. Yokoo, “Organization self design of production systems,” IEEE Tran.
Knowledge Data Eng., vol. 4(2), pp. 123–134, April 1992.

19. N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek, and L. Z. Varga,
“Using ARCHON to develop real-world DAI applications for electricity transportation management
and particle acceleration control,” IEEE Expert, vol. 11(6), pp. 60–88, December 1996.

20. N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien, and M. E. Wiegand, “Agent-based
business process management,” Int. J. Cooperative Inf. Syst., vol. 5(2-3), pp. 105–130, 1996.

21. C. B. Jones, Systematic Software Development using VDM, 2nd ed., Prentice Hall: Englewood Cliffs,
NJ, 1990.

22. D. Kinny, “The AGENTIS agent interaction model,” in Intelligent Agents V—Proc. Fifth Int. Workshop
on Agent Theories, Architectures, and Languages (ATAL-98), Lecture Notes in Artificial Intelligence,
J. P. Müller, M. P. Singh, and A. S. Rao (Eds.), Springer-Verlag: Heidelberg, 1999.

23. D. Kinny and M. Georgeff, “Modelling and design of multi-agent systems,” in Intelligent Agents III
(LNAI Vol. 1193), J. P. Müller, M. Wooldridge, and N. R. Jennings (Eds.), Springer-Verlag: Berlin,
Germany, 1997, pp. 1–20.

24. D. Kinny, M. Georgeff, and A. Rao, “A methodology and modelling technique for systems of
BDI agents,” in Agents Breaking Away: Proceedings of the Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, (LNAI Vol. 1038), W. Van de Velde and J. W. Perram,
(Eds.), Springer-Verlag: Berlin, Germany, 1996, pp. 56–71.

25. D. Kinny, The Distributed Multi-Agent Reasoning System Architecture and Language Specification,
Australian AI Institute, Level 6, 171 La Trobe Street, Melbourne, Australia, 1993.

26. M. Luck, N. Griffiths, and M. d’Inverno, “From agent theory to agent construction: A case study,”
in Intelligent Agents III (LNAI Vol. 1193), J. P. Müller, M. Wooldridge, and N. R. Jennings (Eds.),
Springer-Verlag: Berlin, Germany, 1997, pp. 49–64.

27. A. Pnueli, “Specification and development of reactive systems,” in Information Processing 86, Elsevier
Science Publishers B.V.: Amsterdam, The Netherlands, 1986.

28. Y. Shoham, “Agent-oriented programming,” Artif. Intell., 60(1), pp. 1–92, 1993.
29. R. G. Smith, “The CONTRACT NET: a formalism for the control of distributed problem solving,”

in Proc. Fifth Int. Joint Conf. Artificial Intelligence (IJCAI-77), Cambridge, MA, 1977.
30. R. G. Smith, A Framework for Distributed Problem Solving, UMI Research Press, 1980.
31. M. Spivey, The Z Notation, 2nd ed., Prentice Hall International: Hemel Hempstead, England, 1992.
32. M. Wooldridge, “Agent-based software engineering,” IEEE Proc. Software Eng., 144(1):26–37, Febru-

ary 1997.
33. M. Wooldridge and N. R. Jennings, “Intelligent agents: theory and practice,” Knowledge Eng. Rev.,

vol. 10(2), pp. 115–152, 1995.
34. M. Wooldridge and N. R. Jennings, “Pitfalls of agent-oriented development,” in Proc. Second Int.

Conf. on Autonomous Agents (Agents 98), Minneapolis/St Paul, MN, May 1998, pp. 385–391.
35. M. Wooldridge, N. R. Jennings, and D. Kinny, “A methodology for agent-oriented analysis and

design,” in Proc. Third Int. Conf. on Autonomous Agents (Agents 99), Seattle, WA, May 1999, pp.
69–76.


