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tially enlarged. The analysis indicates that changes in the rel-
ative size of telencephalic regions are not homogeneous, 
with every species showing hypertrophy or hypotrophy of at 
least one of them. The three-dimensional structure of these 
regions in different species was also variable, in particular 
that of the mesopallium in kiwi. The findings from this study 
provide further evidence that the changes in relative brain 
size in birds reflect a process of mosaic evolution. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 Distinct sets of nuclei in the vertebrate brain are gen-
erally associated with different primary functions, so it is 
likely that behavioral changes associated with specific 
motor or sensory demands may lead to concomitant 
changes in the size of specific brain regions and/or in the 
organization of these regions. It is generally accepted that 
having a larger brain or brain region increases its infor-
mation-processing power, thereby providing better inte-
gration and storage of information about the social and 
physical environment or the ability to modify or invent 
new behaviors [Jerison, 1973; Cluttonbrock and Harvey, 
1980; Harvey et al., 1980; Lefebvre et al., 1997; Sol et al., 
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 Abstract 

 Birds exhibit a huge array of behavior, ecology and physiol-
ogy, and occupy nearly every environment on earth, ranging 
from the desert outback of Australia to the tropical rain for-
ests of Panama. Some birds have adopted a fully nocturnal 
lifestyle, such as the barn owl and kiwi, while others, such as 
the albatross, spend nearly their entire life flying over the 
ocean. Each species has evolved unique adaptations over 
millions of years to function in their respective niche. In order 
to increase processing power or network efficiency, many of 
these adaptations require enlargements and/or specializa-
tions of the brain as a whole or of specific brain regions. In 
this study, we examine the relative size and morphology of 
9 telencephalic regions in a number of Paleognath and Ne-
ognath birds and relate the findings to differences in behav-
ior and sensory ecology. We pay particular attention to those 
species that have undergone a relative enlargement of the 
telencephalon to determine whether this relative increase in 
telencephalic size is homogeneous across different brain re-
gions or whether particular regions have become differen-
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2005]. Brains are thought to become enlarged through 
two different mechanisms: either the brain and major 
brain regions are enlarged as a whole (referred to as con-
certed evolution, passive or ‘easy’ mode) or specific re-
gions are differentially enlarged (referred to as mosaic 
evolution, active or ‘difficult’ mode) [Jerison, 1985; Finlay 
and Darlington, 1995; Aboitiz, 1996; Finlay et al., 2001]. 
Variation in the size or makeup of individual brain re-
gions indicates that mosaic evolution characterizes at 
least some of the diversification of avian and mammalian 
brain composition [Portmann, 1946; Cobb, 1964; Bang 
and Cobb, 1968; Bennett and Harvey, 1985; Healy and 
Guilford, 1990; Devoogd et al., 1993; Barton, 1996; Healy 
and Krebs, 1996; Glendenning and Masterton, 1998; Bar-
ton and Harvey, 2000; Timmermans et al., 2000; Clack et 
al., 2001; de Winter and Oxnard, 2001; Lefebvre et al., 
2002; Whiting and Barton, 2003; Kubke et al., 2004; Iwa-
niuk and Wylie, 2006; Iwaniuk et al., 2008].

  Neognathan birds, particularly parrots (Psittaci-
formes) and songbirds (Passeriformes) – especially cor-
vids – have the largest relative telencephalon size [Port-
mann, 1946; Rehkämper et al., 1991; Iwaniuk and Hurd, 
2005]. This enlargement has been suggested to be associ-
ated with a higher level of cognition (e.g. problem solving 
and memory) that allows these birds to perform complex 
tasks such as tool use, mirror self-recognition and plan-
ning for the future [Hunt, 1996; Clayton and Dickinson, 
1998; Weir et al., 2002; Emery and Clayton, 2004; Emery, 
2006; Prior et al., 2008; Raby et al., 2007]. The New Zea-
land kea  (Nestor notabilis) , for instance, is a species of 
parrot capable of great behavioral flexibility, sensorimo-
tor intelligence and observational learning [Huber and 
Gajdon, 2006]. Similar cognitive abilities are also present 
in corvids, such as Western scrub jays  (Aphelocoma cali-
fornica) , which demonstrate episodic-like memory and 
have the ability to remember specific past events [Clayton 
and Dickinson, 1998]. Also, New Caledonian crows are 
able to manufacture and use tools in the wild [Hunt, 
1996].

  In addition to an overall enlargement of the telenceph-
alon, the enlargement of more specific brain regions and/
or the subdivisions of these regions are also correlated 
with specific behaviors in certain species [Cobb, 1964; 
Bang and Cobb, 1968; Bennett and Harvey, 1985; Healy 
and Guilford, 1990; Devoogd et al., 1993; Healy and 
Krebs, 1996; Timmermans et al., 2000; Lefebvre et al., 
2002; Kubke et al., 2004; Iwaniuk and Wylie, 2006; Cnot-
ka et al., 2008; Iwaniuk et al., 2008]. The ability for vocal 
learning, for instance, is well known to be restricted to 
only a few groups of birds (songbirds, hummingbirds and 

parrots), and in these species different nuclei make up the 
‘song system’ distributed within several of the major tel-
encephalic regions, with size differences that mirror the 
sexual dimorphism in song production [Nottebohm, 
1981; Nottebohm et al., 1986; Devoogd et al., 1993; Smith 
et al., 1997].

  Apart from oscines and parrots, the only other known 
taxon that has undergone a similar gross enlargement of 
the telencephalon is the New Zealand kiwi ( Apteryx  spp.) 
[Corfield et al., 2008]. Kiwi have adopted a nocturnal, 
ground-dwelling niche, in which they face a number of 
sensory challenges. Kiwi are unlikely to rely heavily on 
vision [Martin et al., 2007] and there is evidence that oth-
er sensory modalities, namely olfaction, somatosensation 
and audition, are well developed [Cobb, 1960; Bang and 
Cobb, 1968; Wenzel, 1968; 1971; Cunningham et al., 
2007; Martin et al., 2007; Cunningham et al., 2009; Cor-
field et al., 2011].

  We set out to examine the relative size of 9 telence-
phalic regions in a number of Neognath and Palaeognath 
birds to determine whether these regions scale homoge-
neously, especially in those species that show a telence-
phalic enlargement. Because morphological changes 
have also been observed in the telencephalon of birds 
[Stingelin and Senn, 1969], we also examined the overall 
morphology of the individual telencephalic regions using 
three-dimensional reconstructions. Our analysis indi-
cates that different regions of the telencephalon are mod-
ified in size to different degrees, suggesting that avian 
telencephalic enlargements occur through mosaic evolu-
tion.

  Materials and Methods 

 Three-dimensional modeling and volumetric estimation of 
telencephalic regions were undertaken on the brains of 13 bird 
species ( table 1 ). Data from Corfield [2009] were augmented in the 
present study by the examination of additional specimens to in-
crease sample sizes, thereby strengthening statistical power. Some 
discrepancies between the two studies probably resulted from 
these increases, and because the plots shown in the study by Cor-
field [2009: chapter 3] did not include any data on the olfactory 
bulb, entopallium or nucleus basorostralis. All material was ob-
tained following University of Auckland and Department of Con-
servation regulations (research permits: NO-16732-FAU, NO-
18095-DOA and WA-24648-RES). All protected specimens were 
provided to us dead by conservation authorities or wildlife vet-
erinarians. All other specimens were provided to us dead by local 
farmers or hunters, and thus no further ethics approvals were re-
quired.

  All brains were submersion fixed in 4% paraformaldehyde in 
0.01  M  phosphate-buffered saline (PBS), sectioned mid-sagittally 
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into left and right hemispheres, and cryoprotected in 30% su-
crose. Each hemisphere was placed in a solution of 15% gelatine 
with 30% sucrose at 40   °   C for 1 h. The brains were then placed into 
a custom-made mold so that fiduciary points could be made in the 
gelatine for later alignment of tissue sections. The mold consisted 
of a plastic base with small holes drilled in a grid pattern. The base 
of the mold was covered with 15% gelatine containing 30% su-
crose in PBS and the gelatine was allowed to set. The brains were 
then placed on the gelatine base, with the midline facing down. 
Five to seven small pins were inserted into the holes that had been 
drilled in the base of the mold so that they surrounded the brain 
and ran in a rostral-caudal direction. A 15% gelatine, 30% sucrose 
and PBS solution containing black fabric dye (to darken the gela-
tine solution) was then poured over the brain. Once set, the gela-
tine block, including the brain, was removed, trimmed and 
placed, along with the pins, into 4% paraformaldehyde overnight. 
The pins were then removed and the block was sectioned on a slid-
ing freezing microtome at 50- � m thickness in the sagittal plane. 
Sections were collected in PBS-sodium azide 0.01%. For each spe-
cies, except for emu  (Dromaius novaehollandiae) , every second 
section was mounted serially onto gelatine chrome-alum-subbed 
slides, stained with cresyl violet, dehydrated and coverslipped 
with DePeX from xylene. For emu, every fourth section was pro-
cessed because of the large size of the brain. Sections and fidu-
ciary points in the surrounding gelatine were imaged using a Lei-
ca stereomicroscope, and the images subsequently loaded into 
AMIRA (v 5.2; Visage Imaging, San Diego, Calif., USA) for align-
ment and modeling as described below.

  3D Modeling in AMIRA 
 Individual images of the brain sections were loaded into AMI-

RA. An Alignslice module was attached to the data and each sec-
tion was aligned according to the fiduciary points. A LabelField 
module was attached to the newly aligned image series and new 
materials were created to correspond with each brain region that 

was to be modeled. Each brain region was segmented out from 
each image using the brush tool and assigned its corresponding 
material. A small amount of label smoothing was undertaken to 
fine-tune the slice alignment. A SurfaceGen module was attached 
to the LabelField module and the 3D model was visualized by at-
taching a SurfaceView module.

  Nine telencephalic regions were identified using boundary 
lines that could be recognized from the cresyl violet in the AMI-
RA stack. Boundaries were identified with the aid of sections 
stained for immunocytochemistry, namely the calcium-binding 
proteins calretinin, calbindin and parvalbumin (Swant, Bellinzo-
na, Switzerland) and guided by several brain atlases [Karten and 
Hodos, 1967; Kuenzel and Masson, 1988; Puelles et al., 2007] and 
named according to the Consortium Nomenclature [Reiner et al., 
2004]. Some examples of the telencephalic boundaries in 4 species 
of birds are shown in  figure 1 ; the telencephalic boundary used is 
also shown in this study. The areas that were modeled were: olfac-
tory bulb, the mesopallium (which included both dorsal and ven-
tral subdivisions), nidopallium (excluding nucleus basorostralis 
or entopallium), arcopallium, entopallium, striatopallidal com-
plex (SPC; mediale and laterale), nucleus basorostralis, hyperpal-
lium (which included the Wulst components hyperpallium den-
socellulare, intercalatum and apicale, and the nucleus interstitia-
lis hyperpallii apicalis) and hippocampus. Because the lateral 
boundary of the hippocampus was difficult to determine in sagit-
tal sections, the caudodorsolateral pallium (CDL) was included in 
the hippocampus volume for all species. A volume was obtained 
for the hippocampus, but 3D models were not created. After the 
different brain regions were outlined in AMIRA, the stack of im-
ages was exported as a series of TIFF files. In these, a given region 
is filled in black against a white background. These TIFF stacks 
were then used for volumetric estimates of each region. All TIFF 
stacks were produced prior to the label smoothing that was ap-
plied to the 3-D models.

Table 1.  Volumes of the total brain, telencephalon, hindbrain and 9 telencephalic regions (mm3)

Order Common name Species n Brain Tel. HB A SPC Hp H M OB Bas. E N

Anseriformes paradise shelduck Tadorna variegata 3 4,157 2,690 322 117 319 215 417 444 23 46 21 1,004
Charadriiformes bar-tailed godwit Limosa lapponica 2 2,417 1,563 158 76 248 124 101 303 3 30 13 620

spur-winged plover Vanellus miles novaehollandiae 3 2,067 1,186 138 68 164 103 104 192 8 10 22 477
Columbiformes pigeon Columba livia 3 1,706 893 124 45 114 88 87 149 7 5 22 349
Galliformes peacock Pavo cristatus 3 4,560 2,665 349 131 320 281 357 401 12 8 41 1,027

turkey Meleagris gallopavo 3 5,274 2,915 417 136 350 253 434 459 7 10 52 1,145
Passeriformes Australian magpie Gymnorhina tibicen 4 4,664 3,444 155 127 370 120 494 590 1 5 34 1,665
Psittaciformes Eastern rosella Platycercus eximius 4 2,686 2,032 105 79 340 101 219 367 2 9 11 852
Rallidae pukeko Porphyrio porphyrio melanotus 3 4,186 2,771 255 123 376 236 324 488 35 19 29 1,057
Struthioniformes emu Dromaius novaehollandiae 1 21,830 13,696 1,418 360 1,338 926 4,388 1,838 218 108 153 4,101

North Island brown 
kiwi

Apteryx mantelli 2 5,299 4,268 237 124 668 294 224 937 81 41 4 1,778

Tinamiformes Darwin’s nothura Nothura darwinii 1 1,482 809 126 38 140 86 80 114 3 5 19 304
great tinamous Tinamus major 1 2,242 1,222 184 66 169 134 94 201 14 7 30 472

Tel. = Telencephalon; HB = hindbrain; A  = arcopallium; Hp = hippocampus; H = hyperpallium; M = mesopallium; OB = olfactory bulb; Bas. = nuc-
leus basorostralis; E = entopallium; N = nidopallium.
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  Volumetric Estimates of Brain Regions 
 The TIFF stacks from each brain region for each species created 

with AMIRA were loaded into ImageJ (National Institutes of Health, 
Bethesda, Md., USA; http://rsb.info.nih.gov/ij/) and calibrated using 
a microscope calibration scale bar. The images were thresholded to 
select the brain or brain region outlines. Each image was then ana-
lyzed to obtain the cross-sectional area of the brain object. To obtain 
the volumes, the cross-sectional areas were summed for each brain 
region and then multiplied by the slice thickness and the number of 

sections between stack slices, which for all species was 100  � m ex-
cept for the emu, for which it was 200  � m.

  A major axis model II non-linear regression was performed 
using SPSS (v. 15, SPSS, Chicago, Ill., USA) and h = r 2 /(1 + b 2 ) as 
the loss function (where r is the residual and b is the slope). All 
regressions were performed on log 10 -transformed data. Each 
brain region was regressed against ‘telencephalon rest’ volume 
(total telencephalon volume – brain region volume) to avoid Dea-
con’s whole-part fallacy [Deacon, 1990] and against the hindbrain 

a b

c d

  Fig. 1.  Photomicrographs of sagittal sec-
tions stained with cresyl violet through the 
brain of 4 species of birds. Top sections are 
more lateral and bottom sections more 
medial. The broken black lines indicate the 
borders of telencephalic regions and the 
broken and dotted black lines the bound-
ary of the telencephalon.  a  North Island 
brown kiwi ( Apteryx mantelli ).  b  Eastern 
rosella  (P. eximius) .  c  Emu  (D. novaehol-
landiae) .  d  Pigeon  (Columba livia) . A = Ar-
copallium; N = nidopallium; H = hyper-
pallium; Bas. = nucleus basorostralis; E = 
entopallium; OB = olfactory bulb; Hp = 
hippocampus; M = mesopallium. Scale 
bars = 5 mm. 
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volume (defined as rostral border of the isthmus to the caudal 
border of pseudorhombomere 11, as described by Puelles [2007], 
less the cerebellum). Regression against the hindbrain shows how 
the absolute size of the region varies, while regression against tel-
encephalon rest shows how the proportion of the region varies 
within the telencephalon.

  A region was considered to be hypertrophied or hypotrophied 
if the individual value fell outside the 95% confidence interval 
calculated from the regression slope. The confidence intervals 
were computed from the best-fit values from the non-linear re-
gression and the standard error (SE) of those best-fit values using 
the following equation: BestFit – t * SE and BestFit + t * SE, where t 
is the critical value from the t distribution.

  Rather than to obtain volumes and create models for both 
hemispheres of the telencephalon, it was first determined wheth-
er there were any differences in the relative size of each region in 
the left versus right hemispheres in 4 species of birds. For all re-
gions examined in all species, there was no more than a 1.1% dif-
ference between the left and right in the relative size of a specific 
region with respect to total size of the hemisphere ( table 2 ). In the 
paradise shelduck  (Tadorna variegata)  and Australian magpie 
 (Gymnorhina tibicen) , the overall telencephalon size showed some 
variation between the left and right hemispheres ( table 2 ). In the 
paradise shelduck, the left hemisphere was larger than the right 
(left: 1,566 mm 3  vs. right: 1,507 mm 3 ) and in the Australian mag-
pie the right hemisphere was larger than the left (left: 1,361 mm 3  
vs. right: 1,473 mm 3 ). Little variation occurred between the left 

and right hemispheres in the Eastern rosella ( Platycercus eximius ; 
left: 1,086 mm 3  vs. right: 1,093 mm 3 ) and pukeko ( Porphyrio por-
phyrio melanotus ; left: 1,389 mm 3  vs. right: 1,390 mm 3 ;  table 2 ). 
In summary, although there are some left/right asymmetries in 
the telencephalic hemispheres, the percentage that each region 
occupied within each hemisphere showed little or no difference 
in the 4 species examined. Therefore, apart from the paradise 
shelduck, Australian magpie, Eastern rosella and pukeko, vol-
umes were only obtained from 1 hemisphere and then doubled.

  Results 

 The Eastern rosella, the Australian magpie and kiwi 
all had relatively large telencephala compared to the oth-
er species ( fig. 2 ;  table 1 ). A relatively smaller telencephal-
ic size was found in species belonging to the Galliformes 
(peacock and turkey) and Tinamiformes (Darwin’s noth-
ura and great tinamou). Overall, these species differences 
corroborate previous findings [Portmann, 1946; Reh-
kämper et al., 1991; Iwaniuk and Hurd, 2005; Corfield et 
al., 2008]. 

  Every brain region showed hypertrophy in at least 1 
species when the data were regressed against the hind-

Table 2.  Volumes of the telencephalon and 6 major telencephalic regions (mm3) in both the left and right hemispheres

Paradise shelduck Australian magpie

left right �% left right �%

Tel. 1,566 1,507 1,361 1,473
A 62 (3.94) 64 (4.22) 0.27 52 (3.82) 53 (3.59) 0.23
SPC 208 (13.28) 186 (12.33) 0.95 163 (11.96) 180 (12.22) 0.26
N 647 (41.33) 618 (41.00) 0.32 681 (50.05) 738 (50.14) 0.09
H 238 (15.19) 226 (15.02) 0.17 184 (13.54) 191 (12.99) 0.55
Hp 119 (7.60) 114 (7.56) 0.04 46 (3.40) 51 (3.44) 0.04
M 256 (16.34) 261 (17.34) 1.00 217 (15.93) 242 (16.42) 0.49

Eastern rosella Pukeko

left right �% left right � %

Tel. 1,086 1,093 1,389 1,390
A 39 (3.58) 33 (3.02) 0.56 70 (5.07) 64 (4.63) 0.44
SPC 184 (16.96) 194 (17.72) 0.76 194 (13.94) 186 (13.36) 0.58
N 471 (43.42) 477 (43.67) 0.26 566 (40.75) 574 (41.30) 0.55
H 117 (10.80) 119 (10.89) 0.09 166 (11.92) 166 (11.92) 0.00
Hp 49 (4.52) 48 (4.39) 0.12 116 (8.37) 119 (8.59) 0.22
M 197 (18.13) 195 (17.85) 0.27 239 (17.19) 254 (18.30) 1.11

Nu mbers in parentheses correspond to the percentage of each structure with respect to the size of the hemisphere from which the 
percentage differences (�%) were calculated. Data are from 1 specimen of each species. Tel. = Telencephalon; A = arcopallium; N = 
nidopallium; H = hyperpallium; Hp = hippocampus; M = mesopallium.
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brain volume. The arcopallium was hypertrophied in the 
Australian magpie and the Eastern rosella, and hypotro-
phied in Darwin’s nothura ( fig. 3 a). The SPC was hyper-
trophied in the Australian magpie, Eastern rosella and 
kiwi, and hypotrophied in the pigeon, great tinamou, 
peacock and turkey ( fig. 3 b). The hippocampus/CDL was 
hypertrophied in the kiwi, but no hypertrophy or hypo-
trophy of this structure was seen in any of the other spe-
cies ( fig. 3 c). The mesopallium was hypertrophied in the 
Australian magpie, the Eastern rosella and the kiwi, and 
hypotrophied in Darwin’s nothura, great tinamou, emu, 
peacock and turkey ( fig. 3 d). The hyperpallium was hy-
pertrophied in the Australian magpie and Eastern rosel-
la, and hypotrophied only in the great tinamou ( fig. 3 e). 
The olfactory bulb was hypertrophied in the pigeon, 
spur-winged plover, pukeko, great tinamou and kiwi, and 
hypotrophied in the Australian magpie, peacock, turkey 
and emu ( fig. 3 f). The nidopallium was hypertrophied in 
the Australian magpie, Eastern rosella, and kiwi, and
hypotrophied in Darwin’s nothura and great tinamou 
( fig. 3 g). The nucleus basorostralis was hypertrophied in 
Eastern rosella, paradise shelduck, bar-tailed godwit and 
kiwi, and hypotrophied in the emu, turkey and peacock 
( fig. 3 h). The entopallium was hypertrophied in the pi-
geon and Australian magpie, but hypotrophied in kiwi, 

emu and turkey ( fig. 3 i). Overall, when the data were re-
gressed against the hindbrain, the SPC, olfactory bulb, 
nidopallium, nucleus basorostralis and entopallium 
showed the greatest degree of variation between species.

  To determine the degree to which the volume of each 
region co-varied with the changes in overall telencephal-
ic volumes, data for each region were regressed against 
the telencephalon – the telencephalic region (see Materi-
als and Methods), and less extent of variation was seen 
( fig. 4 ). All volumes fell inside the 95% confidence inter-
val in the SPC and the mesopallium ( fig. 4 b, d). In the 
arcopallium and hyperpallium, only the kiwi showed hy-
potrophy ( fig. 4 a, e). The hippocampus/CDL of the Aus-
tralian magpie and Eastern rosella showed hypotrophy, 
while the values for all other species fell inside the 95% 
confidence interval ( fig. 4 c). The olfactory bulb was hy-
pertrophied in Darwin’s nothura, great tinamou, pigeon 
and spur-winged plover, and hypotrophied in the Austra-
lian magpie, Eastern rosella and emu ( fig. 4 f). The Aus-
tralian magpie was the only species to show hypertrophy 
of the nidopallium ( fig.  4 g). The nucleus basorostralis 
was hypertrophied in the bar-tailed godwit, spur-winged 
plover and paradise shelduck, and hypotrophied in the 
peacock, turkey and Australian magpie ( fig. 4 h). Finally, 
the entopallium was hypertrophied in Darwin’s nothura, 
great tinamou, pigeon and spur-winged plover, and hy-
potrophied in the emu, kiwi and Eastern rosella ( fig. 4 i). 
The greatest extent of relative size variation when data 
were regressed against telencephalic volume was seen in 
the olfactory bulb, entopallium and nucleus basorostra-
lis. The proportion that each of the regions occupies in 
the telencephalon is shown in  figure 5 .

  When regressed against either the hindbrain or telen-
cephalon – the telencephalic region volume, the emu, 
peacock and turkey only showed hypotrophy of specific 
telencephalic regions, while the paradise shelduck, bar-
tailed godwit, spur-winged plover and pukeko only 
showed hypertrophy of telencephalic regions. For all oth-
er species, both hypertrophy and hypotrophy were seen. 
The kiwi showed no hypertrophy of any brain region 
when the data were regressed against telencephalic size, 
suggesting that no specific region is enlarged beyond that 
expected from the overall enlargement of the telencepha-
lon. The same is true for the Eastern rosella. In contrast, 
in the Australian magpie, the nidopallium is enlarged be-
yond that expected from the enlargement of the telen-
cephalon as a whole. Other specific enlargements beyond 
those expected from the enlargement of the telencepha-
lon as a whole include the olfactory bulb in the pigeon, 
the spur-winged plover, the great tinamou and Darwin’s 
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function of hindbrain volume for all species examined. The solid 
line represents the regression line from the model II allometric 
analyses and the broken lines the 95% confidence intervals. NI = 
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nothura, the nucleus basorostralis in the paradise shel-
duck and bar-tailed godwit, and the entopallium in the 
pigeon, spur-winged plover, great tinamous and Darwin’s 
nothura. Regions that were smaller than expected from 
telencephalic size included the arcopallium, entopallium 
and hyperpallium in the kiwi, the hippocampus/CDL in 
the Australian magpie and Eastern rosella, the olfactory 
bulb in the emu, Australian magpie and Eastern rosella, 

nucleus basorostralis in the Australian magpie, peacock 
and turkey, and the entopallium in the emu and Eastern 
rosella. It seems, therefore, that the relative variation in 
size of specific structures is not specific to particular phy-
logenetic lineages, and that hypertrophy and hypotrophy 
can be found in both Palaeognath and Neognath birds.

  Given the inhomogeneous variation of different telen-
cephalic nuclei, we examined the proportion of volume 
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  Fig. 3.  Scatter plot of the volume of 9 telencephalic regions plotted 
as a function of hindbrain volume for all species examined.  a  Ar-
copallium.  b  SPC.  c  Hippocampus.  d  Mesopallium.  e  Hyperpal-
lium.  f  Olfactory bulb.  g  Nidopallium.  h  Nucleus basorostralis. 

 i  Entopallium. The solid line represents the regression line from 
the model II allometric analyses and the broken lines the 95% 
confidence intervals. NI = North Island. 
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that each nucleus occupied in the telencephalon ( fig. 5 ; 
 table  3 ). In kiwi, the proportions of the mesopallium 
(22.0%) and olfactory bulb (1.9%) are the greatest of any 
of the birds examined, whereas the hyperpallium (5.3%) 
is the least. The proportions of telencephalic regions in 
the emu are considerably different from those of all other 

birds, with an overrepresentation of the hyperpallium 
(32.0%;  fig. 5 ;  table 3 ). In the emu, the proportion of SPC, 
mesopallium and especially the nidopallium are reduced, 
likely reflecting the massive expansion of the hyperpal-
lium. Within the species that show an enlarged telen-
cephalon, the Australian magpie has the largest propor-
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  Fig. 4.  Scatter plot of the volume of 9 telencephalic regions plotted 
as a function of the volume of the telencephalon minus the region 
of interest for all species examined.  a  Arcopallium.  b  SPC.  c  Hip-
pocampus.  d  Mesopallium.  e  Hyperpallium.  f  Olfactory bulb. 

 g  Nidopallium.  h  Nucleus basorostralis.  i  Entopallium. The solid 
line represents the regression line from the model II allometric 
analyses and the broken lines the 95% confidence intervals. NI = 
North Island. 

D
ow

nl
oa

de
d 

by
: 

Q
ue

en
sl

an
d 

U
ni

v.
 o

f T
ec

hn
ol

og
y

13
1.

18
1.

25
1.

13
0 

- 
1/

22
/2

01
5 

2:
57

:4
2 

A
M



 Telencephalic Structure in a Variety of 
Birds 

Brain Behav Evol 2012;80:181–195 189

Table 3.  Volumes of the arcopallium (A), SPC, hippocampus (Hp), hyperpallium (H), mesopallium (M), olfactory bulb (OB), nucleus 
basorostralis (Bas), entopallium (E), nidopallium (N) and the rest of the telencephalon (other) as a percentage of the telencephalon

Order Common name Species A SPC Hp H M OB Bas. E N Other

Anseriformes paradise shelduck Tadorna variegata 4.3 11.9 8.0 15.5 16.5 0.9 1.7 0.8 37.3 3.1
Charadriiformes bar-tailed godwit Limosa lapponica 4.9 15.9 7.9 6.5 19.4 0.2 1.9 0.8 39.6 2.9

spur-winged plover Vanellus miles novaehollandiae 5.7 13.9 8.7 8.8 16.2 0.7 0.8 1.9 40.2 3.1
Columbiformes pigeon Columba livia 5.1 12.7 9.9 9.7 16.7 0.8 0.6 2.5 39.1 2.9
Galliformes peacock Pavo cristatus 4.9 12.0 10.6 13.4 15.0 0.5 0.3 1.5 38.5 3.2

turkey Meleagris gallopavo 4.7 12.0 8.7 14.9 15.7 0.3 0.3 1.8 39.3 2.3
Passeriformes Australian magpie Gymnorhina tibicen 3.7 10.7 3.5 14.4 17.1 0.0 0.2 1.0 48.4 1.1
Psittaciformes Eastern rosella Platycercus eximius 3.9 16.7 5.0 10.8 18.1 0.1 0.5 0.5 41.9 2.5
Rallidae pukeko Porphyrio porphyrio melanotus 4.5 13.6 8.5 11.7 17.6 1.3 0.7 1.1 38.1 3.0
Struthioniformes emu Dromaius novaehollandiae 2.6 9.8 6.8 32.0 13.4 1.6 0.8 1.1 29.9 1.9

North Island brown 
kiwi

Apteryx mantelli 2.9 15.7 6.9 5.3 22.0 1.9 1.0 0.1 41.7 2.7

Tinamiformes Darwin’s nothura Nothura darwinii 4.7 17.3 10.7 9.9 14.1 0.3 0.7 2.4 37.6 2.5
great tinamous Tinamus major 5.4 13.9 10.9 7.7 16.5 1.1 0.6 2.4 38.6 2.9
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tion of nidopallium (48.4%) and the Eastern rosella a rel-
atively high SPC (16.7%) and mesopallium (18.1%,  fig. 5 ; 
 table 3 ) proportion.

  Morphology 
 Kiwi showed a rostral expansion of the telencephalon, 

due to an expansion of either the nidopallium or meso-
pallium ( fig. 6 ; online suppl. fig. 3; for all suppl. material, 
see www.karger.com/doi/10.1159/000339828). This is 
also the case in the bar-tailed godwit, paradise shelduck 
and Eastern rosella ( fig. 6 ; online suppl. fig. 1, 2). The me-
sopallium in kiwi extends throughout the rostrocaudal 
extent of the telencephalon and nearly to its ventral bor-
der, especially at the caudal pole ( fig.  6 ; online suppl. 
fig. 3). It forms a relatively thin sheet that for the most part 
surrounds the entire nidopallium, and shows expansions 
at both the rostrocaudal and dorsoventral ends. In the 
magpie, the mesopallium shows a similar ventral expan-
sion, although it does not extend to the caudal extremes 
as it does in the kiwi ( fig. 6 ; online suppl. fig. 2). In the 
other birds examined, the mesopallium only occupies a 
dorsomedial strip ventral to the hyperpallium. The hy-
perpallium in kiwi is restricted to a caudal location, and 
this is also true to a lesser extent in the godwit and East-
ern rosella ( fig. 6 ; online suppl. fig. 1–3). In these birds, 
the hyperpallium does not show the rostral extension 
found in the other birds examined. In contrast, the emu 
(the closest relative of the kiwi) shows a massive rostral 
expansion of the hyperpallium ( fig. 6 ; online suppl. fig. 3). 
Similarly, but not as extreme, the magpie also shows a 
rostral expansion of the hyperpallium, but it also extends 
further laterally (fig. 6; online suppl. fig. 2). The 3D struc-
ture of SPC and arcopallium was quite variable between 
species ( fig. 6 ; online suppl. fig. 1–3).

  Discussion 

 Our results suggest that in the bird species studied, 
changes in the relative size of telencephalic regions are 
not homogeneous. All species showed hypertrophy or hy-
potrophy of at least one telencephalic region. In addition, 
some species in this study showed morphological varia-
tions of the telencephalic regions examined, either in 
their rostrocaudal and mediolateral extent or in the rela-
tive position they occupy.

  Of the 9 telencephalic regions examined, the meso-
pallium, nidopallium and SPC make up the majority of 
the telencephalon. Although we are only beginning to 
understand some of the functions of these regions, they 
have been associated with a wide range of behaviors. En-
largements of these regions are characteristic of some 
parrots (Psittaciformes) and songbirds (Passeriformes), 
including corvids, in which they are thought to reflect a 
high level of cognition, allowing them to perform com-
plex tasks, such as vocal learning and tool manufacture 
[Hunt, 1996; Clayton and Dickinson, 1998; Weir et al., 
2002; Emery and Clayton, 2004; Emery, 2006; Huber and 
Gajdon, 2006; Raby et al., 2007; Prior et al., 2008; Seed et 
al., 2008, 2009]. In addition, the mesopallium has been 
associated with innovative feeding behaviors [Timmer-
mans et al., 2000] and vocal perception/production 
[Gentner et al., 2000; Plummer and Striedter, 2002]. SPC 
is thought to be involved in the control of stereotyped, 
species-specific behavioral responses [Reiner et al., 1984; 
Dubbeldam, 1998] and has also been implicated in learn-
ing [Parent, 1986; Scharff and Nottebohm, 1991; Stewart 
et al., 1996; Csillag, 1999; Mezey et al., 1999; Watanabe, 
2001].

  These studies have undoubtedly provided insights into 
the functions of these regions, but because brains are not 
functionally organized on a one-function/one-region ba-
sis, but as dynamic, functionally interactive systems to 
which particular subregions contribute in specific ways 
in different contexts [Feenders et al., 2008], conclusions 
about the implications for behavior of a specific enlarge-
ment or reduction of a central structure must be drawn 
with extreme caution. In the present study, we were con-
strained to draw on knowledge of behavior, ecology and 
physiology for the species examined to make tentative 
suggestions as to the reason or reasons for an enlarge-
ment or reduction in size of a region.

  As an example, consider the behavior of the kiwi, a 
nocturnal, flightless species that is adapted to occupying 
a ground-dwelling niche. Correspondingly, the organiza-
tion of its telencephalon differed in many respects from 

  Fig. 6.  Lateral and caudal views of 3D reconstructions of the tel-
encephalon and 8 telencephalic regions in 9 species of birds. The 
telencephalon is displayed as a transparent object while the telen-
cephalic regions are colored as shown in the legend. The three 
lateral views for each species are first displayed with all regions 
and then without the nidopallium and olfactory bulb, and then 
with the mesopallium removed. This allows all regions to be vi-
sualized. Caudal views are also shown for each species. Species for 
which models are shown:  a  Paradise shelduck  (Tadorna variega-
ta) .  b  Bar-tailed godwit  (Limosa lapponica) .  c  Rock pigeon  (C. li-
via) .  d  Turkey  (Meleagris gallopavo) .  e  Australian magpie  (G. tibi-
cen) .  f  Eastern rosella  (P. eximius) .  g  Pukeko  (P. porphyrio mela-
notus) .  h  Emu  (D. novaehollandiae) .  i  North Island brown kiwi  (A. 
mantelli) . A = Arcopallium; H = hyperpallium; Bas. = nucleus ba-
sorostralis; E = entopallium; M = mesopallium. 
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that of the other species examined in this study. Contrib-
uting to its enlarged telencephalon was an enlarged SPC, 
mesopallium, nucleus basorostralis, hippocampus/CDL, 
olfactory bulb and nidopallium, but not arcopallium, hy-
perpallium or entopallium. Why this particular suite of 
structural enlargements is present in kiwi is not altogeth-
er clear, but it can be noted that the bird seems to rely 
heavily on olfaction for locating food items [Wenzel, 
1968, 1971]. Although comparatively little is known about 
the functional organization of the avian ‘olfactory brain’ 
in pigeons, projections from the olfactory bulb have been 
found throughout extensive regions of the telencephalon, 
including piriform cortex, mesopallium, medial stria-
tum, globus pallidus, septum, nucleus taeniae of the 
amygdala and the dorsomedial hippocampus [Rieke and 
Wenzel, 1978; Reiner and Karten, 1985; Teuchert et al., 
1986]. Several of these structures in kiwi are likely in-
volved in processing olfactory information from the mas-
sive olfactory bulb, perhaps thereby accounting for their 
relative enlargement.

  Among the species examined in the present study were 
those that likely rely heavily on tactile information from 
the beak and tongue. These species consist of the kiwi, 
bar-tailed godwit, Eastern rosella and paradise shelduck, 
and all have been shown to have a specialized arrange-
ment of mechanoreceptors within pits at the bill tip and/
or in the tongue [Cunningham et al., 2007; Martin et al., 
2007]. Both kiwi and bar-tailed godwit, like many shore-
birds, rely on this tactile sense for detecting and selecting 
food beneath the ground, ducks for detection, recogni-
tion, and transportation of food in the mouth, and par-
rots for complex manipulations of food items. In all these 
species, and likely accompanying these specialization of 
the beak and tongue, is the relatively enlarged nucleus 
basorostralis, which processes information from these 
peripheral structures via the principal sensory trigeminal 
nucleus [Witkovsky et al., 1973; Berkhoudt et al., 1981; 
Dubbeldam et al., 1981; Wild, 1985; Dubbeldam, 1990; 
Wild and Farabaugh, 1996; Wild et al., 2001]. The bar-
tailed godwit and kiwi also share a caudal displacement 
of the hyperpallium, but the significance of this remains 
speculative. Since the hyperpallium is largely visual in 
nature, its caudal displacement could indicate a reduction 
in the importance of vision, as in kiwi [Martin et al., 
2007]. But in most other avian species the hyperpallium 
extends to the rostral pole of the brain caudal to the olfac-
tory bulbs, and its most rostral, minor part – the so-called 
rostral Wulst – is somatosensory in nature, receiving pro-
jections via the thalamus from parts of the body other 
than the beak [Wild, 1987; Funke, 1989; Wild, 1997; Wild 

et al., 2008]. In kiwi, bar-tailed godwit, Eastern rosella 
and paradise shelduck, there is a massive rostral expan-
sion of the frontal part of the telencephalon, but whether 
this region processes information from the beak and 
tongue and/or from other parts of the body is unknown 
[Stingelin and Senn, 1969; Pettigrew and Frost, 1985].

  It is interesting to note that within the species that 
showed enlarged telencephalon, some regions did not en-
large with the rest of the telencephalon and some even 
appear to be smaller than expected. This is particularly 
true for the kiwi, in which the arcopallium and hyperpal-
lium did not accompany the enlargement of the telen-
cephalon, and the entopallium appeared to have reduced 
in size. The small size of the hyperpallium (visual and 
perhaps somatosensory Wulst) in kiwi is in contrast to 
that reported for other nocturnal species and is unlike 
that of its closest relative, the emu. Nocturnal owls, such 
as the boobook owl  (Ninox boobook) , Northern saw-whet 
owl  (Aegolius acadicus)  and barn owl  (Tyto alba) , show 
enlargement of the visual Wulst [Iwaniuk and Hurd, 
2005; Iwaniuk et al., 2008], the primary telencephalic rep-
resentation of the thalamofugal system [Güntürkün et al., 
1993; Shimizu and Karten, 1993]. The most extreme hy-
potrophy in kiwi was seen in the entopallium, the end 
station of the tectofugal visual pathway. The small rela-
tive size of the hyperpallium and entopallium in kiwi is 
likely commensurate with the suggested reduction in the 
reliance on vision. Kiwi have small eyes, a small optic 
nerve and optic tectum and small visual fields, including 
a reduced frontal binocular field [Martin et al., 2007]. 
Similar to the hyperpallium, the arcopallium in kiwi has 
not increased in size relative to the hindbrain, and thus 
did not contribute to the enlargement of the telencepha-
lon. Since visual output from the entopallium, in particu-
lar, reaches the arcopallium, the reduction in size of the 
latter in kiwi could also reflect a reduction in the func-
tional importance of vision.

  Also noteworthy is that the only region that did not 
accompany the telencephalic enlargement in the Eastern 
rosella and Australian magpie was the hippocampus. The 
hippocampus has been the focus of many studies and has 
been shown to be essential to learning and memory, with 
variations in size correlating with tasks involving an ex-
tra demand for spatial learning and memory [Krebs et al., 
1989; Sherry et al., 1989; Healy and Krebs, 1992; Basil et 
al., 1996; Healy and Krebs, 1996; Clayton, 1998; Biegler et 
al., 2001]. The hippocampus is also interesting because 
hippocampal neurons are continually produced in birds 
through adult neurogenesis [Barnea and Nottebohm, 
1994]. Why the hippocampus did not enlarge with the 
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rest of the telencephalon in the Eastern rosella and Aus-
tralian magpie, as it did in the kiwi, is unknown, but these 
differences may reflect an enhanced reliance on learning 
and memory in the kiwi, or possibly differences in adult 
neurogenesis between the species. Unfortunately, it was 
not possible to include species in this data set that have 
been shown to have enhanced spatial learning and mem-
ory abilities to further examine variations in hippocam-
pus size in birds.

  The most interesting morphological feature of a region 
in the telencephalon was the rostrocaudal and dorsoven-
tral expansion of the mesopallium in the kiwi. The me-
sopallium contributed to the enlargement of the telen-
cephalon, but not beyond that expected from scaling to 
the telencephalon. It is not clear whether the changes in 
overall architecture of the mesopallium may represent 
differential growth of particular nuclei within the region, 
and if so, whether these are associated with particular 
behaviors. Alternatively, the changes in 3D shape could 
simply be the result of a reorganization of the different 
brain regions to adjust to the hypotrophy of the arcopal-
lium, hyperpallium and entopallium.

  Overall, this study has shown that the relative size and 
morphology of telencephalic areas is not homogeneous 
across birds, and large differences can be seen between 

closely related species such as the kiwi and emu. Many of 
the enlargements and reductions of telencephalic regions 
seen in this study likely reflect the animal’s behavior, 
ecology or physiology. This is especially true for regions, 
such as the entopallium, that are known to play a major 
role in vision, but is less clear for regions such as the me-
sopallium, due to the multiple sensory representations of 
the latter and its apparent role in a variety of different
behaviors. Nevertheless, the results provide further evi-
dence of mosaic evolution and highlight the importance 
of the environment in shaping the brain organization of 
birds.
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