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Abstract—Mobile gait analysis using wearable inertial mea-
surement units (IMUs) provides valuable insights for the as-
sessment of movement impairments in different neurological
and musculoskeletal diseases, for example Parkinson’s disease
(PD). The increase in data volume due to arising long-term
monitoring requires valid, robust and efficient analysis pipelines.
In many studies an upstream detection of gait is therefore
applied. However, current methods do not provide a robust way
to successfully reject non-gait signals. Therefore, we developed a
novel algorithm for the detection of gait from continuous inertial
data of sensors worn at the feet. The algorithm is focused not only
on a high sensitivity but also a high specificity for gait. Sliding
windows of IMU signals recorded from the feet of PD patients
were processed in the frequency domain. Gait was detected if
the frequency spectrum contained specific patterns of harmonic
frequencies. The approach was trained and evaluated on 150
clinical measurements containing standardized gait and cyclic
movement tests. The detection reached a sensitivity of 0.98 and a
specificity of 0.96 for the best sensor configuration (angular rate
around the medio-lateral axis). On an independent validation
data set including 203 unsupervised, semi-standardized gait tests,
the algorithm achieved a sensitivity of 0.97. Our algorithm for
the detection of gait from continuous IMU signals works reliably
and showed promising results for the application in the context
of free-living and non-standardized monitoring scenarios.

Index Terms—Accelerometer, Fourier transform, Gyroscope,
Parkinson’s disease, Walking bouts
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I. INTRODUCTION

MOBILE, sensor-based gait analysis is an applicable and
objective tool for the assessment of motor impairments

and disease progression in several neurological and muscu-
loskeletal diseases, such as Alzheimer’s disease [1], multiple
sclerosis [2], osteoarthritis [3], or Parkinson’s disease (PD) [4].
Specifically in PD, studies with inertial measurement units
(IMUs) have identified a disease related reduction of gait
quality, such as decreased stride length or gait speed [5] and
have helped to identify characteristic motor patterns occurring
prior to freezing of gait [6].

The objective information gained from sensor-based mea-
surements has been shown to enable the prediction of con-
version to PD [7] and can support clinicians in decision
making during assessments in the hospital, for example for
indvidualized drug treatment [8].

In recent years, the development of small and light-weight
IMUs has facilitated long-term studies of gait outside of the
clinical environment. Gait measurements over several days and
weeks have allowed to capture a more representative disease
status of patients that can for example serve the estimation of
their fall risk [9], [10].

The fundamental advantage of free-living gait analysis con-
ditions is the increase of the acquired data volume. Larger
amounts of data provide a more representative impression
of a patient’s gait to base better treatment decisions upon.
Even though long-term analysis allows to asses macro gait
parameters like volume, pattern or variability of walking
bouts [9], discrete spatio-temporal step characteristics, have
shown to be relevant in the home-environment to reliably
predict fall risk [10].

A crucial component for the computation of gait parameters
is the segmentation of single strides. Several methods, like
peak detection, template-matching or hidden Markov models
have been proposed for this purpose [11]. Robust methods
for stride segmentation which reliably reject signals of non-
gait in free-living recordings can have a high computational
complexity [12]. At this point, the previously mentioned ad-
vantage of larger data volume in long-term recordings becomes
a challenge.

As PD patients often spend less than ten percent of a day
walking [13], [14], many gait analysis approaches detect gait
prior to further processing. In their algorithm for continuous
monitoring of turning movements during gait, El-Gohary et
al. measured inertial sensor signals from PD patients and
healthy controls at the lower back over seven days [15]. They
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determined walking periods by comparing the gyroscope sig-
nal norm against a predefined threshold of 15 deg/s. Periods,
where this threshold was exceeded for 10 s or longer, were
determined as walking bouts.

Hickey et al. extracted walking bouts and free-living steps
of healthy subjects [16]. The authors applied a threshold
based approach on accelerometer data measured at the lower
back. Besides the high sensitivity for gait the authors reported
false positives for intense cycling which resulted in similar
acceleration profiles as walking.

Thresholding of the accelerometer amplitude in combination
with a peak detection is the basis of the locomotion detection
and cadence estimation by Paraschiv-Ionescu et al. [17]. Tri-
axial acceleration was measured in children with cerebral palsy
and healthy controls with sensors attached to the chest and the
lower back. The algorithmic pipeline included a peak enhance-
ment, comparison of peaks against a predefined threshold for
step detection, and a locomotion period detection based on
the detected steps. In this approach sensitivity, specificity, and
precision reached values of up to 98% for the lower back
position.

Chigateri et al. recorded older adults performing scripted
and unscripted tasks with a sensor attached to the lower back
[18]. Their algorithm for the detection of gait and non-gait is
not described in the paper. Still, the authors report an accuracy
of 91.4% / 88.7% for the walking time and 97.2% / 92.2%
for the non-walking time on data from scripted and unscripted
activities, respectively.

In a frequency-based approach by Iluz et al., 3-d accelero-
meter signals from the lower back of PD patients were filtered
to the locomotion frequency band of 0.5 - 3.0 Hz [19]. Local
maxima resulting from a convolution with a 2 Hz sinusoidal
template signal were determined as representations of gait
cycles.

Another approach in the frequency domain was presented
by MacDougall et al. [20]. In their study, the preferred
cadence of humans during daily life locomotor activity was
investigated. Analyzing the power spectra of linear accelera-
tion measurements from different body locations revealed a
dominant peak at the stride frequency of 1 Hz. Furthermore,
the authors reported biomechanically induced higher frequency
harmonics, which were most prominent in the signals from the
lower limb sensors.

Harmonic frequency patterns during gait were exploited
in the algorithm for cadence and speed estimation from
wrist-worn inertial sensors by Fasel et al. [21]. The authors
measured walking with healthy active persons on level and
inclined terrain. They investigated the harmonic pattern in the
accelerometer signal frequency domain during walking. The
fundamental frequency corresponded to the stride frequency
and the first harmonic to the step frequency. For the corre-
sponding cadence estimation the approach showed an overall
median relative error of −0.13%.

The literature review shows that several publications on
long-term gait analysis report the usage of a gait detection as
part of the analysis pipeline [15], [16], [19], [22], but only few
report the performance of this specific part (e.g. [17], [18]).

Reliable detection of gait and rejection of non-gait from
continuous inertial sensor measurements is crucial for effi-
cient gait analysis. Therefore, the goal of this work was the
development and evaluation of a novel algorithm for the pre-
segmentation of gait from IMU signals. We aimed to provide
a high sensitivity for gait while reliably rejecting non-gait
signals at the same time. To achieve this goal, we investigated
harmonic frequency patterns that typically occur in gait signals
of IMUs at the feet. The foot position has been shown to
yield more accurate results for the detection of gait events
and the computation of temporal gait parameters compared to
the lower back [23].

Training and testing of the algorithm was performed on
sensor signals measured from PD patients in a clinical setting.
A state-of-the-art reference method by Hickey et al. [16] was
evaluated on the same data set. Additionally, we validated the
proposed algorithm on unsupervised, semi-standardized gait
data from patients’ home environment. A preliminary version
of this work has been reported in [24]. For this paper, we
fundamentally improved the methodology of the algorithm,
performed a cross-validation for parameter optimization and
extended the evaluation data set.

Our study contributes to a more efficient processing of long-
term data sets by considering only relevant signal parts in sub-
sequent complex processing steps, such as stride segmentation
and parameterization.

II. METHODS

A. Data Acquisition

1) Lab data set: Two data sets were used for this study. For
development and evaluation of the gait detection algorithm we
used recordings from the database of the movement disorder
outpatient unit of the University Hospital Erlangen. The data
set contained 150 gait analysis recordings of 121 patients
diagnosed with idiopathic PD (Table I).

All patients gave written informed consent and the study
was approved by the local ethical committee (Re.-No. 4208).
The sessions were recorded during routine patient visits in a
supervised clinical laboratory environment, therefore this data
set is called lab data set. In the lab data set the patients
performed a battery of gait and movement tests.

Gait was recorded during three straight walking tests at a
preferred speed (Fig. 1):

1) 2x10 m walk with a break at the turning point (2x10m)
2) 4x10 m walk without stops at turning points (4x10m)
3) 2-minute walk back and forth along a straight path of

25 m (2min)

TABLE I: Patient characteristics.

Lab data set Validation data set
# Recordings 150 203

# Patients 121 7
Sex (m / f) 75 / 46 6 / 1

Age [years] ± SD 63.8 ± 10.6 62.5 ± 6.8
Mass [kg] ± SD 78.3 ± 17.7 80.7 ± 10.7
UPDRS-III ± SD 18.4 ± 10.0 19.0 ± 9.5

Hoehn & Yahr ± SD 2.1 ± 0.7 2.3 ± 0.8
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Fig. 1: Illustration of the gait and cyclic movement tests.

Fig. 2: Sensor setup for the lab data set (left) and validation
data set (right), the sensors are highlighted with boxes.

Additionally, we considered three other cyclic movement tests
that were performed while sitting over a period of 20 s and
separately for left and right foot (Fig. 1):

1) Tapping on the ground with the heel (heel)
2) Tapping on the ground with heel and toes alternately

(heel-toe)
3) Circular movement of the foot (circling)

Beginning and end of every test were annotated manually dur-
ing the recordings. Within the lab data set, all 150 recordings
contained the tests 2x10m, 4x10m, and heel-toe. A subset of 75
recordings additionally contained the test 2min, the remaining
75 recordings contained the tests heel and circling. The reason
for this diversity lies in changes of the test battery in the
clinical routine. Both subsets are valuable for this study as
the recordings with 2min tests provide a large amount of gait
data, while the other subset contributes cyclic non-gait tests
for the specificity assessment.

Sensor measurements for the lab data set were performed
using two Shimmer2R inertial sensor units [25] that were
attached laterally below the ankle joint using a modified shoe
(Fig. 2). The sensor units are equipped with a 3-d accelero-
meter (range ±6 g) and a 3-d gyroscope (range ±500°/s)
recording at a sampling-rate of 102.4 Hz.

2) Validation data set: We used an additional independent
data set for the validation of the proposed algorithm (valida-
tion data set), which included 203 gait recordings from 7 PD
patients (Table I). All patients gave written informed consent
and the study was approved by the local ethical committee
(Re.-No. 165 18 B). In this data set, unsupervised semi-
standardized gait tests were recorded in the home environment
of the patients over two weeks.

The patients were asked to perform 4x10m gait tests three
times per day (morning, noon, afternoon). They were in-

structed to perform the tests at preferred speed on a straight
path covering a distance as close as possible to 10 m. The ac-
tual location (home, work place, outdoors,...) of the recordings
could vary depending on the current location of the patient at
the time of the tests.

Sensor signals for the validation data set were recorded
with the Mobile GaitLab (Portabiles HealthCare Technologies,
Erlangen, Germany). This system provides two sensors that
were attached to the instep of orthopedic shoes (Fig. 2). Each
sensor contains an inertial sensor unit (MPU-9250, InvenSense
Inc., San Jose, CA, USA) consisting of a 3-d accelerometer
(range ±8 g) and a 3-d gyroscope (range ±1000 °/s). Data
were recorded at a sampling rate of 99.9 Hz and the starting
and stopping of the system for the recordings was performed
by the patients. Each performed gait test resulted in one sensor
recording.

Prior and after the tests, the patients were standing still to
allow the visual identification of the gait tests in the signals and
their differentiation from any other movements that may have
been recorded additionally. The exact timings of the gait tests
were manually labeled by the investigators based on visual
inspection of the raw data.

B. Preprocessing

All parts of the following signal processing procedures were
implemented in Python, version 3.6 [26]. The entire sensor
recording of each measurement session was analyzed. Raw
sensor readings were calibrated to yield physically meaningful
units using the method of Ferraris et al. [27]. Due to the
mirrored sensor mounting on the left and right shoe, the sensor
axes needed to be aligned for further processing.

For the validation data set the gravity direction of the
sensors on the instep clip was computed to compensate for
the tilt angle in the sagittal plane.

C. Gait Detection

Data from the left and right foot were analyzed individually
by the algorithm, as the sensors were not synchronized.
Different sensor channel configurations were considered as
algorithm input:

1) accv : Acceleration along the vertical axis
2) accnorm : Norm of the 3-d acceleration
3) gyrml : Rate of rotation around the medio-lateral axis
4) gyrnorm : Norm of the 3-d rate of rotation

The norm was computed as:

|s3d| =
√
s2x + s2y + s2z, (1)

where s3d stands for 3-d accelerometer or 3-d gyroscope, re-
spectively. The processing of the resulting 1-d time-series was
similar for all sensor configurations, therefore the input signal
to the algorithm is generically called s1d in the following. The
signal s1d was analyzed in moving windows w with a length
of 10 s [28], where consecutive windows overlapped by 50%.
For each window w, the algorithm executed the subsequent
operations (Fig. 3):
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Fig. 3: Algorithm flowchart for the proposed pipeline.

Active signal detection:

1) Subtraction of the signal mean s3dw to remove the offset.
2) Exclusion of windows that contain no activity but rest.

Depending of the sensor channel configuration, resting
windows were determined by comparing the average
norm |s3dw | of the 3-d accelerometer (configurations
accv and accnorm) or the average norm of the 3-d
gyroscope (configurations gyrml and gyrnorm) within
window w against predefined thresholds [29]. For the
accelerometer configurations we set this threshold to
0.2 g, for the gyroscope configurations we set it to
50 °/s. Both thresholds were chosen in a conservative
manner, based on previous experiments. A window was
rejected because of resting, if the respective average
norm value was below the threshold.

Frequency analysis

1) Low-pass filtering using a 4th order butterworth low-
pass filter with the cut-off frequency fc = 6 Hz. Ac-
cording to [20] and [24], harmonic frequencies for gait
mainly appear in the low frequency range below 6 Hz.

2) Determination of the dominant frequency of the signal
using autocorrelation [30].

3) Transformation of the input signal s1dw to frequency
domain using fast Fourier transform (FFT):

S1d
w = FFT

[
s1dw
]

(2)

4) For accv and accnorm configurations only: Multiplica-
tion of the frequency spectrum with factor 100 to work
with numbers in the same order of magnitude as for gy-
roscope signals in subsequent steps. This multiplication
was only performed for convenience reasons and does
not have any functional consequences.

5) Peak detection on the frequency spectrum using the
find_peaks function by SciPy (version 1.1.0) [31].
The minimum peak height was set to the mean value of
the frequency spectrum below 6 Hz, to only detect peaks
above the noise level. The parameter peak prominence
was identified as a critical variable that needed to be
optimized in a cross-validation (Section III-B). The peak
prominence is a measure for the vertical distance be-
tween the peak and its lowest contour line and describes
how much a peak stands out from the surrounding
baseline [31].

6) Determination of the number of harmonic frequency
peaks nh at multiples of the dominant frequency with an
allowed tolerance of ±0.3 Hz. Previous work suggests
the fundamental frequency for gait to be close to 1 Hz
when measured at the lower limbs [5], [20], [21].
Considering the low-pass filtered signal with the 6 Hz
cut-off frequency, peaks at the first four multiples of the
dominant frequency were expected. Some harmonic fre-
quency peaks may fall below the noise level, depending
on the individual execution of gait [21]. Therefore, at
least two out of four harmonic frequencies were required
to exist in the signal in order to assign the window to
be a gait sequence.

Finally, consecutive windows without breaks were concate-
nated to connected gait sequences. As stated in [20], gait
and cyclic non-gait movements were supposed to show a
fundamental frequency of around 1 Hz (Fig. 4 and Fig. 5).
We expected harmonics to appear only for gait, but non-gait
signals to be almost sinusoidal.

III. EVALUATION STUDY

A. Performance Assessment

The algorithm was evaluated regarding its sensitivity for
existing gait and specificity regarding the rejection of non-gait
movements.

1) Sensitivity: The ultimate goal of many gait analysis
systems is the computation of spatio-temporal gait parameters.
Therefore, we evaluated the sensitivity of the algorithm on
the basis of single strides. Specifically we checked if the
strides performed during the annotated gait tests existed in
the detected gait sequences. The following pipeline was used
for this purpose:

Data of the gait sequences were extracted from the contin-
uous signal stream based on 1) the manually annotated labels
and 2) the detection algorithm as described above. Single
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Fig. 4: Example signal window from the 2min gait test for the four different sensor channel configurations. Every pair of
subfigures shows the raw signal s1dw in the upper plot and the respective Fourier spectrum S1d

w in the lower plot. The crosses
indicate harmonics of the fundamental frequency (triangles) which occur during gait but are usually absent in non-gait activities.
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Fig. 5: Example signal window from the heel-toe test for
gyrml. The triangle indicates the fundamental frequency. For
non-gait usually no harmonic frequencies occur.

straight strides were segmented using multi-dimensional, sub-
sequence dynamic time-warping (msDTW) [12]. The mid-
stance (MS) events were detected from the segments and
served as stride labels using the methods by Rampp et al. [32].
Thus, stride lists for the gait tests (= ground truth) and for
the detected gait sequences (= result of the algorithm) were
extracted.

Both stride lists were compared for the computation of the
sensitivity or true positive rate (TPR) by counting the overall
number of mutually available strides (= true positives / TP)
and dividing it by the overall number of ground truth strides
(= positives / P):

sensitivity = TPR =
TP
P

(3)

2) Specificity: In order to evaluate the algorithm’s ability to
reject non-gait movements, we tested it on data from several
cyclic movements described above.

Every detected gait sequence was examined regarding an
overlap with any of the cyclic movement tests. The manual
annotations of the movement tests served as ground truth.
The false positive rate (FPR) was determined by counting the
number of cyclic tests where at least one false gait sequence
detection (= false positives / FP) occurred. This number was
divided by the overall number of cyclic tests in the data set
(= negatives / N). The specificity or true negative rate (TNR)
could then be determined as

specificity = TNR = 1− FPR = 1−
(

FP
N

)
. (4)

Detected gait sequences that did not relate to the considered
tests were ignored for the evaluation in this study.
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B. Algorithm Training and Testing

The algorithm was trained and tested separately for the four
different sensor channel configurations. The optimal value for
the peak prominence parameter in the peak detection algorithm
was determined in a 5-fold cross-validation with grid search.
The intervals for the grid search were determined experimen-
tally. In the cross-validation, the 150 data sets were randomly
split into five subsets, where the optimal peak prominence per
fold was determined on four subsets (120 sensor recordings)
and tested on the remaining subset (30 sensor recordings).
Over the five folds every subset served as the test set once.
With the goal to reach both a high sensitivity and specificity
for the algorithm, the Youden index was chosen as the criterion
for optimal performance [33]:

J = sensitivity + specificity− 1 (5)

C. Validation on Unsupervised Gait Tests

After the cross-validation and finding the optimal value for
the peak prominence in all sensor channel configurations, the
trained algorithm was applied to the independent validation
data set. The determination of the performance followed the
same steps as for the lab data set, however only sensitivity
was computed, as none of the cyclic movement tests were
performed in the validation data set.

D. Reference Algorithm

For the purpose of a comparison with a state-of-the art
method for gait detection from continuous inertial sensor
data, the walking bout detection algorithm by Hickey et
al. [16] was considered. The original implementation of the
algorithm was made available to the authors. The algorithm
was implemented in MATLAB and executed in MATLAB
version 2017b (The Mathworks, Inc., Natick, Massachusetts).
The method compares the combined standard deviation of the
3-d accelerometer and the corresponding mean of the vertical
acceleration against two predefined thresholds (th-upright and
th-still) using windows of 0.1 s.

Areas of upright posture are detected using th-upright and
then further characterized as dynamic and static periods using
th-still. The predefined thresholds of the original publication
were applied in this study. Additionally, th-still (original value:
0.05 g) was optimized for the sensor data collected from the
foot as the dynamic range of the signal at this position is
higher as for the lower back in the original publication. The
tuning of the value was performed in the same grid search and
cross-validation setup as described in Section III-B.

The value of th-upright was not adapted as the heuristic
for the upright posture of the lower back can be transferred
to the foot [34]. The algorithm was tested with the original
and adapted threshold using the same performance criteria
mentioned before.

IV. RESULTS

After passing through the proposed algorithm, the gait
sequences for the left and the right foot were available for each
recording session (Fig. 6). In total, the lab data set contained

Fig. 6: Measurement session (right foot) from the lab data set
with the manually annotated test labels (upper figure) and the
result of the gait detection (lower figure). For this study only
gait sequences corresponding to the tests described in Fig. 1
were considered. Potentially detected gait sequences that did
not relate to the considered gait and cyclic non-gait tests (like
sequences 3-5 in this figure) were ignored for the evaluation
in this study.

TABLE II: Performance measures for the 5-fold cross-
validation on the lab data set as mean (SD) for all sensor
channel configurations (upper part) and sensitivity for the
independent validation data set (lower part).

accv accnorm gyrml gyrnorm

Lab Data Set
Sensitivity 0.97 (0.03) 0.94 (0.04) 0.98 (0.01) 0.89 (0.04)
Specificity 0.95 (0.02) 0.96 (0.01) 0.96 (0.02) 0.81 (0.04)
Youden index 0.92 (0.02) 0.90 (0.04) 0.94 (0.01) 0.70 (0.06)
Opt. Peak Prom. 8 13 17 11

Val. Data Set
Sensitivity 0.50 0.70 0.97 0.89

24218 strides in the three gait tests and 600 cyclic non-gait
tests over all patients.

The optimal peak prominence value for each sensor channel
configuration was determined based on the mean performance
of the algorithm on the training data in the cross-validation
(Fig. 7). The best sensor channel configuration determined in
the 5-fold cross-validation was gyrml (Table II). Here, the
proposed gait detection reached an average sensitivity of 0.98
with a specificity of 0.96 over all folds. The best performance
for gyrml with respect to the Youden index was obtained for
a peak prominence value of 17.

In the 203 unsupervised gait tests of the validation data
set, 9898 strides were performed in total. For the application
of the proposed algorithm on the validation data set using
the optimal values for the peak prominence, the configuration
gyrml showed the best performance with a sensitivity of 0.97
(Table II). As the validation data set did not contain any cyclic
movement tests, only the sensitivity is reported.
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Fig. 7: Algorithm performance during training for different sensor channel configurations. In a 5-fold cross-validation the
optimal value for peak prominence was determined in every fold’s training split and then applied to the respective test split.
Mean values for sensitivity (circles), specificity (crosses) and the Youden index (triangles) are shown.

Fig. 8: Performance of the reference algorithm during training.
In a 5-fold cross-validation the optimal value for th-still was
determined in every fold’s training split and then applied to
the respective test split. Mean values for sensitivity (circles),
specificity (crosses) and the Youden index (triangles) are
shown.

The reference algorithm of Hickey et al. [16] achieved a
sensitivity of 0.97 and a specificity of 0.002 on the lab data set
in the original form. During the tuning for foot sensor position
the optimal th-still value was determined based on the mean
performance of the algorithm in the cross-validation (Fig. 8).
For the optimal value of 1.7, the reference algorithm reached
an average sensitivity of 0.79 (SD 0.05) with a specificity
of 0.76 (SD 0.04) over all folds, resulting in an average
Youden index of 0.54 (SD 0.07). On the validation data set
the algorithm achieved a sensitivity of 0.99 with the original
threshold and 0.55 with the adapted threshold.

V. DISCUSSION

In this study, we propose an algorithm for the detection
of gait from continuous inertial sensor recordings and the
rejection of non-gait activities. The algorithm exploits the fact
that inertial sensor signals recorded during walking result in
a specific pattern of harmonic frequency peaks as previously
described in the literature [20], [21].

A. Proposed Algorithm

The example plots in Fig. 4 and Fig. 5 demonstrate the
discriminative power of the harmonic frequencies. A gait
detection purely based on a threshold comparison of the signal
or on the fundamental frequency would be prone to produce
false positives. In the example signal, heel-toe tapping with its
sinusoidal signal shape would be confounded with gait with
respect to its fundamental frequency.

The cyclic movement tests available in this study are artifi-
cial tasks performed in a clinical gait assessment. Nevertheless,
many activities of daily living (e.g. riding a bike) are cyclic and
highly correlated with the locomotion band of 0.5 - 3 Hz [20].
The analysis of harmonics allows a reliable differentiation of
gait from other non-cyclic and cyclic movements. The latter do
not result in distinct frequency peaks or only one fundamental
frequency peak, respectively. This needs to be verified by
including more non-gait activities in future investigations.

B. Performance

One important goal of gait analysis is the estimation of
spatio-temporal gait characteristics from single strides. It is
therefore necessary that an automatic detection of gait pre-
selects the data from all strides for further analysis steps (high
sensitivity).

An important additional goal of the presented approach
was the rejection of signals from non-gait (high specificity).
The peak prominence is a critical variable that directly tunes
the algorithm’s performance towards a higher sensitivity or
specificity (Fig. 7). In all sensor channel configurations a
sensitivity value of close to 1 could be reached for low peak
prominence values. Analogously, high specificity values were
achieved for higher peak prominence values. As a consequence
of this behavior, the proposed algorithm can be seen as a
threshold classifier, with the peak prominence as its threshold
which needed to be optimized for the best performance.

In the presented evaluation study, the Youden index was
utilized as a performance measure to find the optimal value
for the peak prominence. With the Youden index we chose a
performance measure that weighs the two aspects sensitivity
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and specificity equally and returns the optimal cutoff point
with respect to both measures [33].

The best performance in the cross-validation was achieved
for the gyrml configuration, followed by accv . Both of these
input signals require an alignment of the sensor coordinate
system with the shoe coordinate system. Contrary, the two
configurations accnorm and gyrnorm do not rely on such an
alignment as the 3-d signal magnitude is independent of the
sensor orientation. In applications where the alignment be-
tween the coordinate systems cannot be provided the algorithm
still offers a sensitivity over 0.95 for low thresholds and for
the accnorm configuration also a Youden index of 0.90 at the
cutoff value.

Especially the use of the accelerometer only could be of
further interest, as accelerometers are less power-consuming
than gyroscopes. On the one hand this could lead to an
avoidance of the gyroscope for long-term studies. On the other
hand it could be an option to turn on the gyroscope only,
if an embedded version of the proposed algorithm based on
accelerometer data detects gait in real-time.

The performance of the gyrnorm signal is lower than for
the other three configurations. The respective signal shows
a clear dominant frequency peak, but apart from that rather
low harmonic peaks (Fig. 4). During the stance phase of
each gait cycle the foot passes sequentially through different
rotations in the single corresponding anatomical planes and
the related joints [35], [36]. This sequence of rotations results
in a temporal shift between characteristic signal peaks in the
single 3-d gyroscope axes. Due to this shift, the signal norm
becomes noisy and harmonic frequencies are attenuated.

C. Comparison to Existing Approaches

The reference algorithm by Hickey et al. [16] was tested on
the lab data set and the validation data set. In our experiments
the algorithm reached high sensitivities of 0.97 and 0.99 for the
respective data sets with the original threshold. The results are
comparable with our algorithm with the additional advantage
of the high time resolution due to the small window size of
0.1 s compared to our algorithm.

The high sensitivity is, however, accompanied with a speci-
ficity of almost 0 in the lab data set experiments when using
the original threshold. The low specificity of the reference
algorithm is related to the fact that it was originally developed
to work on data collected from a sensor attached to the lower
back which does not measure cyclic movements of the feet.

In our experiments the general performance with respect
to the Youden index could be improved by tuning the th-still
parameter to the data from the foot-worn sensor. This reduced
the sensitivity to 0.79, but increased the specificity to 0.76 for
the lab data set. In comparison to our method, the reference
algorithm still results in lower performance values even after
tuning the parameter.

The approach of the method by Hickey et al. is based
on comparing the mean of the vertical acceleration and
the summed tri-axial standard deviation against predefined
thresholds. Therefore, any movement of the sensor in upright
position where the summed tri-axial standard deviation of the

acceleration exceeds the th-still value will be detected by the
algorithm and treated as gait, without further differentiation of
movement patterns. For low th-still thresholds this results in
an excellent sensitivity but very low specificity.

The locomotion detection by Paraschiv-Ionescu et al. [17]
for children with cerebral palsy yielded results that are in
a comparable range to our proposed method. However, it
follows a different paradigm, where locomotion periods are
identified after the detection of steps. That is in contrast to
this approach, where walking should be detected as a pre-
segmentation step in the analysis pipeline. The authors of
[17] describe a sophisticated step detection algorithm, where
a highly accurate locomotion detection based on the derived
steps is a logical consequence.

Chigateri et al. applied a classification for walking and non-
walking in their validation study on frail older people, that
is not described in detail [18]. Compared to their results for
the classification of walking and non-walking, our algorithm
achieved a slightly higher sensitivity and comparable speci-
ficity.

D. Validation on Unsupervised Gait Tests

In order to test the transferability of our algorithm with
optimized threshold values to unseen data, we performed a
validation test with data from unsupervised, semi-standardized
gait tests, recorded in the home environment of PD patients.
The rationale of the validation test was to investigate the
algorithm’s performance on data from a different sensor and
recording setup.

The semi-standardized gait tests were performed by the
patients without any supervision. Hence, the experiments were
a first step towards a validation of the algorithm on unsuper-
vised gait. The results indicate that a transfer of the proposed
algorithm to unseen data is generally possible. Especially the
gyroscope configurations provided similar sensitivity values as
for the lab data set.

The performance of the accelerometer configurations, how-
ever, dropped for the validation data set. Reasons for this re-
sult can be found in the different sensor positions (Fig. 2). Vi-
sual inspection of the raw signals from the two setups revealed
strong differences, especially in the accv signal. Different
signal characteristics depending on the sensor location on the
foot have previously been reported by Anwary et al. [37]. They
noted that different sensor positions and orientations have a
significant impact for the data collected during walking. This
is also underlined by the drop of sensitivity for the reference
algorithm by Hickey et al. where the adaptation of the th-
still value obviously could not be directly transferred to the
validation data set.

In case of our algorithm, a reliable gait detection for the
sensor setup in the validation data set is possible using the
gyroscope. Using the accelerometer only would, however,
require a re-calibration of the peak prominence.

E. Limitations

Although we analyzed 150 clinical gait analysis sessions
and 203 unsupervised and semi-standardized recordings, it
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cannot finally be concluded whether the results can be gen-
eralized to free-living gait. The recordings of the lab data
set only consisted of short and standardized measurements,
without influences of unpredictable activities of the daily life.
The non-gait samples in the lab data set were limited to
artificial foot movements that still provide challenging data
for the algorithm, given their cyclic characteristics.

The tests on unsupervised recordings in the validation data
set were a first step towards a validation on free-living gait,
however, only with regard to the sensitivity. A proper valida-
tion would require ground truth data of whole-day recordings
to assess the algorithm performance. This would also allow
to get better insights into the rejection of real-world non-gait,
like cycling or stair climbing.

In this study the algorithm was evaluated separately for data
from the left and the right foot, resulting in individual gait
sequences of the two feet. The results for both feet cannot be
related as the sensors were not synchronized. Synchronization
of sensors could, however, allow a more robust gait detection
as the information of both sensors could be fused.

Finally, the algorithm has so far only been evaluated with
data from PD patients and its applicability for other medical
indications is yet to be proven. However, as long as the basic
cyclic characteristics of gait are present in the signals, we
expect our algorithm to work on other cohorts, too.

VI. CONCLUSION AND OUTLOOK

In this study, we propose a new algorithm for the detection
of gait within continuous inertial sensor measurements. Our
experiments have shown a reliable detection of gait and differ-
entiation from other cyclic activities using harmonic frequen-
cies. The algorithm reached high sensitivity and specificity
values on different sensor channel configurations. Also the
use of the orientation-independent sensor norm yielded high
accuracy.

In future investigations, the algorithm should be validated on
free-living long-term data with ground truth information about
gait sequences and non-gait. For the sake of generalizability,
its applicability on other clinical populations, as well as on
other sensor positions and the potential gains of combining
individual signal streams should be evaluated. Many previous
studies used a single sensor attached to the lower back. A fair
comparison with state-of-the-art algorithms for the lower back
position would be desirable. This could be achieved with a data
set including recordings from foot-worn and from sensors at
the lower back.

The proposed algorithm is a feasible approach for the accu-
rate detection of gait, allowing an efficient subsequent analysis
of single stride gait parameters and facilitating the clinical
application of mobile gait analysis in free-living conditions.
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