
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Chen, Danjue, Laval, Jorge, Zheng, Zuduo, & Ahn, Soyoung
(2012)
A behavioral car-following model that captures traffic oscillations.
Transportation Research, Series B: Methodological, 46(6), pp. 744-761.

This file was downloaded from: https://eprints.qut.edu.au/50312/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative
Works 2.5

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.trb.2012.01.009

https://eprints.qut.edu.au/view/person/Zheng,_Zuduo.html
https://eprints.qut.edu.au/50312/
https://doi.org/10.1016/j.trb.2012.01.009


A Behavioral Car-Following Model that Captures Traffic 
Oscillations 

Danjue Chena, Jorge Laval*a, Zuduo Zhengb, Soyoung Ahnc 
aGeorgia Institute of Technology,790 Atlantic Dr. Atlanta, GA 30332-0355,U.S.A 

bQueensland University of Technology,2 George St GPO Box 2434, Brisbane Qld 4001 Australia. 
cArizona State University,P.O. Box 875306,Tempe, AZ 85287,U.S.A.  

 

Abstract 

This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous 
formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following 
behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple 
model. The statistical analysis of the model's parameters reveals that there is a strong correlation between driver behavior before 
and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If 
macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. 
This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is 
used to establish the relationship between rubbernecking behavior and the period of oscillations.  

 
 

© 2011 Published by Elsevier Ltd. 

Keywords: Traffic oscillations,C ar-following  behavior, Reaction to oscillations, Driver heterogeneity, Rubbernecking 

1 Introduction 
Stop-and-go driving, or simply traffic oscillation, has raised much concern in the literature due to its severe 

negative impacts: increased fuel consumption, greenhouse emissions and safety risks (Bilbao-Ubillos 2008; Zheng, 
Ahn and Monsere 2010).  Although these traffic oscillations were first reported fifty year ago on the Lincoln tunnel 
(Edie, 1961), our understanding of the causes and mechanisms of its formation and propagation is still limited.  
Several studies have shown that one of the causes of oscillations is lane-changing (Ahn and Cassidy, 2006; Laval, 
2006; Laval and Daganzo, 2006; Mauch and Cassidy, 2002; Zheng et al., 2011a; Zheng et al., 2011b), but it has 
become clear now that oscillations may form away from lane changes, e.g. in tunnels or the ones in Figure 1(a). 
Also unclear are the mechanisms that induce oscillation amplitude growth (i.e., vehicle speed inside the oscillation 
decreases persistently as it propagates upstream) and regular periods, which vary from 2-15min (Ahn, 2005; Ahn et 
al., 2004; Laval et al., 2009; Mauch and Cassidy, 2002). 

Modeling efforts on the subject date back to the 50s and are still ongoing, see e.g. Laval and Leclercq (2010) for 
a review.  Early theoretical studies (Chandler et al., 1958; Herman et al., 1958) analyzed the linearity of car-
following models and attributed the propagation of oscillation to the over-reactions of car-following behaviors.  
Recently, partial success has been achieved by car-following stability analysis, which has shown that small 
disturbances can grow to fully fledged oscillations with realistic periods when model parameters are carefully 
chosen (Wilson, 2008; Wilson and Ward, 2011). While this has been proven for differential equation-type models 
(e.g. the Bando, Hasebe et al. (Bando et al., 1995) or the IDM model (Treiber et al., 2000)), it is expected that this 
result should hold more generally.  Treiber and Kesting (2011) analytically calculated the characteristics of traffic 
oscillations (e.g., wavelength and growth rate) and argued that traffic oscillations are manifestation of convective 
instability.  Additionally, they claimed that the stability class depends not only on the model but also on model 
parameters.  Li and Ouyang (2011) developed a mathematical framework to quantify the period and magnitude of 
traffic oscillations and then analyzed these characteristics across the propagation of traffic oscillations.  They found 
that the nonlinearity is critical in producing reasonable oscillation growth; i.e., bounded growth.  This approach 
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provides understandings of traffic oscillations from the mathematical perspective, however, we argue that it is 
limited in providing insights to better understand driver behavior under traffic oscillations.   

Conversely, Laval and Leclercq (2010) conjectured that the formation and propagation of traffic oscillations 
were due to the aggressive or timid driver behavior. Simulations showed that their model, referred to as the L-L 
model hereafter, could reproduce traffic oscillation period and amplitude as observed empirically.  This study 
suggests a new perspective to explain the mechanism of formation and propagation for traffic oscillations.  
However, the behavioral model assumed in this model has not been verified empirically.  Additionally, this model 
assumed that drivers behave homogeneously in equilibrium (i.e., following the same fundamental diagram) and 
consistently before and after traffic oscillations.  These assumptions, however, were not validated by empirical 
observations.    

Zheng et al. (2011a) used wavelet transform method to analyze vehicle trajectories and study traffic oscillation 
features such as amplitude and duration.  To the best of our knowledge, Zheng et al. (2011b) is the only reference 
that uses trajectory data to investigate driver behavior during oscillations. However, their focus was on comparing 
driver behavior before and after oscillations, while a comprehensive dynamic description of car-following behavior 
across oscillations is still missing.   

This paper aims to fill this void.  The objective is to develop a behavioral model that describes driver behavior 
under congested traffic by analyzing vehicle trajectories undergoing traffic oscillations. Towards this end, Section 2 
describes the trajectory data and Section 3 introduces background information.  Section 4 presents the measurement 
methodology and formulates the new model.  Section 5 conducts statistical analysis of model parameters and section 
6 shows an application of the model in the case of rubbernecking.  A discussion and outlook is provided in section 7. 

2 Data Description 
The trajectory data used in this paper comes from the Next-Generation Simulation project (NGSIM, 2006); i.e., 

the 2100-foot southbound US-101 segment in Los Angeles, California from 7:50 a.m. to 8:35 a.m. on June 15, 2005. 
Figure 1(a-b) shows the trajectories on the median lane from 7:50 a.m. to 8:20a.m and Figure 1 (c) is a sketch of the 
study site.  Notice how traffic oscillations spontaneously appear every 2-3 minutes in the first 15min (Figure 1(a)) 
and also oscillations from downstream appear in the second 15min.  For the spontaneously formed oscillations, after 
thorough examination of the data, the possibility of lane-changing in triggering traffic oscillations is eliminated.  
Thorough examination of the freeway design elements and the video data suggests that the most likely cause for the 
traffic oscillations seems to be rubbernecking. During that time at the same location where traffic oscillations begin, 
clean-up work was being performed in the median; see Figure 1(a) for a snapshot.  Vehicles tend to slow down when 
they approached that spot.  The thoughts about the cause will be tested and discussed in Section 6 and 7. 

 
Figure 1 Illustration of vehicle trajectories and study site 

(a) vehicle trajectory plot (for US 101 study site); (b) schematic of the study site: southbound US-101 in Los Angeles, California (NGSIM, 
2006). 

3 Background 
 

3.1 Newell’s car-following model 
 
Newell’s car-following model (Newell, 2002) gives the exact numerical solution of the kinematic wave model 

(Lighthill and Whitham, 1955; Richards, 1956) with a triangular fundamental diagram (referred to as the KWT 
model hereafter).  In free-flow vehicles always travel at the free-flow speed, while in congestion a vehicle trajectory 
is a translation in time and space of the leader’s by τ and δ, respectively; see Figure 2(a):  

 
,                                                                          (1) 

                                          
 
 free-flow congestion 
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where  represents the position of vehicle  at time  and  is the free-flow speed.  The time and space 
shift (τ, δ) is assumed constant for a given vehicle but may vary as a random walk across different vehicles.  This 
model implies a linear speed-spacing relationship in congestion; see Figure 2 (b):  

,                                                                                      (2) 
where  is vehicle speed and  is the corresponding equilibrium spacing.  Notably, parameters τ and δ can be 
written using the wave speed , and jam density   in the KWT model, i.e.:  

  and .                                                                                    (3) 
Therefore, δ can be interpreted as the jam spacing and  as the wave trip time between two consecutive congested 
vehicles.  

Newell’s car-following model is appealing for its simplicity and consistency with the KWT model.  However, in 
this model disturbances will never amplify or decay.   

 
Figure 2 Model illustration 

(a) Newell’s car-following model; (b) speed-spacing relation in Newell’s car-following model; (c) examples of deviation from Newell 
trajectory (NGSIM, 2006); (d) the L-L model. 

 

3.2 The L-L model  
 
Laval and Leclercq (2010) observed that vehicle trajectories accord well with Newell’ car-following model 

before they experience traffic oscillations.  Namely, a follower’s trajectory overlaps its leader’s shifted by (τ, δ). In 
the sequel, this shifted trajectory is called a “Newell trajectory”.  However, deviations were significant during the 
oscillation; see Figure 2(c).  To capture these, the L-L model allows vehicle trajectories to deviate from Newell 
trajectories by explicitly including a behavioral model via the term : 

 
,                          (4)             

 
  
 

where  is the desired distance travelled during  resulting from a vehicle kinematics model that limits 
accelerations: 

 ,                                                                   (5) 
 
where the acceleration  depends on the current speed , maximum acceleration , the gravitational 
acceleration  , and the percent grade 100G%.  By solving (5) analytically, one can obtain the 
expression for : 

.                                               (6) 
 

The term  captures the non-equilibrium behavior often observed in the dataset; i.e., deviations from Newell’s 
model.  It is defined as the ratio of the actual steady-state spacing and the equilibrium spacing; i.e.:  
 

,                                                         (7) 
 

where  is the steady-state spacing for vehicle  at time ,  is the equilibrium spacing given by (2),  
and  is the time the characteristic line is emanated from the leader reaching the follower at time ; see Figure 2(d).  
Notice that the steady-state spacing is measured by assuming that the leader is stationary and driving at  until 
time , and  is obtained from (2) with  equal to  (see Figure 2(d)).  Clearly, when a driver is in 
equilibrium,  = 1 and the follower’s trajectory overlaps the Newell trajectory; otherwise,  deviates from 1.  
Non-equilibrium behavior in the follower is triggered in this model whenever the leader decelerates. The ensuing 
evolution of  is assumed to fall into one of three patterns, as illustrated in Figure 3: concave triangle, convex 
triangle, or constant.  This gives rise to three user classes: timid, aggressive, and Newell drivers, respectively. 

free-flow congestion 
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Figure 3 Behavior patterns 

  
The physical meaning of the concave (convex) triangle pattern is that when drivers first perceive an oscillation 

they will tend to get farther (closer) to the leader -- relative to the equilibrium congested branch -- until some critical 
point where they will tend to come back to the equilibrium branch.  The maximum degree of deviation from the 
equilibrium is denoted by  and the corresponding -value, .  Namely, .  Clearly, the constant 
pattern implies that the driver will remain on their equilibrium branch throughout the oscillation.  The rate   
is assumed constant. 

Notice that the driver behavior described by the L-L model was a conjecture inspired from observations, and it 
has not been verified yet.     

4 Measurements 
Up to this point, the behavioral model just described is in a state of conjecture. We now undertake the empirical 

measurement of  , which is absent in the study of Laval and Leclercq (2010), and find new behavioral patterns 
that arise recurrently in our sample.  Fortunately, these new patterns can be captured by a parsimonious model, of 
which the L-L model is a special case. 

 

4.1 Methodology  
 
The method for measuring  is illustrated in Figure 4, where it can be seen that  can also be written as: 
 

.                                                                                       (8) 
 

The term  is the actual wave travel time and τ is the equilibrium value given by Eqn. (3).  It follows that the 
measurement of  boils down to measuring , which is much more convenient than measuring the steady-
state spacing.  To see this, recall that when the vehicle is accelerating/decelerating, its steady-state spacing is given 
by the term “ ” in Figure 4, which is not easy to observe from the data. 

 
Figure 4 Measurement of   

 
Notice that the value of   depends on the product  by virtue of Eqn. (3) and also on w alone since it 

defines the slope of characteristics.  Fortunately, we have observed that within a wide range of values of w and , 
the general shape of  is maintained across different measurements; see e.g. Figure 5.  In our analysis we use  
= 16 km/h, as the case in many studies using NGSIM data (Durent et al., 2011; Laval and Leclercq, 2010), and  is 
set to be the average of  in equilibrium before oscillations from all trajectories sampled.    

 
Figure 5 Effects of model parameters 

  

4.2 The behavior model  
 
We observe that the driver behavior across traffic oscillations follows a very consistent pattern across the 

sample; see Figure 6(a) for a typical example.  Generally, drivers maintain a constant  before the oscillatory 
state.  When the deceleration wave arrives,  deviates from the constant level, which implies that they enter the 
non-equilibrium mode.  Interestingly, after the deviation,  maintains a constant level again, although it is not 
necessarily the value before the non-equilibrium.  Based on these observations, the “asymmetric behavioral model” 
is proposed to describe a driver’s car-following behavior in congestion: (i) drivers enter the non-equilibrium mode 
when an oscillation is triggered; (ii) the ensuing dynamics of  in non-equilibrium, called “reaction pattern”, 
follow one of three categories: concave triangle, convex triangle, and constant; and (iii) before and after the non-



 Author name / Procedia – Social and Behavioral Sciences 00 (2012) 000–000  

5 
 

equilibrium mode, drivers are in equilibrium.  The model can be well described using the following parameters, as 
shown in Figure 6(b): 

 
 is the stable value of  before the non-equilibrium behavior,  
 is the stable value of  after the vehicle has reached equilibrium,   
is the value of  when the vehicle has the maximum deviation from ,  
 is the average slope of  between   and , and  
 is the average slope of  between  and .   

 
The moment the non-equilibrium behavior starts is the last essential component of the model. Based on our 

observations, in most cases the trigger towards non-equilibrium is the initial deceleration wave emanated from the 
oscillation. Therefore, we assume that drivers in equilibrium will switch to non-equilibrium mode as soon as they 
are forced to decelerate. As an example, the dynamics of  for the concave triangle pattern can be written as:  

 
Before non-equilibrium:  
 

During non-equilibrium:   

 
After non-equilibrium:  
 

where  denotes the starting point of non-equilibrium and  is the instance when  is achieved.  The dynamics of 
convex pattern are identical except for the sign preceding . 

Notice that in this model (i) drivers are heterogeneous and each driver has its own set of parameters 
[ , ], (ii)  is not necessarily equal to 1, and it may change after the driver passes the oscillation to , 
which means that each driver has a unique equilibrium congestion branch before traffic oscillations and does not 
necessarily come back to that branch after oscillations, and (iii) the reaction patterns (i.e., convex and concave 
triangles) are not necessarily isosceles; i.e., .   

 
 

Figure 6 Behavior profile of the asymmetric behavioral model 
(a) empirical plot of ; (b) illustration of asymmetric behavioral model. 

Figure 7 Driver categories 
(a) physical meaning of driver categories; (b) histogram of . 

 

The physical meaning of  is clear.  In the context of the KWT model different values of  correspond to 
different congested branches in the fundamental diagram; see Figure 7(a).  If ( ), the driver prefers to 
maintain a spacing smaller (larger) than the average level, referred to as “originally aggressive” (“originally timid”) 
driver, abbreviated as OA (OT); see point “1” (“3”).  If  is close to 1 (i.e., ), the driver behaves at the 
average level, named as “originally Newell” driver, abbreviated as ON; see point ‘2’.  Hence, the -value captures 
the characteristics of a driver in equilibrium before traffic oscillations, and similarly the -value captures the 
characteristics in equilibrium after traffic oscillations.  Notice that driver categories are determined by their  
characteristics in equilibrium before traffic oscillations, and that every driver category can exhibit any of the three 
reaction patterns.  In contrast, the original L-L model assumes that drivers are homogeneous and their reaction to 
oscillations is symmetric; i.e.,  and  .  Additionally, driver categories are determined by the reaction 
pattern.  Clearly, the original L-L model is only a special case of the asymmetric behavior model.  Table 3 provides 
a summary of the asymmetric behavior model and also the difference between this model and the original L-L 
model.   

 
Table 1: Difference between original L-L Model and the asymmetric behavior model  
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The parameters of the asymmetric behavior model can be measured from the  plot obtained using the 
methodology introduced above.  Particularly, the measured -function is approximated by a piecewise-linear 
function characterized by parameters [ ].  This is illustrated in Figure 6(b), which also shows the 
corresponding speed profile.  Time  corresponds to the beginning of the deceleration cycle (i.e., starting point of 
the non-equilibrium mode) and  is the instance when , the maximum or minimum value of  during the 
oscillation, is achieved.  Time  is selected to minimize the variation of linear regression on segment 3 and 4.  The 
average level for segment 1 is  and  for segment 4.  The slopes of segment 3 and 4 are  and , respectively.    

5 Statistical Analysis 
In this section we perform a statistical analysis on the collected sample. The main purposes are to (1) study the 

behavior characteristics of drives, and (2) examine the relationship between model parameters, which may help to 
further simplify the asymmetric behavior model.     

 
Figure 8 Correlation between successive drivers  

 
We exhaustively sampled lane 1 from 7:50a.m.-8:05a.m. and examined the correlation of driver characteristic 

(denoted by ) between successive drivers.  Figure 8 shows the result from 123 trajectory pairs (with lane-changers 
excluded), where the horizontal and vertical axes are the  value for the leaders and followers, respectively.  The 
plot suggests no significant correlation between the value .for two successive drivers.  The same analysis for the 
remaining parameters yields the same result.  This implies that driver behavior is a “personality” characteristic, 
independent of other drivers.  As a result, in the sequel we use random sampling to select trajectory pairs from other 
lanes/time periods for detailed investigation.  

We sampled trajectories from 7:50a.m.-8:20a.m. on lanes where traffic oscillations occurred, but did not include 
time period after 8:20a.m.because oscillations can hardly be distinguished thereafter.  Particularly, the sample was 
split to two groups, period 1 and period 2 corresponding to the first and the second 15min.  The reason for the 
splitting is that oscillations originating downstream of the study site appeared after about 8:03a.m.; see Figure 1 (a-
b).   We have obtained 44 trajectories pairs from period 1 and 67 from period 2.  Investigation was conducted on this 
sample.    

5.1 Statistics on drivers’ behavior characteristics 
Figure 7(b) is the histogram of  for all 111 trajectory pairs.  The threshold of ON drivers is set to be

0≤1.1, and the lower (upper) regime corresponds to OA (OT) drivers.  Notice from Figure 9 that the composition 
of driver categories is consistent in period 1 and period 2.  Of course, the proportions may change if the threshold 
varies, but the magnitude should hold.  

 
Figure 9 Vehicle categories  

 
We find a correlation between the driver category and the reaction pattern: (i) OA drivers tend to have the 

concave triangle pattern, and OT drivers the convex pattern; (ii) ON drivers are equally likely to have any of the 
three patterns in period 1 but prefer to concave triangle pattern in period 2; see statistics in Figure 10.   Figure 11 
illustrates some common and typical examples for the evolution of , which account for roughly 90% of the 
sample.  Result (i) is intuitive.  OA drivers maintain a small spacing before the oscillation, and therefore, they have 
little room to further decrease the spacing in non-equilibrium.  In contrast, OT drivers preserve more than enough 
room and may feel less pressure to react.  In other words, OA drivers are less aggressive during oscillations and OT 
drivers are less timid.  Result (ii), however, is surprising.  Two reasons may contribute to this result: (1) Oscillations 
in period 1 spontaneously arose in the study site (at distance 400m, see Figure 1(a)) while originated from 
downstream in period 2 (see Figure 1(b));  (2) in period 1 traffic was moderately congested with speeds of about 
30mph before the oscillations and recovered to 40~50mph after; while it was dense in period 2 with 20~30mph 
driving speed before the oscillations and below 30mph after.  This can be seen in Figure 12.  In dense traffic, the 
equilibrium spacing is much smaller, which forces ON drivers to adopt a relatively safe reaction pattern, in this case 
the concave triangle pattern.  Under moderate congestion there is no particular reason to react in either way.   
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Figure 10 Behavior pattern statistics 
Left: period 1; Right: period 2. 

 
Figure 11 Examples of behavior patterns during oscillations (circled in dashed line) 

 (a) originally aggressive driver; (b) originally timid driver; (c) originally Newell driver. 
 

Figure 12 Examples of trajectories and speed profiles in different periods. 
(a): period 1; (b): period 2. 

 
Figure 13 shows the histogram of all parameters for the whole sample because we did not observe significant 

differences between the distributions from periods 1 and 2.  Table 2 shows the mean and coefficient of variation for 
all model parameters.  The sample has been broken down according to the reaction patterns to avoid spurious 
results.  In both periods, the coefficients of variation for the ’s are around 20 -- 35%, which indicates mild 
variability.  A very high variability is observed in the case of the , which may be due to the large variation 
in the duration of the oscillations. 

 
 

Table 2: Descriptive statistics 

Figure 13 Histogram of all parameters 
 

5.2  Hypotheses tests on model parameters 
In this section, we test the correlation between model parameters; i.e., all the five parameters are considered as 

random variables and the correlation of each pair is examined.  We also perform the paired t-test to see whether or 
not variables are significantly different.  These are important because (i) the correlation will determine whether we 
can assume independent distributions for the parameters in the model, and (ii) the significance of difference of 
paired differences will help to decide if parameters can be combined.   

Tables 3 and 4 show the t-statistic from least squares regression for all parameter combinations.  The tables also 
show the p-values from the Wilconxon signed-rank test, a non-parametric statistical hypothesis test used to compare 
two repeated measurements on a single sample to assess whether their population means differ.  Notice that the 
sample size may be not large enough to estimate the distribution of a parameter.  Therefore, non-parametric 
hypothesis tests were conducted, which did not require information about the variable distribution as the input.  The 
main conclusions, at the 95% confidence level, are that in the two periods for both patterns (i) , , and  are all 
correlated, and (ii) and  are not significantly different.  Result (i) implies that all pairs among parameters , , 
and , are correlated.  Additionally, differences exist between samples from the two periods: (iii)  and  have no 
(or very week) correlation with each other and with the ’s except for the concave pattern sample in period 2; and 
(iv)  and  are not significantly different  in period 2 but the difference is significant for convex pattern sample 
and the combined sample in period 1. 

 The correlation among the model parameters was expected.  It indicates that drivers behave differently and that 
these differences are consistent across drivers.  Notice that the correlation may be obscured if samples of the two 
patterns are combined.  For example, the correlation between and is significant for the separate samples, but 
not for the combined sample.  Also expected was that  since there is no strong reason to believe that 
deviations to and from equilibrium should happen at different rates.  But the controversial finding about the 
distribution of  and comes to a surprise.  The result that  is intuitive, because it implies that drivers stick 
to the same equilibrium branch before and after traffic oscillations, i.e., no change in drivers’ behavior 
characteristics.  However, that  indicates significant behavior changes imposed by traffic oscillations.  Three 
potential explanations can be offered: (i) trajectories in period 1 are too short to capture the full recovery.  Note that 
drivers experience long acceleration time after the oscillations in period 1 because the traffic state there is 
significantly less congested than before the oscillations; see Figure 12 (a).  (ii) Lack of experience.  We find that in 
period 2 drivers experienced at least two consecutive oscillations; see Figure 12(b).  It is possible that drivers who 
experience oscillations for the first time, especially those react aggressively to oscillations (i.e., convex pattern), 
become more conservative after the oscillation passes; see the higher value of  than for samples of period 1 in 
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Table 2.  As drivers gain more experiences, they react promptly and are able to recover to the original equilibrium 
branch.  (iii) Oscillations in period 2 are better developed, which allows drivers to anticipate the deceleration and 
acceleration cycle and therefore maintain a consistent equilibrium branch.  Nevertheless, we think  is more 
common.  Otherwise, it means that every time drivers experience a traffic oscillation, they change their preferred 
equilibrium branches completely, in this sense that they come from a different distribution.  A change in the 
distribution may be caused by extreme environmental changes, e.g. rain or sharp changes in geometric design, which 
are not observed in our case.    

 
Table 3: Parameter correlation for period 1 (t-statistics from least squares regression in lower diagonal and p-value from Wilcoxon signed-

rank test in upper right, grey cells indicate significance at 5% significance level)  
Table 4: Parameter correlation for period 2 (t-statistics from least squares regression in lower diagonal and p-value from Wilcoxon signed-

rank test in upper right, grey cells indicate significance at 5% significance level)  

6  Simulations 
In this section we use simulation to evaluate the performance of the asymmetric behavior model at the 

macroscopic level and to compare its predictions with the L-L model. A simplified model to capture the 
rubbernecking phenomenon is introduced in Section 6.1 and the corresponding simulation results are analyzed in 
Section 6.2.  The comparison with the original L-L model is presented in Section 6.3.   

 

6.1 The experiment 
 
Recall from Section 2 that there is strong indication that rubbernecking caused by the clean-up work on the 

median of US-101 may cause the oscillations in Figure 1(a).  In support of this conjecture, we simulated for 32 
minutes a 1.25km flat one-lane roadway with a triangular fundamental diagram where u = 120 km/h, κ = 150 
veh/km and w = 16 km/h.  The rubbernecking zone is located at  km (see the red bar in Figure 14(a)).  
When drivers enter this zone, they have a probability r to rubberneck, which will cause their speed to drop by a 
factor of (1-p).  Rubbernecking will occur at most once in this zone, if any.  The roadway is empty at t = 0 and the 
inflow demand is set to 80% of capacity.  Drivers are assumed to travel at free-flow speed when there is no 
congestion, and follow the asymmetric behavioral model when traffic is congested.  Several combinations of the 
parameters , r, and p are tested in the simulations.  

According to the previous section the asymmetric behavior model is now reduced to three parameters per driver 
[ , , ], in which  and .  Notice that some of the parameters are correlated and one should 
use their joint density function to generate the model parameters.  However, as noted earlier, the sample size in this 
study may be not sufficient.  Therefore, we resorted to use the sample enumeration method (Ben-Akiva and Lerman, 
1985).  Namely, each trajectory pair measured yields a set of [ , , ] from the original measurement of 
[ , ],  in which  is dropped and the value of  is set to be the average of  and .  In this way, the 
correlation, if any, among the three parameters of a parameter set [ , , ] is preserved.  The measurement of 111 
pairs forms a parameter matrix.  Each time a vehicle is generated, he/she will be assigned with a parameter set 
[ , , ] randomly selected from the matrix.  Notice that the matrix is a representation of the real measurement 
and no estimation of parameter distribution is required.    

 

6.2 Simulation results 
 
The vehicle trajectories from a few simulation runs are shown in Figure 14(b-d).  Figures 13(b) and (c) suggest 

that the asymmetric behavior model has produced traffic oscillations that are very consistent with the empirical 
oscillations in Figure 1(a-b).  Particularly, the oscillations produced have similar period (~3min), and they also 
exhibit precursor areas (circled by red dashed curves) that lead to fully grown oscillations, which are obvious in the 
empirical data.  These two figures also illustrate how the period of oscillation is positively correlated with p.  Notice 
that in both cases the precursor region is well reproduced and the amplitude grows similarly as in Figure 1(a).  The 
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detailed view in Figure 14 (d) make apparent the large white voids that appear in the traffic stream. These voids are 
caused by OT drivers that prefer to maintain larger spacing.   

Figure 14 Trajectories from simulations using asymmetric behavior model 
(a) sketch of the highway segment in simulations; (b-d) trajectories from simulations (r=4%). 

 
Figure 15 Relationship between oscillation period and parameters of asymmetric behavior model  

 
Figure 15 shows the relationship between the period of oscillation and the parameters , r, and p, predicted by 

the model.  The period was measured using Fourier spectrum analysis (Li et al., 2009) to the speed time series 
collected at location  m.  Each point in the figure represents the average for 5 simulation runs.  Notice that 
the maximum acceleration has little effect on the period when the rubbernecker proportion is greater than 4% but a 
significant one when the proportion is small.  Also notice how r is negatively correlated with the period and how p is 
positively correlated with it.  This suggests that both the rubbernecker proportion and the speed reduction imposed 
by rubbernecking (denoted by 1-p) have negative impacts.  Particularly, the relationship between period and r 
appear to be convex and rapidly approaching a stable value of about 2-3 min.  The negative impact of r seems 
intuitive: the more rubberneckers, the more often (i.e., smaller interval) traffic oscillations may arise.  Notice, 
however, that the period is not necessarily determined by the arrival of rubberneckers.  The relationships are more 
complex.  From Figure 14 (b) and (c) one can see that not every rubbernecker (denoted by a green trajectory) will 
lead to an oscillation.  For example, in the precursor area labeled in Figure 14 (b) there are several rubberneckers 
that all contribute to the ensuing oscillation.  We agree with Laval and Leclercq (2010) on the conjecture that traffic 
oscillation period may have connections with the discharge flow from previous oscillation and the approaching 
speed of incoming vehicles.  As an illustration, we find that strong acceleration capability (i.e., large -value) 
allows drivers to accelerate quickly to high speed and result in high discharge flow after oscillations; while with 
small -value, the acceleration process is much longer and discharge flow is smaller.  The effects are particularly 
significant when disturbance is small (e.g., r <4%, p >0.85).  This may explain the impacts of p and .   

 

6.3 Model comparison 
 
We run the same rubbernecking experiment using the original L-L model.  The parameters used in the L-L 

model correspond to sample averages; i.e., ε is set to be the mean of all , and α equals to the average of .  
We have obtained ε=215veh/h, α=0.27.  The proportion of different driver categories is taken from the whole 
sample: 33% of OA drivers, 22% of OT drivers, and 45% of ON drivers.  Of course,  and are set to be 1 as 
assumed in the model.   

Figure 16 and 17 present examples of trajectories from simulations and results of analysis, respectively.  We find 
that (1) the original L-L model has produced similar magnitude of period and the negative (positive) effects of r (p) 
on oscillation period.  However, (2) there are more large white voids in trajectories from asymmetric behavior model 
as shown by Figure 14(c) and Figure 16(c); and (3) the effect of  is negligible in the original L-L model; see 
Figure 17.  Result (1) appears reasonable because the original L-L model can be considered as a representation of 
the average performance of drivers, which may result in some general features.  Result (2) is probably caused by the 
different assumption of -value in the two models.  Recall that the original L-L model assumes that .  
Consequently, the white voids after traffic oscillations are due to the limited acceleration capability of drivers.  By 
contrast, in the asymmetric behavior model, white voids can be created not only by limited acceleration capability 
but also by OT drivers (i.e., large -value) because the model allows a wide range of ( ).  Result (3), however, 
is still puzzling.  We suspect that the discharge flow from previous oscillations and approaching speed of drivers 
may play a role.   

Figure 16 Trajectories from simulations using original L-L model with r=4% (green trajectories represent rubberneckers). 
Figure 17 Relationship between oscillation period and parameters of the original L-L model 

 
The performance of the two models suggests that the asymmetric behavior model should be used in order to 

capture the important features of traffic oscillations and to understand why and how the features are generated.   
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7 Discussions 
Using empirical trajectory data this paper has unveiled the complete dynamic behavior profile of drivers 

experiencing traffic oscillations. This behavior can be described by the asymmetric behavior model with five 
parameters [ ] per driver, which could be drawn from a joint distribution function.  We find that 
drivers exhibit different characteristics in congestion, reflected by their unique equilibrium branches, and that these 
characteristics are correlated with their reaction to traffic oscillations.  To some extent, drivers’ characteristics in 
equilibrium determine their response to traffic oscillations.  In this sense, it seems that driver heterogeneity causes 
traffic oscillation to form and propagate.  Because the heterogeneity is inherent to drivers, the formation and 
propagation of traffic oscillations seem inevitable as long as triggering factors exist.  This implies that triggering 
factors would be a primary concern in the control and management of traffic oscillations. 

The statistical analysis and simulation results revealed the model can be further reduced to three parameters per 
driver [ ] without losing general macroscopic features.  This is promising because it suggests that the simple 
asymmetric behavior model can serve as the basis of studies in traffic oscillations such as investigation of the 
formation and propagation mechanism and design of management policies that will help to reduce or mitigate the 
negative impacts of traffic oscillations.  Of course, one should be cautious in transferring our results to different 
driver population, because the model parameters are correlated and may vary with driver populations.  In 
applications, one may use the sample enumeration to generate the parameters as in this paper if a large sample is not 
available or assume a joint distribution estimated from a large sample size.   

A controversial finding from the statistical analysis is that  in samples from period 1, which is probably 
due to the limited spatial extent of trajectories or lack of experience in traffic oscillations or different degree of 
development of oscillations.  If the latter two reasons hold, they imply that traffic oscillations can significantly 
change driver behavior and one expects to see the changes of the distribution of  occur quite often.  Investigation 
of the cause is the subject of current research. 

The simulations seem to confirm our hypothesis that that rubbernecking is the cause of the spontaneously formed 
oscillations observed on the study site.  In particular, our simulation results show well-defined relationships between 
the percentages of rubberneckers ( ), the speed reduction ( ), and oscillation period.  It is interesting to note that 
these relationships tend to approach a common lower bound of about 2-3 min, which is the same value as in the 
empirical data in Figure 1(a-b), and as in the upgrade simulation experiments in Laval and Leclercq (2010). This 
might be an indication that the minimum oscillation period that a bottleneck can create is within that range.     

The original L-L model captures one ideal case of driver behavior but is far from sufficient to cover the general 
patterns unveiled in this paper.  Simulation results indicate that it is able to produce the general macroscopic features 
of oscillations, but it may disregard some important microscopic features such as the white voids and the impacts of 
drivers’ acceleration capability.  The L-L model, which is more parsimonious, may be satisfying for macroscopic 
interests.  However, for microscopic studies such as individual driver behavior and impact evaluation, the 
asymmetric behavioral model should be used.  In particular, to quantify the impacts of traffic oscillations on safety 
risk, fuel consumption, and greenhouse emission, the asymmetric behavioral model should be applied.  For the 
quantitative loss of parsimoniousness, further investigation is needed such as comparison of the impacts of traffic 
oscillations using the two different models.  This research is on-going.     

A more detailed examination of the data and the model is needed to improve our understanding of the 
relationships alluded to in the previous paragraph. In particular, we suspect that the time until the next oscillation is 
directly related to the outflow from the previous one.  In fact, notice from Figures 1(a) and Figure 11 how the flow 
entering a precursor region appears to be lower (more white voids in the figures) than when the oscillations start to 
propagate.  Further research is needed to investigate the mechanism of how the oscillation period is determined.  
Once the mechanism is clear, the parameters  and  in the model can be calibrated.  To this end, a massive data 
collection plan is needed, which should include not only vehicle trajectory data but also video footage capturing 
driver head/eye movement to identify the rubberneckers and their speed reduction.  Note that the Strategic Highway 
Research Program 2 (SHRP2) naturalistic driving study (2011) is collecting data on in-vehicle driving behavior, 
including continuous video of driver and vehicle movement, which can be used to examine driver’s behavior and/or 
errors.  Once these data become available,  and  can be estimated.  Additionally, the asymmetric behavioral model 
should be validated using datasets from other sites.  This was not accomplished in this study because currently we 
could not find another dataset that provides complete trajectory data, but it is a priority for future research.  

Finally, driver behavior needs further investigations.  For example, it is unclear whether the longitudinal 
behavior of drivers is consistent when they participate in more than one oscillation.  Neither is it known whether 
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driver characteristic will affect the magnitude of oscillations.  Additionally, the impacts of oscillations on traffic 
flow should be investigated; e.g., the connection between traffic oscillations and bottleneck capacity.  With the 
impacts clear, studies on managing/mitigating traffic oscillations should follow.  All the issues raised in this section 
are being currently investigated by the authors.   
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