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Abstract. Flexible information exchange is critical to successful 
design integration, but current top-down, standards-based and model-
oriented strategies impose restrictions that are contradictory to this 
flexibility. In this paper we present a bottom-up, user-controlled and 
process-oriented approach to linking design and analysis applications 
that is more responsive to the varied needs of designers and design 
teams. Drawing on research into scientific workflows, we present a 
framework for integration that capitalises on advances in cloud 
computing to connect discrete tools via flexible and distributed 
process networks. Adopting a services-oriented system architecture, 
we propose a web-based platform that enables data, semantics and 
models to be shared on the fly. We discuss potential challenges and 
opportunities for the development thereof as a flexible, visual, 
collaborative, scalable and open system. 

Keywords. Visual dataflow modelling; design processes; 
interoperability; simulation integration; cloud-based systems. 

1. Introduction 

There is a clear and urgent need for better information exchange strategies 
to address the persistent lack of interoperability and integration in building 
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design, analysis and construction. Recognising that most design teams use a 
variety of software applications and platforms, the question that remains to 
be answered is: How can we develop tools and technology that support 
designers in creating their own design processes, rather than having to adapt 
their processes to suit the tools’ rigid requirements? 

The key idea we present in this paper is that bottom-up, user-controlled 
and process-oriented approaches to linking design and analysis applications 
are more appropriate than current top-down, standards-based and model-
oriented strategies, because they provide degrees of flexibility critical to the 
process(es) of design. This idea comes from discussions raised at the “Open 
Systems and Methods for Collaborative BEM (Building Environment 
Modelling” workshop held at the CAAD Futures 2011 Conference in Liège, 
Belgium, early in July 2011. Here, we continue the ‘open systems’ dialogue 
with a conceptual framework for bringing this idea into practical 
application, aiming to reduce current obstructions to collaborative design. 

We propose an open framework for integration where numerous small 
and specialised procedural tools are developed, adapted and linked ad-hoc, 
to meet the needs of individual design projects and project teams. These 
modular components encapsulate individual tasks that aid information 
exchange between domain-specific software by (semi-) automating typically 
tedious and non value-adding tasks associated with matching and mapping 
data across different schemas. A cloud-based platform enables project- and 
user-specific workflows to be created, shared and managed on distributed 
resources, via web interfaces that allow users to interact with workflows 
graphically. This, in combination with the elimination of file format and 
mapping language restrictions, ensures maximum flexibility. 

Drawing on research into scientific workflows, we describe system 
requirements to guide future development of the proposed framework. We 
present a system that dispenses with an ontological premise for integration, 
and discuss the benefits and challenges that such a system presents for 
design practice and outcomes. Although no implementation of the 
framework has yet been created or tested, we are in the process of 
assembling a team of researchers and practitioners interested in pursuing our 
proposal. We are confident that the approach described in this framework 
will lend itself well to coping with the frequently changing pace and focus 
of design projects, as well as the varying priorities of their many 
stakeholders. 

2. System Architecture 

Similar to the AEC industry, increasing complexity in scientific research 
and practice has led to a proliferation of specialised computational tools, 
each developed by different people, at different times, to support different 



 CUSTOM DIGITAL WORKFLOWS 3 

problem-solving tasks. Across these tools, underlying data structures exhibit 
a high degree of heterogeneity, akin to that observed in building software. 
To manage this heterogeneity, and achieve the integration required to 
generate solutions, information must be matched and mapped across a 
succession of different schemas, applications and platforms (Bellahsene et 
al, 2011). Scientific workflows enable these information exchanges to take 
place quickly, reliably and flexibly, by “combining data and processes into a 
configurable, structured set of steps that implement semi-automated 
computational solutions of a scientific problem” (Altıntaş, 2011, pp.9-10). 

Scientific workflow systems enable the composition and execution of 
these complex task sequences on distributed computing resources (Deelman 
et al, 2009). These systems exhibit a common reference architecture, 
illustrated in Figure 1, and typically consist of a graphical user interface 
(GUI) for authoring workflows (which can also be edited textually), along 
with a workflow engine that handles invocation of the applications required 
to run the solution (Curcin and Ghanem, 2008). The workflow engine 
supports integration between applications by engaging a combination of 
data-flow and control-flow constructs to handle the execution and 
management of tasks. Data-flow constructs establish information 
dependencies between tasks, and ensure that data-producing procedures are 
complete before data-consuming ones begin (Deelman et al, 2009). Control-
flow constructs support more complex workflow interactions, such as loops 
and conditionals, and also coordinate the execution of tasks on remote 
resources (Deelman et al, 2009). Typically, control-flow constructs are 
overlays on the data-flow graph, either as separate nodes or layers. 

Today, numerous workflow systems with different purposes and 
functionality exist. Some provide sophisticated interfaces and graphics, like 
the data visualisation application Vistrails (Callahan et al, 2006), while 
other more generic workflow systems, such as YAWL, are less visual but 
offer high-level process abstractions that can be applied to a range of usage 
scenarios (Curcin and Ghanem, 2008). The LONI Pipeline is designed 
specifically to build up data processing streams for neuroimaging tools (Rex 
et al, 2003), while Kepler provides advanced control algorithms for actor-
oriented modelling of complex physical, biological and chemical processes 
(Curcin and Ghanem, 2008). Each system acts to accelerate and streamline 
the problem-solving process, however, individual capabilities vary greatly 
due to differences in workflow representation, data flow and control flow. 

Implementation strategies for each of these three aspects of workflow 
are the product of specific requirements and technologies needed for the 
individual field or purpose for which a system is developed. In the following 
subsections we discuss strategies for workflow representation, data flow and 
control flow in relation to the needs of the AEC industry, aiming to 
capitalise on recent advances in cloud computing. 
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Figure 1. Workflow system architecture. 

2.1. WORKFLOW REPRESENTATION 

Workflow representation is critical for specifying tasks and dependencies. 
Nearly all workflow systems mentioned are visual programming tools in that 
they allow processes to be described graphically using some form of ‘pipes-
and-filters’ logic. While not strictly workflow systems, programs like 
Grasshopper and GenerativeComponents abstract underlying CAD systems 
to offer similar functionality to designers for composing parametric-
associative models. Each ‘filter’ encapsulates some data processing task, 
represented by a node, while a ‘pipe’ passes data (and in some instances 
control information) between two filters, represented by a connecting wire. 
A workflow is depicted by a network of nodes and wires to be configured 
and reconfigured graphically by users as required. From a user perspective, 
these nodes can act as a black box to perform a given function without the 
need for extensive or expert programming, although programming can 
empower the end user considerably. 

Adopting this ‘pipes-and-filters’ architecture, our framework posits 
three node types: process, input/output (IO) and control. Process nodes 
encapsulate data analysis and transformation procedures; while the latter 
two node types provide functionality related to workflow initiation, 
execution and completion. 
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Process nodes have a number of (typed) input and output ports for 
receiving and transmitting data, as well as variables that can be set by the 
user to guide task execution. They can be further classified into tool nodes 
and mapper nodes. Tool nodes wrap existing applications to make their data 
and functionality accessible to the workflow, while mapper nodes apply 
transformation procedures to data sets to map the output from one tool node 
to the input of another. Figure 2 shows an example network in which a 
Maya modelling node is connected via a series of mapper nodes (denoted by 
‘M’) to EnergyPlus and Radiance simulation nodes. The Maya node 
encapsulates a procedure that starts Maya, loads a specified model, and then 
generates a model instance by applying the defined parameter values. The 
resulting geometric output undergoes two separate transformations that map 
it into both EnergyPlus and Radiance compatible formats. The simulation 
nodes then read in this transformed data, run their respective simulations, 
and generate output data in the form of simulation results. 

 

 
 

Figure 2.Exemplar workflow. 

IO nodes act as data sources and sinks for the workflow. Input nodes 
provide the data by specifying input files and control parameters as inputs to 
the tool nodes and to control the data extracted from these input files. 
Taking the example in Figure 2, the Maya input node allows the user to 
specify not only the model to be used for the data source, but also particular 
types of geometry contained within it, while the EnergyPlus input node 
might simply link the appropriate weather file. Output nodes contain the 
workflow results, here of the EnergyPlus and Radiance simulations. They 
can be linked to a number of visualisation tools to display results, and users 
are able to define data ‘mashups’ in order to customise their visualisations 
without having to understand the coding of the underlying processes. 

Control nodes apply constraints to the workflow, like conditionals and 
loops, which manipulate the local order of execution of nodes further along 
in the network. For example, an if-then node can force execution of different 
branches in a workflow, while a repeat node can force repeated execution of 
a network branch. Global control is also possible, but is defined at workflow 
level, rather than task level, as discussed in Section 2.3. 
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Users configure nodes and their dependencies using a workflow 
interface. Since we are describing a platform that operates in the cloud, this 
interface would be a web application able to access distributed cloud 
services. We propose a HTML5-based GUI that provides drag-and-drop 
functionality for placing nodes on the workflow canvas, which are then 
wired together by the user, similar to defining a model in Grasshopper. 

We also propose interface functionality to aid users in managing 
workflow complexity. Graphical nesting allows clusters of nodes to be 
collapsed into composite nodes, facilitating modularisation of the workflow 
to improve its legibility (Davis et al, 2011). Provenance information 
retrieval and querying enables workflow history to be reviewed, so that the 
decision-making process can be tracked (Deelman et al, 2009). 

2.2. DATA FLOW 

Interoperability is a critical issue when linking applications from different 
domains. Scientific workflow systems deal with this in a number of ways, 
ranging from an ontological approach, where a common file format is 
imposed on data exchanges, to an open-world approach, where the user 
resolves data format issues as needed - a process known as ‘shimming’ 
(Altıntaş, 2011). In the AEC industry, the prevailing solution to this issue is 
Building Information Modelling (BIM), which tends toward the all-
encompassing ontological end of the spectrum. This is a top-down approach, 
reliant on the IFC data model and its continuous extension to cater for all 
possible usage scenarios. Pragmatic information exchange is assumed to 
evolve into process-oriented model views, where only filtered subsets of the 
model are exchanged (Eastman et al, 2011). 

Rather than reading and writing to a common representational structure, 
we propose tools be coupled more effectively through procedures that allow 
direct data transfer, as advocated by building simulationists (Hensen et al, 
2004), and transfer only needed data, rather than entire models (Augenbroe 
et al, 2003). While this approach is vulnerable to version changes in 
wrapped tools, the sharing and reuse of interoperability solutions would be a 
mitigating factor. Furthermore, the proposed system does not disregard 
BIM, but suggests IFC exchange be part of the workflow process, integrated 
into these custom data flows rather than forcing the whole system to adhere 
to its ontology. A good example of such an approach is found in the 
“GeometryGym” suite of tools, which enable parametric models generated 
in Grasshopper to be linked both to BIM workflows, through components 
that generate IFC objects, and to structural simulations (Mirtschin, 2011). 

Considering all data to be exchanged as files, we may allow any other 
data formats next to IFC, such as CAD data in the form of DXF, IGES or 
comparable proprietary formats, XML formatted data or other structured 
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data or text, or even plain text. This list is deliberately open-ended; while 
the absence of any format restrictions may complicate the exchange of data 
amongst numerous tools, it avoids significant limitations of both an 
ontology-specific data representation (such as IFC) and a domain-
independent general-purpose data format. Choosing the latter would 
undoubtedly result in situations where translations from highly customised 
data representations to the general-purpose format and back pose significant 
risks of information loss. The only necessary restriction that we envision is 
that data formats are identified and their assumptions described, such that 
any mapper node may reasonably rely on these assumptions when reading in 
data. This restriction does not limit flexibility concerning data formats, as a 
new format may always be identified and described. 

The selection of files as the medium for data exchange is prompted as 
much by the elimination of any data format restrictions as by the choice of a 
cloud-based platform. However, the use of distributed data files over a 
centralised data model may introduce data redundancy and inconsistency; 
e.g. when different workflow branches drawing on the same input converge, 
combining data from different but overlapping models. Such redundancy, 
admittedly, is inherent to the bottom-up approach to integration that we are 
advocating. Eliminating this redundancy, however, would not only greatly 
reduce the freedom and flexibility of designers to create their own workflow 
processes from any selection of tools, it would also seriously hamper the 
ability to define and explore unconventional design spaces. 

2.3. CONTROL FLOW 

As discussed in Section 2.1, control nodes provide localised ways of 
manipulating the workflow. To provide the desired level of flexibility, the 
framework also needs to offer different types of global control flow. Many 
existing workflow systems are restricted to simple flow mechanisms that 
generate topological orderings, where each node will execute only after all 
its predecessor nodes have executed. A key limitation of this approach, 
however, is that the network must be a directed acyclic graph (DAG), so 
networks with loops are not supported. 

Networks with loops, however, are clearly desirable in certain situations, 
such as optimisation procedures. To support loops and other node execution 
patterns, such as triggering nodes iteratively or periodically, different high-
level control mechanisms are required. In addition to providing workflow 
execution functionality, these mechanisms are needed to support distributed 
computing, by triggering nodes to work in parallel with other nodes, as well 
as executing synchronously or asynchronously. 

To ensure maximum flexibility, the user should be able to apply 
different control flow mechanisms to different parts of the network. This 
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could be achieved by assigning a control mechanism to a composite node, 
which would further open the possibility of nesting control flow. 

3. System Implementation 

Implementing our framework in the cloud ensures its scalability, efficiency 
and reliability, as node execution can be distributed over multiple computers 
in the network. Process nodes are therefore defined so that both their data 
and procedure can reside in the cloud. Input and output data is saved in files, 
and a (distributed) repository is used to manage these files. The node 
procedure is saved as an executable task (which may be written in any 
language) that reads and writes files, and a task scheduler is used to manage 
the execution of these tasks in the cloud. 

  Files resulting from one process node may be stored local to the 
execution of the node’s task, awaiting retrieval by other process nodes. 
Storing files ensures a trace of all workflow output is maintained for later 
perusal. Files may also be copied to different locations and their copies 
managed within the repository. Similar to version-control systems, local file 
copies in combination with a local copy of the repository guarantees access 
to all outputs even when the user is disconnected from the cloud. File 
management within a repository also eliminates the need for exchanging 
files directly between process tasks. When a task creates output files, it 
registers their location (URL) together with some minimal metadata - origin, 
time of creation, format, etc. - for which the Dublin Core 
(http://dublincore.org), extended where necessary, may serve as a template. 
In return, it receives tokens corresponding to the various files (typically 
unique IDs assigned by the repository), which are passed to the task 
scheduler to be forwarded on to the next process node’s task. The receiving 
task then queries the repository for the metadata and the file(s). 

4. Discussion 

The question of interoperability has been vexing the AEC industry for 
decades. The usual response is to impose standards for data formatting and 
construct monolithic design-analysis systems that internalise, and thus 
opaquely subsume, representation problems. This inflicts severe limitations 
on the ways in which information, and therefore designs themselves, can be 
described. To overcome these limitations, we are proposing that the 
bugaboo of BIM research and development - communication that is direct 
between domain-specific applications rather than via a common standard - is 
the preferred and even necessary arrangement. Although more work may be 
needed to create the multitude of possible data converters required to 
support such communication, this is better than over-constraint of the design 
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process caused by the use of standardised representations and processes that 
are only applicable within a relatively small region of ‘design space’. 

Research and development of the proposed system is an ongoing effort 
from the Open Systems group, however, success will ultimately depend on a 
community of users and developers, able and willing to create, share and 
maintain process nodes to support various design and analysis activities. 
This could potentially result in a vast collection of process nodes and an 
endless range of options. To aid the designer in choosing appropriately, it is 
important not only that a description of the functionality of each node is 
available, but also that the designer is able to ensure that nodes ‘fit’ other 
nodes in order to compose a valid workflow. Assertions must therefore be 
specified on node outputs and assumptions specified for expected inputs so 
that automatic checking of node compatibility is possible. 

Workflow design is likely to be an incremental process in which a 
number of nodes are combined into a partial workflow, tested by the 
designer, and then further developed and extended. Besides automatic 
checking of the mutual fitness of adjacent nodes, the designer will need to 
check whether the (partial) workflow is behaving as expected and producing 
appropriate results. When the results are not as expected, the designer will 
need to debug the workflow by tracing back execution, which can be 
assisted by displaying intermediate, as well final, results. 

In the context of a vast collection of process nodes and choice of 
alternative ways to achieve the same or similar result, user-friendliness and 
knowledge-based support, the two main concerns of designers when using 
analysis software (Attia et al, 2009), will become crucial. Issues of accuracy, 
uncertainty and risk may also be of significant concern. Macdonald et al 
(1999) propose the introduction of uncertainty considerations in simulations 
to provide meaningful feedback to the user and to improve confidence 
through risk assessment. While these should be addressed within individual 
software tools, the proposed system should also introduce this functionality 
into the workflow environment itself. 

5. Conclusion 

This paper represents an ongoing effort to address limitations in process and 
technology that presently obstruct design collaboration. In it we argued the 
need for a user-controlled and process-oriented approach to integration and 
interoperability, and discussed how a cloud-based workflow system can 
support more flexible and distributed design processes. We examined the 
features and functionality needed to abstract computing and data resources 
to make tools and technologies more accessible to users, both as individuals 
and as members of design teams. As well as benefiting design practice, we 
envisage the proposed system as a platform for researchers to share their 
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work and increase the impact of their individual efforts through integration 
with other research. The system requirements that we have established will 
ensure that the proposed integration platform is developed to be flexible, 
visual, collaborative, scalable and open. 
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