QUT

Queensland University of Technology
Brisbane Australia

This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Saifuzzaman, Mohammad & Zheng, Zuduo

(2014)

Incorporating human-factors in car-following models: A review of recent
developments and research needs.

Transportation Research Part C: Emerging Technologies, 48, pp. 379-403.

This file was downloaded from: https://eprints.qut.edu.au/77857/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative
Works 2.5

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/].trc.2014.09.008



https://eprints.qut.edu.au/view/person/Saifuzzaman,_Mohammad.html
https://eprints.qut.edu.au/view/person/Zheng,_Zuduo.html
https://eprints.qut.edu.au/77857/
https://doi.org/10.1016/j.trc.2014.09.008

Elsevier Editorial System(tm) for Transportation Research Part C
Manuscript Draft

Manuscript Number: TRC-D-14-00067R2

Title: Incorporating human-factors in car-following models: A review of recent developments and
research needs

Article Type: Research Paper

Keywords: car-following; driver behavior; human factors; risk taking; driver error
Corresponding Author: Dr. Zuduo Zheng, PhD

Corresponding Author's Institution: Queensland University of Technology

First Author: Mohammad Saifuzzaman

Order of Authors: Mohammad Saifuzzaman; Zuduo Zheng, PhD

Abstract: Over the past decades there has been a considerable development in the modeling of car-
following (CF) behavior as a result of research undertaken by both traffic engineers and traffic
psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic
psychologists seek to describe the human abilities and errors involved in the driving process. This
paper provides a comprehensive review of these two research streams.It is necessary to consider
human-factors in CF modeling for a more realistic representation of CF behavior in complex driving
situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather
conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow
phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are
some excellent reviews of CF models available in the literature, none of these specifically focuses on
the human factors in these models. This paper addresses this gap by reviewing the available literature
with a specific focus on the latest advances in car-following models from both the engineering and
human behavior points of view. In so doing, it analyses the benefits and limitations of various models
and highlights future research needs in the area.
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Research Highlights
e Incorporating human factors in CF models is critical.
e No previous reviews of CF models focus on the human factors.
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1. INTRODUCTION

Car-following (CF) rules describe longitudinal interactions of ekelsi on the road. The CF
concept was first introduced by Pipes and Reuschel (Pipes, 1953; &led980). It can be
defined as ‘the decision of the driver to follow the preceding \elfficiently and safely’.

Over the past decades, traffic engineers and traffic psydbtddgave contributed to the
development of CF behavior modeling. Traffic engineers seek tasiadd characteristics of
a traffic stream and apply Newtonian laws of motion to approxir@dt behaviors in what
this paper refers to (for the convenience of discussionmgirieering CF models’. Traffic
psychologists, on the other hand, are motivated to describe thentabiidies and errors
involved in CF, and their impact on traffic safety. Another memeam driver behavior —
lane-changing maneuvers — is reviewed in Zheng (2014) and is bdyarstdpe of this
paper.

A large number of Engineering CF models have been developedatteampt to describe CF
behavior under a wide range of traffic conditions, ranging from-fioee to extreme

situations. Some of these models have been used in comnpackages of microscopic
traffic simulations(Barcelo, 2010), and to guide the design of advanced vehicle control and
safety systems (Yang and Peng, 2010). However, the limitadfoBsigineering CF models
were the subject of spirited debate after the publicatiomratkstone and McDonald’'s
(1999) historical review of car-following models. In a commentdrthis review, Hancock
(1999) criticized the fact that the psychologically plausible achtaraation of how humans
think about, and solve, the driving problem is not observed in tHeseadels.

Each driver is different so as their driving styles andtadgkng capabilities. Age and gender,
for example, play an important role in the perception of riskyirdy situations. In addition,
particular driving needs can influence aggressive driving, lwigca potential source of
driving error. While research shows that driver error contribtdgeup to 75% of all roadway
crashes (Stanton and Salmon, 2009), few CF models can captweldiavior in various
driving conditions, especially in crash-prone conditions, suchradBctbreakdowns, the
undertaking of risk-taking behaviors, distraction, and adveesgher conditions.

To address this serious issue, a richer representation afotiretive processes engaged
during CF is required to describe driver responses, and the consesjuérihese responses,
in adverse driving conditions. Moreover, CF models with the chyabf mimicking a
driver's mistakes and, consequently, with the ability to geeecrash or near-crash scenarios
can be important tools for evaluating safety-related technolagiégolicies. Unfortunately,
most Engineering CF models do not include such scenarios.

Given the importance of the human factor in the driving prodessnecessary to integrate
the latest CF modeling advances from both engineering and psydadlpgrspectives, and
to bridge any gaps or inconsistences in these perspectivesa 8nan will be of great value
in transportation research, especially in micro-simulation nsottal better prediction of

driving behavior. This paper explores the existing CF models bhagt advances in

describing human driving behavior.

Although some excellent reviews of CF models are availablackBtone and McDonald,
1999; Hamdar, 2012; Olstam and Tapani, 2004; Panwai and Dia, 2008p,TaR@07), all
have their limitations. For example, Brackstone and McDonald (1238w CF models
developed before 1999. Since then, however, there have been naotzoteeanents in CF
modeling. Furthermore, the Brackstone and McDonald review (1999) igruaiadar
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automation (CA)-based CF models, and their review is limibelrigineering CF models
only. Similar conclusions can be drawn from the reviews by Olstacth Tapani (2004),
Panwai and Dia (2005), and Toledo (2007). (Note, however, that T&8603@)(does include
CA-based CF models). In contrast, few efforts are observed otifyiley human factors
responsible for car-following with two exceptions. Hamdar (2012)nsanzed a list of
human factors and situational environmental factors which mayt a&fiecbehavior. In a
recent review, Treiber and Kesting (2013) described seven hiswtors (finite reaction
time, estimation error, imperfect driving, spatial and tempamticipation, context sensitivity
and perceptual threshold) which could affect CF behavior, and appéetdto a CF model
using some hypothetical cases.

This paper provides a comprehensive review of the importanbtreexelopments in CF
modelling from both engineering and human behavior perspectives. lougartithe paper
focuses on notable efforts to integrate human behaviors intiatthiéional CF models, and
on the future research that is needed to build on these effortthd-sake of clarity and
focus, the paper concentrates on representative CF models litethture, rather than
attempting to exhaustively cover all existing models.

To this end, the paper is organized as follows: Section 2wsvimtable traditional CF
models and their extensions; Section 3 presents Engineering CF ntivalelsttempt to
incorporate one or more human factors; and Section 4 discusseajtinessues arising from
these previous modeling attempts, determines what futurechssaneeded in the area, and
summarizes the conclusions arising from the review.

2. CAR-FOLLOWING MODELS: THE ENGINEERING PERSPECTIVE

Numerous mathematical models have been developed to desEribeh@vior under a wide
range of conditions. In general, these models are based on theustiegponse framework
that was first developed at the General Motors researchalaiies (Chandler et al., 1958;
Gazis et al., 1961). The framework assumes that each deisponds to a given stimulus
according to the following relationship:

response = sensitivity x stimulus

Over the years, various researchers have used differeatsfacs the stimuli to explain the

response (acceleration) of the subject vehitlieile varying notations are used in the literature,
for the sake of consistency and clarity, the saotations are used throughout this paper (These
are listed in Appendix).

2.1. GHR model and its extensions

Gazis-Herman-Rothery (GHR) CF models is probably the ntoedies] models in the area of
CF modeling. The first version is the linear CF model develdpeChandler et al. (1958)
and Herman et al. (1959), as shown in Equation (1)

an(t) = A AV (t — 1) )

wherea,, (t) is the acceleration of the subject vehialat timet, AV, (t — 7,,) is the speed
difference between the subject vehicle and the precedingeahitme(t — 7,,), t,, denotes
the reaction time, and is a sensitivity parameter. The sensitivity parametean have
several functional forms
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@ A=c, a constant

Ci, AX, < AX_ it
b 1= { 1 n = critical
( ) CZ: AXn > AXcritical

(c) A=cC/AX,, reciprocal spacing
(d) A=cC- -V /AX,, used in Edie’s model (Edie, 1961)

yields Greenshield’'s (Greenshields et al., 1935)
macroscopic flow-density relationship

a step function

() A=C/AX7,

where,AX,, is the spacing from the preceding vehid#,,;;;..; iS @ threshold specified by
the modeler),, is the speed of the subject vehicle, @hd;, C, are constant. Gazis et al.
(1961) combine the last three (c, d, e) functional formd of a general expression of
sensitivity, and propose a non-linear CF model, as definEduation (2)

AVn (t - Tn)

an(t) = Oan(t)Bm

)

wherea, B,y are parameters.

GHR models have been extensively studied (For a detailed resmsvBrackstone and
McDonald, 1999). The main advantage of GHR model is its siibyplHowever, it was built
upon several strong assumptions, and this leads to the seriousdimsitas being frequently
reported by researchers (Siuhi and Kaseko, 2010). For examplé;atiezdction time for all
drivers does not capture inter-driver heterogeneity; the humaity atoil perceive small
changes in driving conditions, such as spacing and relative tyglexioverestimated; and
single value estimation for each of the model parameters dot consider behavioral
differences in different circumstances (such as acceleratidaogleration). In an attempt to
overcome these limitations, several enhanced versions of HIR @odel have been
developed, as elaborated below.

Memory functions: Assuming that a driver reacts to the relative speechefpreceding
vehicle over a period of time, rather than in an instaag [1966) introduces a memory
function into the linear GHR model to store the information Gftnee speed during CF, as
shown in Equation (3)

an(® = [ M — )V (5)ds 3)
0

whereM represents a memory function; that is, the way a dristsr @ information that has
been collected over the driving period. This function is simib a weighting function. Lee
(1966) proposes several forms of the memory function, and analgestability of the

resulting response to periodic changes in the preceding vehicled. sgéhough the model
removes unrealistic peaks in acceleration profile, the imgh¢ation of the model in traffic
simulation is considerably more complex due to the need of nmangaan array of past
conditions for each vehicle.

Acceleration and deceleration asymmetriferman and Rothery (1965) were the first to
hypothesize that most passenger cars have a greater demelgran acceleration capacity.

4
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This was later confirmed by Subramanian (1996) and Siuhi and Kaseko.(ROtOhgested
traffic, drivers are more sensitive to deceleration thaacteleration. Ahmed (1999) extends
the GHR model to accommodate this acceleration/deceleratijonnaetry. In this model,
driver heterogeneity in terms of reaction time is also congidéneaddition, two states of
driving — free flow and CF — are modeled separately withinntbdel. The state of driver
behavior (that is, free-flow or car-following) is determirgdcomparing the headwalg.j to

a critical value &) which is distributed among the drivers. K, (t — t,) < h;, then the
vehicle is in the CF state; otherwise, it is in the ftew state. The model is shown in
Equation (4)

V(£ — o1,)P’
cf,g — g n n _ 859 _ p9 cf,g
ai ?(6) = af e g ka(t = ) At — 9T’ + 67O "

aﬁf'g(t) = Aff[Vn(t —1) =V (t—1,) + s,’:f(t)]

wherecf andff refer to CF and free-flow states respectively; gacceleration, deceleration];
k,(t — @t,) is the traffic density ahead of the subject vehicle wiits view (a visibility
distance of 100m was used) at tiite- ¢t,,); @ € [0,1] is a sensitivity lag parameter;is

the constant sensitivity7, is the desired speed; alaﬁlf and e,’:f are normally distributed
error terms for CF and free-following states, respegtivel

Koutsopoulos and Farah (2012) discovered some ambiguity in the previouptgswhthe
GHR model, where it is assumed that drivers accelerata thieespeed difference relative to
the preceding vehicle is positive, and decelerate when the sgéserdie is negative. In
fact, after analyzing two existing traffic flow databas@$éext Generation Simulation
(Alexiadis et al., 2004), and Federal Highway Administration (FAJW985)) they found
that, in many cases, the opposite is true. Hence, they tteaassumption and extend the
GHR model to consider three states of driving: acceleratimigg nothing, and decelerating.

Multiple-vehicle interaction: The models discussed above are based on the assumption that

each driver reacts in some specific manner to some stironiitihe preceding vehicle. In the
real world, however, drivers most likely adjust their behavémsording to their observations
of more than one vehicle ahead. Multi-vehicle interaction wsisifitroduced by Herman and
Rothery (1965) and Bexelius (1968). Assuming that drivers follow moredha preceding
vehicle, they extend the linear GHR model with added sengiteims for up tan vehicles
ahead. The mathematical form of the model is presenteguatien (5)

m

an(®) = ) @bV 1 (£ =) ©®)

i=1

where AV, ,_1(t — 7,,) is the relative speed with respect to the neaftseader at time
(t — 7,), anda; is a parameter. Although the notion behind the model is a realist, this

research direction received little attention in the liteeawmtil recently, when multi-vehicle
interaction has re-gained some attention (Hoogendoorn and Q&88n,Lenz et al., 1999;
Peng and Sun, 2010; Treiber et al., 2006). (This is discussethl¢tes paper.)

Fuzzy-logic: Fuzzy-logic is applied to enhance the GHR model becausasétsis often
reported to enable a better mimicking of the cognitive and péwsoeptuncertainties that
drivers frequently encounter in real-world CF processes (Bracksaineal., 1998).

5
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Aforementioned models assume that the drivers know their exaet sfheir distance from
other vehicles, and other situational factors. Clearly, thésraption is an unrealistic one.
Fuzzy-logic-based models, on the other hand, acknowledge thefectme of a driver's
capability by dividing their perception into a number of overlappingzy sets using
predefined fuzzy-logics. For example, time headway of lessQtEs is defined a®o close.
This definition can then be used in logical rules suchfasp close, then use emergency
deceleration. Kikuchi and Chakroborty (1992) were the first to use this typenodlel to
‘fuzzify’ the traditional GHR model. More work with the fuzzygic-based model is reported
in Wu et al. (2000). However, among many other issues, defilningy sets and their
associated membership functions is challenging (Ross, 2010), and thaksalibration and
validation of fuzzy-logic-based CF models extremely difficult

2.2. Desired measures models

Helly’s model: According to the aforementioned CF models (Chandler et al., T268s et
al., 1961), for two vehicles that are travelling at theneaspeed, any value of spacing
between them is acceptable. To address this shortcoming, (16B®) introduces a new
assumption that each driver has a desired following distaaoe, the driver seeks to
minimize both the speed difference and the difference bettheesctual space headway and
the desired headway. The functional form of Helly’s modekjgressed in Equation (6)

a,(t) = AV (t — 1) + [AXn(t —Tp) — E)’(n(t)]f
(6)
AX, (t) = By + BV (t — Tn) + B3y (t — Tp).

whereay, ay, B1, B2, B; are parametersyX,, is the driver’s desired following distance, which
is assumed to be dependent on their speed and accelataiesver, Helly (1959) and other
researchers (Koshi et al., 1992; Van Winsum, 1999; Xing, 1995) shaiwttie desired
following distance can be reasonably determined by using the spdld subject vehicle
alone (that isp; = 0).

A non-linear extension of Helly’s model in combination with the GiH8&del is proposed by
Koshi et al. (1992) and, later, by Xing (1995). The general forthedf model is presented in
Equation (7)

AV, (t —19) [AX, (t = 75) — AXy (D))
YAt —t)l T M (E—)™
+ AV, =V (t = 73)]

a,(t) =a

—ysing @)

where 75, 7,,7; are time lagsgy is the gradient difference in a sag,, is the desired
following distance as a function of the vehicle spékds desired speed, ang, a,,y,1,[,m
are parameters. The first term of the model represéetstandard driving situation, the
second term describes acceleration from a standing queue rthetin controls the effect of
gradient, and the fourth term represents acceleration ifilneeconditions. Note that, while
the physical condition of the road in terms of gradient is coreidi@ this model, horizontal
curvature effect is neglected.

Intelligent driver model (IDM): One of the most popular models using desired measures is
the intelligent driver model (IDM) proposed by Treiber et al. (2000)s model considers
both the desired speed and the desired space headvdafines! in Equation (8)
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_w [, eV (s"n(n)z
an(t) = ayax [1 <Vn (t)) 5.0 (8)
()]

where a,, is the maximum acceleration/deceleration of the subjebicle n, 1, is the
desired speedy,, is spacing between two vehicles measured from the front edgjee of
subject vehicle to the rear end of the preceding vehigle=(AX,, — L,,;; whereL,, is vehicle
length), S, is the desired spacing, afids a parameter. When preceding vehicle is far away,
the third term in this equation becomes negligible small andnthgel performs as a free
flow model where the desired speed of the driver governs dbelemation. Use of one
equation ensures a smooth transition between free-flow and cawifall situations. The
desired space headway (or following distance) in IDM is dependesevamnal factors: speed,

speed difference A{,,), the maximum acceleratiomn(‘ax) a comfortable deceleration
(a () f) the minimum spacing at the standstill sﬂuaﬂSfM S(")) and the desired time

COTTL
headway(T,). Mathematically, the desired following distance can dadculated using
Equation (9):

n n n AV
Sn®) = 5,(331 +517 Vn( nO O - (21) (S) ©)

Amax%com f

The introduction of both a maximum acceleration and a comfortaldeletation rate
prevents the model from producing unrealistically high accetersftlecelerations. This
feature is absent in most of the earlier models. In calitgahis model, identical vehicles
with the same acceleration and deceleration capability werd (88 maximum value of
0.73m/4was used). Reaction time is ignored in this model.

Later, Treiber and Helbing (2003) extended IDM to capture dritaptation effect to the
surrounding environment using a memory function. Their model is cHl®tM; that is,
IDM with memory. The extension is based on the observation thet,kaing in congested
traffic for some time, most drivers adapt their drivindestyor example, by increasing their
preferred time gap. Treiber and Helbing (2003) assume thaubjectve level of service
(1,) influences the desired time gap decision. Hencegléis@ed time gaff, (¢t) in Equation
(9) is replaced b¥,,(1). This is shown in Equation (10)

(W) = 7;n[.BT +4,(1 = Bp)]; Br = Tjam/Tn (10)

where,Br is an adaptation factor. For each driver, the subjectia bf serviceA,) is given
by the exponential moving average of the instantaneous levelwiiesexperienced within
the adaptation time (typically 600 sec).

The main difficulty of models with desired measures (for exang@sired spacing, desired
time headway, desired speed) is that most of the paranaegetmobservable in nature, and
this makes their estimation more challenging. Thereforeyynod the models described in
this sub-section were not empirically estimated usingtratiic data.

2.3. Safety distance or collision avoidance models
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Safety distance models differ from GHR models by hypothesifiagthe driver reacts to
spacing relative to the preceding vehicle, rather than tcetagve speed. This idea was first
proposed by Kometani and Sasaki (1959). In their model, the subjectevebeks to keep
the minimum safety distance from the preceding vehicle, as simokguation (11)

AXy(t — 1) = aVi—4(t — ) + BVZ() + ¥V (O) + d (11)

where, V,, and V,_;are the speeds of the subject vehicle and the precedingleyehic
respectively;a, 5,y are parameters; and is a constant which represents the minimum
spacing and prevents the model from collisions. Later, Newell (3@@&ppsed a non-linear
version of this model, which assumes that the speed of thecswighicle is a non-linear
function of the spacing to the preceding vehicles, as sho&quation (12)

Vn(t) = Vmax[1 - exP(_A(AXn(t - Tn) + d)/Vmax)] (12)

whereVmax andd are the maximum speed and the minimum space headway, reslyestis

a parameter. Newell assumes different functional formsaéaeleration and deceleration
decisions. This model is directly dependent on density (spacing dretvedicles), and this

dependence might result in unrealistic accelerations or datieles. To address this issue,
Bando et al. (1995) modified Newell’s model by controlling thengeain speed. (This is

discussed in Section 2.4 below.)

The most popular safety distance model was developed by Gipps (TB81Ihodel assumes
that the speed is selected by the driver in a way to ensardahi vehicle can be safely
stopped in case the preceding vehicle should suddenly brake. Gipps’ imdddes two
modes of driving: free-flow and CF. The driver chooses thelemahe from the speeds
obtained from the free-flow and CF modes, as shown in Equ@tn

Vo(£) + 2.58,7,(1 — V(£ /7,)(0.025 + V, (8)/7,)"*

13
bty + \]B% T3 — by [Z(AXn(t) —Sp_1) — V()T — Vn—%(t)z (13)

V,(t + 1) = min

whered,,is the desired acceleratiah, is the desired deceleratiar,_, is the effective length
of vehiclen-1 (length of the vehicle plus a safety distance into whiclialt@ving vehicle is
not willing to intrude even when at resh),is an estimate of the deceleration applied by the
preceding vehiclel(,_,), andl, is the desired speed of vehideA constant reaction time,

is used for all vehicles. A smooth transition between free-iod/ CF modes occurs most of
the time, except when the leading vehicle brakes harder thaipated (i.e.b,_, > b,,),
when the preceding vehicle moves to an adjacent lane, or when\&higle moves in front
of the subject vehicle from an adjacent lane. Besidebletstonian equations of motion,
Gipps’ model offers some behavioral parameters, for exantpde,desired acceleration,
desired deceleration and desired speed, reaction time, anuhtest of the preceding
vehicle’s deceleration. It has been used in many simulatiodels, including AIMSUN
(Barcel6 and Casas, 2005).

2.4. Optimal velocity model

The optimal velocity (OV) model, introduced by Bando et al. (1995 heceived
considerable attention in the CF literature. OV model assuh@seach vehicle has an
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optimal (safe) velocity, which depends on the distance frarpteceding vehicle, and that
the acceleration of the" vehicle can be determined according to the difference betthieen
actual velocity,, and the optimal velocity,. Mathematically, the model can be defined as
in Equation (14)

an(t) = [ (8%, (0) — V(0] (14)

wherea is the constant sensitivity coefficient, ditis the optimal velocity and depends on
the headwayX,, to the preceding vehicle, and can be defined as

AX, () = L,_
Vn*(AXn(t)) =V, [tanh <% - Cl) + CZ]
wherelL,_; is the length of the preceding vehicle (typically 5m), bnds the length scale
while Vo, C; andC,; are constant. Helbing and Tilch (1998) calibrated the OV model tlsng
following optimal velocity function:

Vi (X, (8)) = Vi + Vytanh([C; (AX, (8) — Ly—1) — C;]

where V, V,, C,, G, are parameters, and their estimated optimal valuesvVar&.75 m/s,
V,=7.91 m/s, @=0.13m", C,=1.57. Driver reaction time is not considered in the OV model
described above, which has been updated in the later version (Baaldal®98), as shown

in Equation (15):

an(t) = a[Vn*(AXn(t - Tn)) —Wu(t - Tn)] (15)

Although OV model was created to address the issue of the igticadly high acceleration
and deceleration observed in Newell's (1961) model, comparison hdthield data shows
that it still produces unrealistic accelerations and decalagtThe reason is that the optimal
velocity is dependent on the following distance; hence, the desstyl iaffecting the model.
To handle unrealistic decelerations, Helbing and Tilch (1998) addedtyaldterence to the
OV model; this comes into play when the velocity of the gulewy vehicle is lower than that
of the subject vehicle. They called the model the ‘Genethlizerce’ (GF) Model, as
presented in Equation (16)

an () = a[V; (8X, (D) = Vo (®)] + A(AV, (D)) - H(—AV, (D)) (16)

whereH is a Heaviside function, whose value is 1 when the velotitiie preceding vehicle
is lower than that of the subject vehicle, and 0 otherwise] asdhe sensitivity constant. As
both the acceleration and deceleration rate could be unreasonablyiaigh.et al. (2001)
extended the GF model to consider both negative and positive veldtatences (that is, to
explicitly consider velocity difference), and named it thall'’/elocity Difference’ (FVD)
Model, as shown in Equation (17):

an(t) = a[V; (AXn (1)) = Va ()] + A(AV, (D)) 17)
Jiang et al. (2001) use the same OV function as is used innge#trid Tilch (1998).

However, the FVD model is indifferent to acceleration and dext&gd@ behavior, which
could be problematic. Previous research shows that drivers behfigeendly during

9
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acceleration and deceleration (as discussed in Section &athdgHa single parameter for
both acceleration and deceleration might lead to an unrealigiatieh where the subject
vehicle brakes insufficiently, even if the distance toghexeding vehicle is extremely short.
Thus, Gong et al. (2008) propose an asymmetric full velocity difterd AFVD) model by
enabling different responses in acceleration and decelerai@mnown in Equation (18)

an(6) = a7 (X (1) = V(O] + 118V () - H(=AV (D) (18)
+2,(8%,®) - H(AL (D)

where,, A, are sensitivity coefficients used for deceleration andlexat®n respectively.
Compared with the FVD model, the AFVD model takes longer torieecome stable.

Davis (2003) simulated the OV model (Bando et al., 1998) using diffexaation times. For
a small reaction time 0.1s, flow was stable for a platoohO6f vehicles. However, if the
reaction time increased to 0.3s, only the first 14 vehiclegad collision and the situation
became worse for longer driver reaction times. This indicthes the OV model is
unrealistically sensitive to delay time. To overcome in@blem, the OV function for time-
varying situations is modified by assuming that drivers can ed#mg relative velocity as
well as headway, as shown in Equation (19):

an(t) = afVi (AXp(t = Tp) + 1oV, (¢ = 7)) = Vo ()] (19)

For small reaction times, this model closely representsotlggnal OV model. For long
reaction times £, <1s), the model performs well without any collisions for a platoohOt¥
vehicles. The model calculates the relative distance anceligve velocity at timég-r,),

and calculates speed of the subject vehicle at timénich is odd and needs a behavioral
justification.

Lenz et al. (1999) extended the OV model by considering multi-vemtégactions, as
defined in Equation (20)

= Y ai [ (F2) 0 (20)

i=1

whereAX,, ,_;(t) is the spacing with respect to the neai8deader at time. For m=1, the
above equation collapses to the original OV model. The sanmabptelocity function for
V; is used as in the OV model. Compared with the originaln@del, consideration of
multi-vehicle interactions increases the extended modebdista

Peng and Sun (2010) propose a similar extension for the FVD mod&heNeenz et al.
(1999) nor Peng and Sun (2010) consider driver reaction time. These twds mae
calibrated using numerical simulations; however, they havgatdieen tested with real data.

2.5. Newell's simplified CF model and its extensions

Newell (2002) developed a parsimonious CF model following a viempls CF rule: the
time-space trajectory of a vehicle in congested traffic bormogenous highway is identical

10
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to the preceding vehicle’s trajectory except for space arsl shmfts, as defined in Equation
(21)

. (x, (&) +uT [free — flow]

Xn(t+T) = mm{xn_l(t) — &  [congestion] =)
whereT = 1/(wk) is the wave trip time (or time shift) between two causiee trajectories
havingw andk as the absolute values of wave speed and jam densitgtiesfyed = 1/k is
jam spacing (or space shift), angl(t + T) represents the longitudinal position of vehicle
at time(t + T). Newell conjectures that the gap between two trajestatiédmet depends on
speed, and remains nearly constant if the highway is homogemmusll further proposes
that (,6) vary as if they were sampled independently from some jpmobability
distribution.

Besides its parsimoniousness (i.e., only two paraméteasnd § are required), Newell’s

model has direct linkage to the macroscopic LWR theory (Lighémitdd Whitham, 1955;

Richards, 1956). Therefore, Newell’'s model is often adopsethe base theory in studying
complex issues (Zheng et al., 2011a; Zheng et al., 2011b; Cher2étlal. Chen et al., 2012;
Chen et al., 2014). For example, Zheng et al., (2013) use Ne®E€llrsodel to quantitatively

measure the impact of lane-changing maneuvers on the inteigdalowing vehicle.

Newell’'s CF model has also been extended to capture traffidlatiscis. Oscillatory
behaviors are generally caused by instabilities of the modetseXample, in the stimulus-
response- type models, instability arises when a following kebecomes highly sensitive
to the preceding vehicle’s stimulus (Herman et al., 1959). New@F theory cannot be
directly used for predicting characteristics of traffic batons because disturbances do not
change in magnitude in this model due to the fact thatlewfet’s trajectory is essentially
replicated from the leader’s by shifting in time and spdéels, Laval and Leclercq (2010)
relax the assumption of constant time shifit 4nd make it time-dependent. By doing so, an
oscillation can be interpreted as a deviatioil &lom the equilibriunmil. They assume that, in
congestion, deceleration waves can trigger some drivers (vehiaigally in equilibrium) to
switch to “timid” or “aggressive” non-equilibrium modes. In theiodel, the trajectory of
vehiclenis described as in Equation (22)

. (xp(t = T) + min{uT, %, (t)} [free — flow] 22
*n(0) = mm{xn_l(t —n,(OT) —n,(t)6 [congestion] (22)

where %, is the desired distance travelled by vehideduring T, and n,(t) is a
dimensionless variable introduced to capture deviations fromeMNswnodel.

Chen et al. (2012) extended Laval and Leclercq’s model, and destetdopehavioral CF
model based on empirical observations. They report that the maxdgiable of reproducing
the spontaneous formation and ensuing propagation of stop-and-go waves @stedng
traffic.

2.6. Cellular Automata (CA) models

Cellular automata (CA) were historically proposed in the 194Csuifdinn, 1948) and
popularized in the 1980s (Wolfram, 1983) to accurately reproduce mapio$ehavior of a
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complex system using minimal microscopic descriptions. A typ@almodel constitutes
four key components: the physical environment, the cells’ stdtes;ells’ neighborhoods,
and local transition rules. The physical environment in which €Applied for modeling
traffic flow is obviously the road segment of interest, which cigsf a one-dimensional
lattice for a single-lane road. The lattice and the tineed#scretized into equal-length cells,
typically equal to the vehicle length and the driver’'s averagetion time, respectively. The
corresponding speed increment is computedixadt. The state of each cell can be 0 (empty)
or 1 (occupied), with two implicit assumptions: i) typically eaell is exactly occupied by
one vehicle; and ii) drivers cannot react to any events betvegmecutive time steps (Zheng,
2014).

Nagel and Schreckenberg (1992) made the first notable contrithattbe development of a
CF model using cellular automata. They introduced a stochastceth CA model for

freeway traffic. The road is discretized into cells ofefl width (7.5 meters in Nagel and
Schreckenberg (1992)). At each time step, the model updates foecaobws steps, which

are performed in parallel for all vehicles:

a. Acceleration: If the velocity of a vehicle is lower tha¥ina, and if the distance to
the next car is larger thaf+1, the speed is increased by oves[V+1].

b. Deceleration: If a vehicle at celfinds the next vehicle at ceftj (with j<V), it
reduces its speed jd [V—j-1].

c. Randomization: With probabilitg, the non-zero velocity of each vehicle is
decreased by on&{V-1].

d. Car motion: Each vehicle is advanced\bgells.

Although the discreteness of the model does not correspond direeity toroperty of real
traffic, this simple model shows nontrivial and realistic dreof traffic flow.

Krauss et al. (1996) argue that the discrete nature of theldSafreckenberg model hides
many of its interesting features (for example, vehicle spa@ngot be less than the width of
one cell, difficult to calibrate with real data etc.). Thiliey present a continuous version of
the Nagel-Schreckenberg model, as shown in Equation (23).

V(¢ + 1) = min[V,(£) + amax Viax Sgap (1) ]
Vn(t + 1) = maX[O, (Vn(t + 1) - bmax' nran,o,l)] (23)
Xt + D) =x, )+ V,(t+ 1)

where V7, is the desired speed,,., iS the maximum acceleratioh,,,, is the maximum
decelerations$,, is the free space to the vehicle ahead,mpf,, is a random number in
the interval (0,1). Some randomness due to deceleration noise ideredsivhen calculating
the speed of the vehicle in each time step.

Krauss et al.’s (1996) continuous version of the Nagel-Schreckenbedgl mgenerates

similar dynamics to those in the Nagel-Schreckenberg model emtepigh densities.

Furthermore, unrealistic deceleration is observed becausafthgelocity is calculated using
the gap between two consecutive vehicles. To overcomeithisem, Krauss and Wagner
(1997) developed a model (known as S-K model), as shown in Equatjon (24

Vit+1) = min[Vn(t) + Amax Vmax Vsafe]

Vot +1) =V (t+1) — (Vi (t + 1) = (a(t) = bmax) “
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ViEe+1) = Vran,VO,V,’{
Xt + 1) =0, () +V,(t+ 1)

wherel; is the optimal velocityV;.q,, v, v,; is @ random term between the optimal velocity and
the deviation from the optimal velocibp, ¢ is the parameter determining the deviation from
the optimal velocityVsye is a safe velocity below which no crashes are generatednaime
difference between the Nagel-Schreckenberg model and the S-K indllat the S-K model
calculatesVgie based on maximum allowable deceleration (as adopted from Gipmigl).

It is reported that the S-K model outputs more realisticfi¢ratharacteristics at the
macroscopic level. (For a detailed review of other CA-b&3ednodels, see Maerivoet and
De Moor, 2005.)

3. CAR-FOLLOWING MODELS: THE HUMAN PERSPECTIVE

The aforementioned Engineering CF models mostly focus on a drphysical signals,
rather than on their psychological reactions. Boer (1999) criicike inability of these
models to explain human driving behaviors during CF. This is bechegeassume that: (i)
drivers aim for optimal performance; (ii) driving is equivalémthe continuous application
of a single control law; (iii) drivers use inputs that they may be able to perceive, but are
somehow able to compute; and that (iv) everything that cannot berexplay the model is
noise, and can be attributed to perceptual and control limitations.

Most of the Engineering CF models provide no psychologically plausitaeacterization of
how humans think about, and address, the driving problem. In normal andcoffigrex
driving situations, humans adopt strategies that are ade@ihéz than optimal because of
their incomplete knowledge or insufficient time to evaluatepaBsible alternatives. If the
current driving situation is acceptable, there is no reasonod& for, and evaluate,
alternatives; for example, if the speed is acceptabéee tis no need to accelerate or waste
resources to look for opportunities to overtake. This phenomenon contiadditonal CF
models where optimality requires that drivers expend all res®uwnetrying to improve
performance (Boer, 1999; Hancock, 1999). These criticisms ahé&ggng CF models are
supported by the findings detailed below.

First, the surrounding environment plays an important role in ¢wkeving situations (such
as urban areas and traffic congestion). In these situatiossinlikely that drivers drive with
the worst-case safety assumptions in mind. For example, despiteuggested minimum
headway of 2 sec, 95.8% of drivers follow a headway less that,2asd 47.9% have
headways even less than 1 sec on the M27 motorway in UK (Boaekst al., 2002). Similar
situations have been observed on German freeways, where prénedemtays are 0.9 ~ 1
sec; in some instances, headways are found to be as low ax (3eaber et al., 2006).
Research suggests that the surrounding environment (i.e. caomgideext-nearest
neighboring vehicles, visual distractions, etc.) can have réfisant influence on driver’s
confidence and driving behavior (Muhrer and Vollrath, 2011; Treibal.,€2006). Therefore,
the surrounding environment should be considered in CF models.

Second, each driver and driving style is different. Age agwder, for example, affect a
driver in his/her perception of risky driving situations. A sureéydrivers from Alabama,
US, for example, shows that male teenagers engage more figguenmtsky driving
situations (e.g. close following, driving faster than theesblimit, etc.) than female adult
drivers (Rhodes and Pivik, 2011). Ossen and Hoogendoorn (2011) found that redmside
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differences exist between the car-following behaviors of passecge drivers. They
observed clear differences in desired spacing and desired timi&dysaamong the drivers.
Driver heterogeneity is also observed among car drivers arkl drieers where the latter
group in general appears to drive with a more constant speedf W$elligent transportation
systems and cooperative systems also influences glistytes (Farah et al., 2012).

Meanwhile, driving needs may also influence driving styBxser and Hoedemaeker (1998)
categorize driving needs into ‘motivational’ and ‘constraininguatibns. Motivational
driving involves situations such as the need to get somevidmgrer the enjoyment of high
speed or pleasure (e.g., favoring certain routes, enjoying theusdmgs), whereas
constraining situations can be related to safety, workload, ecorowsi, social compliance
and the need for comfort (in terms of acceleration and jerk).

Finally, a list of human factors based on the literaturg.,(dHamdar, 2012;Treiber and
Kesting, 2013) is presented here:
a. Socio-economic characteristics (e.g., age, gender, inconegtemy family
structure)
Reaction time
Estimation errors: Spacing and speeds can only be estimdkelimited accuracy
Perception threshold: Human cannot perceive small changéamini
Temporal anticipation: Drivers can predict traffic situationthe next few seconds
Spatial anticipation: Drivers consider the immediate precealnigfurther vehicles
ahead
Context sensitivity: Traffic situation may affect drivistyle
Imperfect driving: For the same condition drivers may behaverdiitly in different
times
Aggressiveness or risk-taking propensity
Driving skills
Driving needs
Distraction
. Desired speed
Desired spacing
Desired time headway

~pooCT

JQ

osg—xT

This section reviews the notable developments in attemptactorporate these various
human factors into the Engineering CF models.

3.1. Use of perceptual thresholds

Engineering CF models unrealistically assume that driverspeateive and react even to
small changes in the driving environment (for example, tdnstihange in speed difference
or spacing). To overcome this problem, Wiedemann (1974) introducésrihéperceptual
threshold’ to define the minimum value of the stimulus a drbear perceive and will react
to. The models based on perceptual threshold are also known as “‘psysical’ models.
The threshold is expressed as a function of speed difference andgspatween the
preceding and subject vehicles, and is different for accedaratid deceleration decisions. It
increases driver alertness when spacing is small, and provioesfreedom when it is large.
An example of the distribution of the thresholds is shown in Figur€he thresholds are
defined as:
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AX  The desired spacing between the front sides of two stigzeesshicles in a standing

queue

BX  The desired minimum following distance, which is a functionAdf, the safety
distance, and speed

SDV The action point where a driver consciously observes that hie/ssgproaching a
slower leading vehicle; SDV increases with increasing sgdéftence

CLDV Closing delta velocity (CLDV) is an additional thresthohat accounts for additional
deceleration by the application of brakes

OPDV The action point where a driver notices that he/shiewses than the leading vehicle
and starts to accelerate again

SDX A perception threshold to model the maximum following distangbkich is
approximately 1.5-2.5 times BX

Figure 1: Wiedemann’s CF model (Source: Wiedemann, 1974)

The dark line in Figure 1 shows the decision path of an approachingeveRialehicle
travelling faster than the leader will get close tanitil the deceleration perceptual threshold
(SDV) is crossed (at Point A). The driver will then decatierto match the leader’'s speed.
However, as a human being, the driver is unable to accuragigate the leader’'s speed,
and spacing will increase until the acceleration perceptuashbtd (OPDV) is reached (at
Point B). The driver will again accelerate to match theldea speed and the process
continues, as shown in the unconscious reaction zone.

A modified version of the original Wiedemann model has been usedeirtammercial
microsimulation software VISSIM (Fellendorf and Vortisch, 2018gveral calibration
attempts for VISSIM model exist in the literature. Forrmagée, Park and Qi (2006) used
Genetic Algorithm (Goldberg, 1989) to estimate model parame@usjes et al. (2004)
manually calibrated four driver behavior parameters (among teng Wépt the others as
default; IStoka Otkowi et al. (2013) used neural network approach to calibrate the model
parameters; and Lownes and Machemehl (2006) conducted sensitialysia of the
simulation capacity output under various driver behavior paese

In a similar CF model by Fritzsche (1994), the CF plane igl@ilvinto five regions, as
shown in Figure 2. For clarity, the figure is drawn for a @gecwith two vehicles where the
preceding vehicle is travelling at 20 m/s.

Figure 2: The CF phase diagrdsource: Fritzsche, 1994)

PTN Perception Threshold Negative is the negative relateed, i.6d}, > V,,_;.

PTP Perception Threshold Positive is the positive relafreed, i.eV,, < V,_;.

AD Desired distance threshold represents a comfortable drulistgnce:AD = A, +
T.V,, whereA, is the standstill distance from the leader dnis the desired time
headway.

AR  Risky distance threshold is defined for conditions when spasirtgo small for
comfortable driving:AR = Ay + Tf.V,,_4, WhereT; is a fixed time headway with a
magnitude of 0.5s.

AS  Safety distance threshold represents situations when tbedolrealizes that he/she
decelerates too much and reaches a safety distance witltiaepsiseed difference.
The follower then accelerates to match the leader'sids@ée= A, + Ts. V;,, whereTy
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is the safe time headway, and is considered as 1s. Btel mequires th&t > T, >
Tr.
f

AB  Breaking distance threshold is an additional threshold appliasidial collisions that
might occur at high speeds.

These six thresholds divide the phase space into five regiongeDaClosing in, Following
I, Following Il, and Free Driving. According to the model, ddaler will decelerate only
when he/she is in either ‘Danger’ or ‘Closing in’ regions.

Brockfield et al. (2004) presented a calibration attempt forzdfré (1994) model with
vehicle trajectory data using a gradient-free optimizationhatetknown as “downhill
simplex” (Lagarias et al., 1998). However, the estimatésults are not reported.

Fancher and Bareket (1998) propose an extension of the psycho-physica({\Wiedelmann,
1974) by introducing a comfort zone which is used when a driver is witt@dozof the
desired spacing. Being unable to perceive the speed differelat@erdo the leader, the
driver will try to maintain the current speed in this zone. The-flow zone (or no-reaction
zone) is outside the comfort zone where the desired speedhisimad by the driver.

3.2. Driving by visual angle (DVA)

Michaels (1963) points out that visual extent or size of the giegerehicle contributes to a
driver's perception of the driving situation. Later, Gray amfjdh (1998) show that human
drivers are ill-suited to estimate longitudinal distancesplabes velocities, and accelerations
of other objects in the scene. Rather, they are capdbéeonrately estimating time to
collision (TTC) based on visual angles subtended by the precedingevéthat is, visual
angle divided by rate of change of visual angle).

The basic assumption of the visual angle model is given by Mgb@63) who states that
when drivers are approaching a vehicle in front, they perckessituation from the changes
in the apparent size of the vehicle. More specifically réiative speed is perceived through
the changes in the visual angle subtended by the precedimievéitie visual angled()) can
be calculated using Equation (25):

0, (t) = 2arctan < (25)

w ~ w
zsn(t)) T 5.0

The angular velocity is found by differentiating this equation wiipeet to time, as shown
in Equation (26)

AVL(1)
(Sn(®))?

d
G =-W (26)

whereW is the width of the preceding vehiclg, is the spacing between the preceding and
the subject vehicles, measured from the front edge of thecswehicle to the rear end of
the preceding vehicle, add/, is the relative speed between the two vehicles.

Visual angle is used to replace relative spacing from teeepiing vehicle, and angular

velocity is used to replace relative velocity (or speeckrbfice) in several Engineering CF
models. As shown in Equation (27), Andersen and Sauer (2007) modifigds H&DB59)
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model by using visual angle as the stimuli. They call thasieh ‘Driving by Visual Angle’
(DVA)

d
6 (D) é'n(t)> A

an(t) = a( 6n (1) (27)

where@,, is the visual angle extent of the preceding vehi€leis the desired visual angle
subtended by the preceding vehidl#,,/dt is the rate of change in the visual angle; and
a,A are constants. The desired distance headway (or desired viglegl should vary with
speed, and is estimated by using the following formula

~ w
Hn(t) = 2arctan <m>

where T,, is the desired time headway, akf is the speed of the subject vehicle. The

simulation based on the DVA model produces sinsieed and acceleration profiles, as
observed from the actual driving situation. Howeivers’ reaction time is ignored in the
model, and a constaf}, is used for simplicity in the simulation.

In a similar study, Jin et al. (2011) modified theél velocity difference (FVD) model
(described in Section 2.4) using visual angle,edgdd in Equation (28)

an(® = al O,(0) = V(O] = 1 30,0 8)

whered#8,,/dt is the rate of change in the visual anglend/. are sensitivity coefficientd,;
is the optimal velocity a driver prefers based lom Yisual angle subtended by the preceding
vehicle, and can be calculated as

Vn*(gn(t)) = Vl + VZ tanh(clsn(t) - CZ)

where S,, is the spacing between the two vehicles; &hdV,, C,, C, are parameters.
Basically, this model is a conversion of the orgifVD model, using visual angle. The
authors have used the same parameter values tdatalg as were used in the FVD model.

Selecting an appropriate visual angle thresholavelver, can be challenging. According to
Michaels and Cozan (1963), the visual angle threéshanges between 0.0003 to 0.001
rad/sec, with an average of 0.0006 rad/sec. If amsider a preceding vehicle’s width of
1.8m and a speed difference of 10 km/hr, a threistmlue of 0.0006 rad/sec indicates that a
driver can detect a change in angular velocity esudéd by the preceding vehicle when the
relative spacing is less than 91 meters. Ferrd@B4)l assumes a fixed angular velocity
threshold (i.e., 0.0003 rad/sec), with the minimtime headway between two successive
vehicles of 1sec, for his traffic simulation modélowever, in a study of 60 drivers,
Hoffmann and Mortimer (1996) found that subjectgavaot able to perceive the relative
velocity or to make reasonable estimations of TiTfie angular velocity was less than 0.003
rad/sec.

3.3. Driver risk-taking, distraction, and error
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Drivers’ risk-taking behavior, distraction, and arrin crash-prone and other extreme
situations are probably the least explored topiahe CF modeling literature. In this section,
notable efforts to consider these factors in CFefing are reviewed.

3.3.1. Use of Prospect Theory to model risk-taking behavior

The cognitive process of driving in risk-takingusitions involves perception, judgment and
execution of a particular decision strategy (fomraple, braking or lane-changing). This
process can be treated as a human decision-makoigem where variables such as
surrounding traffic, the environment, and the ratirthe drivers themselves (of varying age,
gender, driving experience, and risk attitude)lizedy to affect driving choices.

The expected utility theory (Neumann and Morgemst&®49) for decisions under risk is the

basis for modern decision-making theories. Howewecpnsistency between the actual
decisions made and the decisions predicted by tihy theory led to the need to develop

more realistic models to describe actual decisimtgsses. In particular, prospect theory by
Kahneman and Tversky (1979) is a well-acceptedrig#gs® model that captures human

decision making when there is the possibility ekyi outcomes.

Hamdar et al. (2008) and Hamdar et al. (2014) agvel driver behavior model based on
Kahneman and Tversky’s (1979) prospect theory. ipaity, their model considers driving
as a sequential risk-taking task. In their modedhKeman and Tversky's prospect theory
provides the theoretical and operational basismMeighing a driver’s alternatives. The main
variable of interest in the model is the subjectwebability ¢, ;) of being involved in a
rear-end collision with the preceding vehicle. Tipiobability depends on acceleration,
spacing, and speed difference, as shown in Equéin

AV, (0)E, + O-San(fn)z - Sn(t)> (29)

Pn,i = pn(t + Tn) =¢ < O'(Vn—l)fn
wheret,, is the anticipation time spas, denotes spacing from the preceding vehicle, and
¢(z) is a cumulative distribution function for the standized Gaussian.

The gains (or losses) in this model are expregseerins of increase (or decrease) in speed
from the previous acceleration instance, and anstcained by the maximum desired speed
of the driver and non-negativity of speed. The gdlunction explaining the gain or loss using
prospect theory is defined as in Equation (30)

Upr(ay) = x[w + 0.5(1 — w)(tanh(x) + 1)](1 + x2)%50~D (30)
where x = a,/ay; y (non-negative) is the non-negative sensitivity pater, a, is an
acceleration normalizing factor (set to 1fjysndw is the weight associated with negative

acceleration. The driver sequentially evaluateslickte accelerations and eventually selects
the one with the highest probability, using thédwing equation:

U(an) = (1 - pn,i)UPT(an) - pn,ich(Vm AVn) (31)
If driver n decides to accelerate at instandee could increase speed (considered as gain) or

be involved in a rear end collision (consideredoas) with a probability of,, ;. The loss in
a probable collision is assumed to be related to tevms: a seriousness tektl},, AV},)

18



O©CO~NOOOTA~AWNPE

representing the expected consequence if a colllséa occurred, and a weighting factgr

(a highernw, corresponds with conservative drivers, and a lowewith aggressive drivers).
Finally, to reflect the stochasticity in drivergsponses, the selected acceleration is retrieved
from the following probability density function

exp[f x U(a,)]
a Amin < an < Amax
flan) = { Jo. explB x U(a))]da’ (32)
0 otherwise

where parametef > 0 reflects the sensitivity of choice to the itytilU(a,). It can also
account for the experience of the driver, i.e. ghr number for more experienced drivers
reflect more stable driving style than the stylehef least experienced driver.

The proposed model allows risk-taking maneuversnwdrévers are uncertain of the leader’s
future behavior and, consequently, crashes areibp@ssTalebpour et al. (2011) later
extended this model to consider surrounding tradfimditions (especially congested and
uncongested situations). A driver can have differpreferences, and hence different
responses, to the same situation because of diffexgrrounding traffic conditions. For
example, in free-flow conditions, higher accelenatrates result in higher utilities; however,
in congested traffic, the perceived pressure ugwdificourages drivers from accelerating.
Therefore, two behavioral regimes are proposedh wito different utility functions, as

indicated in Equation (33)

Upr(az) = P(C) - Ur(ay) + (1 = P(C)) - Upf (an) (33)

whereP(C) denotes the probability of a driver being in agested regime, and depends on
several factors such as speed, average spacing\emdge speed difference between the
subject vehicle and the preceding vehicles inaalek, and the average spacing and average
speed difference between the subject vehicle amdottowing vehicles in all laneg$; and
Ut are utility functions for congested and uncongdstaffic conditions respectively. The
model was calibrated using Next-Generation SimoaNGSIM) data (Alexiadis et al.,
2004). The calibrated model shows consistency witberved phenomena in real traffic —
phenomena such as: the probability of high acceteraates decreases with an increase in
density; higher spacing leads to higher acceleratates; the higher the speed, the more a
driver desires to reduce speed; and, in a congsgigation, drivers maintain a speed closer
to the average speed of the surrounding vehiclasda a crash.

3.3.2. CF models which consider driver error and distraction

Human drivers are prone to making driving errorkjolr are responsible for crash in most
cases. ‘Human error’ is a broad term that has lbeed rather loosely to encompass almost
all the unsafe acts that lead to crashes. Rea®80) tlassifies unsafe acts into two distinct
classes of behavior: errors and violations. Anoercan be defined as the failure of planned
actions to achieve the desired outcome, whereaslation’ is the deliberate infringement of
some regulated or socially accepted code of beh&varker et al., 1995). Violation can be
committed for a variety of reasons and can be mdjeished through the issue of
intentionality. Parker et al. (1995) found that teedency to commit driving violations is a
positive predictor of crash involvement, whereadink between error-proneness and crash
involvement was found. Stanton and Salmon (200@hén categorize driver errors into five
groups: action errors, cognitive and decision-mglerrors, observation errors, information
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retrieval errors, and violations. CF can be affedig any of these errors; however, how and
to what extent it is affected remains elusive aglires future research. This review focuses
on driver errors — especially those caused byatistms.

‘Driver distraction’ can be defined as a diversajrattention away from activities critical for
safe driving to a competing activity (Lee et abD08). ‘Distraction’ is also described as multi-
task driving which reduces attention to drivingelts Studies have shown that multitasking
while driving deteriorates driving performance, regses reaction time, and impacts lateral
lane position and vision. This, in turn, posesaesisafety hazards on the roads where 10%
to 80% of reported crashes are related to disttadtving (McEvoy and Stevenson, 2007,
Przybyla et al., 2012; Stutts, 2003). In a recaview of driver distraction, Young and
Salmon (2012) explain how distraction could be oesjble, at least to some extent, for most
driver-related errors.

A major limitation of Engineering CF models is tlaéy are designed to produce crash-free
environments for the convenience of microscopiffitrasimulations. However, crash-free
environments are not always desirable, for exanfplethe study of extreme situations in
safety analysis, and for the measurement of thecifeness of in-vehicle active safety
technology. Hamdar and Mahmassani (2008) exploierdwell-known Engineering CF
models to observe their behaviors in crash-proeatsons by relaxing their safety
constraints. They simulated 3600 vehicles on arfithighway in a 2-hour period, and their
findings are summarized in Table 1 (below).

Table 1: Summary of findings of six Engineering @Bdels after relaxing safety constraints
(Source: Hamdar and Mahmassani, 2008)

With these modifications, the Wiedemann, Gipps &A models showed more stable
behavior compared to the GHR, S-K and IDM/IDMM misdealthough the number of
crashes is unrealistically high. These finding$ fala richer representation of the cognitive
process in the Engineering CF models, in orderadywce realistic crash-causing behavior.

To more effectively incorporate human behaviorahsiderations into Engineering CF

models, Van Winsum (1999) extended Helly’'s (19583iced spacing model. The proposed
model captures human behavior through the dedimedlieadway, assuming that there could
be substantial differences in the desired time Wwagdbetween drivers that reflect variables
such as driving conditions and mental effort. Frareple, less skilled drivers generally

choose to drive with larger time headways to awmdisions. Heino (1996) found that a

driver's mental effort increases (as indicated lvgauction in heart rate variability) when the
time headway is smaller than the preferred one. Wamsum (1999) modified the desired

spacing in Helly’'s model as

A, =T, V,

whereT, denotes the desired time headway, which can baeinfled by visual conditions
(such as fog, rain and night driving), driver stégach as fatigue and inebriation), and the
mental effort deployed in following the precedinghicle. When the distance to the
preceding vehicle is smaller thaesired, the driver is assumed to decelerate Ditilis
reached. Van Winsum (1999) also shows that, inomsp to the preceding vehicle’s
deceleration, the subject vehicle decelerates avitite as shown in Equation (34)
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f
b, = a.e. [AXn/\/an_l(Ef(n —AX,)| +B+e (34)

where b,,_; is the deceleration of the preceding vehigeis a random error term, and
a,B, e, f are parameters. The use of the preceding vehidegsleration can be problematic
and is rare in the CF literature because it is d#fjcult for the driver to measure it. Rather,
Gipps (1981) uses the driver's estimated deceteraifi the preceding vehicle. The model
only covers the negative acceleration of the drid@racceleration algorithm for the model is
proposed by Wang et al. (2011), and is shown irakgn (35)

an = a(AX,/AX,) + B(AV,) + A+ ¢ (35)

wherea, f are constants} represents the influence of driving purpose andirgdy habit;
other variables are the same as those for Equ#88h However, acceleration’s direct
dependency on distance can lead to unrealisticleaatien rates. The model has not been
tested using real data.

Treiber et al. (2006) point out that the majorifyEmgineering CF models (such as OVM,
FVD and IDM) produce unrealistic dynamics and ceastiuring simulation. Therefore, they
compensate for the destabilizing effects of reactimes and estimation errors (v, TTC)

by considering the spatial and temporal anticipatiof the driver. More specifically, Treiber
et al. (2006) propose four extensions to IDM: &nieaction times, estimation errors, spatial
anticipation, and temporal anticipation. They dakir model the ‘Human Driver (meta-)
Model’ (HDM). In this model, the driver is aware thie surrounding traffic environment and
can modify their driving behavior accordingly.

Przybyla et al. (2012) extend Newell’'s (2002) sifigd CF model to accommodate the
impact of distractions on driving. They assume thatdistracted driver continues to drive at
the constant speed (attained in the previous tbey@ shroughout the distracted event. Their
model divides the driver’s trajectory into two tgpehe trajectory followed by a perfect

driver (in other words, a perfect follower who das described by Newell’'s model), and the
trajectory followed by a distracted driver. Howevthrey further assume that the driver is
either distracted or not distracted for the entmagectory. This could be problematic in

representing actual behavior.

Bevrani and Chung (2012) improve Gipps’ (1981) nidiyeconsidering human imperfection
in processing information and executing actions.riMepecifically, they include human
perception limitations in detecting speed diffes)cextra delay in driving phase changes
(assuming that reaction time increases after being fixed situation; that is, either in a
constant speed or in an acceleration phase), amdrdmperfection in adjusting speeds.
However, human errors, such as distraction andaiskg, are omitted in their model.

An error-able CF model is proposed by Yang and R20¢0). For the evaluation of active

safety technologies (AST), they propose a stoaha@E model with an error mechanism

derived from the Road-Departure Crash-Warning Systeeld Operational Test (RDCW), a

large-scale naturalistic driving database. The rhodleulates the desired acceleration of the
driver as a function of following distance, speeffedence, and/or time headway. It also

considers uncertainties in calculating the finalederation, assuming that when the following
distance is large, the driver cannot perceive ately and has more room to deviate. The
Yang and Peng (2010) model is represented by Equélb)
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8,0 = f, (BX,(0).4Y,(1).T,)

y 36
a,()=(3,1,0) %)
whered,, is the desired acceleration, amaaptures the deviation. The model’'s parameters
are calculated from the RDCW database. Three ntgpars of driving errors are introduced:
perceptual limitation, time delay, and distractiothe human perception limitation is
implemented based on the same method as the ocbeelsin Section 3.1: the introduction
of the minimum threshold of speed difference thalriger can detect and will respond to.
Time delay is estimated through a recursive leagtare identification process, and
distraction is identified based on the statist@aalysis of the RDCW data. The frequency
and duration of distraction are also estimated.irfudistraction, the model continues to use
the information from the previous time step withaptating it.

4. CONCLUSIONS AND DISCUSSIONS

This paper presents a review of the state-of-thesRICF modeling from two different
perspectives: the engineering perspective and dineah factor perspective. Representative
models of each perspective have been reviewed. mam features of these models
(including their strength and weakness) are alsmnsarized in Table 2 and Table 3,
respectively. Compared with previous reviews of iI@édels, the paper is unique in that it
provides a comprehensive review of notable attertgptsicorporate human-factors in CF
models through various approaches, such as visugle-#®ased models, and models that
consider driver risk taking, distraction, and drieerors.

Table 2 Representative CF models: the engineegrgppctive
Table 3 Representative CF models: the human faeti@pective

This review is an important step in advancing Ckleting, as the disregard of human factors
(such as perceptional limitation, risk-taking bebaverror, and distraction) in the current CF
models means that they are unrealistically ovepiirad. Overall, the main limitation of the
Engineering CF models is that they do not reflebe tpsychologically plausible
characterization of how humans think about, andish, driving tasks. For example,
they do not capture the interdependencies amondetisions made by the same driver over
time, or the effect of the surrounding environmgnich as visibility and surrounding vehicle
dynamics). The models represent instantaneousiolegigaking, which underestimates a
driver’s planning and anticipation capabilities,iMoverestimating their ability to evaluate
all possible alternatives and to achieve an optleadl of driving performance. This, in turn,
means that they are unsuited to the investigatiormportant issues which demand fine
representations of driver behaviors. These issugsde the analysis of crash-prone traffic
conditions; the understanding of widely-reportedziimg phenomena such as capacity drop,
stop-and-go oscillations, and traffic hysteredig ticroscopic analysis of traffic dynamics;
and the development and evaluation of advanceahetwntrol and safety systems.

Note that there are many (commercial or free) nsicopic simulation software packages
available based on various CF theories. For a |[de¢gmiew on popular microscopic
simulation packages, see Barcelé (2010). Althougmes of these simulation packages
attempted to account for human behavior features, (e reaction time distribution and
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perceptual thresholds are used in VISSIM and PARBS)I many human factors which are
crucial for describing human car-following (CF) laetor are, by and large, ignored (e.g.,
driving error, distraction, and risk-taking behayio

To conclude this paper, common issues and reseatis (in the authors’ opinion) in data
collection, model development, model calibrationd avalidation in modeling CF are
summarized below.

Data collection Fully incorporating human factors into the Engiireg CF models pose
challenges in data collection. The primary datas®used for developing CF models is loop
detector data or trajectories at best, which caly provide basic vehicular information.
Driver characteristics, which are critical for dawéring drivers’ thinking processes during
the CF procedure, cannot be extracted from thie tyjpdata. This serious data limitation
often leads to the fact that human factors arellysager-simplified in the few CF models
that indeed considered human factors. These moeledsl on only one or two parameters to
indirectly capture the total impact of drivers’ mdual characteristics and cognitive features.
Examples of these parameters are: perceptual thidsshreaction time, visual angle,
maximum desired speed, desired time headway, andTee model parameters related to
human factors in most cases are unobservable imenahd, hence, are difficult to calibrate
and validate using mainstream traffic data, whifleroleads to a further simplification of
assuming these parameters to be constant acrogsliradls ignoring driver heterogeneity. In
our view, to obtain these model parameters, inmexadata collection methods aiming to
capture drivers’ psychological disposition, peraaml performance, and cognitive function
during CF are needed. For example, reaction timéifferent car-following circumstances
can be observed from experiments using advancednglrisimulator (see Haque and
Washington (2014) as an example). Other humanraatay also be obtained (completely or
partially) by using driving simulator and/or froreal driving experiments with instrumented
vehicle. Of course, drivers in traffic flow may fzefe differently from what is observed from
these experiments. Undesirable impact of suchefisercy can be minimized by employing
advanced data analysis techniques. Unfortunatelypur extensive literature review we
observed very few experiments designed for obtgirimman factors critical for car-
following modelling. More work in this regard isearly needed. To get around the issue of a
lack of human data, two common practices are: hicleetrajectory data are used to estimate
some of these human factors (e.g., Brockfield et 2004; Park and Qi, 2006) with
optimization technique; or even worse, b) valuesnfithe human factor literature or simply
based on common sense are applied.

Model developmentOverall, human-factor-oriented CF models are coatpaely few in the
literature, while Engineering CF models are predwmi. Some recent advances in CF
modeling attempt to enhance the Engineering CF ool incorporating a few human
psychological characteristics. However, futureeagsh on this front is in great need in this
regard because many important psychological faet@still missing from these models (for
example, error-able CF, distractions, driving needh&l interaction with other vehicles). To
develop humanlike CF models, it is necessary t@inbé common understanding of the
problem by seamlessly integrating the latest ademricom both the Engineering and the
human-factor-oriented CF models, bridging theirggamd reconciling their inconsistencies.
While a number of different psychological parametare suggested by various researchers,
no studies have ranked their importance in desaidriver behavior in the CF situation, or
attempted to accurately quantify their values. @gngntly, many of the reported models
simply take psychological parameters from the hurfator literature without validating
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them within the context of CF. Meanwhile, althoutiie need for incorporating human
factors into CF models is great, adding these faatan dramatically increase the model’'s
complexity, which underscores the importance of nta@ning the balance between
maximizing the model’'s predictive and explanatogwpr and minimizing the model's
complexity. As recommended in Zheng (2014), factmssidered in the model need to be
behaviorally, empirically, and statistically justii for the target driver population. Another
important and often-ignored issue in developingraddels is that the CF model should be
able to be easily integrated into mainstream ldr@nge modeling frameworks to provide a
complete description of vehicular movements on road

Calibration and validation: CF models often contain a wide range of variabtesing a
significant challenge for model calibration andidation. Discussions on calibrating CF
models are scattered in the literature (e.g., Beddlet al., 2004; Kesting and Treiber, 2008;
Ossen and Hoogendoorn, 2008; Hoogendoorn and Hdogem 2010), however, guidance
on the systematic and rigorous calibration anddediibn of traffic flow models is still
lacking. The majority of the models were testethexitnumerically or by matching certain
macroscopic traffic flow features (which, stricBpeaking, can only invalidate microscopic
CF models). This free-style approach causes suimtannfusions, even cherry picking. In
our view, a bi-level evaluation strategy shouldgeeerally preferred in developing a new CF
model: at the macroscopic level, the model shoelddpable of explaining widely-observed
traffic flow characteristics; at the microscopiwdé vehicular movements should be close to
actual observations (e.g., trajectories, speedl@r@nd acceleration profile). Furthermore,
similar to lane changing models (Zheng 2014), wahic data used for calibrating and
validating CF models were mostly collected in depeld countries where drivers are
generally less aggressive than their counterpartieveloping countries. To capture the full
spectrum of CF, it is desirable to use data comtgirmore diverse driving behaviors,
particularly more aggressive driving behavior. Rinacalibrating and validating CF models
containing human factors are even more challengegause of the difficulty in measuring
these human factors, which often forces researdbgever-)simplify the representations of
the human factors in calibrating CF models, asudised previously.

In summary, an improved and more comprehensiveeseptation of human factors in CF
models can lead to the next breakthrough in modeighicular movement on roadways. This
comprehensive literature review of the state-ofdltein the research field of human factor
CF modeling is highly significant in providing amprehensive knowledge base for this
future work.
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APPENDIX: NOTATIONS

Vo, Vl' Vz, Cl' CZ

Xn» Xn—1
AX,,
Iy
L4
Sn-1
Sgap

Acceleration applied by driver (positive or negative)
Desired acceleration of driver

The comfortable acceleration/deceleration
Maximum acceleration/deceleration

Deceleration of driven

Deceleration of driven-1

Desired deceleration of drivar

An estimate of the deceleration applied by the gutery vehicle
Maximum acceleration

Speed of subject vehicle

Optimal velocity

Desired speed

Speed difference between the subject vehicle theeging vehicl€V,,_; — 1}, )
Maximum velocity

Safe velocity for a vehicle

Constants

Position of vehiclen andn-1 respectively

Spacing from preceding vehicl&X, = x,_{ — x,
Desired following distance

Length of the preceding vehicle

The effective length of vehicn-1 (L,,_, + safety gaf
Safety gap between two vehicle

Spacing between two vehicles measured from the &dge of the subject vehicle

to The rear end of the preceding vehisS,, = AX,, — L,

DesiredsS,,

Width of the preceding vehicle

Vehicle spacing at standstill situation

Constant which represents minimum spacing

Time

Reaction time

Time span for a decision

Time headway, Time shift

Desired time headway

Probability of being involved in a rear-end coltisiwith the preceding vehicle
A tabulated cumulative distribution function foetktandardized Gaussian.
Represents a memory function

Heavisid«function with a value of either 0 o

Headway

Critical headway

Normally distributed error terms for car-followiagd free-following

Random normal distribution with mean 0 and standandation 1
Parameters

Jam spacing

Density of traffic ahead

Gradient difference in a sag

Visual angle subtended by the preceding vehicle

Desired visual angle subtended by the precedinigheeh

The rate of change in the visual angle
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19 Figure 1: Wiedemann’s CF model (Source: Wiedemann, 1974)
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44 Figure 2: The CF phase diagram (source: Fritzsche, 1994)
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Table 1 Summary of findings of six Engineering CF models affaxing safety constraints
(Source: Hamdar and Mahmassani, 2008)

M odel M odification of the safety constraint Result

GHR model The sensitivity teriis treated as a random variable with/a complete flow
normal distribution 4,;,cqn = C/AX,, ; Astq =0.1, whereC  break-down with the
is a constant). However, this modification alone ribt occurrence of 561
cause any crashes. Crashes were created A¥hemas crashes
treated as a normally distributed random variabite w
mean ad\l;,, and standard deviation of 0.5.

Gipps’ model Gipps’ model has a safety constraipt ; — s,,_1 > x, The normally
wheres,,_; is the safety distance. A normally distributed distributed random
random risk ternD,, is subtracted from,,_; so that the risk termD,,with mean
safety distance can be negative to allow crashesdor. 0.1 and std 0.1 created

42 crashes.

Continuous The safety constraint is relaxed by allowlfg,, = 544, 29 crashes were

version of CA and by allowing speed to be equakjg,, + 0.1meter. produced.

model (Krauss et

Unrealistically high

al., 1996) deceleration rates were

observed.

S-K model Vsare in the S-K model is increased by 0.27 m/s; howeveA total of 2013 chain
no crashes were generated UWjl;, was increased to type crashes occurred,
0.45m/s. and occupied most of

the 10 km highway.

IDM and IDMM In the IDM model, the last term in thaesired spacing A complete traffic
V, (H)AV, (1) breakdown with 1211
——=—=—= creates the safety buffer. The safety buffgfssnes for IDM and
2\ e oo 674 crashes for IDMM
was removed to create crashes. were observed.

Wiedmann The emergency braking mode is used to prevent esash7 chain-type crashes

model This mode was replaced by a normal mode of ded&ara were observed.

and the safety constraint was removed from therelbsi
spacing threshold (BX) to generate crashes.
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