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Abstract 7 

Livestock production to provide food for a growing world population, with increasing demand 8 

for meat and milk products, has led to a rapid growth in the scale of cattle and pig enterprises 9 

globally. However, consumers and the wider society are also increasingly concerned about the 10 

welfare, health and living conditions of farm animals. Awareness of animal needs underpins 11 

new production standards for animal health and welfare. Pig and cattle behaviour can provide 12 

information about their barn environmental situation, food and water adequacy, health, welfare 13 

and production efficiency. Real-time scoring of cattle and pig behaviours is challenging, but 14 

the increasing availability and sophistication of technology makes automated monitoring of 15 

animal behaviour practicable. Machine vision techniques, as novel technologies, can provide 16 

an automated, non-contact, non-stress and cost-effective way to achieve animal behaviour 17 

monitoring requirements. This review describes the state of the art in 3D imaging systems (i.e. 18 

depth sensor and time of flight cameras) along with 2D cameras for effectively identifying 19 

livestock behaviours, and presents automated approaches for monitoring and investigation of 20 

cattle and pig feeding, drinking, lying, locomotion, aggressive and reproductive behaviours. 21 

The performance of developed systems is reviewed in terms of sensitivity, specificity, 22 
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accuracy, error rate and precision. These technologies can support the farmer by monitoring 23 

normal behaviours and early detection of abnormal behaviours in large scale enterprises.   24 

Keywords: Behaviour, cattle, machine vision, pig, precision livestock farming 25 

 26 

1. Introduction 27 

Livestock production is the largest user of land in the world for grazing and production of feed 28 

grains. The global demand for livestock products is expected to further increase due to 29 

population growth, rising incomes and urbanisation (Bruinsma, 2003). Increase in market 30 

demand for meat and milk products, to provide food for a growing population, has led to a 31 

rapid growth in the scale of cattle and pig enterprises globally. As the scale of animal husbandry 32 

around the world increases, addressing the issue of animal welfare becomes more essential. 33 

The relationship that people have with animals, and the duty they have to ensure that the 34 

animals under their care are treated correctly, is fundamental to animal welfare. Due to the 35 

current scale of production, there is increasing awareness that the monitoring of animals can 36 

no longer be done by farmers in the traditional way and requires the adoption of new digital 37 

technologies.  38 

Livestock welfare can be defined using such parameters as their behaviour, physiology, clinical 39 

state and performance (Averós et al., 2010; Costa et al., 2014; Nasirahmadi et al., 2015).  There 40 

are many links between animal behaviour, health, emotions and good welfare which have been 41 

widely reviewed (e.g. Broom, 2006; Bracke and Spoolder, 2011; Murphy et al., 2014), and 42 

identification of normal and abnormal behaviours helps to deliver better health, welfare and 43 

production efficiency (Nasirahmadi et al., 2017). Early and real-time detection of normal 44 

behaviours (e.g. lying, feeding and drinking) and abnormal behaviours (e.g. aggression and 45 

lameness) of animals reduces the cost of animal production, limiting losses from diseases and 46 



mortality, and improves the job satisfaction of stockpeople. The advancement of knowledge 47 

and technology in the current century, along with human expectations for a sufficiency of high-48 

quality livestock products, has increased demand for improved production monitoring. With 49 

the development of new technologies, the application and integration of new sensors and 50 

interpretation of data from multiple systems with reducing processing times means that 51 

information supply for farmers and researchers has become easier (Barkema et al., 2015).  52 

There are many studies in the literature that demonstrate how such technologies can help in 53 

observation of both normal and abnormal behaviours of animals. Examples include using radio 54 

frequency systems for locating animals, which utilize sensors and radio signals from a 55 

transmitter to triangulate a location, and the use of these location data to provide information 56 

on feeding and drinking behaviours of cattle (Sowell et al., 1998; Quimby et al., 2001; 57 

Wolfger et al., 2015; Shane et al., 2016) and pigs (Reiners et al., 2009; Brown-Brandl et al., 58 

2013; Andersen et al., 2014; Maselyne et al., 2014; Gertheiss et al., 2015). Further examples 59 

of the application of new technology are activity and lying behaviour monitoring in cattle and 60 

pigs using accelerometers attached to the animals (Robert et al., 2009; Trénel et al., 2009; 61 

Ringgenberg et al., 2010; Jónsson et al., 2011). This technique has been widely applied for 62 

locomotion and lameness assessment (e.g. Nielsen et al., 2010; Grégoire et al., 2013; Conte et 63 

al., 2014), as has the use of other sensors which have been reviewed by (Rutten et al., 2013; 64 

Schlageter-Tello et al., 2014; Van Nuffel et al., 2015) for cows and (Nalon et al., 2013) for 65 

pigs. However, attachment of sensors to monitor animal behaviours may cause stress and, in 66 

some cases, is impractical to use for scoring group behaviours due to their cost and 67 

vulnerability. An alternative technology which has been widely considered in many 68 

agricultural and industrial processes is machine vision (Shao and Xin, 2008; Costa et al., 2014; 69 

Nasirahmadi et al., 2016b; Oczak et al., 2016). Automatic computer imaging systems could 70 

help both farmers and researchers to address the problems of monitoring animals, e.g. for visual 71 



scoring, animal weighing and other routine tasks which are both time-consuming and costly, 72 

and could result in more objective measurements by means of image processing techniques. A 73 

machine vision approach is a cheap, easy, non-stressful and non-invasive method which can be 74 

adapted to different animals, in both indoor and outdoor situations, using the animals’ natural 75 

features (e.g. shape, colour, movement) for monitoring their behaviours.  76 

This review summarises machine vision and image processing techniques to automatically 77 

measure cattle and pig characteristics and behaviours. The article is structured in nine sections. 78 

Section 2 covers different types of camera and imaging systems used in this field. Section 3 79 

and its subsections illustrate the use of image processing for individual physical 80 

characterization of cattle and pigs. Section 4 addresses feeding and drinking behaviours, 81 

section 5 discusses lying behaviours and section 6 covers how image processing is used for 82 

detection of lameness and normal locomotion. Section 7 illustrates automatic monitoring of 83 

aggressive behaviours of animals, while section 8 shows how mounting behaviours of cattle 84 

and pigs can be captured by image processing. Challenges and future research needs for animal 85 

monitoring are discussed in section 9. Finally, conclusions are presented in section 10. 86 

 87 

2. Imaging systems for livestock monitoring 88 

Image acquisition, which is the first step of any machine vision system, is defined as the transfer 89 

of signals from a sensing device (i.e. camera) into a numeric form.  Cameras are a crucial 90 

element in machine vision applications, however, each type of camera offers different 91 

information on parameters of the image. For the purposes of this literature review, the cameras 92 

applied in cattle and pig behaviour detection can be divided into Charge Coupled Device 93 

(CCD), infrared and depth sensor cameras. The CCD cameras create images in two dimensions 94 

and are sensitive to visible wavelength bands reflected from objects (Mendoza et al., 2006). 95 



These types of camera need an additional source of light to make the image visible and the 96 

machine vision system consists of single or multiple cameras, e.g. video surveillance cameras, 97 

capturing objects which are visible to a human. Examples of using this type of camera in 98 

livestock behaviour detection are numerous (Shao et al., 1998; Hu and Xin, 2000; Porto et al., 99 

2015; Nasirahmadi et al., 2016b). The captured images are potentially suitable for image 100 

processing algorithms to extract image features based on colour, shape and textural properties. 101 

CCD cameras have the ability to provide pixels of objects in red, green and blue (RGB) bands. 102 

Nowadays, different image processing algorithms help to convert these bands to information 103 

on grey, hue, saturation, intensity and other parameters.  104 

Infrared or thermal cameras work similarly to optical or common CCD cameras, in that a lens 105 

focuses energy onto an array of receptors to produce an image. By receiving and measuring 106 

infrared radiation from the surface of an object, the camera captures information on the heat 107 

that the object is emitting and then converts this to a radiant temperature reading (James et al., 108 

2014; Matzner et al., 2015). Thus, while CCD cameras measure the radiation of visible bands, 109 

thermal cameras detect the characteristic near-infrared radiation (typically wavelengths of 8–110 

12 μm) of objects (McCafferty et al., 2011). Thermal imaging was developed for industrial, 111 

medical and military applications, but it has also been applied in many livestock production 112 

studies, as reviewed by (Eddy et al., 2001; Gauthreaux and Livingston, 2006; McCafferty, 113 

2007; McCafferty et al., 2011). All live animals emit infrared radiation, and the higher the 114 

temperature of an object, the greater the intensity of emitted radiation and thus the brighter the 115 

resulting image (Kastberger and Stachl 2003; Hristov et al., 2008).  116 

In the last decade, the number of applications related to 3D imaging systems in machine vision 117 

has been growing rapidly, thanks to improved technology and reducing cost. The use of this 118 

type of imaging system in agricultural products has been recently described by (Vázquez-119 

Arellano et al., 2016).  Depth imaging is a core component of many machine vision systems 120 



and, within this technology, time of flight (TOF) and Kinect cameras have been used widely in 121 

livestock applications. TOF cameras sense depth by emitting a pulse and then measuring the 122 

time differential for that emitted light to travel to an object and back to a detector. They can 123 

provide a 3D image using an infrared light source and CCD detector (Kolb et al., 2010; Pycinski 124 

et al., 2016) and the camera lens gathers the reflected light and images it onto the sensor or 125 

focal plane (Fig.1). The 3D depth sensing makes it possible to overcome common issues 126 

causing problems with 2D imaging systems, such as background removal, segmentation, 127 

feature extraction and sensitivity to lighting variance. TOF systems are limited by the number 128 

of data points that they capture at a given time and their relatively limited field of view, and 129 

the depth systems can lead to accuracy errors (Shelley, 2013). Although it is much easier and 130 

cheaper to use the 3D camera approach in farm environments rather than stereo vision, Laser 131 

or 2D triangulation, which are common alternatives for 3D reconstruction, the depth images 132 

still require some processing work to remove unwanted objects (e.g. noise, background) and in 133 

some cases calibration to deliver better results is needed. The Kinect depth sensor, based on 134 

the TOF principle, made it possible for software developers to acquire a skeletal model of the 135 

user in real-time (Han et al., 2013). The Kinect sensor lets the machine sense the third 136 

dimension (depth) of the object and the environment by employing data from a RGB camera, 137 

and infrared projector (Han et al., 2013; Nathan et al., 2015; Westlund et al., 2015; Marinello 138 

et al., 2015).  The depth information can be useful to extract height measurements, or to 139 

calculate the real world coordinates in a much easier way as compared to 2D imaging systems. 140 

Furthermore, depth information can also help in extracting key features of the region of interest 141 

from the animals. For instance, Abdul Jabbar et al. (2017) utilized depth information to extract 142 

a curvedness feature to track the spine and hook bones in dairy cattle with a high detection rate 143 

(100%).  144 



 Once the basic images have been captured from these different camera systems, image analysis 145 

techniques are carried out to interpret the information coming from the image.  146 

 147 

 3. Image processing techniques used for characterizing individual livestock 148 

Although livestock usually live in groups, monitoring of individual animals is one of the main 149 

goals in many tasks. Most individual studies on cattle and pigs have been concerned with 150 

monitoring of their weight and body condition as well detection of health problems, such as 151 

mastitis in cows, through associated physical or physiological changes in the animal. Examples 152 

of such characteristics will be addressed in the following paragraphs along with the image 153 

analysis strategies applied.  154 

 155 

3.1. Live weight  156 

Knowledge of the live weight of pigs plays an important role in the control of performance- 157 

related parameters which affect the output of the herd, i.e. animal growth, uniformity, feed 158 

conversion efficiency, space allowance, health and readiness for market (Schofield, 1990; 159 

Brandl and Jorgensen, 1996; Wang et al., 2008; Kongsro, 2014). An individual pig’s live 160 

weight is usually obtained using manual or automatic weighing scales, to which pigs are driven 161 

in a way which is laborious and stressful to both the animal and the workers (Wang et al., 2008; 162 

Kongsro, 2014); furthermore, automatic scales are usually costly devices (Kongsro, 2014). 163 

Information extracted from the literature shows a range of different image processing methods 164 

for monitoring pigs’ live weight. Based on length and width dimensions of pigs (i.e. length 165 

from scapula to snout, length from tail to scapula, shoulder width, breadth at middle and 166 

breadth at back) and boundary area, some researchers (Schofield, 1990; Brandl and Jorgensen, 167 



1996; White et al., 1999; Doeschl-Wilson et al., 2004) have used top-down view CCD cameras 168 

to obtain estimates of individual pig live weight. Live weight has also been estimated from a 169 

top view image using extracted features including area, convex area, perimeter, eccentricity, 170 

major and minor axis length and boundary detection, along with artificial neural network 171 

(ANN) methods, by Wang et al. (2008) and Wongsriworaphon et al. (2015). Recently a fully 172 

automated weight estimation technique has been introduced to estimate a marked pig’s weight 173 

individually (Kashiha et al., 2014b; Shi et al., 2016). Furthermore, approaches for pig live 174 

weight estimation by means of a Kinect camera have utilized infrared depth map images 175 

(Kongsro, 2014; Zhu et al., 2015).  176 

Similarly, image processing has been used to measure cattle live weight due to the importance 177 

of live weight monitoring for milk and meat production, along with the difficulty of manually 178 

determining live weight on farm due to stress for the animals and their potential to cause 179 

damage to themselves, humans and weighing equipment. (Tasdemir et al., 2011a; 2011b; 180 

Ozkaya, 2013) utilized top and side view cameras for cow live weight detection, using features 181 

like hip height, body length, hip width and chest depth extracted from images, along with multi 182 

linear regression and fuzzy rule models. Previously, a thermography and image analysis based 183 

method was developed by Stajnko et al. (2008) for measurement of live weight of individual 184 

bulls. The thermal camera was able to separate the bull from the surroundings accurately and 185 

the measurements were based on the tail root and front hoof templates on each image. 186 

Moreover, a TOF camera method has recently been applied for body weight detection of cows 187 

based on 3D body and contour features (Anglart, 2016).  188 

3.2. Body shape and condition 189 

Body shape and condition of a live pig/cow is an important indicator of its health, reproductive 190 

potential and value, whether for breeding or for carcass quality (Wu et al., 2004; Bercovich et 191 

al., 2013; Fischer, Luginbühl et al., 2015). Assessment of live animal body condition by eye or 192 



hand is time and labour intensive and highly dependent on the subjective opinion of the 193 

stockman. However, imaging methods have become more affordable, precise and fast 194 

alternatives for on-farm application. Examples of using image processing for pig body 195 

condition have used 3D cameras for shape detection (Wu et al., 2004) and thermal cameras for 196 

shape and body contour detection (Liu and Zhu, 2013). Image processing has been widely 197 

utilized for assessment of cow body condition, based on anatomical points (points around hook 198 

and tail) detected with top view CCD cameras (Bewley et al., 2008; Azzaro et al., 2011), and 199 

thermal camera measurement has been used to assess the thickness of fat and muscle layers 200 

and provide a body condition score (BCS) (Halachmi et al., 2008; Halachmi et al., 2013). In 201 

other research, the angles and distances between 5 anatomical points of the cow’s back and the 202 

Euclidean distances (Ed) from each point in the normalized tail-head contour to the shape 203 

centre were used for body shape scoring (Bercovich et al., 2013). Side view images have also 204 

been used for body shape capture of cows, based on RGB images and body features (González-205 

Velasco et al., 2011; Hertem et al., 2013). In order to determine the 3D shape of a cow’s body, 206 

TOF and Kinect cameras have more recently been utilized, based on extracting body features 207 

and/or back postures in 3D images (e.g. Weber et al., 2014; Salau et al., 2014; Fischer et al., 208 

2015; Kuzuhara et al., 2015; Spoliansky et al., 2016). 209 

3.3. Health and disease  210 

Early detection of symptoms of illness or abnormal behaviour is essential to effectively deal 211 

with animal welfare and disease challenges in both cattle and pigs, and can help minimise lost 212 

production and even death of livestock. By a combination of wireless technology and image 213 

processing, a method to detect the probability of a pig being ill was tested by Zhu et al. (2009). 214 

Monitoring of a pig’s daily movement, eating and drinking behaviours was considered as a tool 215 

for alarming suspected cases. The measurement of body temperature is a common method to 216 

monitor the health of an animal (Hoffmann et al., 2013). As a result, most of the research on 217 



health detection is based on surface temperature measurement by using thermal cameras (e.g. 218 

Schaefer et al., 2004; Montanholi et al., 2008; Rainwater-Lovett et al., 2009; Wirthgen et al., 219 

2011; Gloster et al., 2011; Hoffmann et al., 2013). Mastitis, which is one of the most common 220 

diseases in dairy cows and causes major economic loss to dairy farmers, has been detected 221 

based on udder surface temperatures (Hovinen et al., 2008; Colak et al., 2008). Recently, a 222 

thermography method was also developed for automatic ectoparasite counting on cattle bodies 223 

to improve their health and welfare. The difference in temperatures between ectoparasites, such 224 

as ticks and horn flies, and the cow’s body temperature made it possible to detect these parasites 225 

in images (Cortivo et al., 2016). However, many external parameters (e.g. high or low 226 

temperatures, soiled surfaces and variable distance from object to lens), together with 227 

difficulties in interpretation of animal surface temperature, make the real-time monitoring of 228 

health and disease using thermography more challenging. As a result, in most of the studies 229 

other methods (e.g., clinical symptoms) have been investigated for their reliability in health 230 

problem detection.  231 

3.4. Tracking of movement 232 

In order to automate monitoring of animals’ health and welfare, tracking methods have been 233 

developed which differ according to animal species and husbandry situation. Livestock 234 

tracking tools based on animal-mounted identification devices can be listed as Bluetooth, WiFi 235 

networks, radio frequency methods and GPS (Huhtala, 2007). However the mentioned tools 236 

are more applicable to cattle rather than pigs. Pigs normally have more physical contact in pens 237 

and cannot easily carry measurement devices without risk of damage (Ahrendt et al., 2011). 238 

Furthermore, for large numbers of pigs many devices are needed which is not economically 239 

feasible. As a result, tracking animals by machine vision has many possible advantages in 240 

livestock monitoring. McFarlane and Schofield (1995) applied a top-down view camera for 241 

tracking piglets, based on blob edge and an ellipse fitting technique, whereas Tillett et al. (1997) 242 



tracked individual pigs by using x and y coordinates of shape data of individual pigs over time 243 

sequences.  Furthermore, movement of pigs in a feeding stall was investigated by Frost et al. 244 

(2000) using a CCD camera. Image processing approaches have been used for tracking the 245 

location of pigs in pens by (Guo et al., 2015; Nilsson et al., 2015). In another study, different 246 

piglets were painted with different colours on their back for tracking and the automatic 247 

algorithm was based on RGB value detection (Jover et al., 2009). Similarly, (Kashiha et al., 248 

2013b) employed a specific pattern stamped on the back of each pig and ellipse fitting 249 

algorithms to localise pigs in top view CCD images. Individual pigs were identified by their 250 

respective paint pattern using pattern recognition techniques. Recently, a real-time machine 251 

vision system for tracking of pigs was developed by Ahrendt et al. (2011), based on building 252 

up support maps and a Gaussian model of position and shape of individual pigs.  253 

In general, to improve animal health, welfare and production efficiency, monitoring of 254 

individual animals plays an essential role in farm management. Measuring the individual 255 

weight, milk yield and lameness of dairy cows in robotic milking and using radio frequency 256 

methods to assess animal movement for health detection are some examples of technology 257 

application. Image processing techniques for individual livestock monitoring seem promising 258 

due to the drawbacks of alternative methods (e.g. price, stress of application and need for 259 

contact with the animal). The combination of imaging and sensor approaches could be more 260 

sensible in some cases. For instance the individual animal could be identified by using a sensor 261 

(i.e. radio frequency identification) while health parameters could be monitored by using image 262 

features. However, monitoring of some individual features (e.g. tracking) is still challenging, 263 

especially for animals in a herd, and the image processing methods need further development 264 

to address issues in commercial applications.  265 

Information from the literature indicates various uses of image analysis methods in cattle and 266 

pig husbandry. Other than behaviour detection, which will be addressed later in this article, 267 



examples include teat position detection for dairy cows, based on colour and morphology 268 

features, in robotic milking (Bull et al., 1996; Zwertvaegher et al., 2011) and milk yield 269 

estimation based on rear view depth, width and area of udder (Ozkaya, 2015). Furthermore, 270 

heat tolerance in pigs, based on surface temperature of group housed pigs, was monitored by 271 

(Brown-Brandl et al., 2013; Cook et al., 2015).   272 

In the current section, the individual characterisation of cattle and pigs by image processing 273 

techniques has been reviewed. The detection of behaviours which may occur within the group 274 

will be addressed in the following sections. The validation scales used for evaluating a machine 275 

vision detection technique and the performance of a behaviour detection system can be 276 

described as sensitivity, specificity, error rate, precision and accuracy (table 1). All accuracy 277 

results reported here are based on correlation to ground truth. Ground truth is used in machine 278 

vision to refer to data provided by direct observation (manual scoring) in comparison to the 279 

information provided by image processing. 280 

4. Feeding and drinking behaviour 281 

Feeding and drinking behaviours contain important information that can enable better 282 

management of animals and detection of problems (Botreau et al., 2007; Chapinal et al., 2007; 283 

Brown-Brandl et al., 2013). Detecting these behaviours is therefore important from an 284 

economic and welfare point of view in animal husbandry and plays an essential role in meat 285 

and milk production. The amount of feed intake and water usage of dairy cattle affects milking 286 

efficiency (Azizi et al., 2009; Appuhamy et al., 2016) and changes in feeding and drinking 287 

behaviours in pigs can reflect pig health (Maselyne et al., 2015). Traditionally, feeding 288 

behaviour has been monitored through direct human observation or using time-lapse video 289 

recording techniques (Bach et al., 2004; Meiszberg et al., 2009), but computer controlled 290 

feeding stations are now used to register the feeding or drinking behaviours of individual 291 



animals using electronic tagging methods, i.e. radio frequency (Rushen et al., 2012). However, 292 

such equipment is expensive and requires animals to share limited instrumented feeding 293 

locations. Recently, machine vision has been used as an alternative method for feeding and 294 

drinking behaviour detection in cattle and pigs. In order to register the presence of dairy cows 295 

in a feeding area and detect feeding behaviour, a multi-camera video system for obtaining top-296 

down view images has been applied by (Porto et al., 2012; Porto et al., 2015), and a classifier 297 

based on the Viola–Jones algorithm (Viola and Jones, 2004) by using shapes composed of 298 

adjacent rectangles (Haar-like features, which is a digital image feature for object recognition 299 

based on the difference of the sum of pixels of areas inside the rectangles) has been developed. 300 

An image which contained the object (here cow) was considered as a positive image, whereas 301 

a negative one contained only the background of the image and did not contain the target object 302 

(cow). The ability of the system to detect cow feeding behaviour was reported to have a 303 

sensitivity of 87% when compared to visual recognition.   304 

In another study, a feed intake monitoring system that quantified how much feed was 305 

distributed to and consumed by an individual cow was developed by Shelley (2013). A 3D 306 

imaging system was implemented to record and monitor the change in feed bins before and 307 

after feeding. The monitoring equipment measured feed intake by the change in volume 308 

assessed by recording the 3D image before and after a cow had consumed its individual daily 309 

feed. The imaging system was placed inside an enclosed box to give consistent lighting. By 310 

using shape and contour data of feed in the bin, the volumetric amount of feed was determined. 311 

Once the correlation between feed volume and image data was obtained, the process moved 312 

forward to determine an output value (weight) for the bin of feed, using a linear mapping of 313 

volume to weight by means of linear regression to derive a single weight based value of feed.  314 

In order to automatically recognise feeding and drinking behaviours of lactating sows, a depth 315 

imaging system (Kinect) was developed by Lao et al. (2016). In this method, after removing 316 



unwanted objects like feeder and frame pipes, small holes from the subtraction in depth images 317 

were filled and, by converting the depth image to a binary image, the sow’s physical features 318 

including the x-y centroid coordinates, head and hip pixels (leftmost and rightmost pixels, 319 

respectively) were identified. Then, these features in the depth image of the sow were utilized 320 

for dividing the body into 7 parts, namely; all, upper half, lower half, head, shoulder, loin and 321 

hip. Drinking behaviour was determined by searching sow pixels connected to or near to the 322 

nipple drinker in horizontal distribution and with height greater than the height of nipple. For 323 

feeding behaviour they used the same strategy, registering when the head was in the feeder 324 

with up and down movement. An accuracy of 97.4% in feeding and 92.7% in drinking 325 

behaviours was reported for the proposed method when compared to manual scoring. 326 

Previously, a similar approach was recommended by Kashiha et al. (2013a) for automatic 327 

detection of pig water usage by means of a CCD top-view camera. The centroid of the pig’s 328 

body binary image was obtained by analysis of the body contour profile, and the distances 329 

calculated between centroid of body and head, tail and ears. Drinking was defined when a pig 330 

was in the drinking area and based on distances of less than 10 pixels between head, ears and 331 

drinking nipple which lasted for at least 2 s . Comparison of results from the developed method 332 

and the real amount of water usage indicated that the drinking behaviour was detected with an 333 

accuracy of 92%. 334 

In summary, to monitor feeding and drinking behaviours with image processing approaches, 335 

both 2D and 3D cameras have been utilized. Although, 2D monitoring is mainly based on shape 336 

and colour features of the animal, some classification models have been applied to enhance the 337 

process. However, the distance from object to camera is the main principle for 3D motion 338 

detection of animals. Identification of multiple animals during feeding and drinking times 339 

presents an additional challenge which is not completely solved yet by the researchers in this 340 



field. Furthermore, no study was found based on automatic machine vision to label each animal 341 

for the usage of feed and water in both indoor and outdoor environments.  342 

 343 

5. Lying behaviour 344 

Lying behaviour plays a critical role in determining livestock health and welfare. In dairy cattle, 345 

the lying behaviour affects the milk production, and deprivation of adequate lying time reduces 346 

welfare (Bewley et al., 2010).  The duration and frequency of lying bouts are behavioural 347 

indicators of cow comfort, and adequate opportunity to rest and lie down are considered 348 

important for maximizing meat and milk production (Porto et al., 2013; Haley et al., 2000). In 349 

order to detect cows’ lying behaviour in real time, a top-down view CCD camera system was 350 

developed (Cangar et al., 2008). The centre point and the orientation of cow were calculated in 351 

the first image and given to a lying detection algorithm. Lying and standing behaviours of a 352 

cow were classified as a function of time, based on the x–y coordinates of the geometric centre 353 

of the animal, back area of cow (m2) and the cumulative distance walked. On average 85% of 354 

lying and standing behaviours were correctly classified. Porto et al. (2013) detected cow lying 355 

behaviour with a high sensitivity (92%) using CCD cameras and image processing based on 356 

the Viola and Jones algorithm (Viola and Jones, 2004). A multi-camera video-recording system 357 

was installed to monitor a panoramic top-down view, and positive and negative images were 358 

cropped from the panoramic top-down view image of the barn. The positive and negative 359 

images were used for training a classifier based on the Viola-Jones algorithm, and then each 360 

trained classifier was tested in testing phase. Although the pixel brightness values of the image 361 

areas of the stalls were highly variable during the daylight hours, results indicated that images 362 

used for the training and execution of the lying behaviour detector did not require any image 363 

enhancement thanks to the classification method.  364 



Pigs spend most of their time lying and, in some cases, older pigs lie for up to 90% of their 365 

daily time (Ekkel et al., 2003). Their lying behaviours can provide information on 366 

environmental factors affecting production efficiency, health and welfare. Temperature is the 367 

main parameter affecting pigs lying behaviour; at high environmental temperatures, pigs tend 368 

to lie down in a fully recumbent position with their limbs extended and avoid physical contact 369 

with others, while at low environmental temperatures, pigs will adopt a sternal lying posture 370 

and huddle together (Hillmann et al., 2004; Spoolder et al., 2012; Nasirahmadi et al., 2015). 371 

Design of the pen, location of feeders and drinkers, air velocity and humidity are other factors 372 

which affect the lying behaviour (Spoolder et al., 2012; Costa et al., 2014). Shao et al. 1998 373 

used CCD cameras to obtain behavioural features from binary images of pigs, namely the 374 

Fourier transform, moments, perimeter and area, which were used as the input data to an ANN 375 

to identify pig lying behaviours. The highest rate of correct classification was obtained by 376 

combination of perimeter, area and moment. Subsequently, Shao and Xin (2008) used other 377 

features, i.e. object compactness, average frequency of pixel change from background to 378 

foreground, area occupation ratio, and moment invariant, to detect and classify lying 379 

behaviours of grouped pigs. The developed machine vision system could successfully detect 380 

motion of the pigs, segment the pigs from their background, and classify the thermal comfort 381 

state of the pigs. More recently, other studies have been carried out using imaging systems on 382 

lying behaviours of grouped pigs in different environmental situations. Costa et al. (2014) used 383 

infrared sensitive CCD cameras for detection of pig behaviours, including lying, in different 384 

conditions of ventilation rate, air speed, temperature and humidity. The difference between the 385 

pixel intensity value of an image and the previous image was taken and, from this difference, 386 

the binary activity image was calculated by setting all pixels between thresholds to 1 and others 387 

to 0. In another project, the feasibility of using image processing and Delaunay triangulation 388 

(DT) for detection of lying behaviours of grouped pigs using top view CCD cameras was tested 389 



(Nasirahmadi et al., 2015). In each binary image, x–y coordinates of each object were used for 390 

ellipse fitting algorithms to localize each pig, and ellipse parameters (Fig. 2, right) such as 391 

‘‘Major axis length”, ‘‘Minor axis length”, ‘‘Orientation” and ‘‘Centroid” calculated for each 392 

fitted ellipse (Kashiha et al., 2014a). Finally the centre of each ellipse was used as the point of 393 

each triangle in the DT method (Fig. 2, left). The results showed that the mean value of 394 

perimeters of each triangle was different as average temperature changed in the pig barn, giving 395 

higher values at higher environmental temperatures and reflecting the greater spacing between 396 

pigs in these conditions.  397 

Machine vision and ANN were further developed for defining and classification of lying 398 

patterns of grouped pigs by Nasirahmadi et al. (2017). The DT features (i.e. mean value of 399 

perimeter, mean value of maximum and minimum length of side of each triangle) obtained 400 

from the binary image of lying pigs were used as input (three neurons) for an ANN classifier 401 

and the output of the classifier defined into three categories based on room set temperature: 402 

namely lower than room set temperature, higher than room set temperature and around room 403 

set temperature. The experimental data sets were randomly divided into training (70%), 404 

validating (15%) and testing (15%) sets. The overall accuracy of the classifier was reported as 405 

95.6%. The relative operation characteristic (ROC), comprising both the sensitivity (equivalent 406 

to true positive rate) and complement of specificity to unity (equivalent to false positive rate) 407 

was computed for individual thermal classes. The area under the ROC curve, which reflects 408 

the proportion of the total area of the unit square and ranges from 0.5 for models with no 409 

discrimination ability to 1 for models with best discrimination, was shown to be around 0.96 410 

for the classifier. Furthermore, by using the major and minor axis length of each fitted ellipse, 411 

the overall lying pattern was determined as ‘close pattern’ when pigs (fitted ellipses) huddle 412 

together, ‘far pattern’ when pigs or fitted ellipses avoid touching each other and ‘normal 413 

pattern’ when they nearly touch each other (Fig. 3).  414 



Preventing pigs from lying in the dunging area is important, since this has negative 415 

consequences for hygiene, resulting in dirtier pigs and pens (Spoolder et al., 2012). To 416 

determine whether daily provision of a rooting material (maize silage) onto a solid plate in the 417 

lying area of a fully slatted pen affected the lying location of grouped pigs, a machine vision 418 

approach was utilised in a commercial pig farm (Nasirahmadi et al., 2016a). Pigs were 419 

monitored by top view CCD camera and each pig localized by an ellipse fitting technique, with 420 

the centre of each fitted ellipse considered as centre of each pig in the pen. Each pen was 421 

virtually subdivided into four zones; zone four being the designated lying area near to the 422 

corridor and zone one the designated dunging area against the outer wall of the barn. By finding 423 

the x–y coordinates of each pig in binary images and fitting the centroid, the specific position 424 

of each pig during lying time was found in relation to the specified zones. The results indicated 425 

the ability to use the image processing technique as a quick and non-invasive method to detect 426 

pigs’ lying position. 427 

In summary, accelerometers as sensors have been used for characterizing changes in livestock 428 

postural behaviour, mainly for cattle and sows, but their limitations (i.e. risk of destruction, 429 

stress of fitting for animals and price) make them almost infeasible for grouped pig research. 430 

Consequently, CCD cameras along with classifiers have been used for monitoring of cattle and 431 

pig lying behaviour. In cattle, machine vision motion assessment has been carried out for 432 

individual cows, whereas in pigs group lying behaviours have been investigated. Image 433 

processing studies for lying behaviour qualification have been mainly based on shape features 434 

(i.e. x-y coordinates, area, perimeter, length and width of animal) in images, along with 435 

different mathematical models.  436 

 437 

6. Locomotion and lameness behaviour 438 



Animal locomotion can correlate with changes in welfare, health status, and behavioural 439 

disorders of animals (Brendle and Hoy, 2011). Manual locomotion scoring is a widely used 440 

method to detect lameness in cattle. This is done by visually inspecting a cow's standing posture 441 

or gait (Sprecher et al., 1997). Cows tend to exhibit gait abnormalities (or deviations from a 442 

healthy gait) as a reaction to pain or discomfort. The use of sensors and different scoring 443 

methods for this lameness behaviour detection has been reviewed by (Rutten et al., 2013; 444 

Schlageter-Tello et al., 2014; Van Nuffel et al., 2015; Caja et al., 2016). In order to automate 445 

cow lameness detection, different machine vision systems have been developed. An automatic 446 

system for continuous on-farm detection and prediction of lameness developed by Song et al. 447 

(2008) used a side view CCD camera. A background subtraction method was applied to the 448 

images and the centre points of the cow’s four hooves were separated and defined in different 449 

orientations (left fore, left hind, right fore, and right hind) based on the different distances 450 

between them in the image. By comparing the vertical values (y) with a pre-defined standard 451 

boundary value, and two horizontal values (x) on each body side, the fore hoof and hind hoof 452 

were labelled. The correlation between the hoof trackway and visual locomotion scoring was 453 

obtained to check the accuracy of the method, and results showed a high average correlation 454 

coefficient (94.8%). The presented method was not able to distinguish small changes, i.e. Score 455 

1 and Score 2. However, it showed a relatively higher success when a simplified scoring system 456 

was applied in their study. Large variations of overlap measurements for the same individual 457 

cow were reported (1 to 12 cm), even with constant gait score. Apart from the expected 458 

occlusions and camera protection problems, their results also indicated that changes in the step 459 

overlap were not consistently matched by changes in gait score. Step overlap is a variable that 460 

shows a relationship with manual gait scores, but it is not strong enough to be used as a single 461 

classifier for lameness in all cows. Later, in another approach for recording posture and 462 

movement of cows, a camera and pressure sensitive mat were used by Pluk et al. (2012). The 463 



exact timing and position of placement of the hoof on the ground was obtained from the 464 

pressure mat. Images from the camera, together with the position information, were used for 465 

image processing to automatically calculate the touch and release angles in the fetlock joint for 466 

the designated leg (Fig. 4). Their results indicated that, by detecting a decrease in the range of 467 

motion or an increase in the release angle of the front hooves, a large percentage of the cows 468 

could correctly be automatically detected for early lameness. In order to extract back arch, as 469 

a postural indication of lameness, Poursaberi et al. (2010) applied circle fitting and standard 470 

background subtraction techniques along with statistical filtering to get a smoothed binary edge 471 

in images. Then, the back posture analysis was done by calculating the curvature of the back 472 

of each cow during standing and walking by fitting a circle through selected points on the spine 473 

line. The average inverse radius of arc was subsequently used for lameness scoring.  The 474 

sensitivity, error rate, specificity and accuracy of the method were calculated as 100, 5.26, 97.6 475 

and 94.7 % respectively. Similarly, lameness in cows detected by side view CCD camera by 476 

Viazzi et al. (2013), used back posture with an acceptable classification rate (more than 85%). 477 

In further development of the method proposed by Poursaberi et al. (2010), the highest point 478 

in the curvature of the animal’s back was found, two ellipses were fitted to the left (illustrating 479 

the shape of the back around the hip) and right (showing the shape of the back around the 480 

shoulder) sides of the highest point, and their orientations were obtained. Then, the intersection 481 

point of the two lateral axes of both ellipses, vertical distances between the highest point in the 482 

curvature and intersection point, position of the muzzle, vertical distance between the muzzle 483 

and longitudinal axis of the right ellipse were used for lameness detection. In further research 484 

by this group (Viazzi et al., 2014a), a 2D (CCD) and a Kinect depth sensor were used to 485 

measure back posture for abnormal locomotion or lameness detection. The algorithm used for 486 

the 2D camera was based on back posture recognition (Poursaberi et al., 2010; Viazzi et al., 487 

2013), while for the 3D image processing approach, each cow was entered separately to the 488 



recording area. Here, to separate two consecutive cows the minimal distance along the 489 

longitudinal direction was applied, when the Kinect depth sensor calculated distance between 490 

the cow and the sensor. Then, the contour of cow back and body orientation found in the 3D 491 

image was used for lameness detection. The contour of the cow was calculated and the distance 492 

between the symmetrical axes of the binary image was used to extract the head from the body 493 

of the cow. By detecting the peak of body, the back and neck of the cow were obtained in the 494 

image. The body orientation was calculated by using the body features and then the highest 495 

pixels around the orientation axes (10% of the cow width) represented the back spine. The 496 

highest point in the curvature of the animal’s back was used for the starting point and then the 497 

same procedure as already discussed applied for the movement pattern calculation.  498 

Recently, 3D depth video was applied in another study to detect early lameness in dairy cows 499 

(Abdul Jabbar et al., 2017). The captured top-down 3D image of the cow's body was used to 500 

segment high curvedness features of hook bones and the spine (Fig. 5). Then, by tracking the 501 

segmented regions (hook bones and spine) a proxy of locomotion was introduced in the form 502 

of height measurements from the tracked regions. This proxy was further analysed in the form 503 

of gait asymmetry to assess the locomotion and detect early lameness.  An accuracy of 95.7% 504 

with a 100% sensitivity (detecting lame cows) and 75% specificity (detecting non-lame cows) 505 

was obtained using a Support Vector Machine (SVM) classifier. 506 

Monitoring of pigs’ locomotion using different technologies can serve different purposes, i.e. 507 

detection of playing and lying behaviours (Kashiha et al., 2014a), lameness detection (Van Riet 508 

et al., 2013; Nalon et al., 2013) and welfare assessment (Lind et al., 2005). In order to use 509 

image processing to assess pig locomotion, a software tool was developed based on a 510 

combination of image subtraction and automatic threshold detection methods (Lind et al., 511 

2005). The drawback for the proposed system was that pigs had to be manually controlled by 512 

allowing them to walk one by one in front of the camera. Kongsro (2013) developed an image 513 



processing technique using top-down view images for pig locomotion monitoring. The RGB 514 

images were cropped automatically to focus on the significant areas of the image and then 515 

converted to grayscale. Background noise was filtered out by labelling of the biggest object 516 

after converting grey images to binary. A filter was designed to capture only pig images in 517 

cropped RGB images where the centre point was moving. The position of the head and ears of 518 

the pig were located using the width of the pig, and the positions were found using the 519 

derivative of the width curves. By finding the image map to represent total movement of the 520 

pig in a stack of added binary images, and based on the fact that the largest values would 521 

represent the pixels where the binary pig would appear most frequently, the locomotion of the 522 

pig was obtained in images. Background subtraction and ellipse fitting techniques for localizing 523 

pigs in top view images and calculating movements of ellipse features made the tracking of 524 

locomotion of pigs more accurate (89.9%) (Kashiha et al., 2014a). The principle was based on 525 

linear movement of the centre of a fitted ellipse in different frames and the angular movement 526 

(orientation of ellipse) for tracking some marked pigs in images in a sequence of frames). 527 

Locomotion was defined as when a pig (centre of fitted ellipse) moved more than 40% of its 528 

body length (value in pixels).  In order to make the technique independent to body size of the 529 

pig, the sum of linear and angular movements was divided by the length of each pig. A similar 530 

approach was used by Nasirahmadi et al. (2015) to find moving pigs during the lying periods 531 

(Fig. 6). 532 

Locomotion of groups of pigs has been obtained by finding an activity index (Ott et al., 2014). 533 

Images of each top-down CCD camera view were analysed using background subtraction 534 

algorithms, then the images were binarised to eliminate the background and noisy areas were 535 

filtered out from the image by a morphological closing operator. Calculation of the activity 536 

index was based on the difference in pixel values between the binary image at time t and that 537 

at time t+1. A significant correlation was obtained between human observation, as an 538 



evaluation tool, and the proposed technique. Pig group movement was also investigated by 539 

(Gronskyte et al., 2015; Gronskyte et al., 2016) by means of the optical flow pattern. Optical 540 

flow is defined as the distribution of the apparent velocities of objects in an image, caused by 541 

the relative motion between camera and the object. The method was based on the analysis of 542 

motion and the estimation included optical flow estimation, identification of pigs, optical flow 543 

filtering and distortion correction, feature extraction, and frame classification. In order to 544 

determine optical flow a correction method (Horn-Schunck method), available in the Matlab® 545 

Vision System toolbox (the Mathworks Inc., Natick, MA, USA), was applied. Thresholding of 546 

the pixel colour values was applied to pig movement monitoring, then to identify individual 547 

pigs colour map adjustment and filtering, blob detection, image dilation and hole filling were 548 

applied. SVM as a classifier was utilized to classify pigs’ movements in different transportation 549 

and slaughterhouse situations. A 6.5% error rate was obtained from the model, however the 550 

sensitivity and specificity were high at 93.5% and 90%, respectively.  551 

Locomotion behaviour has also been investigated using the Kinect depth camera system to 552 

detect pig lameness. Movement of pigs was first captured by using the Vicon 3D optoelectronic 553 

motion analysis system to detect the characteristic locomotory changes of lame pigs 554 

(Stavrakakis et al., 2015a). This system was then compared with the Kinect sensor to 555 

distinguish sound and lame pigs by Stavrakakis et al. (2015b). Reflective markers were 556 

attached at the central nasal bone, the mid-neck proximal to shoulders (frontal to the shoulder 557 

widening), the posterior mid-thorax, anterior mid-pelvis and tail base of pigs. A high positive 558 

correlation coefficient (P < 0.001; r = 0.994) between Vicon marker trajectory data and the 559 

vertical excursions of the Kinect sensor on the neck marker was found for lame pigs.  560 

In conclusion, different types of automatic locomotion and lameness behaviour detection have 561 

been developed. Lameness detection of cows by means of a side view CCD camera has been 562 



adopted in several studies, based on back posture/arch and gait asymmetry analysis. However, 563 

to have a better detection, a combination of 2D and 3D depth images has been applied in other 564 

studies. Monitoring of individual pig locomotion within groups by machine vision techniques 565 

is still challenging, due to their similarity in shape and size, so using some mark or paint on a 566 

pig’s body or using radio frequency tags could be an alternative for short term locomotion 567 

tracking. Locomotion behaviour characterisation for pain assessment in lame animals, 568 

especially in pigs, still needs further effort for earlier detection in terms of applying automatic 569 

machine vision approaches for welfare improvement.  570 

 571 

7. Aggressive behaviour 572 

Aggressive behaviour in animals can be defined as behaviour which causes actual or potential 573 

harm (e.g. threat) to other animals. Most farm animals live in groups and aggressive behaviour 574 

can be observed in the first days after the mixing of unfamiliar animals, or when competition 575 

for resources occurs such as during feeding times. This behaviour can affect growth, health and 576 

welfare of animals and gives rise to economic losses from reduced performance. Most studies 577 

of aggression detect the behaviours using direct observation or video recording with subsequent 578 

human decoding. However, automatic monitoring of aggressive behaviours in livestock based 579 

on image processing methods has recently been developed. A CCD based method was applied 580 

to monitor interactions (i.e. body pushing, head butting, head pressing, body sniffing) between 581 

dairy cows (Guzhva et al., 2016). Geometric features (distances) were extracted from every 582 

pair of cows then the values were used as inputs of a SVM, with a detection accuracy of around 583 

85%.  584 

A continuous automated detection of aggressive behaviour among pigs by means of CCD 585 

image features was developed by Viazzi et al. (2014b). Two features were extracted from the 586 



segmented region of the Motion History Image (MHI); i) the mean intensity of motion which 587 

represents how strong and intense the motion is in the image, and ii) the occupation index 588 

which illustrates the distribution of movement inside the regions. A Linear Discriminant 589 

Analysis (LDA) was used to classify aggressive interactions in every episode with an accuracy 590 

of 89.0%, sensitivity of 88.7% and specificity of 89.3%. In another study, the feasibility of a 591 

method for aggressive behaviour detection based on a percentage of activity index (number of 592 

pixels of moving animals/total number of pixels) and ANN was tested (Oczak et al., 2014). 593 

Five features (average, maximum, minimum, sum and variance) of the activity index were 594 

calculated from the recorded videos over different time intervals and classified high aggression 595 

events with a sensitivity of 96.1%, specificity of 94.2% and accuracy of 99.8%. The Kinect 596 

depth sensor has also most recently been utilized to recognize and classify aggressive behaviour 597 

among pigs with an accuracy of 95.7 and 90.2%, respectively (Lee et al., 2016). In their study, 598 

the automatic detection and recognition of pig aggression consists of three modules; the pre-599 

processor, the feature generator, and the aggression detector and classifier. The depth 600 

information related to pigs was obtained using a Kinect depth sensor, then five features 601 

(minimum, maximum, average, standard deviation of velocity, and distance between the pigs) 602 

were extracted from the depth image. Finally, the aggression detector classified (using SVM) 603 

the features to detect the aggressive events, based on behavioural sub-types, i.e. chasing 604 

(following another pig with biting) and head-to-head/body knocking (hitting the snout against 605 

the head/body of another pig).  606 

In summary, although the CCD and Kinect cameras have been applied to address aggressive 607 

behaviour detection in some studies, further efforts are needed in commercial conditions to 608 

develop a reliable alarm system for farmers. 609 

 610 



8. Mounting behaviour 611 

Mounting behaviour, defined as when an animal lifts its two front legs and puts these or its 612 

sternum on any part of the body or head of another animal, is the most widely used indicator 613 

of reproductive behaviour for estrus detection (Rydhmer et al., 2006). In order to detect 614 

mounting among dairy cows, a top view machine vision system has been developed by Tsai 615 

and Huang (2014). In a mounting event, initially one cow closely follows another cow for a 616 

few seconds, so the following and mounting behaviours were identified based on the changes 617 

of moving object lengths in binary images in sequential frames. The following behaviour yields 618 

a moving object with the length of approximately 2-cows in images. The length of the moving 619 

object in images will then be changed to roughly 1.5 cows while they are performing the 620 

mounting behaviour. Finally, an operator (farmer) is required to view the recorded video frames 621 

to confirm that the detected results are true estrus/mounting events.  622 

Both male and female growing pigs also perform mounting events, with different frequencies, 623 

and these can increase the risk of injuries, such as bruises, damage to the skin, lameness or leg 624 

fractures (Rydhmer et al., 2006; Nasirahmadi et al., 2016b). A system for automatic mounting 625 

event monitoring among pigs was developed by Nasirahmadi et al. (2016b) based on top view 626 

CCD cameras. After extracting frames from recorded videos, the background subtraction 627 

method was applied to detecting pigs in the pen. An ellipse fitting technique was then utilized 628 

for localization of each pig in binary images and ellipse parameters calculated for later steps. 629 

The detection rule for pig mounting events in frame sequences was based on the typical 630 

behaviour of pigs, which normally move forward and mount with their front legs onto a part of 631 

the mounted pig’s body. The Euclidean distance (ED) between pigs was also used in detection 632 

of mounting event. By finding the region of interest (ROI) for each two pigs with an ED less 633 

than half of the major axis length of the fitted ellipse, the x–y coordinates of the centre of the 634 

two pigs in the ROI were recorded. As the mounting event was performed, the ED between the 635 



head of the first pig and the tail/head or side of the second one in the ROI with a value less than 636 

a half of major/minor axis length was obtained and the two pigs considered as one in the 637 

algorithm with a major and minor axis length of 1.3 to 2 and 1.3-1.8 pig lengths, respectively 638 

(Fig. 7). Otherwise, if no mounting event occurred (e.g. two pigs just standing closely together) 639 

the model fitted an ellipse to each pig and returned a calculated ED between pigs. The proposed 640 

method yielded a sensitivity of 94.5%, specificity of 88.6% and accuracy of 92.7%. 641 

The potential for automated detection of mounting behaviours has so far been little exploited 642 

in practice. Like aggressive behaviour, it relies on more complex sequence analysis involving 643 

more than one animal and is therefore more challenging than simple shape or location detection 644 

tasks which can be used for other behavioural categories. Since a mounting event involves 645 

alteration the height of animals, application of 3D depth sensors could be tested as an 646 

alternative approach to detect mounting behaviours. 647 

 648 

 9. Challenges and future research needs  649 

Table 2 and 3 summarise the automatic 2D and 3D image processing methods used for the 650 

different characterisation parameters and behavioural categories in cattle and pigs which have 651 

been reviewed here. These show that both 2D and 3D machine vision systems have been most 652 

commonly applied as a cheap and non-invasive ways to detect behaviour, individual and group 653 

features in cattle and pigs. In some cases researchers have developed and tested the systems in 654 

commercial conditions, which is one of the main goals in livestock automation research.  655 

Monitoring that can accommodate the changing features of the livestock during the whole 656 

period of husbandry (i.e. between birth and slaughter), with automatic adjustment of algorithms 657 

as animals grow or change reproductive status, is another area of research that affects the 658 



potential of machine vision outputs and needs to be addressed in future studies. The monitoring 659 

systems working in livestock farms can be subject to changing and challenging ambient 660 

situations (e.g. temperature, moisture, dust and light changes) and thus require a higher degree 661 

of flexibility and wider range of operation than generally taken into account by the previous 662 

studies. The combination of machine vision and multi-sensor approaches to record 663 

environmental changes may lead to improved performance of problem detection, since further 664 

sensors could compensate for some limitation of distinction of machine vision systems. For 665 

instance, simultaneous application of acoustic sensors for recording animal vocalisations could 666 

make animal welfare assessment more accurate.   667 

Furthermore, there are major practical challenges in automation of individual livestock 668 

monitoring. Individual animal identification can be achieved using radio frequency tags which 669 

give greater reliability than image analysis due to various uncontrolled conditions in indoor 670 

and outdoor farm environments, in combination with the fact that the animals in a group (i.e. 671 

cattle and pigs) can be highly similar in shape, colour and size.  Further development of 672 

different feature detection algorithms e.g. SIFT, SURF, Haar-like and machine learning 673 

approaches is essential (Olivares-Mendez et al., 2015). In the future, other imaging systems 674 

like drone-mounted cameras, which are widely used in tracking of wild animals in different 675 

outdoor situations, might be applied for tracking of extensively kept livestock. However, 676 

current systems may spook animals due to their unfamiliar noise and overhead presence, and 677 

disrupt normal behaviours. Therefore, more research is needed based on new machine learning 678 

methods and using improved technologies.  679 

Future opportunities could lie in the development of complete real time systems to monitor 680 

animal behaviours according to their natural biology and taking account of changes in 681 

environmental parameters to allow detection of behavioural alterations. Most of the studies on 682 



livestock monitoring are based on complex programming algorithms and the system 683 

operability, particularly how easy and friendly usage is for farmers, is another dimension that 684 

can be improved in future. Nowadays, thanks to wide accessibility of networks and smart phone 685 

devices in farms, much more research effort needs to be carried out toward availability of real-686 

time online monitoring with alarm systems on these devices to address the problem of 687 

commercial accessibility.  688 

Livestock monitoring is accompanied by recording large amounts of video data during animal 689 

husbandry; compiling and analysing these data is a challenge facing most researchers when 690 

evaluating their findings and results. Standard databases or automated data cleaning and 691 

selection could be utilized for large scale evaluation and monitoring systems to reduce costs 692 

and timing demands. However, in future, greater effort should be focused on more effective 693 

practical application of both 2D and 3D machine vision approaches to monitoring of individual 694 

and group livestock behaviours (e.g. automatic individual tracking, injurious interactions 695 

between pen mates) which are still challenging.  In order to improve the efficiency,  labour and 696 

energy cost of keeping large numbers of animals in commercial operations, collaboration 697 

among animal building designers, to make the farm environment more suitable for automatic 698 

monitoring, animal biologists, to define animal requirements and interpret responses, and 699 

control, process modelling and machine vision specialists, to refine available tools, is needed.  700 

 701 

10. Conclusions  702 

In conclusion, employing modern technology has helped farm managers to improve animal 703 

production and welfare and there are now many different types of machine vision techniques 704 

in the literature which could be used in new commercially-applicable technology tools. The 705 

results of this review illustrate that machine vision can be meaningfully utilized for detection 706 



of lying, feeding, drinking, locomotion, aggressive and reproductive behaviours of cattle and 707 

pigs. Most of the studies have focussed on the use of CCD cameras to monitor livestock 708 

behaviours, using top view images along with mathematical processing methods. Application 709 

of modern digital technologies in 3D imaging systems (Kinect, TOF cameras) offer further 710 

possibilities for improvement. With accurate information about livestock behaviours, the 711 

farmer can move quickly to address problems or seek interventions. Additionally, automated 712 

tracking of the time course and frequency of some abnormal behaviours within pens could 713 

facilitate the work of researchers exploring methods for prevention or alleviation of the 714 

behavioural problem. Although many machine vision techniques have been recently applied 715 

by researchers for livestock behaviour detection, further elaboration of image processing 716 

techniques could be an important step towards the development of an automated system that 717 

can detect behaviours of animals and decide the best solution or alarm in unusual situations. 718 
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Table 1- Validation criteria for machine vision techniques. 1132 

 1133 
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 1135 

 1136 

 1137 

 1138 
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 1140 

 1141 

 1142 

Performance 

criterion 

            Equation for calculation 

Sensitivity (%) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 TP= true positive (correct detection of a relevant behaviour)  

Specificity (%) 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 TN= true negative (correct detection of a not relevant behaviour) 

Accuracy (%) 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 FP= false positive (incorrect detection a relevant behaviour) 

Error rate   (%) 𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

 FN= false negative (incorrect detection of a not relevant behaviour) 

Precision (%)  𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Table 2- Summary of automatic 2D and 3D image processing methods used for cattle monitoring. 1143 

Monitoring Imaging system Technique  Source 

Live weight 

 

2D (CCD camera) 

 

Based on hip height, body length, hip width and chest 

depth. 

Tasdemir et al., 2011a; 2011b; Ozkaya, 2013 

 

2D (Thermal camera) 

 

Based on tail root and front hoof templates. 

 

Stajnko et al., 2008 

 

3D (TOF sensor) 

 

Based on 3D and contour features of body. 

 

Anglart, 2016 

Body shape and 

condition 

 

2D (CCD camera) 

 

Based on anatomical points (points around hook and tail). 

 

Bewley et al., 2008; Azzaro et al., 2011 

2D (CCD camera) 

 

Based on the angles and distances between anatomical 

points and the ED from each point in the normalized tail-

head contour to the shape centre. 

 

Bercovich et al., 2013 

 

2D (CCD camera) 

 

Based on RGB and body features. 

 

González-Velasco et al., 2011; Hertem et al., 2013 

 

2D (Thermal camera) 

 

Based on thickness of fat and muscle layers. 

 

Halachmi et al., 2008; Halachmi et al., 2013 

 

 

Based on body features and back postures. 
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3D (TOF and depth imaging 

sensors) 

 

Weber et al., 2014; Salau et al., 2014; Fischer et al., 2015; Kuzuhara et 

al., 2015; Spoliansky et al., 2016 

Health and disease 

2D (Thermal camera) 

 

Based on udder surface temperature. 

 

Schaefer et al., 2004; Montanholi et al., 2008; Hovinen et al., 2008; 

Colak et al., 2008; Rainwater-Lovett et al., 2009; Wirthgen et al., 2011; 

Gloster et al., 2011; Hoffmann et al., 2013 

 

 2D (Thermal camera) 

 

Based on body surface temperature. 

 

Cortivo et al., 2016 

Feeding and 

drinking behaviour 

     

 2D (Thermal camera) 

 

Based on the Viola–Jones algorithm. 

 

Porto et al., 2012; Porto et al., 2015 

 

3D (Structured light 

illumination scanning) 

 

Based on change in volume of food. 

 

Shelley, 2013 

Lying behaviour 2D (CCD camera) 

 

Based on the x–y coordinates of the geometric centre of the 

animal. 

 

Cangar et al., 2008 

Based on Viola and Jones algorithm. Porto et al., 2013 

 

Locomotion and 

lameness behaviour 

2D (CCD camera) 

 

Based on body features extraction from binary image.  

 

Song et al., 2008 
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Based on the touch and release angles in the fetlock joint of 

leg along with pressure mat data.  

 

Pluk et al., 2012 

Based on the curvature of the back of each animal. Poursaberi et al., 2010; Viazzi et al., 2013 

  

 

3D (Kinect sensor) 

 

Based on 3D and 2D features of depth and binary images.   

 

Viazzi et al., 2014a 

3D (Depth video) 

 

Based on tracking hooks and spine of animal in depth 

image.  

 

 

Abdul Jabbar et al., 2017 

 

Aggressive 

behaviour 

 

 

2D (CCD camera) 

 

 

Based on geometric features between animals. 

 

 

Guzhva et al., 2016 

 

Mounting behaviour 

 

2D (CCD camera) 

 

Based on motion detection and length of moving animals. 

 

Tsai and Huang, 2014 

 1144 

 1145 

 1146 
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Table 3- Summary of Automatic 2D and 3D image processing methods used for pig monitoring. 1147 

Monitoring Imaging system Technique  Source 

Live weight 

2D (CCD camera) 

Based on length and width dimension and boundary 

area. 

Schofield, 1990; Brandl and Jorgensen, 1996; White et al., 1999; 

Doeschl-Wilson et al., 2004 

 

Based on area, convex area, perimeter, eccentricity, 

major and minor axis length. 

 

Wang et al., 2008; Kashiha et al., 2014b ; Wongsriworaphon et al., 

2015;  

 

3D (Kinect sensor) 

 

Based on volume and area of body. 

 

Kongsro, 2014; Zhu et al., 2015 

 

3D (Stereo Vision) 

 

Based on body length, withers height and back area. 

 

 

Shi et al., 2016 

Body shape and 

condition 

 

2D (Thermal camera) 

 

Based on shape and contour detection. 

 

Liu and Zhu, 2013 

 

3D (Stereo photogrammetry) 

 

 

Based on triangulating on animal natural skin texture. 

 

 

Wu et al., 

2004

 

Wu et al., 2004 

 

Health and disease 

 

2D (CCD camera) 

 

Based on daily movement pattern in binary images. 

 

Zhu et al., 2009 

Tracking 2D (CCD camera) 

 

Based on blob edge and an ellipse fitting technique. 

 

McFarlane and Schofield, 1995; Kashiha et al., 2013b 

 

Based on x-y coordinates of shape. 

 

Tillett et al., 1997 

 

Based on positions of locatable features (kinks) of 

body. 

 

Frost et al., 2000 
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Based on RGB values. 

 

Jover et al., 2009 

 

Based on building up support maps and Gaussian 

model. 

 

Ahrendt et al., 2011 

 

Learning based segmentation 

 

Nilsson et al., 2015 

 

Based on adaptive partitioning and multilevel 

thresholding segmentation. 

 

 

Guo et al., 2015 

Feeding and 

drinking behaviour 

2D (CCD camera) 

 

Based on fitted ellipse features and distance to drinking 

nipple.  

 

Kashiha et al., 2013a 

3D (Kinect sensor) 

 

Based on depth image and x-y coordinates of binary 

image. 

 

 

Lao et al., 2016 

Lying behaviour 2D (CCD camera) 

 

Based on features of binary image. 

 

Shao et al., 1998;  Shao and Xin, 2008 

 

Based on the pixel intensity in binary image. 

 

Costa et al., 2014 

 

Based on fitted ellipse and the DT features. 

 

Nasirahmadi et al., 2015; 2016a ; 2017 

 

Locomotion and 

lameness behaviour 
2D (CCD camera) 

 

Based on RGB and image map values. 

 

Kongsro, 2013 

  

Based on activity index. 

 

Ott et al., 2014 
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Based on fitted ellipse features in consecutive frames.  

 

Kashiha et al., 2014a; Nasirahmadi et al., 2015 

 

Based on optical flow pattern.  

 

Gronskyte et al., 2015; Gronskyte et al., 2016 

3D (Kinect sensor) 

 

Based on Vicon 3D optoelectronic motion analysis. 

 

Stavrakakis et al., 2015a; 2015b 

 

Aggressive 

behaviour 

 

2D (CCD camera) 

 

Based on motion history image and activity index.  

 

Viazzi et al., 2014b; Oczak et al., 2014 

 

3D (Kinect sensor) 

 

 

Based on features from depth image. 

 

Lee et al., 2016 

 

Mounting behaviour 2D (CCD camera) 

 

Based on fitted ellipse features and ED between 

animals. 

 

Nasirahmadi et al., 2016b 

 1148 
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Figure captions  1149 

 1150 

Fig. 1- The principles of 3D depth sensing. 1151 

Fig. 2- Delaunay triangulation for pig lying detection (left), ellipse features (right) (Nasirahmadi et al., 1152 

2015). 1153 

Fig. 3- Fitted ellipses in different pig lying patterns; touching ellipses with their parameters and 1154 

Delaunay triangulation for lying detection in close, normal and far patterns (Nasirahmadi et al., 2017). 1155 

Fig. 4- Combining pressure and image data for calculation of touch and release angles in cow 1156 

locomotion analysis (Pluk et al., 2012).  1157 

Fig. 5- Example of depth image representation with a 3D camera: a raw depth cow image (left), the 1158 

same image with the background removed (right); the darkened regions indicate higher pixels (Abdul 1159 

Jabbar et al., 2017). 1160 

Fig. 6- Detection of a moving pig in image processing; ellipse fitted to pigs and angular and linear 1161 

movements at frame t and 5 seconds later (t+5) (Nasirahmadi et al., 2015). 1162 

Fig. 7- Mounting event among pigs, (top) grey images during mounting event, (bottom) binary images 1163 

and the ED between two pigs during a mounting event (Nasirahmadi et al., 2016b). 1164 
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Fig .3 1174 
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Fig .4 1176 
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