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Abstract— Visual place recognition is a challenging problem 

due to the vast range of ways in which the appearance of real-
world places can vary. In recent years improvements in visual 
sensing capabilities, an ever-increasing focus on long-term mobile 
robot autonomy, and the ability to draw on state of the art 
research in other disciplines – particularly recognition in 
computer vision and animal navigation in neuroscience – have all 
contributed to significant advances in visual place recognition 
systems. This paper presents a survey of the visual place 
recognition research landscape. We start by introducing the 
concepts behind place recognition – the role of place recognition 
in the animal kingdom, how a “place” is defined in a robotics 
context, and the major components of a place recognition system. 
We then survey visual place recognition solutions for 
environments where appearance change is assumed to be 
negligible. Long term robot operations have revealed that 
environments continually change; consequently we survey place 
recognition solutions that implicitly or explicitly  account for 
appearance change within the environment. Finally we close with 
a discussion of the future of visual place recognition, in particular 
with respect to the rapid advances being made in the related 
fields of deep learning, semantic scene understanding and video 
description.  
 

Index Terms—Visual Place Recognition. 

I. INTRODUCTION 

ISUAL place recognition is a well‐defined but extremely 
challenging problem to solve in the general sense; given 

an image of a place, can a human, animal or robot decide 
whether or not this image is of a place it has already seen? 
Whether referring to humans, animals, computers or robots, 
there are some fundamental things a place recognition system 
must have and must do. Firstly, a place recognition system 
must have an internal representation – a map – of the 
environment to compare to the incoming visual data. 
Secondly, the place recognition must report a belief about 
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whether or not the current visual information is from a place 
already included in the map, and if so, which one. Performing 
visual place recognition can be difficult due to a range of 
challenges; the appearance of a place can change drastically 
(see Fig. 1), multiple places in an environment may look very 
similar, a problem known as perceptual aliasing, and places 
may not always be revisited from the same viewpoint and 
position as before. 

 
Fig. 1.  A visual place recognition system must be able to (a) successfully 
match very perceptually different images while (b) also rejecting incorrect 
matches between aliased image pairs of different places. 

In robotics, this research topic is highly relevant given the 
ever increasing focus on long term mobile robot autonomy and 
rapid improvements in visual sensing capabilities and cost. 
Vision is the primary sensor for many localization and place 
recognition algorithms [1]–[19]. Place recognition is also a 
growing research field, as evidenced by citation analyses and a 
number of dedicated place recognition workshops at recent 
and upcoming robotics and computer vision conferences 
including the International Conference on Robotics and 
Automation (2014, 2015) and the IEEE Conference on 
Computer Vision and Pattern Recognition (2015). The 
problem of persistent place recognition has also formed a 
regular component of many more general workshops including 
the long-running ICRA workshop on Long‐Term Autonomy 
(2011 – 2014). 

Our aim in writing this survey article is to provide a 
comprehensive review of the current state of place recognition 
research that is relevant both to robotics and other fields of 
research including computer vision and neuroscience. The 
timing for such a survey is particularly fortuitous given major 
events across these related fields: for example, the almost 
universal usage of deep learning techniques in state of the art 
recognition systems in computer vision, and the 2014 Nobel 
Prize in Physiology or Medicine award to Edvard Moser, 
May-Britt Moser and John O’Keefe, who discovered the key 
representations of place in the mammalian brain. This paper 
provides an overview of the place recognition problem and its 
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relationship with many major robotics research fields 
including SLAM, localization, mapping, and recognition. 
Because of the increasing focus in the research community on 
long term robot autonomy in challenging environments, we 
also provide a particular focus on the problem of lifelong 
visual place recognition for robots.  

II. THE CONCEPT OF PLACE IN ROBOTICS AND THE NAT

KINGDOM 

The problem of navigation and place recognition has a 
venerable tradition in psychology and neuroscience. In 1948, 
the research of Tolman [20] on rats navigating mazes 
motivated him to propose the cognitive map
representation of the world with information ab
relationships between places that animals gradually learn. 
concept of the cognitive map, while not without its critics 
[21], [22], has been influential not only in psychology and 
neuroscience, but also areas such as urban planning
Lynch [23] proposed that the elements of a cognitive map 
paths, edges, nodes, districts and landmarks
where mapping approaches have been inspired by the 
cognitive map [24], [25], and by its successor, the spatial 
semantic hierarchy [26]. 

With the development of techniques to record neural 
activity in the brain of animals [27] came the iden
place cells in the rat hippocampus by O’Keefe and Dostrovsky
[28]. Place cells fire when the rat is in a particular place in the 
environment (see Fig. 2(a)), and the population of place cells
cover the entire environment [29], [30]. Furthermore, if a rat 
moves from one environment to another, the same place cells 
can be used to represent multiple different environments. 
O’Keefe and Conway [31] proposed that these place cells 
form a part of Tolman's cognitive map. The understanding 
about the relationships between neural activity and places
the world was extended by the discovery of head direction 
cells in the dorsal presubiculum [32] and of grid cel
the medial entorhinal cortex (MEC). Head d
when an animal turns its head in a particular direction relative 
to its body, while grid cells fire in multiple places in the 
environment, in such a format that their firing fields form a 
regular grid (see Fig. 2(b)).  

Fig. 2.  Neuroscience experiments have shown that the brains of 
as rats contain place cell and grid cell neurons. Each place cell fires strongly 
at one location in an environment, while each grid cell fires at
regularly spaced locations. This figure shows the firing locations of 
cell and (b) a grid cell placed over the path of an animal in 
environment (from [34]).  

Place recognition, as observed via the firing of place cells, 
is triggered by both sensory cues and self-

relationship with many major robotics research fields 
including SLAM, localization, mapping, and recognition. 
Because of the increasing focus in the research community on 
long term robot autonomy in challenging environments, we 
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the brains of animals such 

Each place cell fires strongly 
at one location in an environment, while each grid cell fires at multiple, 

This figure shows the firing locations of (a) a place 
placed over the path of an animal in a square 

Place recognition, as observed via the firing of place cells, 
-motion [29]. Studies 

with rats show that place cell firing is initially based on self
motion, but if the environment is changed
distance between start and end goals
cell will update to the correct location according to the 
external visual landmarks [35], [36]
smoothly or abruptly, depending on the size of the mismatch. 

Many of the same concepts arise in robotics. Most robots 
have access to external observation data as well as self
information. Topological and metric relationships between 
places are used in combination with sensory cues to determine 
the most likely place, similar to the neuronal firing of the 
place cells. Fig. 3 presents a schematic of a visual place 
recognition system. Visual place recognition systems contain 
three key components – an 
interpret the incoming visual data; a 
representation of the robot’s knowledge of the world; and a 
belief generation module, which uses the incoming sensor data 
in combination with the map to
the robot is in a familiar or novel place. A place recognition 
system may also use motion 
inform the belief generation process. Furthermore, most place 
recognition systems are designed to operat
must update the map accordingly. 

Fig. 3.  Schematic of a visual place recognition system. Incoming visual data 
is processed by the image processing
world is stored in the map. The belief generation
current visual data matches a previously stored place. Motion information is 
also often included, and the map may be continually updated during operation.

This paper discusses what qualifies as a place in
of robotic navigation. It then looks at the three key modules 
that make up the place recognition system: the image 
processing module, the mapping framework, and the belief 
generation module. The paper then turns to the problem of 
changing environments. It revisits each of the modules 
image processing module, the mapping module and the belief 
generation module – and investigates how each has to be 
adapted to incorporate the notion of appearance change into 
the place recognition system’s mo

III.  WHAT IS A PLACE

The concept of places in robotics is motivated by the 
challenges of robotic navigation and mapping. A real robot 
has fallible sensors and actuators and it is challenging to build 
a metrically accurate map of the world, a
localization within such a representation. The combination of 
both these goals, known as Simultaneous Localization and 
Mapping (SLAM) [37]–[41]
consistently achieve.  

An alternative approach is 

2

cell firing is initially based on self-
motion, but if the environment is changed - by altering the 
distance between start and end goals, for example - the place 
cell will update to the correct location according to the 

[35], [36]. The correction may occur 
ly or abruptly, depending on the size of the mismatch.  

Many of the same concepts arise in robotics. Most robots 
have access to external observation data as well as self-motion 
information. Topological and metric relationships between 

mbination with sensory cues to determine 
the most likely place, similar to the neuronal firing of the 

presents a schematic of a visual place 
recognition system. Visual place recognition systems contain 

an image processing module to 
interpret the incoming visual data; a map that maintains a 
representation of the robot’s knowledge of the world; and a 

module, which uses the incoming sensor data 
in combination with the map to make a decision about whether 
the robot is in a familiar or novel place. A place recognition 
system may also use motion or transition information to 
inform the belief generation process. Furthermore, most place 
recognition systems are designed to operate online, and thus 
must update the map accordingly.   

 
Schematic of a visual place recognition system. Incoming visual data 

image processing module. The robot’s knowledge of the 
belief generation module decides whether the 

current visual data matches a previously stored place. Motion information is 
also often included, and the map may be continually updated during operation. 

what qualifies as a place in the context 
of robotic navigation. It then looks at the three key modules 
that make up the place recognition system: the image 
processing module, the mapping framework, and the belief 
generation module. The paper then turns to the problem of 

ronments. It revisits each of the modules – the 
image processing module, the mapping module and the belief 

and investigates how each has to be 
adapted to incorporate the notion of appearance change into 
the place recognition system’s model of the world.  

HAT IS A PLACE? 

The concept of places in robotics is motivated by the 
challenges of robotic navigation and mapping. A real robot 
has fallible sensors and actuators and it is challenging to build 

accurate map of the world, and to maintain self-
localization within such a representation. The combination of 
both these goals, known as Simultaneous Localization and 

[41], is even more difficult to 

An alternative approach is to use a “relational map, which is 
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rubbery and stretchy, rather than to try to place observations in 
a 2-D coordinate system” (Brooks, [40]). Such a topological 
map is conceptually similar to the biological notion of a 
cognitive map, and uses nodes to represent the possible places 
in the world and edges to represent the possible paths between 
these places. Robot navigation is reduced to following these 
edges between nodes and the places represent key 
intersections or decision points between routes [42], [43] as 
well as desirable end goals. 

This topological approach to navigation is not without 
difficulties. The robot has to associate these abstract routes 
and places with physical places and paths, and the complex 
relationship between the robot sensors, the robot controls, and 
the robot’s topological and metric interpretations of the world 
need to be defined [26]. Another issue is how a robot can 
generate topological maps. If the robot has access to a metric 
gridmap of the environment, it can extract topological 
information, emphasizing relevant navigation information like 
open spaces and passageways [44]. Alternatively, a 
topological map can be created by a robot from visual and 
transition information.  

The definition of a place depends on the navigation context, 
and may either be considered as a precise position – “a place 
describes part of the environment as a zero-dimensional point” 
(Kuipers, [26]), or as a larger area – “a place may also be 
defined as the abstraction of a region” where a region 
“represents a two-dimensional subset of the environment” 
(Kuipers, [26]). A place can be a fairly large two-dimensional 
physical area – for example, a room in a building might in 
some cases qualify as a single place, while in other cases it 
might contain many different places. A region could also be 
defined as a three-dimensional area, depending on the 
requirements of the environment or robot. Unlike a robot pose, 
a place does not have an orientation, and an ongoing challenge 
in place recognition is pose invariance – ensuring recognition 
regardless of the orientation of the robot within the place. 

The location of each place – whether a one-dimensional 
point or a larger region – can be selected based on spatial or 
temporal density. In this approach, a new place is added 
according to a particular time step, or when the robot has 
travelled a certain distance. Alternatively, a place can be 
defined in terms of its appearance. Kuipers and Byun [25] 
defined a place as somewhere distinctive relative to other 
nearby locations, according to some associated sensory 
information known as a place signature or place description. 
While the distinctiveness criterion is not always required, a 
topological place is defined as having a certain appearance 
configuration [45], [46] and the physical bounds of a place 
occur where the appearance changes significantly, called a 
“gateway” [47].  

This qualitative concept of topological places as regions 
that are visually homogeneous needs to be quantified – that is, 
how can a place recognition system actually segment the 
world into distinct places? Ranganathan [48] noted that there 
are similarities with the problem of change-point detection in 
video segmentation [49], [50], and used  change-point 
detection algorithms such as Bayesian surprise [50] and 

segmented regression [51] to define places within a 
topological map [48], [52]. These methods create a new place 
when the current appearance (determined from the sensor 
measurements) is unlikely according to the current model of 
the environment, and therefore a new model is required (see 
Fig. 4). Similarly, Korrapati, Courbon et al. [53] used Image 
Sequencing Partitioning (ISP) techniques to group visually 
similar images together as topological graph nodes, while 
Chapoulie, Rives et al. [54] combined Kalman filtering with 
the Neyman-Pearson Lemma. Murphy and Sibley [55] 
combined dynamic vocabulary building [56] and incremental 
topic modelling [57] to continually learn new topological 
places in an environment, and Volkov, Rosman et al. [58] used 
coresets [59] to segment the environment. Topic modeling, 
corsets, and Bayesian surprise techniques can also be used for 
other aspects of robotic navigation, such as summarizing a 
robot’s past experience [60]–[62], or determining exploration 
strategies [63].  

 
Fig. 4.  Topological place recognition systems segment the image stream into 
places based on the visual information. When a significant change is 
observed, a new place will be created. In this example (from [48]), the 
incoming image stream (top row) is segmented based on the detected change 
points. The detected places (bottom row) match closely to the different rooms 
shown by the ground truth location (middle row). 

Appearance-based and density-based place selection 
methods are practical to implement as they depend on 
measurable quantities such as distance, time or sensor values 
[64]. An ongoing challenge is the enhancement of appearance 
information with semantic labels such as “door” or 
“intersection” so places can be selected online based on their 
value as decision points. The addition of semantic data to 
maps can improve planning and navigation tasks [65], and 
requires place recognition to be linked with other recognition 
and classification tasks, especially scene classification and 
object recognition. These relationships are symbiotic – place 
recognition can improve object detection by providing 
contextual priming for object detection as well as contextual 
priors for object localization [66], and conversely, object 
recognition can also aid place recognition [67]–[70], 
particularly in indoor environments where the function of a 
place such as “kitchen” or “office” can be inferred from the 
objects within it, and used to infer the location from a labeled 
semantic map [71].  

IV.  DESCRIBING PLACES: THE IMAGE PROCESSING MODULE 

Visual place description techniques fall into two broad 
categories; those that selectively extract parts of the image that 
are in some way interesting or notable, and those that describe 
the whole scene, without a selection phase. Examples of the 
first category are local feature descriptors such as SIFT [72] 
and SURF [73]. Local feature descriptors first require a 
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detection phase which determines the parts of the image to 
retain as local features (see Fig. 5(a)). In contrast, an example 
of the second category are global or whole
such as Gist [74], which do not have a detection ph
process the whole image regardless of its content
5(b)).  

 
(a) 

Fig. 5.  Visual place description techniques fall into two broad categorie
Interesting or salient parts of the image are selected for extraction, description 
and storage. For example, SURF [73] extracts interest points in an image for 
description. The number of possible features may vary depending on the 
number of interest points detected in the image. The red 
points selected by SURF within this image. (b) The imag
pre-defined way without first detecting interest points
descriptors such as Gist [74], [75] divide an image into
the red lines and processes each block regardless of its content.

A. Local feature descriptors 

The development of the local feature method Scale
Invariant Feature Transforms or SIFT 
widespread use in place recognition [76]–
feature detection and description method
they too were applied to the visual localization and place 
recognition problem. For example, Ho and Newman 
Harris affine regions [85], Murillo, Guerrero et al. 
Cummins and Newman [87] use Speeded
(SURF) [73], while FrameSLAM [2] uses CenSurE 
Since local feature extraction consists of two steps 
followed by description – it is not uncommon to combine 
different techniques for each. For example, Mei, Sibley et al. 
[89] use the detection technique FAST [90]
in the image, which are then described by SIFT descriptors. 
Similarly, Churchill and Newman [15] use FAST extraction 
combined with BRIEF [91] descriptors.  

Each image may contain hundreds of local features, and 
directly matching image features can be inefficient. The 
of-words model [92], [93] increases effici
local features into a vocabulary that can 
text retrieval techniques [94]. The bag
partitions a feature space, such as SIFT or SURF descriptors
into a finite number of visual words (see
vocabulary contains 5000 – 10,000 words, but a vocabulary as 
large as 100,000 words has been used for place recognition
FAB-MAP 2.0 [87]. For each image, every feature is assigned 
to a particular word, ignoring any geometric or spatial 
structure, thereby allowing images to be reduced to binary 
strings or histograms of length n, where 
words in the vocabulary.  

detection phase which determines the parts of the image to 
. In contrast, an example 
whole-image descriptors 

, which do not have a detection phase but 
regardless of its content (see Fig. 

 
(b) 

Visual place description techniques fall into two broad categories. (a) 
Interesting or salient parts of the image are selected for extraction, description 

extracts interest points in an image for 
The number of possible features may vary depending on the 

he red circles are interest 
(b) The image is described in a 

without first detecting interest points. Whole-image 
an image into blocks as shown by 

s and processes each block regardless of its content. 

The development of the local feature method Scale-
Invariant Feature Transforms or SIFT [72] led to its 

–[83]. As other local 
feature detection and description methods were developed, 
they too were applied to the visual localization and place 
recognition problem. For example, Ho and Newman [84] use 

, Murillo, Guerrero et al. [86] and 
-Up Robust Features 
uses CenSurE [88]. 

Since local feature extraction consists of two steps – detection 
it is not uncommon to combine 

different techniques for each. For example, Mei, Sibley et al. 
[90] to find keypoints 

in the image, which are then described by SIFT descriptors. 
use FAST extraction 

Each image may contain hundreds of local features, and 
ures can be inefficient. The bag-

increases efficiency by quantizing 
that can be compared using 

. The bag-of-words model 
or SURF descriptors, 

(see Fig. 6). A typical 
10,000 words, but a vocabulary as 

large as 100,000 words has been used for place recognition by 
. For each image, every feature is assigned 

to a particular word, ignoring any geometric or spatial 
structure, thereby allowing images to be reduced to binary 

where n is the number of 

 

Fig. 6.  A bag-of-words model clusters similar features into a single visual 
word to make recognition more efficient and straightforward
(from [6]) shows examples of image patches all corresponding to 
visual word. This word matches window frame

Images described using the ba
efficiently compared using binary string comparison such as a 
Hamming distance or histogram comparison techniques. 
Vocabulary trees [95] can make the process 
place recognition even more efficient. Originally proposed for 
object recognition, vocabulary trees use a hierarchical model 
to define words, an approach that enables faster lookup of 
visual words and the use of a larger and thus more 
discriminating vocabulary. Localization systems that use the 
bag-of-words approach include 
many others. 

Because the bag-of-words model ignores the geometric 
structure of the place it is describing, the resulting place 
description is pose invariant
regardless of the position of the robot within the place. 
However, the addition of geometric information to a place has 
been shown to improve the 
particularly in changing conditions 
These systems may assume a laser sensor is available for 3D 
information [98], use stereo vision 
[100], [101], or simply define the scene geometry according 
the position of the elements within the image 
trade-off between pose invariance 
regardless of the robot orientation
recognizing places when the visual appearance changes
not yet been resolved, and is a current research challenge in 
place recognition. 

The bag-of-words model is typically pre
features extracted from a training image sequence. This 
approach can be limiting as the resulting model is 
environment-dependent and needs to be re
moved into a new area. Nicosevici and Garcia 
online method to continuously update the vocabulary based on 
observations, while still being able to match prior observations 
with future observations. As a result, a bag
can be used without requiring a pre
adapt to the environment, out
despite requiring less a priori

B. Global descriptors  

Global place descriptors used in early localizati
included color histograms 
principal component analysis 
[105] used a variety of image features 
corners [107] and color patches
of a location. By ordering these features in a sequence 
between 0° and 360°, place recognition could be reduced to 
string-matching. These systems used omnidirectional cameras 
which allowed rotation-invariant matching at each place. 

Global descriptors can be generated from local feature 
descriptors by pre-defining the keypoi
example, using a grid-based pattern
chosen feature description method on the pre
keypoints. Badino, Huber et al. 

4

words model clusters similar features into a single visual 
word to make recognition more efficient and straightforward. This image 

shows examples of image patches all corresponding to a single 
window frame crosspieces.  

Images described using the bag-of-words model can be 
efficiently compared using binary string comparison such as a 
Hamming distance or histogram comparison techniques. 

can make the process for large-scale 
place recognition even more efficient. Originally proposed for 
object recognition, vocabulary trees use a hierarchical model 

ch that enables faster lookup of 
visual words and the use of a larger and thus more 
discriminating vocabulary. Localization systems that use the 

words approach include [82], [84], [87], [96], [97] and 

words model ignores the geometric 
structure of the place it is describing, the resulting place 

ose invariant: the place can be recognized 
regardless of the position of the robot within the place. 
However, the addition of geometric information to a place has 

the robustness of place matching, 
in changing conditions [14], [87], [98]–[100]. 

may assume a laser sensor is available for 3D 
, use stereo vision [14], epipolar constraints 

, or simply define the scene geometry according 
the position of the elements within the image [102], [103]. The 

off between pose invariance – recognizing places 
regardless of the robot orientation – and condition invariance – 

cognizing places when the visual appearance changes – has 
yet been resolved, and is a current research challenge in 

words model is typically pre-defined based on 
features extracted from a training image sequence. This 
approach can be limiting as the resulting model is 

pendent and needs to be re-trained if a robot is 
moved into a new area. Nicosevici and Garcia [56] propose an 
online method to continuously update the vocabulary based on 
observations, while still being able to match prior observations 

. As a result, a bag-of-words model 
without requiring a pre-training phase, and can 

out-performing pre-trained models 
a priori knowledge [56].  

Global place descriptors used in early localization systems 
included color histograms [5] and descriptors based on 
principal component analysis [104]. Lamon, Nourbakhsh et al. 

of image features – such as edges [106], 
and color patches – combined into a fingerprint 

of a location. By ordering these features in a sequence 
360°, place recognition could be reduced to 

matching. These systems used omnidirectional cameras 
invariant matching at each place.  

Global descriptors can be generated from local feature 
defining the keypoints in the image – for 

based pattern – and then using the 
chosen feature description method on the pre-selected 
keypoints. Badino, Huber et al. [108] used whole-image 
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descriptors based on SURF features known as WI-SURF to 
perform localization and BRIEF-Gist [109] used BRIEF 
features [91] in a similar whole-image fashion.  

A popular whole-image descriptor is Gist [74], [75] which 
has been used for place recognition on a number of occasions 
[110]–[113]. Gist uses Gabor filters at different orientations 
and different frequencies to extract information from the 
image. The results are averaged to generate a compact vector 
that represents the “gist” of a scene.  

C. Describing places using local and global techniques 

Local and global descriptors each have different advantages 
and disadvantages. Local feature descriptors are not restricted 
to defining a place only in terms of a previous robot pose, but 
can be recombined to create new places that have not 
previously been explicitly observed by the robot. For example, 
Mei, Sibley et al. [114] defined places via co-visibility: the 
system finds cliques in the landmark co-visibility map which 
define places even when the landmarks have not 
simultaneously seen in a single frame, and can outperform 
standard image-based place recognition [78]. Lynen, Bosse et 
al. [115] generated a 2D space of descriptor votes where 
regions of high vote density represent loop closure candidates.  

Local features can also be combined with metric 
information to allow metric corrections to localization [2], [7], 
[76]. Global descriptors do not have the same flexibility, and 
furthermore, whole-image descriptors are more susceptible to 
change in the robot’s pose than local descriptor methods, as 
whole-image descriptor comparison methods tend to assume 
that the camera viewpoint remains similar. This problem can 
be somewhat ameliorated by the use of circular shifts as in 
[116] or by combining a bag-of-words approach with a Gist 
descriptor on segments of the image [17], [110].  

While global descriptors are more pose dependent than 
local feature descriptors, local feature descriptors perform 
poorly lighting conditions change [117] and are 
comprehensively out-performed by global descriptors at 
performing place recognition in changing conditions [118], 
[119]. Using global descriptors on image segments rather than 
whole images may provide a compromise between the two 
approaches, as sufficiently large image segments exhibit some 
of the condition invariance of whole images, and sufficiently 
small image segments exhibit the pose invariance of local 
features. McManus, Upcroft et al. [120] used the global 
descriptor HOG [121] on image patches to learn condition 
invariant scene signatures, while Sünderhauf, Shirazi et al. 
[122] used the Edge Boxes object proposal method [123] 
combined with a mid-level Convolutional Neural Network 
(CNN) feature [124] to identify and extract landmarks as 
illustrated in Fig. 7.  

 
Fig. 7. Object proposal methods such as the Edge Boxes method [123]  shown 
here were developed for object detection but can also be used to identify 
potential landmarks for place recognition. The colored boxes in the images 
above show landmarks that have been correctly matched between two 
viewpoints of a scene (from [122]). 

D. Including 3D information in place descriptions 

The image processing techniques described above are 
appearance-based – they “model the data directly in the visual 
domain (instead of making a geometric model)” (Krose, 
Vlassis et al., [125]). However, in metric localization systems, 
the appearance-based models must be extended with metric 
information. Monocular image data is not a natural source of 
geometric landmarks – “the essential geometry of the world 
does not ‘pop out’ of images the same way as it does from 
laser data” (Neira, Davison et al., [126]). While many systems 
use data from additional sensors such as lasers [98] or RGB-D 
cameras [127]–[129], geometric data can also be extracted 
from conventional cameras to allow metric calculation of the 
robot pose.  

Metric range information can be inferred using stereo 
cameras [2], [130]–[132]. Monocular cameras can also infer 
metric information using Structure-from-Motion algorithms 
[133]. Methods include MonoSLAM [7], PTAM [134], 
DTAM [135], LSD-SLAM [136] and ORB-SLAM [137]. 
Metric information can be sparse: that is, range measurements 
are associated with local features such as image patches as in 
MonoSLAM [7], SIFT features as in Se, Lowe et al. [76], 
CenSurE features as in FrameSLAM [2], or ORB features 
[138] as in ORB-SLAM [137]. In contrast, DTAM stores 
dense metric information about every pixel, and LSD-SLAM 
maintains semi-dense depth data on the parts of the image 
containing structure and information. Dense metric data 
allows a robot to perform obstacle avoidance and metric 
planning as well as mapping and localization, so fully 
autonomous vision-only navigation can be performed [16]. 

The introduction of novel sensors, such as RGB-D cameras, 
that provide dense depth information as well as image data has 
spurred the development of dense mapping techniques [70], 
[127]–[129], [139], [140]. These sensors can also exploit 3D 
object information to improve place recognition. SLAM++ 
[70] stores a database of 3D object models and uses this 
database to perform object recognition during navigation, and 
uses these objects as high-level place features. Objects have a 
number of advantages over low-level place features: they 
provide rich semantic information, and can reduce memory 
requirements via semantic compression; that is, storing object 
labels rather than full object models in the map [70].  
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V. REMEMBERING PLACES: THE MAPPING MODULE  

For a place recognition or navigation task, the system needs 
to refer to a map – a stored representation of the robot’s 
knowledge of the world – to which the current observation is 
compared. The map framework differs depending on what 
data is available and what type of place recognition is being 
performed. Table I displays a taxonomy of mapping 
approaches, which depends on the level of physical abstraction 
in the map, and whether or not metric information is included 
in the place description. The most concrete mapping 
framework listed is the topological-metric or  topometric map. 
Although it is possible to have a globally metric map, such 
maps are only feasible in small geographical areas, and there 
are mechanisms for fusing topometric maps into globally 
metric maps [141]. Thus for the purposes of place recognition 
any globally metric map can be considered as a one-node 
topometric map.   

TABLE I 
MAPPING FRAMEWORKS FOR VISUAL PLACE RECOGNITION 

Level of map 
abstraction 

Place description type Comments 

Pure image retrieval 
Appearance-based No position 

information 

Topological 
Appearance-based Includes transition 

information 

Topological-metric 

Appearance-based Includes metric 
information between 
but not within places 

Sparse metric 
information  
(landmark maps) 

SLAM system – 
includes metric 
information between 
and within places 

Dense metric 
information  
(occupancy grid maps) 

A. Pure image retrieval 

The most abstract form of mapping framework for place 
recognition only stores appearance information about each 
place in the environment, with no associated position 
information. Pure image retrieval assumes that matching is 
based solely appearance similarity and applies image retrieval 
techniques from computer vision that are not specific to place-
based information [3]. Although valuable information is lost 
by not including relative position information, there are 
computationally efficient indexing techniques that can be 
exploited. 

A key concern with place recognition is system scalability – 
as the robot visits more and more places, storage requirements 
will increase and search efficiency will decrease. As a result, 
maps need to be designed to ensure large-scale efficiency. If a 
bag-of-words model is used to quantize the descriptor space, 
image retrieval can be accelerated using inverted indices; the 
image ID numbers are stored against the words that appear in 
the image, rather than the words being stored against the 
image IDs. Inverted indices allow much quicker elimination of 
unlikely images, rather than requiring a linear search of all 
images in the database. 

Schindler, Brown et al. [3] used a hierarchical vocabulary 
tree [95] to achieve efficient visual place recognition of a city-
sized dataset (a 20km traversal with around 100 million 

features). This paper showed that place recognition 
performance improves if only the most informative features 
from each image are used, where information gain is measured 
using a conditional entropy calculation. Improved place 
recognition with a reduced feature set was also observed by Li 
and Košecká  [142].  

FAB-MAP 2.0 [87], [143] also used an inverted index with 
a bag-of-words model to demonstrate visual place recognition 
across a 1000 km path. While Schindler, Brown et al. [3] used 
a voting scheme to match locations, FAB-MAP’s probabilistic 
model that includes negative observations – words that do not 
appear in the image – as well as positive observations requires 
simplification before the inverted index approach can be 
applied.  

Place recognition can also be made more efficient by using 
hierarchical searching at the place level as well as at the 
vocabulary level. Mohan, Gálvez-López et al. [144] selected 
the most likely environment using co-occurent feature 
matrices. Then place matching is performed using only a 
subset of the previously seen places, reducing the time 
required for searching.  

B. Topological maps 

Pure topological maps contains information about relative 
positions of places but do not store metric information 
regarding how these places are related [5], [6], [118], [119].  
Topological information can be used to both increase the 
number of correct place matches and filter out incorrect 
matches [14], [84]. A probabilistic system like FAB-MAP can 
be run as a pure image retrieval process by assuming a 
uniform location prior at all steps, but performance improves 
when transition information is included through Bayesian 
filtering or similar techniques.  

While image retrieval techniques can use an inverted index 
to improve efficiency, topological maps can use a location 
prior to speed up matching: the place recognition system only 
has to search places known to be close to the robot’s current 
position. A sampling-based method such as a particle filter can 
be used to sample possible places [12], [13], [111], [145]. The 
particles are resampled according to which places are the most 
likely, and can stay close by the current robot location if it is 
well-localized, or spread out across the whole environment if 
the robot is lost. Computation time is thus proportional to the 
number of particles, not the size of the environment [146]. 

Alternatively, since the number of loop closures in an 
environment is naturally sparse, Latif, Huang et al. [19] use 
topological information to formulate place recognition as a 
sparse convex L1-minimization problem, and apply efficient 
homotopy methods [147] to provide loop closure hypotheses.  

The addition of topological information into the recognition 
process allows place recognition using low-resolution data and 
thus lower memory requirements. Using the sparse convex L1-
minimization formulation, successful place recognition was 
achieved using images as small as 48 pixels [19]. Even in 
challenging scenarios where images are blurred or observed 
under different environment conditions such as different times 
of day, the use of topological information allows visual place 



15-0149 
 

7

recognition using as few as 32 4-bit pixels per image, [148], 
[149]. 

C. Topological-metric maps 

As image retrieval can be enhanced by adding topological 
information, topological maps can be enhanced by including 
metric information – distance, direction, or both – on the map 
edges. For example, both FAB-MAP [6] and SeqSLAM [118] 
are originally purely topological systems, but the addition of 
odometry information has been demonstrated to improve each 
system’s place recognition performance by CAT-SLAM [13] 
and SMART [150] respectively. 

These topological-metric maps can be appearance-based, in 
which case metric information is only included as relative 
poses between each place node [151]–[154]. However, metric 
information about the position of landmarks or objects in a 
place can also be stored within each node [1], [2], [26], [141], 
[155]–[158]. The metric information within the topological 
place node can be stored as a sparse landmark map [2], [7], 
[76], or as a dense occupancy grid map [135] if depth 
information is extracted from the image data. Although the 
notion of dense spatial modeling using a truncated signed 
distance function (TSDF) representation can be traced back to 
the work of Moravec and Elfes [39] in the mid-1980s, it has 
become feasible only in the past few years, with the advent of 
GPU technology [135].  

VI. RECOGNIZING PLACES: THE BELIEF GENERATION MODULE  

Ultimately the purpose of a place recognition system is to 
determine whether a place has been seen before. Thus the 
central goal of any place recognition system is reconciling 
visual input with the stored map data to generate a belief 
distribution. This distribution provides a measure of likelihood 
or confidence that the current visual input matches a particular 
location in the robot’s map representation of the world. There 
is a general understanding that if two places descriptions 
appear similar there is a greater likelihood of them being 
captured at the same physical location, but the degree to which 
this is true depends on the particular environment. For 
example, repetitive environments may exhibit perceptual 
aliasing where different places look indistinguishable. 
Conversely, changing conditions may cause the same place to 
appear drastically different at different times. 

A. Place recognition and SLAM 

Place recognition plays an important role in pose graph 
SLAM algorithms by providing loop closure candidates [159]. 
Pose graphs, also known as view-based representations [160], 
[161], are widely utilized in modern SLAM systems because 
of their computational efficiency for fixed size maps, although 
they can suffer from an increase in computational 
requirements for long duration missions. Loop closure is vital 
for consistent mapping as it allows the system to correct drift 
in local odometry measurements [162], [163]. It can be 
decoupled from the online local update step, and many 
systems independently perform both SLAM-like local metric 
correction and topological-like loop closure [1], [2], [80], 

[163]: a system can perform local metric correction using laser 
scan data [80], [163] or visual odometry [1], [2] while a 
separate global process looks for matches in order to close 
large loops.  

If the place descriptions are appearance-based, and do not 
contain any metric information, but the map contains metric 
distances between places, the system can still use the loop 
closures to perform metric correction at the place level [151]–
[154]. However, if the place descriptions contain metric 
information associated with the image features, as is the case 
for FrameSLAM [2], then a more precise correction can be 
performed. Maps that are purely topological or pure image 
retrieval do not provide any metric pose correction. In these 
cases, localization at a topological level occurs; that is, the 
system simply identifies the most likely location. 

The place recognition maps that contain metric information 
both within and between the place descriptions can be used to 
perform a full metric SLAM solution. There are a wide range 
of SLAM techniques available as summarized in [164]–[166]. 
Thrun and Leonard [166] identify three key SLAM paradigms: 
Extended Kalman Filters (EKF) [37], [38], [167]–[169] and 
Rao-Blackwellized particle filters [170], as well as the pose 
graph approach discussed above [162], [163], [171]–[173]. 
Vision-based systems utilize all these methods: MonoSLAM 
[7] uses an EKF, while Rao-Blackwellized particle filters are 
used in [12], [174], [175] and pose graph optimization 
techniques in [2], [176].  

B. Topological place recognition 

If multiple streams of data are available a voting scheme 
[3], [5], [79], [96], [177] can be used. Ulrich and Nourbakhsh 
[5] used a Jeffrey divergence to compare color histograms and 
each color band votes for what it considers the most likely 
location. Depending on the votes, the system can be confident 
if the confident bands are unanimous and the total confidence 
is above a certain threshold, uncertain if none of the bands are 
sufficiently confident, or the total confidence value is too low, 
or confused if the confident bands disagree on the location.  

If a system uses the bag-of-words model, inspired as it is by 
text-based document analysis, it may use the related Term 
Frequency-Inverse Document Frequency (TF-IDF) score [56], 
[114], [178]. Each visual word in an image has a TF-IDF 
score, which is made up of two parts – the term frequency, 
which measures how often the word appears in the image, and 
the inverse document frequency, which measures whether the 
word is common across all images. The TF-IDF score is then 
the product of these two values. 

A probabilistic calculation can also be used to compute 
place matching likelihood, using a calculation based on Bayes 
theorem. Early examples of appearance-based probabilistic 
localization used Gaussians to represent probability [179], or a 
mixture of Gaussians combined with Expectation 
Maximization (EM) [180], or a Gaussian kernel [181] with 
Parzen smoothing [125]. Other choices for the observation 
likelihood include the use of TF-IDF for the observation 
likelihood, if a bag-of-words model is being used [83], [182]. 
Siagian and Itti [111], [183] use Monte Carlo Localization 
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(MCL) with two observation update steps each with an 
independent observation likelihood, one based on the segment 
likelihood and one based on the object likelihood. Garcia-
Fidalgo and Ortiz [184] use the observation likelihood that 
relates the number of feature matches between two images to 
the overall number of features in the image, scaled by a 
normalizing constant. 

The observational likelihood can also be computed via a 
data-driven approach. FAB-MAP [6], [87] is a probabilistic 
appearance-based localization system that uses a data-driven 
approach to calculating an observational likelihood. FAB-
MAP uses a bag-of-words model with SIFT or SURF features 
for image description and calculates the distinctiveness of 
each word during a training phase. As a bag-of-words model 
may have many words – FAB-MAP has been used with a 
100,000-word vocabulary [87] – the full joint probability 
distribution of the observed words (Fig. 8(a)) can be 
approximated by a naïve Bayes assumption (Fig. 8(b)) or a 
Chow-Liu tree [185] (Fig. 8(c)). 

 
Fig. 8. FAB-MAP learns a probabilistic model of the relationship between 
word appearance and place recognition. (a) A full joint distribution takes into 
account the relationships between words (the thick lines between words 
represent those with the largest mutual information). (b) A naïve Bayes 
approximation of the full joint distribution ignores the mutual information 
between the words and assumes that all words appear independently. (c) A 
Chow-Liu tree approximates the full joint distribution as a junction tree where 
each word depends only on one other word (from [6]). 

FAB-MAP handles the perceptual aliasing problem by 
considering not only whether two locations are similar in the 
sense that they have many visual words in common, but also 
whether the words in common are sufficiently rare that the 
locations can be considered distinctive. As a result, if two 
locations look similar but the words that appear are frequently 
observed, FAB-MAP will generate a low matching 
probability. FAB-MAP achieves this by using the denominator 
as a normalizing constant that is calculated over the set of all 
previously seen locations and the set of all locations that have 
not yet been visited.  

Originally, the set of unvisited locations was modelled by 
randomly sampling from the Chow-Liu tree, and the 
probability that the robot was at a location that has not yet 
been observed was a user-defined parameter.  However, Paul 
and Newman [60], [62], [186] presented an iterative learning 
mechanism to generate a representative set of the true 
distribution of the appearance of the world. Latent Dirichlet 
Allocation (LDA) [187] was used to cluster images into major 
topics that summarize how the world, as seen so far by the 
robot, appears. These topics are used to generate a sampling 
set that is proportional to what is common in the world – for 
example, foliage occurs frequently in many environments so 
should not be considered distinctive. The system learns 

incrementally: after each deployment a better sampling set is 
created as the system incrementally learns about the world. 
Furthermore, an online-offline learning process is proposed – 
during the robot’s “down-time” further relevant data can be 
searched for on the internet to learn more about the world.  

Olson [188] observes that “correct hypotheses generally 
agree with each other, whereas incorrect hypotheses tend to 
disagree with each other”. This property can be used to 
eliminate false positive matches by calculating a pair-wise 
consistency matrix between possible hypotheses and finding 
the most consistent set of hypotheses from the dominant 
eigenvectors. The same paper also observes that the amount of 
information required to generate a belief match should scale 
with the robot's positional uncertainty. The system ensures this 
by requiring that local hypothesis matches cover a large 
physical space in comparison to the robot’s positional 
uncertainty, to ensure that the robot will not be incorrectly 
located within its uncertainty ellipse. 

This approach contrasts with FAB-MAP’s requirement of a 
few highly distinctive matches. Instead, many matches are 
required over a large area, but these matches do not need to be 
particularly distinctive, as the geometrical relationship 
between the matches ensures the uniqueness of the hypothesis. 

Biologically-inspired methods for place recognition mimic 
the known place cells structure in the rat hippocampus [116], 
[189]. In RatSLAM [116], a type of neural network known as 
a continuous attractor network (CAN) is used to model place 
cells (see Fig. 9). A continuous attractor network uses a 
combination of local excitation and global inhibition 
combined with input from ego-motion and visual sensors to 
perform localization. In a similar manner Giovannangeli, 
Gaussier et al. [189] use a place cell model to perform vision-
based navigation in indoor and outdoor environments without 
a metric map.  

 
Fig. 9.  Continuous attractor networks (CANs) are a type of neural network 
that can be used to model the behavior of place cells, head direction cells, and 
grid cells. (a) shows an example of a CAN used to model head direction cells. 
Each cell excites itself and units near itself (see local excitation arrows) and 
inhibits other cells. (b) shows a stable activity packet centered at 120° 
generated by the combination of local excitation and global inhibition with 
input from a motion input (from [116]). 

C. Evaluation of place recognition systems 

Topological place recognition systems are typically 
evaluated using precision and recall metrics and their 
relationship via a precision-recall curve. A system selects 
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matches based on a particular confidence measure. The correct 
matches are known as true positives, the incorrect matches are 
false positives, and matches that the system erroneously 
discards are false negative matches. Precision is defined as the 
proportion of selected matches that are true positive matches, 
and recall is the proportion of true positives to the total 
number of correct values, that is: 

FPTP

TP

+
=Precision  

     
FNTP

TP

+
=Recall  

A perfect system would be one that achieves precision of 
100% and recall of 100%. Precision and recall are often 
related to each other via a precision-recall curve which plots 
recall against precision for a range of confidence values. 

Until recently, place recognition prioritized avoidance of 
false positive matches [6], as introducing false matches into a 
map could cause catastrophic failure. As a result, recall at 
100% precision was the key metric for place recognition 
success. However, several methods for using topological 
information to correct false positive matches have been 
proposed [190]–[192] and attention has turned from 
eliminating all false positives to finding many potential place 
matches and then correcting any mismatches in a topological 
post-processing step. Increasing the number of potential 
matches is particularly important when performing place 
recognition in changing environments, when strict matching 
methods are liable to fail.  

Furthermore, as place recognition systems transition from 
“demonstration” (typically with pre-recorded data sets) to 
“deployment” (operating in real-time on autonomous 
vehicles), the performance evaluation methodology may 
change further to include a consideration of the spatial 
distribution of place matches within the environment. For 
example, McManus, Churchill et al. [193] used the probability 
of travelling a given distance without a successful match as a 
measure of place recognition success. This metric expresses 
how evenly distributed the place matches are across the 
environment and is an important measure for the overall 
integrity of a navigation system that uses place recognition as 
a module. 

VII.  VISUAL PLACE RECOGNITION IN CHANGING 

ENVIRONMENTS 

Early place recognition systems often implicitly used the 
simplifying assumption that the visual appearance of each 
place would not change over the course of the experiment. 
However, as robotic systems operate in ever-larger, 
uncontrolled environments and for longer time periods, it has 
rapidly become apparent that this assumption is no longer 
valid. Consequently, in recent years there has been a growing 
focus on creating persistent robotic navigation systems, 
including persistent place recognition techniques. The ability 
to localize in and generate maps of dynamic environments has 
been identified as being of key importance [194]. This section 
revisits each of the previous concepts – how a place can be 

represented, how the mapping frameworks work and how the 
belief generation process works – and discusses how each has 
to change to manage a changing environment. 

A. Describing places in changing environments 

It is clear that the appearance of a place can vary greatly 
over time due to a large number of causes including changes 
in lighting and weather (see Fig. 1). There are two methods for 
performing place recognition when faced with appearance 
change – the first tries to find a condition-invariant description 
of the place, the way local feature descriptors are designed to 
be scale-, rotation- and illumination-invariant. The second 
method tries to learn how appearance change occurs. 
1) Invariant methods 

The difficulty of matching places in changing environments 
using conventional local features is a significant one for 
persistent robot navigation: Furgale and Barfoot [117] 
observed that the non-repeatability of SURF features due to 
changing appearance, particularly lighting change, was a 
major cause of failure during visual-teach-and-repeat 
experiments. Existing image description methods have been 
tested to determine their robustness to illumination and other 
change. In [195], Valgren and Lilienthal tested SIFT features 
and a number of SURF variants across change in lighting, 
cloud cover, and seasonal conditions. The SURF variants all 
outperformed SIFT, but none of the tested features were found 
to be robust across all conditions. However, in later work 
[100] the authors combined U-SURF [73], the most successful 
SURF variant, with a consistency check using the epipolar 
constraint, and achieved between 80% and 100% correct 
matching within small (40 image) datasets.  

Ross, English et al. [196], [197] studied the effect of 
lighting change on features using time-lapse footage across 
full days to determine the illumination sensitivity of each 
descriptor. The feature keypoints were predefined within each 
image, and only the variance of the feature descriptor was 
tested, in contrast to the work of Valgren and Lilienthal [100], 
[195] which tested the combined effect of feature detector and 
descriptor. The U-SIFT [72] descriptor was shown to display 
the greatest lighting invariance of the tested descriptors.  

Instead of using point features such as SIFT or SURF, other 
descriptors can be chosen. Whole-image descriptors have been 
used in systems such as SeqSLAM [118], [119], [198] that 
demonstrate robustness against environmental change. 
However, as for other description methods, too drastic a 
change in appearance will cause system failure [111] and 
whole-image descriptors also suffer from the additional 
problem of sensitivity to viewpoint change [199]. Edge 
features can be used in appropriate environments [174], [200], 
as they are invariant to lighting, orientation and scale [200]. 
Nuske, Roberts et al. [200] used line-based localization to 
localize against an existing map with a fish-eye camera and 
tested it in an outdoor industrial area under various lighting 
conditions across times of day from 7:00 to 17:00. Borges, 
Zlot et al. [201] extended this system to generate its own edge 
map using 3D laser data for localization. However data 
association using edge features can be challenging [174]. 
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Techniques such as shadow removal [202] and the use of an 
illumination invariant color space [193] can lessen the effect 
of appearance variability caused by illumination change. 
Alternatively, a hardware-based solution to place recognition 
in variable lighting conditions can be used. McManus, Furgale 
et al. [203] used scanning laser-rangefinders to create 
“camera-like” images that were not affected by the 
illumination of the scene. This solution had the advantage of 
being applicable in complete darkness. A long-wave infrared 
thermal imaging camera is another sensor that can be deployed 
in a manner similar to a standard camera but which responds 
differently to lighting variance. Maddern and Vidas [204] 
showed thermal imaging cameras can provide improved place 
recognition at night-time when visible light cameras fail.  

Convolutional Neural Networks (CNNs) have recently been 
used as robust feature extractors for place recognition in 
changing environments. Exploring the utility of CNNs for 
place recognition has been motivated by their ability to learn 
generic features that are transferrable to a variety of related 
but different visual tasks [205], [206]. [207], [208] utilized 
CNN features as holistic image descriptors and analyzed the 
robustness of different layers against visual appearance and 
viewpoint changes. They concluded that mid-level features 
exhibit a robustness against appearance changes, while higher 
level features are more robust against changes in viewpoint 
and carry more semantic information that can be used to 
partition the search space [208].  

One aspect of visual data that has not been investigated in 
depth for changing environments is that of color. While 
conventional images descriptors such as SURF and BRISK 
operate on grayscale images, most available cameras capture 
color images, which have the potential to provide new and 
interesting information about place recognition in changing 
environments. Color information presents an interesting 
paradox for place recognition in changing environments: it is 
known to perform poorly as a feature when the illumination of 
a scene changes [196], but conversely, relative color 
information contains information about lighting that can 
improve place recognition dramatically by identifying and 
removing shadows [202]. Illumination invariant images use 
relative color information and are more reliable for place 
recognition during the day, but are out-performed by color 
images at night, when the underlying assumptions about 
black-body illumination are violated [209].  
2) Learning methods 

The alternative to invariant approaches is to learn a 
relationship between how places appear at different times. 
These method assume that places change appearance in a 
similar way across an environment, and so change learned 
during training can be generalized to previously unseen 
locations. This assumption has been tested by observing static 
webcams from different locations [210], [211] and 
demonstrating that the most significant transformations across 
time are similar across different places. Furthermore, a 
training set of locations can be used to compute a principal 
component basis that encodes new locations with only a small 
loss of accuracy. 

Ranganathan, Matsumoto et al. [212] learned a fine 
vocabulary [213]; a fine vocabulary is similar to a bag-of-
words model in that it segments a descriptor space, such as 
SIFT descriptors, but it does so very finely – into over 16 
million words in [213]. The system then learned a probability 
distribution over these words. The motivation for the fine 
vocabulary is the observation that descriptors transform in a 
highly non-linear way due to illumination change, changing 
viewpoint and other effects, and learning a distribution of 
alternative words allows these changes to be learned and 
quantified. In [212] the distribution was learned over multiple 
training runs over the same environment and features were 
matched across different illumination conditions to generate 
the probability distribution. Improved performance was 
reported over using a conventional vocabulary tree [95], with 
an additional 10%-15% of the dataset being correctly matched. 
The distance metric was also compared and the symmetric 
KL-divergence was shown to out-perform either the standard 
descriptor distance metric or a probability distance metric. 

Using webcam footage, Carlevaris-Bianco and Eustice 
[214] tracked image patches over different lighting conditions 
to generate a large set (3 million features) of positive and 
negative examples. From this data, a neural network learning 
technique [215] mapped the patches into a new space in which 
positive matches were close together, according to the 
Euclidean distance, and negative matches were further away. 
The mapped descriptors were shown to be substantially more 
successful at place recognition than SIFT and SURF 
descriptors – compared to SURF descriptors, an additional 
10% of the test locations were correctly matched. 

Neubert, Sünderhauf et al. [18] learned a visual translation 
between two different seasons. Training images from two 
different seasons were segmented using SLIC superpixels 
[216]. The superpixels were described using a color histogram 
and a SURF descriptor, and a dictionary of translations of 
superpixels from one season to another season was learned. 
Similarly, Lowry, Milford et al. [217] learned a linear 
transformation from images captured in the morning to images 
captured in the late afternoon. However, for such appearance 
translation to be successful, the pairs of training images must 
be well aligned.  

Learning-based methods frequently require a supervised 
training phase, which implies that the likely appearance 
change is known and that relevant training data is available. 
Lowry, Wyeth et al. [218] proposed an unsupervised learning 
method for place recognition in changing environments. 
Instead of attempting to predict the appearance of a location, 
the system instead identified and removed potentially 
changing aspects of each observation.  

B. Remembering places in changing environments  

If the environment is changing, the map also needs to 
change to continue representing the environment. The system 
must determine what to remember and what to forget. It may 
also be beneficial for the system to maintain multiple 
representations of a place, as places can vary between 
different configurations. This section presents mapping 
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frameworks for place recognition that have the capacity to 
handle changing environments in one of these two ways – 
either by deciding what to remember and what to forget, 
and/or by remembering multiple different representations. 
These systems are not all specific to vision-based systems, and 
many have been designed to handle laser data, but 
demonstrate concepts that are relevant to any sensor modality 
or map framework. 
1) Remembering and forgetting data 

In a dynamic environment, each place representation must 
be updated as new observations are obtained by the robot. A 
balance has to be found between using recent observations to 
overwrite obsolete information, and not allowing fleeting 
events to overwrite the status quo. However, it is difficult to 
determine which events are transient and which are worth 
remembering. Drawing inspiration from concepts in 
neuroscience, Biber and Duckett [219] referred to this as the 
“stability-plasticity dilemma”. Biological brains can inspire 
solutions for coping with this dilemma: concepts such as 
sensory memory, short-term memory and long-term memory 
found in human memory models have been co-opted to create 
decision models for remembering and forgetting.  

One biologically inspired mapping system passes sensor 
information through an analogue of sensory memory to short-
term memory and long-term memory storage areas [220], 
[221]. In the first stage, a selective attention mechanism 
decides which information will be upgraded from sensory 
memory to short-term memory, based on information from the 
long-term memory. The second stage involves using a 
rehearsal mechanism to determine which information will be 
transferred from short-term to long-term memory. Using 
attention and rehearsal mechanisms ensures that more 
persistent, stable and frequently occurring features are 
remembered, whilst transient features are forgotten. Elements 
must be seen and recognized sufficiently often before they are 
considered for promotion to a higher level of memory. 
Furthermore, obsolete features are slowly filtered out of the 
long-term memory. There is a complementary problem of 
which elements to ‘remember’, which typically uses similar 
criteria [220], [222] to the forgetting process.  

Andrade-Cetto and Sanfeliu [223] required that features be 
trustworthy and reliable as well as up-to-date in order to be 
retained, while Bailey [222] considered a usefulness criteria 
based on visibility – a feature that can be blocked by other 
elements of the environment is liable to suffer from occlusion 
errors and be less useful in the future. Johns and Yang [102] 
and Hafez, Singh et al. [224] used a bag-of-words model and 
applied a quality measure to determine useful features to 
retain, considering both feature distinctiveness and feature 
reliability when generating a model of a location. Johns and 
Yang [225] also proposed a generative bag-of-words model 
that considered the variance as well as the mean value of each 
data point when matching scenes.  
2) Multiple representations of the environment 

Not only do places change in appearance over time, but they 
may also change in a cyclic manner that cannot be represented 
by a single description. During a two-week office-based 

experiment [226], Milford and Wyeth noted that “the 
weakness is that the system deals rather inefficiently with 
cyclic changes such as day–night time cycles. Over a full night 
of operation, the pruning process gradually develops the 
experience map representation into one suited to localization 
at night time, somewhat hindering localization in the 
morning.” These observations were corroborated by 
Ranganathan, Matsumoto et al. [212], who stated that for an 
indoor office environment, consistently good localization 
through the 24-hour cycle would require around 3-4 images 
per location. Rather than continuously remembering and 
forgetting information, the map should hold multiple 
representations of the area – whether at a place or higher level.  

A place recognition system can use multiple maps of the 
same environment. In the work of Biber and Duckett, each 
map remembered a different timescale [227]. Some of these 
maps represented short-term memory and were updated 
frequently whilst others were analogous to long-term memory 
and are not updated for hours, days, or weeks. Keeping maps 
that updated at different timescales ensured that old mapping 
data was not immediately overwritten by a temporary change 
in the environment. Instead the most static elements were 
reinforced over time, whilst transient events were filtered out. 
Place recognition was performed by selecting the local map 
that best fitted the current sensor data.  

Systems that maintain multiple maps of the same 
environment may also add new map configurations only when 
they are necessary, rather than according to a pre-set 
timeframe [221]. Furthermore, Stachniss and Burgard [228] 
noted that not every place needs multiple representations – 
certain areas such as doorways may exhibit more change than 
the rest of the environment. Such areas may only possess a 
few key configurations – for example, a door may be open or 
closed – so the world can be described sufficiently accurately 
using a finite number of submaps. Each region in which 
dynamic activity is observed was segmented from the rest of 
the map in a submap. Fuzzy k-means clustering was used with 
the Bayesian Information Criterion to determine the optimal 
number of typical configurations of this area. Using submaps 
to segregate dynamic areas allowed multiple environmental 
configurations where necessary whilst keeping the map 
manageable. 
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Fig. 10.  The varying appearance of a changing environment may require a 
system store multiple representations of each place. This image (from [229]) 
shows the number of robot “experiences” stored during repeated traversals of 
a path over a number of months. While most places require 5-10 experiences 
(shown in blue) some regions require as many as 30 (shown in red).  

Elements of a scene that are moving when the robot 
observes them must be detected and may also be removed 
[230], [231]. However, there are often semi-static elements 
that are not obviously moving but appear and disappear over 
time. While these elements can simply be removed as 
unreliable [69], [232] it is also possible that such elements 
may be temporarily useful for localization in specific parts of 
an environment [233]. For example, in a car park building the 
static elements such as the walls can be far away and not 
particularly distinctive, and so are not useful for localization 
while the semi-static parked cars are many and relatively 
distinctive, and can be used for localization for a matter of 
hours or a day, before being forgotten and replaced. If this is 
the case, temporary maps are created when the robot 
observations do not match the expected results of the provided 
static map. The temporary maps are discarded when they fail 
to adequately match the robot observations over multiple 
consecutive time steps.  

The systems presented above [221], [227], [228], [233] 
were designed for metric systems. Multiple representations 
can also be generated for appearance-based systems if 
multiple training runs are available. Johns and Yang [102] 
used feature co-occurrence maps generated during five 
training runs on a 20 km urban road-based dataset between 
14:00 and 22:00. Localization can then be achieved on the 
same route at times interpolated between the five runs.  

McManus, Upcroft et al. [120] used multiple training runs 
through an environment to learn scene signatures – locally 
distinctive elements of a place that are also stable over 
changes in appearance. For each location within the 
environment, image patches are selected that specifically 
demonstrate both distinctiveness and stability. The selected 
patches were described using HOG descriptors [121], and used 
to train an SVM classifier for each location. Using scene 
signatures for each places allowed 100% correct place 
recognition in a 31 location dataset, while SURF features 
performed poorly, particular in rainy and foggy conditions. 

If the appearance of the environment is assumed to be 
affected by a series of hidden periodic processes, spectral 
analysis such as Fourier analysis can be used to predict the 
most likely appearance of a location from multiple training 
passes at a particular time in the future. Krajnik, Fentanes et 
al. [234] learned and modeled these processes over an 
environment and demonstrated that this information can halve 
the number of place recognition errors when localizing three 
months later. 

All of the systems described above share an underlying 
assumption – that the robot knows where it is sufficiently well 
to match different representations of the same location 
together, even if the representations are visually dissimilar. A 
map cannot be updated if the system does not know which 
location to update and, in a changing environment, it may not 

be possible to know exactly where the robot is. To avoid this 
assumption, Churchill and Newman proposed a plastic map 
formulation [15] that explicitly localizes within robot 
“experiences” rather than physical locations. A new 
experience is generated each time a robot visits a location that 
it does not recognize, and the map may implicitly have 
multiple representations of each location, depending on the 
difficulty of matching at that particular location (see Fig. 10). 
However, unlike the systems discussed previously, the 
multiple representations will not necessarily be linked together 
as the same physical place. The plastic map is more 
informative if the system can recognize and link more 
experiences together. However, it is a pragmatic approach that 
allows for graceful place recognition failure without 
catastrophic map collapse. 

Retaining multiple representations of each location 
increases the place recognition search space and can decrease 
efficiency unless only a subset of representations is used for 
comparison. Because observations captured at similar times 
tend to demonstrate similar appearance characteristics, future 
potential matches can be probabilistically selected based on 
the system’s current localization belief. Carlevaris-Bianco and 
Eustice [235] approximated the likelihood of two location 
exemplars being “co-observed” within a short time-frame with 
a Chow-Liu tree, while Linegar, Churchill et al. [236] used 
“path memory” to select past experiences as candidate 
matches and improve place recognition without increasing 
computation time.   

C. Recognizing places in changing environments 

Integrating appearance change into a place recognition 
system requires some key alterations to the belief generation 
process. Firstly, as discussed above, changing environments 
require multiple representations of each place. If this is the 
case, a system may select the best map given its current sensor 
data [227] or it may try to predict the most likely appearance 
matches [18], [234]–[236]. 

Alternatively, the place recognition system may run 
multiple hypotheses in parallel. Churchill and Newman [15] 
assigned every saved experience its own localizer that reports 
whether or not the robot is successfully localized within that 
environment, while Morris, Dayoub et al. [221] performed 
filtering over possible map configurations as well as possible 
robot poses. Instead of selecting the single map that best 
matches the current sensor data, the system instead actively 
tracks the N best navigation hypotheses in multiple maps, 
while pending hypotheses are maintained and swapped out 
when an active hypothesis drops below the best pending 
hypothesis. Using multiple map hypotheses was reported to 
decrease the mean path error in an indoor office experiment by 
as much as 80%.  

One factor for place recognition in changing environments 
is that topological information becomes more important as 
incoming sensor data becomes less reliable and more difficult 
to match to previous observations [118], [119]. It has been 
observed that matching image sequences rather than individual 
images can improve place recognition in general, and 
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particularly in changing environments [14], [84], [118], [149], 
and image sequences can be integrated with conditional 
random fields [237] to identify and if necessary verify loop 
closures [14].  

The place recognition systems that are most successful in 
changing environments exploit the assumption that the system 
is not just passing through a particular place, but traversing the 
same or a very similar path through the environment. 
SeqSLAM [118] demonstrated that image sequences can 
perform place recognition in particularly visually challenging 
environments. The original version assumed a similar velocity 
profile between traversals. Methods to deal with this limitation 
include searching non-linear paths as well as linear paths [102] 
through the image similarity matrix and using odometry input 
to linearize the signal [150]. Liu and Zhang [238] used a 
particle filter to improve the computation efficiency over the 
exhaustive search process and achieved a 10 times speed-up 
factor with equivalent performance at 100% precision.  

Naseer, Spinello et al. [119] exploited sequence information 
by formulating image matching as a minimum cost flow. Flow 
networks are directed graphs with a source node and a sink 
node, which for path-based place recognition represent the 
start of the traversal and the end of the traversal respectively. 
By equating image comparison values to flow cost, the 
formulation found the optimal sequence through the 
environment. Differing velocity profiles were handled by 
allowing nodes to be either matching or hidden. Similarly, 
Hansen and Browning [239] used Hidden Markov Models to 
determine the most likely path through an environment using 
the Viterbi algorithm. 

VIII.  CONCLUSION 

Visual place recognition has made great advances in the last 
15 years, but we are still a long way from a universal place 
recognition system for robots that is robust and widely 
applicable across a range of robotic platforms and varying 
environments. Here we highlight several promising avenues of 
ongoing and future research that are moving us closer towards 
this outcome. 

The most successful approaches to combatting changing 
appearance typically do so at the cost of viewpoint invariance 
or increased training requirements. As discussed above, as 
sensor information becomes less reliable, it can be 
compensated for by topological information, which requires 
not only viewpoint invariance at a single point, but along a 
possibly quite long path. Some potential avenues include using 
image patches rather than whole images, as image patches 
have much of the condition invariant advantages of whole 
images while allowing some coarse viewpoint invariance, and 
investigating the use of deep learning features which also have 
some viewpoint invariant characteristics.  

Visual place recognition is benefitting from research in 
other fields, particularly the great strides being achieved in 
computer vision in the fields of deep learning, image 
classification, object recognition, video description. While 
techniques such as convolutional neural networks depend on 
Big Data and Big Compute, techniques such as cloud robotics 

and online / offline processing paradigms could be exploited 
even by small, cheap mobile platforms. Developments in GPU 
hardware and novel camera sensors will inspire new concepts 
in place recognition as well as improving the efficiency and 
robustness of existing approaches.  

Research in place recognition can also benefit from the 
ongoing research in object detection and scene classification. 
By exploiting object detections, it is possible to learn that 
objects such as buildings are useful for long-term place 
recognition, objects such as pedestrians should be ignored, and 
objects such as cars might be useful depending on the 
semantic and temporal context. An increased robustness to 
structural changes can be achieved by exploiting knowledge 
about which objects are dynamic or static and how that 
property is depending on the temporal and semantic context – 
for example, cars in a parking garage can temporarily provide 
useful place recognition cues. Exploiting the expressiveness of 
convolutional neural networks by training or fine-tuning such 
networks specifically for the task of place recognition is a 
worthwhile direction for future research. 

Visual place recognition systems can also exploit context. 
Although places change drastically in appearance, the relative 
location of places remains unchanged. This fact is integrated 
into belief generation modules by using location priors, 
recursive filtering and path-based sequences of images, and 
the dependence on these techniques increases as the variation 
in the visual appearance of the environment increases. The use 
of other sources of contextual information also has the 
potential to improve place recognition capability – knowledge 
about the time of day, or the current weather conditions can 
also change how the place recognition system interprets the 
incoming visual data. 

Semantic scene context can furthermore limit the search 
space for place recognition to semantically similar scenes to 
ensure scalability towards long-term autonomy. Semantic 
context can support learning and predicting the changes in a 
scene and help increase the robustness against environmental 
condition changes. Semantic mapping also has the potential to 
reduce memory requirements – imagine a house map only 
requiring words such as “kitchen”, “bedroom”, and 
“bathroom” to describe places – and current research in topic 
modeling, coresets and other semantic compression methods is 
already showing promise, as is the use of objects as high-level 
place recognition features. 

Finally, what can visual place recognition offer to other 
research tasks? By necessity and opportunity, visual place 
recognition has taken up the challenge to solve condition 
invariant recognition to a degree that many fields have not, 
albeit under a more tightly constrained task specification than 
other tasks such as scene interpretation. The experience gained 
in developing robust features, in addressing the combination 
of both appearance change and viewpoint change and other 
challenges may have valuable applications both in other 
robotic tasks such as object recognition and classification in 
the wild, and a diverse range of other areas including remote 
sensing, environmental monitoring and tasks that require 
recognition and identification in uncontrolled environments. 
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