
Chameleon: Predictable Latency and High Utilization with
Queue-Aware and Adaptive Source Routing

Amaury Van Bemten
Chair of Comm. Networks

Tech. Univ. of Munich

Nemanja Ðerić
Chair of Comm. Networks

Tech. Univ. of Munich

Amir Varasteh
Chair of Comm. Networks

Tech. Univ. of Munich

Stefan Schmid
Fac. of Computer Science

University of Vienna

Carmen Mas-Machuca
Chair of Comm. Networks

Tech. Univ. of Munich

Andreas Blenk
Chair of Comm. Networks

Tech. Univ. of Munich

Wolfgang Kellerer
Chair of Comm. Networks

Tech. Univ. of Munich

ABSTRACT
This paper presents Chameleon, a cloud network providing both
predictable latency and high utilization, typically two conflicting
goals, especially in multi-tenant datacenters. Chameleon exploits
routing flexibilities available in modern communication networks
to dynamically adapt toward the demand, and uses network calcu-
lus principles along individual paths. More specifically, Chameleon
employs source routing on the “queue-level topology”, a network ab-
straction that accounts for the current states of the network queues
and, hence, the different delays of different paths. Chameleon is
based on a simple greedy algorithm and can be deployed at the
edge; it does not require any modifications of network devices. We
implement and extensively evaluate Chameleon in simulations and
a real testbed. Compared to state-of-the-art, we find that Chameleon
can admit and embed significantly, i.e., up to 15 times more flows,
improving network utilization while meeting strict latency guaran-
tees.
ACM Reference Format:
Amaury Van Bemten, Nemanja Ðerić, Amir Varasteh, Stefan Schmid, Car-
men Mas-Machuca, Andreas Blenk, and Wolfgang Kellerer. 2020. Chameleon:
Predictable Latency and High Utilization with Queue-Aware and Adaptive
Source Routing. In Proceedings of CoNEXT ’20. ACM, New York, NY, USA,
15 pages. https://doi.org/TBA

1 INTRODUCTION
Datacenter networks have become a critical infrastructure of our
digital society. With the popularity of data-centric applications (e.g.,
related to business, health, entertainment and social networking)
and machine learning, the importance of realizing communication
networks that meet stringent dependability requirements will likely
increase further in the next years. Already today, the usefulness
of many distributed cloud applications, such as web search and
online retail [12, 30], critically depends on the performance of the
underlying network [46], i.e., these applications are sensitive to
both packet delay and available network bandwidth [31].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN TBA. . . $TBA
https://doi.org/TBA

However, providing predictable network latency and throughput
to cloud applications is challenging, especially in multi-tenant dat-
acenters and under dynamic demands that come with uncertainty.
In many scenarios, the predictability objective even seems to con-
flict with efficiency requirements, as the latter forbids conservative
resource provisioning.

This paper is motivated by the unprecedented routing flexibilities
provided in modern networks, which in principle allow networks
to autonomously and dynamically re-evaluate resource allocation
decisions, and hence enable novel opportunities navigate the trade-
off between predictability, performance, and resource efficiency. In
particular, these routing flexibilities enable networks to become
demand-aware: network configurations can be adapted toward the
workload they serve, potentially accounting for current delays
along specific paths and exploiting currently underutilized links.
The challenge, however, remains how to account for such infor-
mation, and how to exploit routing flexibilities while maintaining
predictability.

At the heart of our approach lies the idea to account for the
network queues explicitly in the routing algorithm: rather than
performing routing on the level of switches/routers, we propose
to perform routing on the queue-level topology, a network abstrac-
tion accounting for queues. Indeed, while the same physical path
may provide a very different performance to different flows, the
queue-level topology shows such differences explicitly: queues re-
veal useful information about the current demand and network
state, and hence allows for a more informed routing which can
avoid delays and exploit available bandwidth resources. To cope
with dynamic changes in the demand, networks can be reconfig-
ured and routing decisions adapted dynamically, also leveraging
priority queuing mechanisms. Source routing, e.g., based on tag-
ging, provides an ideal framework to implement demand-awareness,
requiring modifications on the hosts only.

A second key observation of our paper is that rendering networks
more dynamic and adaptable does not have to contradict predictabil-
ity. In particular, if done right, principles of network calculus can
still be employed and the resulting performance guarantees along
routing paths maintained. That is, networks can be adapted to flows
arriving over time while still providing hard guarantees at all times.

Our main contribution is Chameleon, a demand-aware cloud
network that combines adaptive source routing with priority queu-
ing to meet both performance and resource efficiency objectives.
Chameleon employs fine-granular routing to leverage path diversity,
and relies on an enhanced network abstraction which accounts for

https://doi.org/TBA
https://doi.org/TBA

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

3 4 5 6 87 9 10 1211 13 14 16151 2

Figure 1: The blue (between virtualmachines (VMs) 1 and 10), purple (between
servers 7 and 13) and green (between servers 11 and 15) flows are already em-
bedded. In this situation, the red flow (between servers 5 and 9) cannot be
embedded by Silo. Rerouting (which Silo does not do) the blue flow on the
dashed path would however make space for the new flow and allow to embed
it.

queues: the queue-level topology. Chameleon dynamically reevalu-
ates routing decisions, performing adjustments while maintaining
network calculus invariants to ensure strict latency guarantees are
provided and preserved.

In extensive experiments conducted in a testbed based on real
data center topologies and using large-scale simulations, we find
that Chameleon can significantly outperform the state-of-the-art
(SoA) both in terms of runtime and achieved network utilization.
By exploiting path diversity, priority queuing, and re-evaluations
of routes, compared to Silo [31], Chameleon is able to admit sig-
nificantly more flows, and hence increase network utilization and
operator revenue, without sacrificing performance guarantees.

Our approach shows that there is an untapped potential for
providing strict real-time guarantees when using off-the-shelf tech-
nologies. While we build upon several existing techniques, the main
contribution of this paper lies in identifying the suitable building
blocks and combining them in a clever way to design a complete
end-to-end system. In addition, coping with hardware failures is
also critical to ensure predictability and provide guarantees in data
centers. While a complete discussion of mechanisms to handle fail-
ure scenarios is outside the scope of this article, we provide a few
pointers on how Chameleon can be extended to cope with switch
and/or link failures.

In order to facilitate future research and in order to ensure repro-
ducibility of our results, we will make all our code and experimental
results publicly available.

2 STATE-OF-THE-ART AND MOTIVATION
A main motivation for our work are the unexploited optimization
opportunities available in current networks: SoA networks are op-
erated in a fairly inflexible and demand-oblivious manner. We argue
that this can lead to both suboptimal network performance and
low predictability of performance (in terms of latency and through-
put), which leads to unnecessarily low utilization. In the following,
we identify and discuss such missed optimization opportunities.
Later in this paper, we will show that it is indeed possible to ex-
ploit these opportunities and operate networks in a dynamic and
demand-aware manner, without sacrificing predictability.

2.1 The Price of Static Allocation
State-of-the-art approaches for providing predictable network per-
formance have the common feature that they are fairly static: em-
bedding decisions (e.g., related to the route or per-flow rate), once

taken, are usually not reevaluated nor adapted later: state-of-the-art
solutions are not designed for reacting to flows arriving over time.
In environments where networks need to provide guarantees and,
hence, perform admission control, this can lead to unnecessarily
high network flow rejection rates. For example, if the network con-
figuration chosen earlier does not fit the characteristics of arriving
flows, these flows need to be rejected. In contrast, in a dynamic
and demand-aware network, it may still be possible to accept these
flows, using reconfigurations. To be more concrete, let us consider
the two main solutions providing predictable latency in the cloud:
Silo [31] and QJump [22].

2.1.1 QJump. QJump [22] relies on information about applica-
tion performance requirements, related to latency, rate and packet
size, at network initialization time. This information is then used
to compute the QJump formula: a maximum latency of 2𝑛𝑃/𝑅 + 𝜖 .
Here, 𝑛 is the number of applications using the system, 𝑃 the packet
size, 𝑅 the links rate, and 𝜖 the cumulative processing time, which is
guaranteed to all applications, assuming that they transmit at most
one packet per each of these time periods, i.e., at a rate of at most
𝑃/(2𝑛𝑃/𝑅 + 𝜖) [22]. While the 𝜖 and 𝑅 parameters are constant and
dependent on the physical topology only, the 𝑛 and 𝑃 parameters
must be defined upfront, at network initialization time; this is nec-
essary to be able to compute the maximum latency guarantee that
the system will provide to flows.

Let us consider a 𝑘 = 4 fat-tree topology with 10 Gbps links
and with a cumulative end-to-end processing time of 4 𝜇s. Here we
have 𝑅 = 10 Gbps and 𝜖 = 4 𝜇s. If the network operator decides to
authorize 10 VMs per server and packets of at most 300 bytes, we
have 𝑛 = 16 × 10 = 160 applications and 𝑃 = 300 bytes. As a result,
the QJump system guarantees a maximum latency of 80.8 𝜇s at a
rate of at most 29.7 Mbps for each VM.

While providing predictable performance, these static allocations
can lead to unnecessary request rejections and as a result low
utilization. For example, even if the network is unused, QJump
would in this situation not admit a tenant request for a flow with a
latency requirement of 50 𝜇s. Similarly, a request for a 50 Mbps flow
would be rejected unnecessarily. If an applications needs much less
bandwidth than 29.7 Mbps, say 3.11 Mbps, and tolerates a higher
latency guarantee than 80.8 𝜇s, say 772 𝜇s, the system will accept
only 160 flows, while 1600 of these flows could have been accepted
if the network operator initially decided to define 𝑛 = 1600. Similar
observations can be made for applications that send packets smaller
or greater than 300 bytes.

This is a real concern, especially in cloud environments where
tenant applications are typically unknown and requirements are
hard to estimate.

2.1.2 Silo. Silo [31] also provides latency guarantees by leverag-
ing admission control and relying on deterministic network calculus
(DNC). At network startup, Silo assigns a delay 𝐷𝑖 to each link in
the network. Then, upon a new flow request, the admission control
logic of Silo uses DNC to calculate the worst-case delays 𝑑𝑖 of each
link if the flow was to be accepted. The flow is rejected if𝑑𝑖 > 𝐷𝑖 for
a link 𝑖 . If a flow can be accepted, its latency guarantee is

∑
𝑖 𝐷𝑖 for

all links 𝑖 traversed by the flow. As a result, the number of possible
delay guarantees for a given application corresponds to the number

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

of different paths between the two VMs of the flow, i.e., (𝑘/2)2 = 4
for a fat-tree topology with 𝑘 = 4.

To give an example, we consider a fat-tree topology with 𝑘 = 4.
We allocate a delay 𝐷𝑖 of 𝐷𝑅 = 20 𝜇s to rack links, 𝐷𝑃 = 50 𝜇s to
intra-pod links and𝐷𝐴 = 80 𝜇s to aggregation links. Without taking
detours, there is only one possible delay between any pair of VMs.
Between VMs in the same rack, the delay is 2𝐷𝑅 = 40 𝜇s. Between
VMs in different racks but the same pod, the delay is 2(𝐷𝑅 +𝐷𝑃) =
140 𝜇s. Between VMs in different racks and different pods, the delay
is 2(𝐷𝑅 +𝐷𝑃 +𝐷𝐴) = 300 𝜇s. The situation is then similar to QJump:
if a tenant needs a latency guarantee lower than these values, say
30 𝜇s, the flow will have to be rejected unnecessarily. Similarly, if
tenant applications tolerate higher latency guarantees, say 10 ms,
the admission control logic of Silo will start blocking flows to avoid
reaching the predefined limits, even though guarantees would still
be fulfilled. By increasing the allocated delays at each link, more
flows could have been accepted.

Once Silo embeds a flow, there is no reevaluation of its decision.
This is illustrated in Fig. 1. Let us assume that the blue path (between
servers 1 and 10), the purple path (between servers 7 and 13) and
the green path (between servers 11 and 15) are already embedded.
Furthermore, let us assume, for simplicity of the example, that these
flows consume the entire capacity on their links. In this situation,
the red flow (between servers 5 and 9) cannot be embedded: it is
blocked by all the other flows. However, rerouting the blue flow
on the dashed path, i.e., reevaluating a decision taken previously,
would make space for the new flow and would actually make it
possible to admit and embed it.

In conclusion, similarly to QJump, Silo’s predictability guaran-
tees can come at the price of low utilization: resource allocation
decisions related to link delays and flow embeddings are performed
greedily, and never reevaluated again. If applications have require-
ments that do not match the defined link delays, Silo will reject
them while they actually could have been accepted, as we will show.
As a result, Silo’s resource allocation and embedding approach leads
to a bias in terms of the types of flows that can be accepted — and
to unnecessary rejections and hence low utilization.

2.2 Unexploited Path Diversity
We see a great potential to exploit path diversity and more fine-
grained routing to improve the efficiency and performance pre-
dictability of networks. In fact, even for the same physical path,
multiple performance characteristics may be experienced: as the
switches and routers along the physical route typically have multi-
ple queues, the delay often depends not only on the specific router
but also on the specific queue that is traversed. This motivates us
in this paper to consider a finer granularity of routing: based on a
“queue-level topology” rather than just a “router-level topology”.

Surprisingly, SoA solutions do not exploit physical path diversity.
For example, QJump’s admission control algorithm does not account
at all for the specific paths on which flows can be routed. As a
consequence, QJump does not reserve network resources per switch
or per link, but for the whole network, which can be inefficient. It
implies that QJump assumes that two flows, even if they are disjoint,
consume the same resources.

time

data
∇ =

𝑅 𝑖

∇ = 𝑟
𝑖

𝑑𝑖

𝐷𝑖

𝑏𝑖

(a) Silo: per link.

LP
𝐷LP𝑖

𝑑LP𝑖

MP
𝐷MP𝑖𝑑MP𝑖

HP
𝐷HP𝑖

𝑑HP𝑖

(b) Chameleon: per queue.

Figure 2: Silo and Chameleon modeling for access control. Silo models links
while Chameleon goes one level lower and defines one model per priority
queue. This offers higher delay diversity to applications.

Let us illustrate the problem again with a fat-tree topology with
𝑘 = 4 as in Fig. 1. Taking the parameters as in §2.1, QJump will
accept up to 160 flows with delay requirements of at most 80.8 𝜇s
and a rate of at most 29.7 Mbps. Let us consider that the 160 flows
accepted by QJump are located in the two leftmost pods, which is
possible with a simple first-come first-serve VM allocation algo-
rithm. In this case, QJump will reject any new flow request because
it reached the maximum of 𝑛 resources. At the same time, half of
the network is unused although it could actually accommodate
more flows: the lack of routing knowledge leads to unnecessarily
rejections. Similarly, while Silo reserves resources per link, there
is no optimization of routes nor of priorities assignment in the
network. By not optimizing nor accounting for the routes where
flows are embedded, such approaches are not demand-aware, as
the network state and performance characteristics depend on the
specific route taken.

3 CHAMELEON SYSTEM DESIGN
Motivated by the above shortcomings and opportunities, we now
describe the design of Chameleon, which combines adaptive source
routing and priority queuing. The latency modeling of QJump is
topology-agnostic and assumes the same traffic envelope for all the
flows with deterministic requirements. These fundamental assump-
tions prevent it from being adapted to solve the above-mentioned
shortcomings without a complete redesign of the system. However,
similar to QJump, we exploit priority queuing capabilities of today’s
switches. Furthermore, we build up partly on components of Silo,
as explained in this section. Chameleon is based on four building
blocks: it does access control and delay computation using DNC
similarly to Silo, leverages priority queuing like QJump, applies
fine-grained source routing, and uses adaptive reconfigurations. We
discuss these building blocks in turn and then provide an overview
of the control plane.

3.1 Building Block 1: Silo
Like Silo,Chameleon leverages three basic components: the resource
allocation that is run at network startup (§3.1.1), the access control
logic that ensures that flows are embedded only if all delay require-
ments are satisfied (§3.1.2) and the resource reservation (§3.1.3)
responsible for keeping track of resources usage at runtime.

3.1.1 Resource Allocation. Silo keeps track of resource consump-
tion and per-link worst-case delays using DNC. Each link 𝑖 is as-
signed a maximum delay 𝐷𝑖 . We call this the resource allocation, as
each link is allocated a delay budget. Then, Silo always makes sure
that the DNC worst-case delay 𝑑𝑖 of each link remains lower than

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

its maximum budget 𝐷𝑖 , i.e., the admission control of Silo ensures
that 𝑑𝑖 ≤ 𝐷𝑖 ∀𝑖 ∈ G, where G represents the set of links in the
network. This is illustrated in Fig. 2a for a particular link. Based on
the token-bucket burst and rate parameters of each flow, Silo keeps
track of the total burst 𝑏𝑖 and rate 𝑟𝑖 consumed at each link, forming
the DNC arrival curve for this link. The DNC service curve of the
link corresponds to the rate 𝑅𝑖 of the link. The horizontal deviation
𝑑𝑖 = 𝑏𝑖/𝑅𝑖 between these two curves represents the worst-case
delay at this link.

3.1.2 Access Control. A new flow request 𝑓 consists of token-
bucket parameters 𝑏 𝑓 and 𝑟 𝑓 , and of a maximum delay requirement
𝑑 𝑓 . At each link where the flow shall be embedded, Silo checks
whether adding the token-bucket parameters 𝑏 𝑓 and 𝑟 𝑓 to the
already used resources 𝑏𝑖 and 𝑟𝑖 would result in 𝑑𝑖 > 𝐷𝑖 or . If this
does not happen for any of the links supposed to be traversed by
the flow and if the sum of all the delays 𝐷𝑖 of these links is lower or
equal to the delay requirement 𝑑 𝑓 of the flow, the flow is accepted.
Otherwise, it is rejected.

3.1.3 Resource Reservation. When a flow is accepted, its token-
bucket parameters are simply added to the 𝑏𝑖 and 𝑟𝑖 parameters of
each link it traverses. Note that, per DNC, the burst 𝑏 𝑓 requirement
of a flow increases at each hop. Indeed, at a switch, the burst of a flow
increases for each new packet that arrives while previous packets
are still queued. Formally, the burst increases by 𝑟 𝑓 𝐷𝑖 at each hop;
the maximum amount of data that can accumulate while packets are
queued. This is taken into account by Silo when checking resource
consumption at each link, as well as when reserving resources to
account for the embedding of a new flow.

We note that Silo also incorporates a VM placement algorithm.
In this paper, we focus on the embedding task and hence assume
that a flow already has a source and destination server assigned.

3.2 Building Block 2: Priority Queuing
In order to increase the delay diversity offered to applications, i.e., to
offer different service levels, Chameleon uses priority queuing. Each
output link 𝑖 now corresponds to 𝑛𝑖 priority queues. Any number
of queues can be supported by the system, though typical switches
usually have up to 8 priority queues [60]. We discuss the impact of
the number of queues in §3.3. In order to ease the parallelism with
Silo, we present subsequently how the resource allocation, access
control and resource reservation mechanisms are changed.

3.2.1 Resource Allocation. Delays 𝐷𝑞 are assigned by a resource
allocation algorithm to each queue 𝑞. The set of different delays
that a physical path can offer is now multiplied by the number of
combinations of priority levels at each hop.

3.2.2 Access Control. The process is illustrated in Fig. 2b for𝑛𝑖 =
3 priority queues. Chameleon keeps track of token-bucket resource
consumption parameters for each individual priority queue. The
service curves offered to each queue are governed by DNC. Non-
preemptive priority queuing scheme requires high priorities to wait
for at most one packet of a lower priority before being transmitted.
As a result, the highest priority queue service curve is identical to
the Silo case (i.e., it is the link rate) but is shifted towards the right by
𝑙𝑚𝑎𝑥/𝑅+𝜙 , where 𝑙𝑚𝑎𝑥 is the maximum packet size in lower-priority

Figure 3: Modeling each individual priority queue leads to more embedding
opportunities for a given application. This both increases the delay diversity
offered to an application and the complexity of the routing procedure that
has to select one particular embedding.

queues, 𝑅 is the link rate and 𝜙 is a parameter for accounting for
the overhead of the priority queuing implementation in the switch1.
𝜙 is typically in the order of microseconds [60]. The service curve
of a low-priority queue then corresponds to the difference between
the service curve of the higher-priority queue and the arrival curve
of the traffic traversing the latter. This is shown in Fig. 2b.

When trying to embed a flow on a path (of queues), the access
control must be slightly adapted to account for the presence of
lower-priority queues. Indeed, adding a flow to a queue modifies
the service curve offered to lower-priority queues, and could hence
violate the 𝑑𝑞 ≤ 𝐷𝑞 constraint for these queues and hence lead to
the violation of the guarantees provided to already embedded flows.
When checking if a flow can be added to a particular queue, the
delay of lower-priority queues also has to be checked. Additionally,
the access control must check that the buffer capacity of each queue
at the link is not violated. DNC provides a bound on the worst-case
buffer occupancy at a system: it corresponds to the vertical deviation
between the arrival and service curves. The access control simply
checks that this deviation stays lower than the buffer capacity of
each queue. In order to reduce the computed bounds, arrival curves
are shaped by the rate of the input link where they are coming
from.

3.2.3 Resource Reservation. When a flow is accepted, its token
bucket parameters are simply added to the 𝑏𝑞 and 𝑟𝑞 parameters
of each queue it traverses. Additionally, the service curves of the
lower-priority queues also have to be updated (as described in
§3.2.2) to reflect the change in the arrival curve of a higher-priority
queue. The burst increase of flows is of course handled in the same
way as for Silo.

3.3 Building Block 3: Routing
The introduction of priority queuing changes the path finding prob-
lem. Besides the physical path, also priority queues have to be
selected. Effectively, this corresponds to finding a path in a topol-
ogy where each physical link 𝑖 is duplicated into 𝑛𝑖 edges. This
is illustrated in Fig. 3 for 𝑛𝑖 = 3 priority levels. We call this a
queue-level topology.

In this queue-level topology, each queue/edge 𝑞 has been al-
located a delay 𝐷𝑞 by the resource allocation algorithm. Finding
a path for a flow request then consists in finding a path P such
that

∑
𝑞∈P 𝐷𝑞 ≤ 𝑑 𝑓 , and for which the access control allowed

access to the flow. If we introduce a cost function that defines a
metric value for each queue in the network, this corresponds to a
delay-constrained least-cost (DCLC) routing problem, a problem
for which numerous algorithms have been proposed [23]. The cost
1Note that, for computing per-packet delays, DNC requires service curves to be shifted
down by the maximum packet size of the flow [40, 62]. While our implementation
takes this into account, for simplicity, and because this is a very small value, we omit
this in our description.

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

function must be defined in a way that makes the routing algorithm
consume the least amount of resources for each flow and hence
maximizes the probability of accepting future demands. We will
come back to this in §3.4.

As the DCLC routing problem is NP-complete, optimal routing
algorithms exhibit too high memory consumption and runtime to
be used as online routing algorithms [23]. Hence, a sub-optimal,
yet fast and complete algorithm has to be used, e.g., LARAC [33].
Two modifications have to be made: first, the routing algorithm
implementation must be modified to check for access control at
each queue/edge it visits and should not visit an edge for which
it gets denied access; second, this access control depends on the
total burst increase that the flow experienced (see §3.1.3), which in
turn depends on the complete path followed by the flow up to the
considered queue. Algorithmically, this impacts the completeness
of the routing algorithm. Indeed, it has been shown that if an edge
constraint (e.g., access control) in a routing problem depends on the
complete path visited before reaching the subject edge, heuristics
lose their completeness property [61]. As a result, the routing pro-
cedure is both sub-optimal and incomplete. We discuss the impact
of this and how we cope with it in the next section.

Increasing the number of priority queues increases the number
of edges in the topology. That gives the routing algorithms more
options and a greater delay diversity (i.e., more possible end-to-end
delay values, see §3.2) and hence increases the potential for accept-
ing more flows. At the same time, routing algorithms scale with
the number of nodes and edges in the network and more priorities
hence translates to higher request processing time. While switches
usually have up to 8 queues [60], Chameleon can deliberately de-
cide to use a subset of the available queues to balance the tradeoff
between runtime and delay diversity. We will show that in our
scalability evaluations (§5.2).

In order to seamlessly cope with 𝑛 − 1 independent hardware
failures, the routing procedure must be adapted to find 𝑛 physically
disjoint paths. The development of algorithms for finding disjoint
routes is still an ongoing research topic [29, 35, 52], but the simplest
solution is to run the DCLC routing algorithm 𝑛 times and, after
iteration, remove the links and nodes of the found path from the
routing topology. On our queue-level topology, all the queues of
the traversed physical links must be removed to ensure physical
disjointness.

3.4 Building Block 4: Reconfigurations
When a flow is routed, it is the role of the cost function to direct
the routing algorithm such that the least amount of resources is
consumed. However, the cost function is not aware of upcoming
requests and, as we highlighted in §2.1, a low-cost path for routing a
flow 𝑓 might happen to block a later flow 𝑔. Finding a cost function
that is good for any network scenario is a challenging problem,
as whether a choice now is good for later is only defined by the
upcoming flows, which are unknown to the cost function. As we
leave a more detailed study of cost functions for future work, we
instead use a dummy cost function (e.g., least-delay) and when the
routing procedure fails at embedding a new routing request, it can
analyze the current network state, reroute already embedded flows
to make space for the new flow and then embed the original flow.

VM1 VM2 VM3 VMn

virtual switch NIC

NBI
Controller

...

Tagging
(re)configuration

 |
-----|----------------------
101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

 |
-----|----------------------
 101 | pop, port 1, prio. 1
 102 | pop, port 1, prio. 2
 103 | pop, port 1, prio. 3
 201 | pop, port 2, prio. 1
 ... |
4803 | pop, port 48, prio. 3

 TAG ACTION

502 102 101 2
502 102 101 2

102 101 2

101 2
2

SBI

SBI

packet

Figure 4: Example of Chameleon in operation: VM 3 on the first server sends
a packet to VM 2 on the fourth server. Hypervisors in servers tag packets of
the different VMs to define the path they take and their priority level at each
hop. This enables easy reconfigurations and circumvents traditional issues in
distributed network reconfigurations.

We will show in §4.1.4 that the least-delay cost function choice is
actually wise and tries to minimize (i) the resources consumption
of each flow, (ii) how often reconfigurations will be needed, and
(iii) how efficient these reconfigurations will be.

However, reconfiguring running flows constitutes a big chal-
lenge. Algorithmically, consistent network updates is a complex
task, especially in the presence of strict latency guarantees [19]. It
has also been shown that the management interface exposed by
existing programmable devices is not always predictable [60], the
controller hence being unsure whether its desired configuration
update is indeed implemented in the data plane. Furthermore, other
measurement studies have shown that updating forwarding rules
on programmable devices can lead to transient phases during which
packets are forwarded on both paths [38], an unacceptable situation
for predictability. Using technologies like MPLS that can smoothly
migrate to a precomputed alternative path is not possible, as al-
ternative paths with guarantees cannot be computed in advance
without knowing the future network state.

To circumvent these issues, we propose to use source routing for
configuring forwarding decisions, similarly to what Microsoft uses
in their datacenters [17, 18]. This is illustrated in Fig. 4. Instead of
forwarding based on a five-tuple matching, the forwarding elements
in the network match on a particular tag in the packet to define
their behavior. Each possible tag value corresponds to a port-queue
combination. When sending packets from VMs, hypervisors push
a stack of tags corresponding to the path the packet has to follow
and the priority levels at which it should be enqueued. For example,
if a priority level 𝑝 and output link 𝑙 correspond to tag 𝑡 = 100𝑙 + 𝑝 ,
a stack of tags 101, 503 means that the packet should be forwarded
to port 1 of the first switch and with priority 1 and then to port 5
of the second switch with priority 3. The switches simply match
on the tag to perform the corresponding action and then pop the
outermost tag out of the stack to permit the next-hop switch to
read the next tag.

This approach solves the above-mentioned issues. Indeed, the
forwarding behavior of switches is configured once at startup and
never has to be updated. This eliminates the unpredictability prob-
lem of the management interface of switches and the transient
phase issue when updating flow tables. Further, routes are config-
ured on end-hosts, which eliminates the problem of consistently

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

get queue cost

get access to queuereserve

get queue delay
Routing

 get current usage

Cost
function

per-queue delay

Resource
allocation

get current usage

Access
control

Resource
reservation

flow request

Figure 5: Chameleon’s control plane architecture. All these components run
in a centralized controller. Flows are then configured as shown in Fig. 4.

updating the network configuration, as the network is configured
centrally.

This however brings another important challenge. The tagging
in the hypervisor virtual switch, and the updates of its tagging rules
must be predictable, as this new component adds an additional de-
lay to the packets. However, in contrast to blackbox forwarding
devices based on closed implementation, the virtual switch is under
our complete control. That allows us to specifically design it for
satisfying these requirements. In particular, several recent technolo-
gies such as SmartNICs, P4, and data plane development kit (DPDK)
offer the potential for achieving this predictability. We describe
in detail in §4.2.2 how we implement the tagging component and
confirm in §5.3 that this implementation is predictable and fast
enough for predictable latency use cases.

We note that changing the route of existing traffic can lead to out-
of-order packets, which can in turn lead to spurious retransmissions
and throughput decrease for TCP-like transport protocols. While
studying the impact of reconfigurations on TCP-like congestion
control algorithms is outside the scope of this article and is part of
our future work, we will see in §5.4 that our testbed evaluations
(that include many reconfigurations of TCP flows) do not lead to
any reordering of packets.

3.5 Control Plane Architecture
The architecture of Chameleon’s control plane logic is summarized
in Fig. 5. First, delays are assigned to each queue by a resource allo-
cation algorithm (§3.2.1). The routing module, which receives flow
requests, uses these values as constraints for its DCLC problem
(§3.3). The cost values are defined by a cost function based on the
state of the network, i.e., based on which flows are embedded where.
The routing module is also responsible for rerouting flows if that
is necessary to embed the new flow (§3.4). The state of the net-
work is managed by the resource reservation module, which updates
the usage of the network when the routing module registers the
embedding of a new flow (§3.2.3). To ensure that it only embeds
flows that do not lead to any delay violations, the routing procedure
relies on the access control module (§3.2.2). The latter accepts or
denies access requests so that the per-queue delays assigned by
the resource allocation algorithm are never violated. In the next
section, we describe how all these elements are implemented.

4 CHAMELEON IMPLEMENTATION
We separate our description of the implementation of Chameleon
into the control plane and the data plane parts.

4.1 Control Plane
The control plane is implemented as a multi-threaded set of Java 8
libraries implementing all the controller functionalities. The code
consists of around 30k lines of code.

4.1.1 Interfaces. The controller implements a northbound in-
terface (NBI) that exposes a representational state transfer (REST)
application program interface (API) to users (Fig. 5). This API al-
lows tenants, VMs, and flows to be created and deleted through
hypertext transfer protocol (HTTP) POST requests. A tenant is a
logical abstraction that supports users to create flows between VMs
that they created, i.e., VMs of the same tenant. All created VMs
are identical and allocated to a randomly selected physical server.
VM placement is outside the scope of this work. The creation of a
flow requires the specification of source and destination VMs, of
burst, rate, and latency requirements, and of a five-tuple match-
ing structure. A counterpart southbound interface (SBI) module
implements the OpenFlow (OF) 1.0 protocol (Fig. 5). The module
discovers the network topology at startup using link-layer discov-
ery protocol (LLDP) packets and configures the static forwarding
rules on switches (see §4.2). Upon a VM creation request, the SBI
module triggers the actual creation on the chosen server via se-
cure shell (SSH). Upon a flow embedding request, the NBI module
forwards the request to the routing procedure. If the routing pro-
cedure returns an embedding, or if it requests the reconfiguration
of a previous embedding, the SBI configures the corresponding
tagging rules on the source server via SSH (§4.2). We do not aim
at providing strict guarantees for request processing times. As a
result, the communication between the SBI and the servers does not
need latency guarantees and can happen over a traditional control
network.

4.1.2 Resource Allocation and Reservation, and Access Control.
The resource allocation simply assigns a maximum delay to each
queue upon discovery of a new link (as described in 3.2.1). For
8-queue ports, it assigns the following delays: 0.1 ms, 0.5 ms, 1 ms,
1.5 ms, 3 ms, 6 ms, 12 ms, and 24 ms. For 4-queue ports, it assigns
0.1 ms, 1 ms, 6 ms, and 24 ms. For 2-queue ports, it assigns 0.1 ms
and 6 ms. Host ports towards their access switches are assigned
0.5 ms. Choosing these parameters defines the sets of delays that a
given physical path can offer, including in particular the minimum
delay that can be achieved over that path. For example, with the
above assignment, a 4-hop path will not be able to provide a delay
guarantee lower than 0.4 ms. Also, these values impacts the number
of flows that can be accommodated at a given queue, as flows will
be rejected as soon as the delay they induce at a queue reaches
its assigned maximum delay. Delay values for a given number of
queues are chosen to be a superset of the values for lower number
of queues in order to ensure that, for a given number of queues, we
offer at least the same delay diversity as for lower number of queues.
The somewhat arbitrary delay assignment above is chosen to be
able to span delay requirements from sub-milliseconds to hundreds
of milliseconds and try to maximize the number of flows that can
be accepted in slower queues. A complete sensitivity analysis and
an optimization of the delay assignment would be interesting but
is outside the scope of this article. Access control and resource
reservation are implemented as described in §3.2.2 and §3.2.3.

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

1: function embeddingStrategy(request)
2: response← route(request)
3: if response ≠ null then
4: reserve(response), return response
5: for each flowToReroute in lim(sort(getFlowsToReroute(request))) do
6: increaseGraphCosts(flowToReroute, request)
7: reroutingResponse← route(flowToReroute)
8: if reroutingResponse ≠ null then
9: reserve(reroutingResponse)

10: free(flowToReroute.originalPath)
11: response← route(request)
12: if response ≠ null then
13: reserve(response), return response
14: return null

Figure 6: Pseudo code of the flow embedding and reconfiguration.

4.1.3 Routing and Rerouting Strategies. The routing procedure
for finding a DCLC embedding is implemented using the LARAC
algorithm [33] as described in §3.3. The complete routing and rerout-
ing logic is shown in Fig. 6. First, the procedure tries to find a path
for the flow request using a least-delay search (line 2). If it fails at
finding a valid embedding (either because of its incompleteness –
§3.3 – or because of previous flows poorly embedded – §2.1), the
procedure tries to reroute already embedded flows to make space
for the new one. First, in line 5, it selects a set of sorted candidate
flows to be rerouted and iterates through them. In our implemen-
tation, it selects all the flows traversing at least one edge of any
of the equal-length shortest paths (SPs) in the physical topology
from the source server to the destination server of the new flow to
embed. Those paths are found using Yen’s algorithm [67]. Other
flows not traversing these SPs are indeed not expected to prevent
the new flow from being embedded. In our implementation, we sort
flows according to the number of physical links they share with the
SPs of equal length in the physical topology between the source
and destination servers of the new flow to embed. This sorted list
of candidate flows is then truncated to its first 𝑛 elements to limit
the maximum number of (re-)routing retries and hence to mitigate
the runtime increase caused by the rerouting. In our implementa-
tion, we choose 𝑛 = 20, as small benchmarks showed that most
successful reroutings happen in the very first flows. Then, for a
given candidate flow to reroute, based on the current state of the
network, the procedure tries to re-embed the selected flow. In line
6, to direct the routing procedure toward a path that potentially
allows the new flow to be embedded, we increase the cost (see
§4.1.4) of the previous queues in which the flow was embedded
(to move it somewhere else) and of all the queues of all the equal-
length SPs between the source and destination servers of the new
flow to embed (to prevent the rerouted flow to interfere with the
new flow). The cost is increased by multiplying the original cost
value by an arbitrary high value (30 000 in our implementation). If
the flow cannot be re-embedded, the procedure continues to the
next candidate flow. If the flow can be re-embedded, the procedure
notifies the SBI to reserve the new embedding (line 9) and then to
free the resources reserved for the previous embedding (line 10),
and then retries to add the new flow. If that fails, the procedure
continues to the next candidate flow to reroute. If that succeeds, the
new flow is successfully embedded thanks to the reconfiguration of
previous flows. If the truncated list of candidate flows is exhausted
without any success, embedding failed and the new flow is rejected
(line 14).

Controller

tagging & shaping

control
channel

vhost-net

VM 1VM n VM 2 VM 0

Management
network

Data center
network

(a) Server.

control channel

R
X

 q
ue

ue
 n

T
X

 q
ue

ue
 n

R
X

 q
ue

ue
 1

T
X

 q
ue

ue
 1

T
X

qu
eu

e
0

tag & shape

VM 0VM 1VM n

VMDq

(b) DPDK application.

Figure 7: Chameleon’s end-host implementation (a) and zoom in the DPDK
application. QEMU VMs are connected to the DPDK application using a
vhost-net/virtio-net architecture and communicate through distinct receive
and transmit queues. A control VM allows the configuration of the tag-
ging/shaping rules.

Because failure handling is outside the scope of this work, we did
not implement a disjoint routing strategy as described in Sec. 3.3.
However, that would be a simple extension to the routing procedure.

4.1.4 Cost Function. As described in §3.4, the design of a good
cost function is a very challenging task. In some sense, the pro-
posed rerouting strategy is a way of adapting the cost function to
future requests, as we reroute an old flow with the knowledge of
the flows that were accepted later. Unfortunately, also the rerout-
ing procedure needs a cost function. We decide to simply use the
delay as cost, thereby effectively degenerating the DCLC problem
into a simple least-delay routing problem solved by Dijkstra’s al-
gorithm [14]. The rationale behind this decision is that the burst
increase of a flow at each hop is proportional to the delay of this
hop (see §3.1.3). This cost function hence minimizes the resource
(burst) consumption of flows and accordingly attempts to drive
the routing algorithms towards clever decisions that minimize the
number of costly reconfigurations that will be necessary later.

4.2 Data Plane
We consider 1 Gbps OF 1.0 devices: Dell S3048-ON and S4048-ON
(four priority levels per port), and Pica P3297 (eight priority levels)
switches. We use servers running Ubuntu 18.04 (4.15.0-66-generic
kernel) with 64 (Dell servers) or 128 GB (Dell and Supermicro
servers) of RAM, an Intel Xeon Silver 4114 @ 2.2 GHz (20 cores,
Supermicro servers) or an Intel Xeon E5-2650 v4 @ 2.2 GHz (24
cores, Dell servers) as CPU, and an Intel X550 (Supermicro servers)
or X540 (Dell servers) network interface card (NIC) towards the
data network. We use virtual local area network (VLAN) tags to
implement the tag stacks. While any other stackable tagging mech-
anism can be used (e.g., multi-protocol label switching (MPLS)), we
use VLAN tags because of its low header overhead and its more
widespread support. It has also been shown that matching on VLAN
tags to output to a particular port and queue and popping the out-
ermost VLAN tag can be done at line rate and with a predictable
performance [60].

In the following, we describe the end-host implementation (Fig. 7),
the cornerstone of our solution. This consists of a tagging part, re-
sponsible for pushing tag stacks to packets, and of a shaping module,
responsible for ensuring that applications do not exceed their nego-
tiated𝑏 𝑓 and 𝑟 𝑓 token-bucket parameters. We implement the virtual
switch of the VMs hypervisor as a DPDK 19.08 application running

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

in a privileged docker container. This approach of implementing
packet processing NIC features in a DPDK software application
is analogous to SoftNIC [25], as used for example by Google for
implementing scalable traffic shaping at the edge [54]. The general
architecture of the virtual switch is shown in Fig. 7a. The different
VMs run in QEMU 2.11.1 with KVM. The VMs and the DPDK ap-
plication are connected through virtio using a vhost-net/virtio-net
para-virtualization architecture [3].

4.2.1 How to Ensure Predictability? The processing of the virtual
switch has to be predictable, in terms of latency. To do so, we
use mechanisms similar to those used by FairNIC to implement
isolation on a SmartNIC [21]. The DPDK application is pinned to
specific cores of the server and we prevent the kernel of the server
to use these cores using the kernel isolcpus parameter. To avoid
unpredictable performance variations, we further disable hyper-
threading, turbo-boost, and power saving features of the central
processing unit (CPU). This ensures that the DPDK application runs
isolated on dedicated CPU cores that operate at a constant and stable
speed. We use Intel’s cache allocation technology (CAT) to allocate
a specific portion of the CPU last level cache (LLC) to the cores used
by the DPDK application. As level-one and level-two caches are per-
core, this prevents other applications from interfering with DPDK
through the memory caches. We use three cores for the application:
one sending core, one receiving core, and one master core for the
DPDK master process. Both sending and receiving cores process
batches of packets for the different VMs in a round-robin fashion.
Each VM is assigned a sending and a receiving queue (see Fig. 7b).
The sending queues are filled by the VM virtio drivers and emptied
by the sending core, which is then responsible for tagging and
shaping before sending out the packets to the NIC. The receiving
queues are filled by the receiving core. The destination VM of a
packet is identified by its MAC destination address and VLAN tag.
Doing this separation in software would prevent batch processing,
a major enabler of the fast software processing performance of
DPDK. Indeed, a series of packets received from the NIC is not
necessarily entirely destined for the same VM. Hence, we use the
virtual machine device queues (VMDQ) technology of Intel NICs.
Packet separation is done in hardware and packets for the different
VMs are automatically stored in separate physical queues that are
then simply pulled by the receiving core and sent to the different
VMs virtio drivers.

4.2.2 Tagging. The sending core, after pulling a batch from a
VM sending queue, is responsible for tagging the packets. The
program maintains tagging rules with the following fields: protocol,
source IP, destination IP, source port, destination port, number of tags
to push, tags to push. The entries are stored in a two-dimensional
array indexed by the VM ID and the rule ID for a given VM. The
maximum number of VMs (64 in our implementation) and of rules
per VM (3 in our implementation) is fixed and the array hence
does not require dynamic memory allocation. Within a processed
batch, for each packet, the core traverses the 3 rules of the VM it is
currently serving. If a five-tuple match is found, the tags stored in
the corresponding entry are directly copied between the Ethernet
and Internet protocol (IP) headers of the packet. If no match is found,
the packet is dropped. Once all packets of a batch are processed,
the program sends the batch of tagged packets to the NIC. In order

to handle failures, the tagger must be extended to duplicate each
packet and tag the different physically disjoint paths selected by
the routing procedure on the different copies of the packet. While
TCP automatically removes duplicates at the receiver, a duplicate
removal strategy would have to be implemented on the receiving
core for other transport protocols.

4.2.3 Shaping. The sending core must ensure that flows do not
exceed the token-bucket parameters that have been reserved for
them. Indeed, a violation of these parameters invalidates all the
DNC computations and can lead to delay guarantees violations. We
add four fields to the tagging rules: rate, burst, number of tokens,
and last timestamp. The two first fields store the token-bucket
parameters of the entry, the third and fourth fields store the number
of tokens in the token bucket when they were last computed and the
corresponding timestamp. For each packet within a processed batch,
the sending core computes the updated number of tokens based on
the current timestamp and the rate parameter of the token bucket.
The packet is dropped if there are not enough tokens for sending
the packet. Otherwise, the number of tokens corresponding to the
packet size are removed, the timestamp is updated and the packet is
kept. Timestamps are obtained using the timestamp counter (TSC)
register of the CPU. Having disabled the turbo-boost and power-
saving features of the CPU ensures that this counter measures real
time and not simply the number of instructions.

4.2.4 Configuration of Tagging/Shaping Rules. In order to com-
municate with the virtual switch without creating unpredictability
and synchronization issues, we use an additional VM, the control
VM (with ID 0). This VM is not allocated a receiving queue (see
Fig. 7b). The packets sent by this VM are used to configure the rules
stored in the sending core. When the sending core receives a control
packet, the first two bytes of the packets are used to index the table
– they correspond to the VM ID and rule ID to update. The next
bytes in the packet are simply copied in the entry. The Chameleon
controller connects to this control VM to update tagging/shaping
entries and is hence responsible for sending the appropriate values
in the correct order and endianness. The DPDK application then
simply reinitializes the number of tokens and last timestamp fields
of the modified entry.

5 EVALUATION
The goal of our evaluation is to show that Chameleon successfully
provides latency guarantees, can reach higher network utilization
than existing approaches, and scales to networks with tens of thou-
sands of servers. First, §5.1 evaluates the utilization and number
of flows our system can accommodate by running simulations of
its admission control. For different types of traffic distributions,
we show that Chameleon reaches higher network utilization and
number of accepted flows than the SoA QJump [22] and Silo [31]
systems. Second, in §5.2, we quantify the scalability of Chameleon
by evaluating its performance for increasing network sizes. We
show that, despite its higher complexity, Chameleon achieves bet-
ter performance than its SoA counterparts for increasing network
sizes, both in terms of number of accepted flows and runtime. Then,
in §5.3, we perform a microbenchmark of our end-host tagging
and shaping implementation. We show that our implementation is

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Flow description Rate Burst Deadline

Category 1: Industrial applications (IA) [1, 34]

Database operations [300, 550] Kbps [100, 400] byte [80, 120] ms
SCADA operations [150, 550] Kbps [100, 400] byte [150, 200] ms
Production control [100, 500] Kbps [100, 400] byte [10, 20] ms
Control and NTP [1, 100] Kbps [80, 120] byte [10, 20] ms

Category 2: Clock synchronization (CS) [51]

PTP [1, 220] Kbps [80, 300] byte [2, 4] ms

Category 3: Control plane synchronization (CPS) [2, 55]

Eventual consistency [2, 4] Mbps [80, 140] byte [50, 200] ms
Strict consistency [5, 8] Mbps [1000, 3000] byte [50, 200] ms

Adaptive consistency [2, 4] Mbps [80, 120] byte [50, 200] ms

Category 4: Bandwidth-hungry applications (BH) [4, 5, 45, 65]

Hadoop, data-mining [100, 150] Mbps [1000, 5000] byte [10, 100] ms
Hadoop, data-mining [100, 200] Mbps [1000, 3000] byte [10, 100] ms
Hadoop, data-mining [80, 200] Mbps [1000, 3000] byte [50, 100] ms

Table 1: Considered flow types and their characteristics.

Scenario Distribution Scenario Distribution
ID (IA, CS, CPS, BH) ID (IA, CS, CPS, BH)

1 (0.25, 0.25, 0.25, 0.25) 2 (0.2, 0.2, 0.5, 0.1)
3 (0.2, 0.5, 0.2, 0.1) 4 (0.5, 0.2, 0.2, 0.1)
5 (0.1, 0.4, 0.4, 0.1) 6 (0.4, 0.1, 0.4, 0.1)
7 (0.4, 0.4, 0.1, 0.1) 8 (0.33, 0.33, 0.33, 0.01)
Table 2: Flow request distributions used in the simulation.

1 2 3 4 5 6 7 8
scenario ID

0

0.5

1.0

1.5

#
ac

ce
pt

ed
fl

ow
s

[1
03]

QJump
Silo
Chameleon w/o reconf.
Chameleon with reconf.

(a) Num. accepted flows.

100 101 102

num. reconfigured flows

0.25

0.50

0.75

1.00

EC
D

F

BH flows
CS flows
CPS flows
IA flows

(b) Num. reconfigured flows.

Figure 8: Simulation results. (a) indicates the increased number of accepted
flows in Chameleon compared to the SoA systems and (b) shows the number
of reconfigured flows per flow type and the effect of the characteristics of
flows on their reconfigurability. Whiskers show the 1% and 99% percentiles.

0.0 0.5 1.0

0.0

0.5

1.0

QJump
Silo

Chameleon w/o reconfiguration
Chameleon with reconfiguration

0.00 0.25 0.50 0.75 1.00
network utilization

0.00

0.25

0.50

0.75

1.00

EC
D

F

(a) Network utilization.

100 102

runtime [ms]

0.00

0.25

0.50

0.75

1.00

EC
D

F

(b) Runtime.

Figure 9: (a) Improved network utilization achieved by Chameleon compared
to QJump and Silo. (b) Runtime of embedding one flow in the network.

accurate in shaping flows, can tag packets at high rates, and has a
low memory footprint. Finally, in §5.4, we deploy the Chameleon
system in a testbed composed of ten switches and eight servers. We
show that Chameleon can improve the performance of applications
that run on a shared infrastructure and that the guaranteed packet
delays are indeed not violated.

5.1 Network Utilization
We conduct a comprehensive simulation study comparingChameleon
with the two main SoA approaches for predictable latency: QJump [22]
and Silo [31]. We consider a 𝑘 = 4 fat-tree topology with 1 Gbps
physical links and 16 servers.

5.1.1 Configuration of the Systems. For Chameleon, at each
physical port, we consider 8 queues each with 97 KB buffer size,
according to results from our previous work reporting on the per-
queue available buffer capacity for SoA switches [60]. For Silo,
because it does not use priority queuing, we set a single queue
with 590 KB of buffer size, still according to our previously pub-
lished measurements [60]. We set the Silo per-link delay to 0.1 ms2.
For QJump, we have 𝑅 = 1 Gbps, 𝜖 = 4 𝜇s [22], we consider the
maximum packet size 𝑃 = 1500 byte, and we set3 𝑛 = 32.

5.1.2 Simulation Setup. We define a set of flow requests as an
input to evaluate the performance of the different systems. A flow
request is defined by its source and destination nodes, and requested
rate, burst, and deadline. We choose the source and destination of
each flow request randomly from the hosts in the network. To
specify the rate, burst, and deadline values, we define different
types of application categories: industrial applications (IA), clock
synchronization (CS), control plane synchronization (CPS), and
bandwidth-hungry (BH) applications (see Tab. 1). Each category
of application is defined by a set of distributions for rate, burst,
and deadline values according to SoA references as reported in
Tab. 1. This allows us to define a wide range of different scenarios
and confirm that Chameleon performs well under any scenario. To
randomly sample flow requests, we use a flow request distribution
(𝑎, 𝑏, 𝑐, 𝑑), where 𝑎, 𝑏, 𝑐 , and 𝑑 are the probabilities of a flow to
belong to the IA, CS, CPS, and BH categories. For example, the flow
distribution of scenario 1 in the Tab. 2 indicates that the probability
of having a flow request from each category is the same and is equal
to 0.25. After that, for a given flow category, we randomly select one
of the distributions of this category and then randomly sample the
rate, burst, and deadline values uniformly within the ranges defined
in Tab. 1. We define eight different scenarios as shown in Tab. 1.
For each scenario and system, we perform 100 runs for which we
add flows until a rejection happens. The simulation was performed
on a VM equipped with 48 cores and 320 GB RAM, running Arch
Linux x64 (kernel version 5.4.15-arch1-1) hosted on a server with
500 GB RAM, a 48-core CPU Xeon CPU-E5-2697 v3 @ 2.6 GHz (2
sockets), and running Proxmox 6.1-7.

5.1.3 Results: Number of Accepted Flows. The comparison of
number of accepted flows is shown in Fig. 8a for all the scenar-
ios described in Tab. 2. We consider two cases for the Chameleon
admission control system, with and without reconfiguring previ-
ously embedded flows. Yet, in the case without reconfigurations,
Chameleon is able to accept between 2× and 10× more flow re-
quests compared to the two SoA approaches. Additionally enabling
reconfigurations allows to accept even more flow requests. The big
performance difference between the SoA and Chameleon is due to

2We compared the performance of Silo with each of the delays we used for Chameleon
(see §4.1.2) and selected the best performing value.
3Again, we evaluated QJump with different 𝑛 values and we chose the best performing
one.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

the flexible and demand-awareness design of Chameleon, while SoA
relies on static and greedy decisions (see §2). In particular, QJump
is blocked to a maximum of 𝑛 = 32 flows because of the necessity
to define 𝑛 beforehand.

We observe that the benefit provided by reconfigurations de-
pends on the traffic distribution. For instance, scenario 8 in Fig. 8a
benefits more from reconfigurations than scenario 1. In fact, as
depicted in Fig. 8b, flow types appear to exhibit different levels of
reconfigurability. In particular, Fig. 8b shows that flows from the
BH category are reconfigured less than the other flow types. This is
due to the fact that the rate and burst of BH flows are significantly
higher than other types, hence having less chance to be reconfig-
ured (especially in a highly utilized network, see Fig. 9a). However,
in addition to rate and burst, flow deadline plays an important role
in the reconfigurability of the flows. For example, in Fig. 8b, it can
be seen that CS flows have been reconfigured less than IA and CPS,
mostly due to their tight latency requirements.

It is worth to note that according to Fig. 8b, although the recon-
figuration operations bring a great benefit in terms of number of
accepted flows, we only reconfigure a few percent of the accepted
flows (less than 100 flows on average).

5.1.4 Results: Network Utilization. Fig. 9a shows the empirical
cumulative distribution function (ECDF) of the network link uti-
lizations achieved by the different systems for all the considered
scenarios. Note that we excluded the host to top-of-rack switch links
from the figure. It can be seen that Chameleon is able to significantly
increase the network utilization compared to other approaches, to
reach close to line rate utilization for some links. High utilization
and predictable latency are hence not anymore exclusive objectives.
For network operators, that means Chameleon has the potential of
achieving greater revenue.

5.1.5 Results: Runtime. Fig. 9b depicts the comparison of run-
time for embedding one flow request in the network for the different
systems. We measure the time between a flow request and the re-
ception of a response (whether positive or not). For Chameleon, this
includes routing and reconfiguration operations. We observe that,
despite the greater complexity in Chameleon’s logic, it achieves
better runtime performance than Silo at the median. This is due to
the fact that Silo runs a DCLC algorithm for finding the SP satisfy-
ing the delay requirement while Chameleon simply runs a Dijkstra
least-delay search. Even at the tail, Chameleon runs faster than Silo.
Because of its pre-assignment of all its decision parameters, QJump
exhibits a much lower runtime.

5.2 Scalability
We extend our simulation study from §5.1 to assess the scalability
of Chameleon compared to Silo and QJump in terms of number
of accepted flows and runtime. Considering 40 servers per rack,
we vary the 𝑘 parameter of our fat-tree topology from 𝑘 = 4 (640
servers) to 𝑘 = 12 (17280 servers).

For Chameleon, we additionally vary the number of queues the
system can use at each physical port. We want to show that even
when many queues are available, Chameleon can be configured
to use less queues in order to reduce runtime, but at the price of

−0.05 0.00 0.05
−0.05

0.00

0.05

QJump
Silo

Chameleon w/o reconf.
Chameleon with reconf.

4 (640) 8 (5120) 12 (17280)
k (num. servers)

2.5

5.0

7.5

nu
m

.a
cc

.f
lo

w
s
[10

3]

(a) Num. accepted flows.

4 (640) 8 (5120) 12 (17280)
k (num. servers)

101
102
103
104
105

ru
nt

im
e

[m
s]

(b) Runtime.

Figure 10: Scalability analysis with two queues. (a) Improved number of ac-
cepted flows achieved by Chameleon compared to QJump and Silo. (b) Run-
time of embedding one flow in the network. Whiskers show the 1% and 99%
percentiles.

−0.05 0.00 0.05
−0.05

0.00

0.05

QJump
Silo

Chameleon w/o reconf.
Chameleon with reconf.

4 (640) 8 (5120) 12 (17280)
k (num. servers)

2.5

7.5

12.5

17.5

nu
m

.a
cc

.f
lo

w
s
[10

3]

(a) Num. accepted flows.

4 (640) 8 (5120) 12 (17280)
k (num. servers)

101
102
103
104
105

ru
nt

im
e

[m
s]

(b) Runtime.

Figure 11: Scalability analysis with four queues. (a) Improved number of ac-
cepted flows achieved by Chameleon compared to QJump and Silo. (b) Run-
time of embedding one flow in the network. Whiskers show the 1% and 99%
percentiles.

reduced number of accepted flows. We use 4 and 2 queues with per-
queue buffer sizes of 190 K and 356 KB respectively, still according to
results from our previous work reporting on the per-queue available
buffer capacity for Pica8 switches [60]. Values for Silo and QJump
are the same as those used in §5.1.

The setup is identical to the one used in §5.1. We focus on sce-
nario 8 from Tab. 1. For each scenario and system, we perform 10
runs for which we add flows until a rejection happens.

5.2.1 Results: Number of Accepted Flows. The comparison of
number of accepted flows for different network sizes is shown for
two queues in Fig. 10a and for four queues in Fig. 11a. Note that, be-
cause Silo and QJump do not exploit queues, their performance does
not depend on the number of queues. We observe that Chameleon
can accept up to 15× more flows requests than Silo, reaching up to
16000 flows for 𝑘 = 12 and four queues. The benefit of Chameleon
compared to the SoA increases with the network size and the num-
ber of queues. The bigger the network gets and the more queues
Chameleon can use, the more it can optimize its routing decisions
to fit in more flows compared to the SoA. Additionally, the benefit
of reconfigurations also increases with the network size and the
number of queues. For 𝑘 = 12 and four queues, reconfigurations
enable Chameleon to more than double the number of flows it can
accommodate in the network.

5.2.2 Results: Runtime. Fig. 10b and Fig. 11b show the runtimes
for embedding per flow request for the different network sizes. De-
spite the greater complexity of Chameleon, it achieves, both with
and without reconfigurations, better runtime performance than Silo
at both the median and the average. We observe that all approaches

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

scale exponentially with the network size. While Silo reaches up
to 10 seconds on average and 30 seconds at the tail for 𝑘 = 12,
Chameleon needs up to 9 seconds in average, and 20 seconds at the
tail without reconfigurations, or up to 3 minutes with reconfigura-
tions. This shows the interesting tradeoff between the number of
accepted flows (i.e., network utilization) and runtime that reconfig-
urations bring. Without reconfigurations, Chameleon still performs
better than Silo, both in terms of runtime and number of accepted
flows. Adding reconfigurations leads to a significant increase in the
number of accepted flows, however, at the cost of an increased tail
for the runtime. Limiting the number of reconfigurations allows
to navigate this tradeoff. Note that while such runtime values can
seem high for data center scenarios, we are here considering the
embedding of typically long-lived flows (e.g., synchronization flows
staying significantly longer in the network than the embedding
time) with very strict delay requirements, in contrast to typical data
center applications that run for very short amount of time and that
have looser requirements. Additionally, an embedded flow can also
actually consist of a long-lived aggregate of short micro-flows with
identical latency requirements and that together respect a given
traffic envelope over time. In summary, Chameleon performs better
than Silo both in runtime and number of accepted flows and the
difference in number of accepted flows can be further increased by
allowing reconfigurations, which only impact the runtime of the
system at the tail.

5.3 Tagger/Shaper Microbenchmark
5.3.1 Tagger. We connect two Dell servers (for specifications,

see §4.2) directly using 10 Gbps interfaces. In the source server,
we deploy a VM generating traffic using the MoonGen [15] traffic
generator. This generated traffic is pulled in batches through the
virtio virtual interface by the DPDK application. The combination of
parameters outlined in Tab. 3 is used to create the evaluation scenar-
ios. We measure the rate of traffic generated by the VM/MoonGen,
pulled by the tagger, tagged and forwarded to the NIC. These values
are obtained through simple packet counters in the DPDK applica-
tion. The number of packets is converted into rate using the rate
measured at the destination interface (not connected to DPDK)
using tcpdump. Fig. 12a shows the generation, tagging and line rate
for the different scenarios, ordered by packet size. We observe that
the DPDK application is fast enough to tag every pulled packet
from the VM, reaching up to 40 Gbps in some cases. All the tagged
packets are successfully sent to the NIC. We see that the tagging
rate is either bounded by the physical link rate (10 Gbps) or by the
rate achieved by the traffic generator. Hence, the tagging imple-
mentation is never the bottleneck.

5.3.2 Shaper. We connect a Dell server directly to an Endace
data acquisition and generation (DAG) 7.5G4 measurement card [42]
through a 1 Gbps connection. We configure our DPDK application
to pull packets one-by-one (batch size of one) and to add 6 tags
to them. Using the parameters in Tab. 4, we deploy a number of
VMs running MoonGen and generate traffic towards the DPDK
application with the corresponding packet size. Based on the traces
obtained by the measurement card, the actual shaped rate and
token bucket size are determined. We calculate the rate (resp. burst)
deviation as the relative deviation of the observed shaped rate (resp.

Parameter Values Parameter Values

Packet size [byte] 64, 776, 1478 Batch size 1, 16, 32
Num. flows 1, 2, 3 Num. tags 2, 4, 6, 8, 10

Table 3: Considered parameters for the tagger evaluation.

VMs # Flows Packet size [byte] Rate [bps] Burst [bits]

10 3 78 105 105

10 1 800 107 104, 105, 106

5 3 800, 1522 107 105

5 1 78 103, 107 103, 104, 105

1 3 800 105, 107 105

1 1 78, 800, 1522 107 106

Table 4: Measurement scenarios for the shaper evaluation.

0 50 100
measurement cases

100

101

ra
te

[G
bp

s]

64 bytes 776 bytes 1478 bytes

tagging rate
MoonGen rate
line rate

(a) Tagging performance.

−2 −1 0 1 2
relative deviation [%]

0.0

0.5

1.0

EC
D

F

rate dev.
burst dev.

(b) Shaping precision.

Figure 12: Performance evaluation of the tagger and shaper implementation
of Chameleon.

Dell S4048-ON
toenham

Pica8 P3297
koeln

Dell S3048-ON
newcastle

Dell S3048-ON
watford

Dell S3048-ON
westham

Pica8 P3297
fulham

Dell S3048-ON
leeds

Dell S3048-ON
leicester

Dell S3048-ON
liverpool

Dell S3048-ON
mancity

Dell
hazard

Dell
rooney

Dell
kane

Dell
gerrard

Supermicro
daei

Supermicro
klinsmann

Supermicro
kahn

Supermicro
ballack

1 2

1

1 2 1 2

1 1 1

2 1

2 2 2 2

2 1 2 1

3 3 3 3

3 3 3 34 4 4 4

Figure 13: Testbed for our experiments.

burst) compared to the value defined in the shaping rule. As can be
observed in Fig. 12b, Chameleon’s shaper implementation exhibits a
precise performance, producing a maximum relative error of around
2%. Also, although not shown in the figure, we observe that shaping
is more precise for a lower number of VMs. This is because the
DPDK application pulls packet in a round-robin fashion from VMs:
having less VMs leads to shorter pulling intervals.

5.3.3 Resources Consumption. Because the DPDK application
runs three non-blocking processes pinned to three different cores
(see §4.2.1), it consumes exactly three CPU cores. The application
allocates most of the memory it needs at startup, and allocates a
couple of additional buffers at each VM connection. We measured
the memory consumption of our application using the docker API.
The application consumes around 19.2 MB plus around 0.02 MB
per connected VM. A couple of additional KB are necessary when
transmitting batches, but those are directly freed. This is a very low
memory footprint.

5.4 Testbed Measurements
We verify the Chameleon system in a 𝑘 = 4 fat-tree testbed (Fig. 13).
The Chameleon controller connects to the servers and switches
through a management network not shown in the figure. In the
first experiment (§5.4.1), we confirm that the delays guaranteed by
Chameleon are indeed not violated throughout the whole lifetime
of flows, even when flows are rerouted or new flows are embedded.
In the second experiment (§5.4.2), we illustrate that Chameleon

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

1 2 3 4 5
flow [num]

0

50

100

la
te

nc
y

[µ
s]

0

5

10

pa
ck

et
lo

ss
[%

]delay requirements [ms]
2.67 82.79 2.85 2.85 145.4

(a) 4-server experiment.

1 2 3 4 5
flow [num]

0

50

100

la
te

nc
y

[µ
s]

0

5

10

pa
ck

et
lo

ss
[%

]delay requirements [ms]
184.97 3.16 100.34 3.68 199.21

(b) 8-server experiment.

Figure 14: End-to-end latency measured for 5 different flows. The crosses de-
pict themaximumobserved latencies.Whiskers of the boxplots show the 10%
and 90% percentiles.

0 100 200 300
time [s]

0

250

500

750

1000

ab
s.

cl
oc

k
dr

i�
[µ

s] ptpd + cross-tr.
ptpd
ptpd + cross-tr. + Chameleon

Figure 15: ptpd experiment. Chameleon resolves the interference introduced
by sharing the network with bandwidth-hungry applications like Hadoop.

helps resolving network interference and can provide guarantees
to applications even in presence of adversarial traffic.

5.4.1 Verification of E2E Latency Guarantees. In this part of our
evaluation, we run the complete Chameleon system in the testbed
depicted in Fig. 13. We consider two scenarios, in the first one we
use the full testbed (with 8 servers), while in the second one, we
use only the left pod of our topology (4 servers). To perform our
experiments, we consider 31%, 31%, 31%, and 11% of, IA, CS, CPS,
and BH applications and generate flow requests as in §5.1. These
particular scenarios accepted a total of 298 and 218 flow requests.
Using two network taps mirroring traffic to an Endace DAG 7.5G4
measurement card [42], we measure the packet delay experienced
by five random accepted flows, while ensuring that at least one of
these flows was reconfigured. During the various reconfigurations,
no reordering of packets was observed. Fig. 14 presents the observed
end-to-end packet delay of the selected flows in both scenarios. It
can be seen that the required delays of flows are met and there is
no packet loss occurring in the system. There is very little queuing
happening: most packets experience the same delay (only due to
processing in the switches) and only a few packets are delayed
due to queuing. This shows that, to keep queues nearly empty, a
very conservative approach like QJump (which allows to send at
most one packet at the same time in the network) is not necessary
and that a precise DNC modeling can achieve low and predictable
latency while still achieving high utilization.

5.4.2 Resolving Network Interference. Precise clock synchroniza-
tion is often a requirement of distributed systems [11]. In local area
networks (LANs), the precision time protocol (PTP) is a master–
slave protocol that is widely used for clock synchronization. It
offers microsecond-granularity from a master server to other slave
machines. In Fig. 15, we show the clock offset between a slave VM
on the server kane and a master VM on the server gerrard in our
testbed when both are running ptpd (version 2.3.1), an open-source
implementation of PTP. The PTP application shares the network
with two flows (one from a VM on server rooney and one from a VM
on kane) that send Hadoop-like traffic to the VM on gerrard that

runs ptpd: the traffic flows are competing for bandwidth with the
PTP flows. The traffic is generated using MoonGen [15] on both VMs
and emulates Hadoop traffic by sending bursts of line rate traffic at
an average rate of around 480 Mbps. We observe in Fig. 15 that this
cross-traffic causes ptpd to fall out of synchronization in the order
of hundreds of microseconds, while the clock offset of ptpd on the
same idle network remains in the order of tens of microseconds.
When we introduce Chameleon to reserve network resources and
route flows on appropriate queues through VLAN-based source
routing, the interference is resolved and the ptpd synchronization
offset remains as in the idle network scenario.

6 RELATEDWORK
An overview of the most important existing works and their re-
spective features in shown in Tab. 5 in the appendix.

Industrial applications have for a long time been a major use
case for predictable latency. Proprietary solutions (e.g., Profibus or
CAN) and Ethernet extensions have been developed for real-time
industrial communications [13, 20, 56]. However, these solutions
are either too expensive or demand changes within the protocol
stack of forwarding devices.

In cloud networks, many efforts have been trying to provide
bandwidth guarantees, work conservation, inter-tenant fairness
and isolation, or a combination of these [8–10, 24, 28, 32, 39, 43, 44,
49, 50, 53, 58, 66]. While these approaches provide the scalability
and quality of service (QoS) level needed for bandwidth-hungry data
center applications, they do not provide strict buffer management as
necessary for providing strict latency guarantees. Another category
of works try to adapt the layer-4 (L4) protocol used in order to
reduce and/or minimize (tail) latency and/or flow completion time
(FCT) [4–7, 26, 27, 36, 41, 47, 59, 64, 69, 70]. However, these solutions
do not provide packet latency guarantees.

A few recent efforts attempt to provide predictable latency and
delay guarantees in shared network environments [48, 57, 63, 68].
These are centralized approaches relying on time-division multi-
ple access (TDMA). However, such approaches either do not scale
or rely on critical synchronization, hence, are too expensive and
demand adaptations of the network infrastructure. Another ap-
proach falls back to physical isolation [68], which might, however,
drastically waste physical resources. Avoiding end hosts synchro-
nization, QJump [22] computes latency guarantees by ensuring that
each flow has at most one packet in transit in the network at any
given time. Unfortunately, this prevents applications from sending
bursts of data. We saw in §5.1 that this leads to a high rejection
rate and low network utilization. Silo [31], the closest related work,
applies DNC to compute guarantees. Compared to Silo, Chameleon
introduces priority queuing and exploits path diversity, also by
reconfiguring flows at runtime; we have shown that this greatly
increases the number of flows that can be accepted, i.e., network
utilization. Furthermore, while Silo focuses on multi-rooted tree
topologies, we introduce routing to accommodate (and leverage)
any topological structure.

A few recent works focus on providing predictability and iso-
lation at the end-host by efficiently sharing NIC resources among
VMs [21, 37] but do not consider delays in the network fabric. Pic-
NIC [37] employs congestion control mechanisms and hence does

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

not fit for traffic with strict latency requirements. FairNIC [21] pro-
vides predictability and isolation on a SmartNIC through principles
very similar to those we used for our DPDK application (§4.2.1).
Building on top of FairNIC to implement Chameleon on a SmartNIC
is an interesting research direction.

7 CONCLUSION
This paper has shown that demand-aware and adaptive networks,
leveraging source-routing and queuing flexibilities, introduce an
opportunity to improve cloud network utilization while providing
a predictable performance, in particular, latency. Our approach
builds upon network calculus concepts while accounting for such
flexibilities.

We understand our work as a first step and believe that our ap-
proach introduces several interesting avenues for future research.
In particular, investigating the usage of a SmartNIC or a P4 NIC to
tag packets deterministically in the data plane and reduce the foot-
print on host resources is an interesting research direction. More
generally, while we have focused on datacenters, it will be inter-
esting to explore opportunities of self-adapting networks, based
on priority reconfigurations, in wide-area networks as well. We
believe that the self-adapting approaches considered in this paper
can also serve as a stepping stone toward self-driving networks [16]
envisioned by the networking community.

REFERENCES
[1] [n. d.]. EU-project VirtuWind, Deliverable D3.2, Detailed Intra-Domain SDN &

NFV Architecture. http://www.virtuwind.eu/. ([n. d.]). Accessed: 2020-01-30.
[2] [n. d.]. Use Cases IEC/IEEE 60802 v1.3. http://www.ieee802.org/1/files/public/

docs2018/60802-industrial-use-cases-0918-v13.pdf. ([n. d.]). Accessed: 2020-01-
30.

[3] Ariel Adam, Amnon Ilan, and Thomas Nadeau. [n. d.]. Introduction to virtio-
networking and vhost-net (Red Hat Blog). https://www.redhat.com/en/blog/
introduction-virtio-networking-and-vhost-net. ([n. d.]). Accessed: 2020-02-02.

[4] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data
center tcp (dctcp). ACM SIGCOMM computer communication review 41, 4 (2011),
63–74.

[5] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is more: trading a little bandwidth for ultra-
low latency in the data center. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association, 19–19.

[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pfabric: Minimal near-optimal data-
center transport. In ACM SIGCOMM Computer Communication Review, Vol. 43.
ACM, 435–446.

[7] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling ECN in Multi-Service
Multi-Queue Data Centers.. In NSDI. 537–549.

[8] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards predictable datacenter networks. In ACM SIGCOMM computer communi-
cation review, Vol. 41. ACM, 242–253.

[9] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-
nawardena, and Greg O’Shea. 2013. Chatty Tenants and the Cloud Network
Sharing Problem.. In Nsdi, Vol. 13. 171–184.

[10] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. 2016. HUG:
Multi-Resource Fairness for Correlated and Elastic Demands.. In NSDI. 407–424.

[11] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In ACM SIGOPS operating systems review, Vol. 41. ACM, 205–220.

[13] J-D Decotignie. 2005. Ethernet-based real-time and industrial communications.
Proc. IEEE 93, 6 (2005), 1102–1117.

[14] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269–271.

[15] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A scriptable high-speed packet generator. In
Proceedings of the 2015 Internet Measurement Conference. 275–287.

[16] Nick Feamster and Jennifer Rexford. 2017. Why (and how) networks should run
themselves. arXiv preprint arXiv:1710.11583 (2017).

[17] Daniel Firestone. 2017. {VFP}: A Virtual Switch Platform for Host {SDN} in the
Public Cloud. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17). 315–328.

[18] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: SmartNICs in the public cloud.
In 15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 51–66.

[19] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. 2018. Survey of
consistent software-defined network updates. IEEE Communications Surveys &
Tutorials 21, 2 (2018), 1435–1461.

[20] Piotr Gaj, Jurgen Jasperneite, and Max Felser. 2013. Computer communication
within industrial distributed environment - A survey. In IEEE Transactions on
Industrial Informatics, Vol. 9. IEEE, 182–189.

[21] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C Snoeren. 2020. SmartNIC
Performance Isolation with FairNIC: Programmable Networking for the Cloud.
In Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 681–693.

[22] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM Watson, An-
drew W Moore, Steven Hand, and Jon Crowcroft. 2015. Queues don’t matter
when you can jump them!. In NSDI. 1–14.

[23] Jochen W Guck, Amaury Van Bemten, Martin Reisslein, and Wolfgang Kellerer.
2017. Unicast QoS routing algorithms for SDN: A comprehensive survey and
performance evaluation. IEEE Communications Surveys & Tutorials 20, 1 (2017),
388–415.

[24] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng
Sun, Wenfei Wu, and Yongguang Zhang. 2010. Secondnet: a data center network
virtualization architecture with bandwidth guarantees. In Proceedings of the 6th
International COnference. ACM, 15.

[25] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A software NIC to augment hardware. EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155 (2015).

[26] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication. ACM,
29–42.

[27] Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows quickly with
preemptive scheduling. In Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communication.
ACM, 127–138.

[28] Shuihai Hu, Wei Bai, Kai Chen, Chen Tian, Ying Zhang, and Haitao Wu. 2016.
Providing bandwidth guarantees, work conservation and low latency simultane-
ously in the cloud. In Computer Communications, IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on. IEEE, 1–9.

[29] Takeru Inoue. 2018. Reliability analysis for disjoint paths. IEEE Transactions on
Reliability 68, 3 (2018), 985–998.

[30] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Ry-
balkin, and Chenyu Yan. 2013. Speeding up distributed request-response work-
flows. In ACM SIGCOMM Computer Communication Review, Vol. 43. ACM, 219–
230.

[31] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-
dictable message latency in the cloud. In ACM SIGCOMM Computer Communica-
tion Review, Vol. 45. ACM, 435–448.

[32] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. 2013. EyeQ: Practical network perfor-
mance isolation at the edge. REM 1005, A1 (2013), A2.

[33] Alpar Jüttner, Balazs Szviatovski, Ildikó Mécs, and Zsolt Rajkó. 2001. Lagrange
relaxation based method for the QoS routing problem. In Proc. IEEE INFOCOM,
Vol. 2. 859–868.

[34] Sotirios Katsikeas, Konstantinos Fysarakis, Andreas Miaoudakis, Amaury Van Be-
mten, Ioannis Askoxylakis, Ioannis Papaefstathiou, and Anargyros Plemenos.
2017. Lightweight & secure industrial IoT communications via the MQ telemetry
transport protocol. In 2017 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 1193–1200.

[35] Fernando A. Kuipers. 2012. An overview of algorithms for network survivability.
International Scholarly Research Notices 2012 (2012).

[36] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu,
Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, et al. 2020. Swift: Delay is Simple and Effective for Conges-
tion Control in the Datacenter. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications, technologies,

http://www.virtuwind.eu/
http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
http://www.ieee802.org/1/files/public/docs2018/60802-industrial-use-cases-0918-v13.pdf
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain A. Van Bemten et al.

architectures, and protocols for computer communication. 514–528.
[37] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, Yaogong Wang, Chong-

gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, et al. 2019.
PicNIC: predictable virtualized NIC. In Proceedings of the ACM Special Interest
Group on Data Communication. 351–366.

[38] Maciej Kuźniar, Peter Perešíni, and Dejan Kostić. 2014. What you need to know
about SDN control and data planes. Technical Report.

[39] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George
Varghese. 2012. Netshare and stochastic netshare: predictable bandwidth alloca-
tion for data centers. ACM SIGCOMM Computer Communication Review 42, 3
(2012), 5–11.

[40] Jean-Yves Le Boudec and Patrick Thiran. 2012. Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet. Springer.

[41] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
high precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[42] Endace Technology Limited. 2016. Endace DAG 7.5G4 Datasheet". https://www.
endace.com/dag-7.5g4-datasheet.pdf. (2016). Accessed: 2018-10-26.

[43] Fangming Liu, Jian Guo, Xiaomeng Huang, and John CS Lui. 2016. eBA: Effi-
cient bandwidth guarantee under traffic variability in datacenters. IEEE/ACM
Transactions on Networking 25, 1 (2016), 506–519.

[44] Zhuotao Liu, Kai Chen, Haitao Wu, Shuihai Hu, Yih-Chun Hut, Yi Wang, and
Gong Zhang. 2018. Enabling Work-Conserving Bandwidth Guarantees for Multi-
Tenant Datacenters via Dynamic Tenant-Queue Binding. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 1–9.

[45] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,
and George Porter. 2019. Expanding across time to deliver bandwidth efficiency
and low latency. arXiv preprint arXiv:1903.12307 (2019).

[46] Jeffrey C Mogul and Lucian Popa. 2012. What we talk about when we talk about
cloud network performance. ACM SIGCOMM Computer Communication Review
42, 5 (2012), 44–48.

[47] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A receiver-driven low-latency transport protocol using network priorities.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 221–235.

[48] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized zero-queue datacenter network. In ACM
SIGCOMM Computer Communication Review, Vol. 44. 307–318.

[49] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. 2012. FairCloud: sharing the network in
cloud computing. ACM SIGCOMM Computer Communication Review 42, 4 (2012),
187–198.

[50] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul, Yoshio
Turner, and Jose Renato Santos. 2013. Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. In ACM SIGCOMM Computer Com-
munication Review, Vol. 43. ACM, 351–362.

[51] Diana Andreea Popescu. 2019. Latency-driven performance in data centres. Ph.D.
Dissertation. University of Cambridge.

[52] Neil Robertson and Paul D Seymour. 1995. Graph minors. XIII. The disjoint paths
problem. Journal of combinatorial theory, Series B 63, 1 (1995), 65–110.

[53] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgi-
val O Guedes. 2011. Gatekeeper: Supporting Bandwidth Guarantees for Multi-
tenant Datacenter Networks. WIOV 1, 3 (2011), 784–789.

[54] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Carlo Contavalli, Amin
Vahdat, et al. 2017. Carousel: Scalable traffic shaping at end hosts. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication. ACM,
404–417.

[55] Ermin Sakic and Wolfgang Kellerer. 2018. Impact of adaptive consistency on
distributed sdn applications: An empirical study. IEEE Journal on Selected Areas
in Communications 36, 12 (2018), 2702–2715.

[56] Thilo Sauter. 2010. The three generations of field-level networks - evolution and
compatibility issues. In IEEE Transactions on Industrial Electronics, Vol. 57. IEEE,
3585–3595.

[57] Eike Schweissguth, Peter Danielis, Christoph Niemann, and Dirk Timmermann.
2016. Application-aware industrial ethernet based on an SDN-supported TDMA
approach. In World Conference on Factory Communication Systems (WFCS). IEEE,
1–8.

[58] Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas
Saha. 2011. Sharing the Data Center Network.. In NSDI, Vol. 11. 23–23.

[59] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware
datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication Review 42, 4
(2012), 115–126.

[60] Amaury Van Bemten, Nemanja Ðerić, Amir Varasteh, Andreas Blenk, Stefan
Schmid, and Wolfgang Kellerer. 2019. Empirical predictability study of SDN
switches. In 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 1–13.

[61] Amaury Van Bemten, Jochen W Guck, Carmen Mas Machuca, and Wolfgang
Kellerer. 2018. Routing metrics depending on previous edges: The M𝑛 taxon-
omy and its corresponding solutions. In 2018 IEEE International Conference on
Communications (ICC). IEEE, 1–7.

[62] Amaury Van Bemten and Wolfgang Kellerer. 2016. Network Calculus: A Compre-
hensive Guide. Technical University of Munich, Chair of Communication Networks,
Technical Report No. 201603 (October 2016).

[63] Bhanu Chandra Vattikonda, George Porter, Amin Vahdat, and Alex C Snoeren.
2012. Practical TDMA for datacenter ethernet. In Proceedings of the 7th ACM
european conference on Computer Systems. ACM, 225–238.

[64] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better never than late: Meeting deadlines in datacenter networks. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 50–61.

[65] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. 2019. Measuring
Burstiness in Data Center Applications. (2019).

[66] Di Xie, Ning Ding, Y Charlie Hu, and Ramana Kompella. 2012. The only constant
is change: incorporating time-varying network reservations in data centers. ACM
SIGCOMM Computer Communication Review 42, 4 (2012), 199–210.

[67] Jin Y Yen. 1971. Finding the 𝑘 shortest loopless paths in a network. Management
Science 17, 11 (1971), 712–716.

[68] Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich, Avinoam Kolodny, and Isaac
Keslassy. 2019. Links as a Service (LaaS): Guaranteed tenant isolation in the
shared cloud. IEEE Journal on Selected Areas in Communications 37, 5 (2019),
1072–1084.

[69] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. 2012. DeTail: reducing the flow completion time tail in datacenter networks.
In Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication. ACM, 139–150.

[70] Junxue Zhang, Wei Bai, and Kai Chen. 2019. Enabling ECN for datacenter
networks with RTT variations. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies. 233–245.

https://www.endace.com/dag-7.5g4-datasheet.pdf
https://www.endace.com/dag-7.5g4-datasheet.pdf

Chameleon: Predictable Latency and High Utilization in the Cloud CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Name
Guarantees Constraints

Pkt. lat. BW Burst WC Switches req. OS/App. changes Other
SoA focusing on providing bandwidth (BW) guarantees and/or being work-conserving (WC).

SecondNet [24] ✗ ✓ ✗ ✗ PQ, MPLS - -
Oktopus [8] ✗ ✓ ✗ ✗ PQ - -
Seawall [58] ✗ ✗ ✗ ✓ - - -

Gatekeeper [53] ✗ ✓ ✗ ✓ - - Non-congested core
Proteus [66] ✗ ✓ ✗ - - -

NetShare [39] ✗ ✗ ✗ ✓ WFQ - -
FairCloud PS-L/PS-N [49] ✗ ✗ ✗ ✓ WFQ - -

FairCloud PS-P [49] ✗ ✓ ✗ ✓ WFQ - Tree topology
EyeQ [32] ✗ ✓ ✗ ✓ ECN - Non-congested core

Elasticswitch [50] ✗ ✓ ✗ ✓ - - -
Hadrian [9] ✗ ✓ ✗ ✓ Custom protocol - -
Trinity [28] ✗ ✓ ✗ ✓ PQ, ECN - -
HUG [10] ✗ ✓ ✗ ✓ - - -
eBA [43] ✗ ✓ ✗ ✓ Custom protocol - -

QShare [44] ✗ ✓ ✗ ✓ WFQ - -

SoA optimizing the transport protocol.

DCTCP [4] ✗ ✗ ✗ ✓ ECN OS -
D3 [64] ✗ ✗ ✗ ✓ Custom protocol OS, App. -

PDQ [27] ✗ ✗ ✗ ✓ Custom protocol OS, App. -
D2TCP [59] ✗ ✗ ✗ ✓ ECN OS, App. -
HULL [5] ✗ ✗ ✗ ✓ Custom feature OS -

DeTail [69] ✗ ✗ ✗ ✓ Custom protocol OS, App. -
pFabric [6] ✗ ✗ ✗ ✓ Custom protocol OS, App. -
NDP [26] ✗ ✗ ✗ ✓ Custom protocol OS -

Homa [47] ✗ ✗ ✗ ✓ PQ OS -
HPCC [41] ✗ ✗ ✗ ✓ Custom protocol OS -
Swift [36] ✗ ✗ ✗ ✓ - OS -

SoA providing per-packet latency guarantees.

TDMA Ethernet [63] ✓ ✓ ✓ ✗ - - Millisecond timescale
Fastpass [48] ✓ ✓ ✓ ✗ - OS End-hosts synchronization
QJump [22] ✓ ✓ ✗ ✗ - - -

Silo [31] ✓ ✓ ✓ ✗ - - Multi-rooted tree topology
LaaS [68] ✓ ✓ ✓ ✗ - - Tenants on diff. phys. links

Chameleon (this article) ✓ ✓ ✓ ✗ PQ, VLAN/MPLS or similar - -
Table 5: Overview of the related work. While many approaches focus on providing BW guarantees or optimize the transport protocol to reduce FCT and/or tail
latency, only a few approaches provide strict latency guarantees, the focus of this article. These approaches suffer from limitations such as the need for synchro-
nization or the support of only particular topologies. Our contributions in this article provide strict latency guarantees with precise BW and burst allowance
in any general network without any particular requirements. Furthermore, we show in § 5.1 that Chameleon reaches higher network utilization than existing
approaches.
Note that App. change does not include the usage of another transport library but only the requirement for providing more information to this library (e.g.,
deadline).

	Abstract
	1 Introduction
	2 State-of-the-Art and Motivation
	2.1 The Price of Static Allocation
	2.2 Unexploited Path Diversity

	3 Chameleon System Design
	3.1 Building Block 1: Silo
	3.2 Building Block 2: Priority Queuing
	3.3 Building Block 3: Routing
	3.4 Building Block 4: Reconfigurations
	3.5 Control Plane Architecture

	4 Chameleon Implementation
	4.1 Control Plane
	4.2 Data Plane

	5 Evaluation
	5.1 Network Utilization
	5.2 Scalability
	5.3 Tagger/Shaper Microbenchmark
	5.4 Testbed Measurements

	6 Related Work
	7 Conclusion
	References

