
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Toth, Bianca, Boeykens, Stefan, Chaszar, Andre, Janssen, Patrick, &
Stouffs, Rudi
(2012)
Custom digital workflows: A new framework for design analysis integration.
In Ham, J, Naka, R, Weixin, H, Fischer, T, & De Biswas, K (Eds.) Beyond
codes and pixels: CAADRIA 2012: Proceedings of the 17th International
Conference on Computer Aided Architectural Design Research in Asia.
The Association for Computer-Aided Architectural Design Research in
Asia (CAADRIA), Hong Kong, pp. 163-172.

This file was downloaded from: https://eprints.qut.edu.au/57539/

c© Copyright 2012 (please consult the authors).

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

http:// www.caadria.org

https://eprints.qut.edu.au/view/person/Toth,_Bianca.html
https://eprints.qut.edu.au/57539/
http://www.caadria.org

CUSTOM DIGITAL WORKFLOWS

A new framework for design analysis integration

BIANCA TOTH1, STEFAN BOEYKENS2, ANDRE CHASZAR3,
PATRICK JANSSEN4 and RUDI STOUFFS5

1. Queensland University of Technology, Australia
bianca.toth@qut.edu.au

2. KU Leuven, Belgium
Stefan.Boeykens@asro.kuleuven.be

3. Delft University of Technology (TUD), Netherlands
A.T.Chaszar@tudelft.nl

4. National University of Singapore (NUS), Singapore
patrick.janssen@nus.edu.sg

5. TUD and NUS
R.M.F.Stouffs@tudelft.nl; stouffs@nus.edu.sg

Abstract. Flexible information exchange is critical to successful
design integration, but current top-down, standards-based and model-
oriented strategies impose restrictions that are contradictory to this
flexibility. In this paper we present a bottom-up, user-controlled and
process-oriented approach to linking design and analysis applications
that is more responsive to the varied needs of designers and design
teams. Drawing on research into scientific workflows, we present a
framework for integration that capitalises on advances in cloud
computing to connect discrete tools via flexible and distributed
process networks. Adopting a services-oriented system architecture,
we propose a web-based platform that enables data, semantics and
models to be shared on the fly. We discuss potential challenges and
opportunities for the development thereof as a flexible, visual,
collaborative, scalable and open system.

Keywords. Visual dataflow modelling; design processes;
interoperability; simulation integration; cloud-based systems.

1. Introduction

There is a clear and urgent need for better information exchange strategies
to address the persistent lack of interoperability and integration in building

mailto:bianca.toth@qut.edu.au�
mailto:Stefan.Boeykens@asro.kuleuven.be�
mailto:A.T.Chaszar@tudelft.nl�
mailto:patrick.janssen@nus.edu.sg�
mailto:R.M.F.Stouffs@tudelft.nl�

2 B. TOTH, S. BOEYKENS, A. CHASZAR, P. JANSSEN AND R. STOUFFS

design, analysis and construction. Recognising that most design teams use a
variety of software applications and platforms, the question that remains to
be answered is: How can we develop tools and technology that support
designers in creating their own design processes, rather than having to adapt
their processes to suit the tools’ rigid requirements?

The key idea we present in this paper is that bottom-up, user-controlled
and process-oriented approaches to linking design and analysis applications
are more appropriate than current top-down, standards-based and model-
oriented strategies, because they provide degrees of flexibility critical to the
process(es) of design. This idea comes from discussions raised at the “Open
Systems and Methods for Collaborative BEM (Building Environment
Modelling” workshop held at the CAAD Futures 2011 Conference in Liège,
Belgium, early in July 2011. Here, we continue the ‘open systems’ dialogue
with a conceptual framework for bringing this idea into practical
application, aiming to reduce current obstructions to collaborative design.

We propose an open framework for integration where numerous small
and specialised procedural tools are developed, adapted and linked ad-hoc,
to meet the needs of individual design projects and project teams. These
modular components encapsulate individual tasks that aid information
exchange between domain-specific software by (semi-) automating typically
tedious and non value-adding tasks associated with matching and mapping
data across different schemas. A cloud-based platform enables project- and
user-specific workflows to be created, shared and managed on distributed
resources, via web interfaces that allow users to interact with workflows
graphically. This, in combination with the elimination of file format and
mapping language restrictions, ensures maximum flexibility.

Drawing on research into scientific workflows, we describe system
requirements to guide future development of the proposed framework. We
present a system that dispenses with an ontological premise for integration,
and discuss the benefits and challenges that such a system presents for
design practice and outcomes. Although no implementation of the
framework has yet been created or tested, we are in the process of
assembling a team of researchers and practitioners interested in pursuing our
proposal. We are confident that the approach described in this framework
will lend itself well to coping with the frequently changing pace and focus
of design projects, as well as the varying priorities of their many
stakeholders.

2. System Architecture

Similar to the AEC industry, increasing complexity in scientific research
and practice has led to a proliferation of specialised computational tools,
each developed by different people, at different times, to support different

 CUSTOM DIGITAL WORKFLOWS 3

problem-solving tasks. Across these tools, underlying data structures exhibit
a high degree of heterogeneity, akin to that observed in building software.
To manage this heterogeneity, and achieve the integration required to
generate solutions, information must be matched and mapped across a
succession of different schemas, applications and platforms (Bellahsene et
al, 2011). Scientific workflows enable these information exchanges to take
place quickly, reliably and flexibly, by “combining data and processes into a
configurable, structured set of steps that implement semi-automated
computational solutions of a scientific problem” (Altıntaş, 2011, pp.9-10).

Scientific workflow systems enable the composition and execution of
these complex task sequences on distributed computing resources (Deelman
et al, 2009). These systems exhibit a common reference architecture,
illustrated in Figure 1, and typically consist of a graphical user interface
(GUI) for authoring workflows (which can also be edited textually), along
with a workflow engine that handles invocation of the applications required
to run the solution (Curcin and Ghanem, 2008). The workflow engine
supports integration between applications by engaging a combination of
data-flow and control-flow constructs to handle the execution and
management of tasks. Data-flow constructs establish information
dependencies between tasks, and ensure that data-producing procedures are
complete before data-consuming ones begin (Deelman et al, 2009). Control-
flow constructs support more complex workflow interactions, such as loops
and conditionals, and also coordinate the execution of tasks on remote
resources (Deelman et al, 2009). Typically, control-flow constructs are
overlays on the data-flow graph, either as separate nodes or layers.

Today, numerous workflow systems with different purposes and
functionality exist. Some provide sophisticated interfaces and graphics, like
the data visualisation application Vistrails (Callahan et al, 2006), while
other more generic workflow systems, such as YAWL, are less visual but
offer high-level process abstractions that can be applied to a range of usage
scenarios (Curcin and Ghanem, 2008). The LONI Pipeline is designed
specifically to build up data processing streams for neuroimaging tools (Rex
et al, 2003), while Kepler provides advanced control algorithms for actor-
oriented modelling of complex physical, biological and chemical processes
(Curcin and Ghanem, 2008). Each system acts to accelerate and streamline
the problem-solving process, however, individual capabilities vary greatly
due to differences in workflow representation, data flow and control flow.

Implementation strategies for each of these three aspects of workflow
are the product of specific requirements and technologies needed for the
individual field or purpose for which a system is developed. In the following
subsections we discuss strategies for workflow representation, data flow and
control flow in relation to the needs of the AEC industry, aiming to
capitalise on recent advances in cloud computing.

4 B. TOTH, S. BOEYKENS, A. CHASZAR, P. JANSSEN AND R. STOUFFS

Figure 1. Workflow system architecture.

2.1. WORKFLOW REPRESENTATION

Workflow representation is critical for specifying tasks and dependencies.
Nearly all workflow systems mentioned are visual programming tools in that
they allow processes to be described graphically using some form of ‘pipes-
and-filters’ logic. While not strictly workflow systems, programs like
Grasshopper and GenerativeComponents abstract underlying CAD systems
to offer similar functionality to designers for composing parametric-
associative models. Each ‘filter’ encapsulates some data processing task,
represented by a node, while a ‘pipe’ passes data (and in some instances
control information) between two filters, represented by a connecting wire.
A workflow is depicted by a network of nodes and wires to be configured
and reconfigured graphically by users as required. From a user perspective,
these nodes can act as a black box to perform a given function without the
need for extensive or expert programming, although programming can
empower the end user considerably.

Adopting this ‘pipes-and-filters’ architecture, our framework posits
three node types: process, input/output (IO) and control. Process nodes
encapsulate data analysis and transformation procedures; while the latter
two node types provide functionality related to workflow initiation,
execution and completion.

 CUSTOM DIGITAL WORKFLOWS 5

Process nodes have a number of (typed) input and output ports for
receiving and transmitting data, as well as variables that can be set by the
user to guide task execution. They can be further classified into tool nodes
and mapper nodes. Tool nodes wrap existing applications to make their data
and functionality accessible to the workflow, while mapper nodes apply
transformation procedures to data sets to map the output from one tool node
to the input of another. Figure 2 shows an example network in which a
Maya modelling node is connected via a series of mapper nodes (denoted by
‘M’) to EnergyPlus and Radiance simulation nodes. The Maya node
encapsulates a procedure that starts Maya, loads a specified model, and then
generates a model instance by applying the defined parameter values. The
resulting geometric output undergoes two separate transformations that map
it into both EnergyPlus and Radiance compatible formats. The simulation
nodes then read in this transformed data, run their respective simulations,
and generate output data in the form of simulation results.

Figure 2.Exemplar workflow.

IO nodes act as data sources and sinks for the workflow. Input nodes
provide the data by specifying input files and control parameters as inputs to
the tool nodes and to control the data extracted from these input files.
Taking the example in Figure 2, the Maya input node allows the user to
specify not only the model to be used for the data source, but also particular
types of geometry contained within it, while the EnergyPlus input node
might simply link the appropriate weather file. Output nodes contain the
workflow results, here of the EnergyPlus and Radiance simulations. They
can be linked to a number of visualisation tools to display results, and users
are able to define data ‘mashups’ in order to customise their visualisations
without having to understand the coding of the underlying processes.

Control nodes apply constraints to the workflow, like conditionals and
loops, which manipulate the local order of execution of nodes further along
in the network. For example, an if-then node can force execution of different
branches in a workflow, while a repeat node can force repeated execution of
a network branch. Global control is also possible, but is defined at workflow
level, rather than task level, as discussed in Section 2.3.

6 B. TOTH, S. BOEYKENS, A. CHASZAR, P. JANSSEN AND R. STOUFFS

Users configure nodes and their dependencies using a workflow
interface. Since we are describing a platform that operates in the cloud, this
interface would be a web application able to access distributed cloud
services. We propose a HTML5-based GUI that provides drag-and-drop
functionality for placing nodes on the workflow canvas, which are then
wired together by the user, similar to defining a model in Grasshopper.

We also propose interface functionality to aid users in managing
workflow complexity. Graphical nesting allows clusters of nodes to be
collapsed into composite nodes, facilitating modularisation of the workflow
to improve its legibility (Davis et al, 2011). Provenance information
retrieval and querying enables workflow history to be reviewed, so that the
decision-making process can be tracked (Deelman et al, 2009).

2.2. DATA FLOW

Interoperability is a critical issue when linking applications from different
domains. Scientific workflow systems deal with this in a number of ways,
ranging from an ontological approach, where a common file format is
imposed on data exchanges, to an open-world approach, where the user
resolves data format issues as needed - a process known as ‘shimming’
(Altıntaş, 2011). In the AEC industry, the prevailing solution to this issue is
Building Information Modelling (BIM), which tends toward the all-
encompassing ontological end of the spectrum. This is a top-down approach,
reliant on the IFC data model and its continuous extension to cater for all
possible usage scenarios. Pragmatic information exchange is assumed to
evolve into process-oriented model views, where only filtered subsets of the
model are exchanged (Eastman et al, 2011).

Rather than reading and writing to a common representational structure,
we propose tools be coupled more effectively through procedures that allow
direct data transfer, as advocated by building simulationists (Hensen et al,
2004), and transfer only needed data, rather than entire models (Augenbroe
et al, 2003). While this approach is vulnerable to version changes in
wrapped tools, the sharing and reuse of interoperability solutions would be a
mitigating factor. Furthermore, the proposed system does not disregard
BIM, but suggests IFC exchange be part of the workflow process, integrated
into these custom data flows rather than forcing the whole system to adhere
to its ontology. A good example of such an approach is found in the
“GeometryGym” suite of tools, which enable parametric models generated
in Grasshopper to be linked both to BIM workflows, through components
that generate IFC objects, and to structural simulations (Mirtschin, 2011).

Considering all data to be exchanged as files, we may allow any other
data formats next to IFC, such as CAD data in the form of DXF, IGES or
comparable proprietary formats, XML formatted data or other structured

 CUSTOM DIGITAL WORKFLOWS 7

data or text, or even plain text. This list is deliberately open-ended; while
the absence of any format restrictions may complicate the exchange of data
amongst numerous tools, it avoids significant limitations of both an
ontology-specific data representation (such as IFC) and a domain-
independent general-purpose data format. Choosing the latter would
undoubtedly result in situations where translations from highly customised
data representations to the general-purpose format and back pose significant
risks of information loss. The only necessary restriction that we envision is
that data formats are identified and their assumptions described, such that
any mapper node may reasonably rely on these assumptions when reading in
data. This restriction does not limit flexibility concerning data formats, as a
new format may always be identified and described.

The selection of files as the medium for data exchange is prompted as
much by the elimination of any data format restrictions as by the choice of a
cloud-based platform. However, the use of distributed data files over a
centralised data model may introduce data redundancy and inconsistency;
e.g. when different workflow branches drawing on the same input converge,
combining data from different but overlapping models. Such redundancy,
admittedly, is inherent to the bottom-up approach to integration that we are
advocating. Eliminating this redundancy, however, would not only greatly
reduce the freedom and flexibility of designers to create their own workflow
processes from any selection of tools, it would also seriously hamper the
ability to define and explore unconventional design spaces.

2.3. CONTROL FLOW

As discussed in Section 2.1, control nodes provide localised ways of
manipulating the workflow. To provide the desired level of flexibility, the
framework also needs to offer different types of global control flow. Many
existing workflow systems are restricted to simple flow mechanisms that
generate topological orderings, where each node will execute only after all
its predecessor nodes have executed. A key limitation of this approach,
however, is that the network must be a directed acyclic graph (DAG), so
networks with loops are not supported.

Networks with loops, however, are clearly desirable in certain situations,
such as optimisation procedures. To support loops and other node execution
patterns, such as triggering nodes iteratively or periodically, different high-
level control mechanisms are required. In addition to providing workflow
execution functionality, these mechanisms are needed to support distributed
computing, by triggering nodes to work in parallel with other nodes, as well
as executing synchronously or asynchronously.

To ensure maximum flexibility, the user should be able to apply
different control flow mechanisms to different parts of the network. This

8 B. TOTH, S. BOEYKENS, A. CHASZAR, P. JANSSEN AND R. STOUFFS

could be achieved by assigning a control mechanism to a composite node,
which would further open the possibility of nesting control flow.

3. System Implementation

Implementing our framework in the cloud ensures its scalability, efficiency
and reliability, as node execution can be distributed over multiple computers
in the network. Process nodes are therefore defined so that both their data
and procedure can reside in the cloud. Input and output data is saved in files,
and a (distributed) repository is used to manage these files. The node
procedure is saved as an executable task (which may be written in any
language) that reads and writes files, and a task scheduler is used to manage
the execution of these tasks in the cloud.

 Files resulting from one process node may be stored local to the
execution of the node’s task, awaiting retrieval by other process nodes.
Storing files ensures a trace of all workflow output is maintained for later
perusal. Files may also be copied to different locations and their copies
managed within the repository. Similar to version-control systems, local file
copies in combination with a local copy of the repository guarantees access
to all outputs even when the user is disconnected from the cloud. File
management within a repository also eliminates the need for exchanging
files directly between process tasks. When a task creates output files, it
registers their location (URL) together with some minimal metadata - origin,
time of creation, format, etc. - for which the Dublin Core
(http://dublincore.org), extended where necessary, may serve as a template.
In return, it receives tokens corresponding to the various files (typically
unique IDs assigned by the repository), which are passed to the task
scheduler to be forwarded on to the next process node’s task. The receiving
task then queries the repository for the metadata and the file(s).

4. Discussion

The question of interoperability has been vexing the AEC industry for
decades. The usual response is to impose standards for data formatting and
construct monolithic design-analysis systems that internalise, and thus
opaquely subsume, representation problems. This inflicts severe limitations
on the ways in which information, and therefore designs themselves, can be
described. To overcome these limitations, we are proposing that the
bugaboo of BIM research and development - communication that is direct
between domain-specific applications rather than via a common standard - is
the preferred and even necessary arrangement. Although more work may be
needed to create the multitude of possible data converters required to
support such communication, this is better than over-constraint of the design

 CUSTOM DIGITAL WORKFLOWS 9

process caused by the use of standardised representations and processes that
are only applicable within a relatively small region of ‘design space’.

Research and development of the proposed system is an ongoing effort
from the Open Systems group, however, success will ultimately depend on a
community of users and developers, able and willing to create, share and
maintain process nodes to support various design and analysis activities.
This could potentially result in a vast collection of process nodes and an
endless range of options. To aid the designer in choosing appropriately, it is
important not only that a description of the functionality of each node is
available, but also that the designer is able to ensure that nodes ‘fit’ other
nodes in order to compose a valid workflow. Assertions must therefore be
specified on node outputs and assumptions specified for expected inputs so
that automatic checking of node compatibility is possible.

Workflow design is likely to be an incremental process in which a
number of nodes are combined into a partial workflow, tested by the
designer, and then further developed and extended. Besides automatic
checking of the mutual fitness of adjacent nodes, the designer will need to
check whether the (partial) workflow is behaving as expected and producing
appropriate results. When the results are not as expected, the designer will
need to debug the workflow by tracing back execution, which can be
assisted by displaying intermediate, as well final, results.

In the context of a vast collection of process nodes and choice of
alternative ways to achieve the same or similar result, user-friendliness and
knowledge-based support, the two main concerns of designers when using
analysis software (Attia et al, 2009), will become crucial. Issues of accuracy,
uncertainty and risk may also be of significant concern. Macdonald et al
(1999) propose the introduction of uncertainty considerations in simulations
to provide meaningful feedback to the user and to improve confidence
through risk assessment. While these should be addressed within individual
software tools, the proposed system should also introduce this functionality
into the workflow environment itself.

5. Conclusion

This paper represents an ongoing effort to address limitations in process and
technology that presently obstruct design collaboration. In it we argued the
need for a user-controlled and process-oriented approach to integration and
interoperability, and discussed how a cloud-based workflow system can
support more flexible and distributed design processes. We examined the
features and functionality needed to abstract computing and data resources
to make tools and technologies more accessible to users, both as individuals
and as members of design teams. As well as benefiting design practice, we
envisage the proposed system as a platform for researchers to share their

10 B. TOTH, S. BOEYKENS, A. CHASZAR, P. JANSSEN AND R. STOUFFS

work and increase the impact of their individual efforts through integration
with other research. The system requirements that we have established will
ensure that the proposed integration platform is developed to be flexible,
visual, collaborative, scalable and open.

Acknowledgements
The authors would like to acknowledge and thank the participants of the “Open Systems and
Methods for Collaborative BEM (Building Environment Modelling)” workshop held at the
CAAD Futures 2011 Conference in Liège, Belgium, 4 July 2011, and of the LinkedIn Group
sharing the same name, for their contributions to the discussions leading to the ideas
presented and described in this paper. We invite interested parties to contribute to the
development of these ideas and to join the discussions in the LinkedIn Group.

References

Altıntaş, İ.: 2011, Collaborative Provenance for Workflow-driven Science and Engineering,
PhD Thesis, University of Amsterdam, Amsterdam.

Attia, S., Beltrán L., De Herde, A. and Hensen, J.: 2009, “Architect Friendly”: A comparison
of ten different building performance simulation tools, 11th IBPSA Conference, Glasgow,
204-211.

Augenbroe, G., deWilde, P., Moon, H., Malkawi, A., Brahme, R. and Choudhary, R.: 2003,
The Design Analysis Integration (DAI) initiative, 8th IBPSA Conference, Eindhoven, 79-
86.

Bellahsene, Z., Bonifati, A., Duchateau, F. and Velegrakis, Y.: 2011, On evaluating schema
matching and mapping, in Z. Bellahsene, A. Bonifati and E. Rahm (eds.), Schema
Matching and Mapping, Springer, Berlin and Heidelberg, 253-291.

Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C. and Vo, H.: 2006, Vistrails:
Visualization meets data management, SIGMOD 2006, Chicago, 745-747.

Curcin, V. and Ghanem, M.: 2008, Scientific workflow systems - can one size fit all?, CIBEC
2008, Cairo, 1-9.

Davis, D., Burry, J. and Burry, M.: 2011, Untangling parametric schemata: Enhancing
collaboration through modular programming, CAAD Futures 2011, Liège, 55-68.

Deelman, E., Gannon, D., Shields, M. and Taylor, I.: 2008, Workflows and e-science: An
overview of workflow system features and capabilities, Future Generation Computer
Systems, 25, 528-540.

Eastman, C., Teichholz, P., Sacks, R. and Liston, K.: 2011, BIM Handbook - A Guide to
Building Information Modeling for Owners, Managers, Designers, Engineers, and
Contractors, 2nd ed., John Wiley and Sons, Hoboken.

Hensen, J., Djunaedy, E., Radošević, M. and Yahiaoui, A.: 2004, Building performance
simulation for better design: Some issues and solutions, PLEA 2004, Eindhoven, vol.2,
1185-1190.

MacDonald, I., Clarke, J. and Strachan, P.: 1999, Assessing uncertainty in building
simulation, 6th IBPSA Conference, vol. II, Kyoto, 683-690.

Mirtschin, J.: 2011, Engaging generative BIM workflows, Collaborative Design of
Lightweight Structures - LSAA 2011, Sydney, 1-8.

Rex, D., Ma, J. and Toga, A.: 2003, The LONI Pipeline processing environment,
Neuroimage, 19(3), 1033–1048.

	1. Introduction
	2. System Architecture
	2.1. WORKFLOW REPRESENTATION
	2.2. DATA FLOW
	2.3. CONTROL FLOW

	3. System Implementation
	4. Discussion
	5. Conclusion
	Acknowledgements
	References

