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 12 

Abstract  13 

Machine vision-based monitoring of pig lying behaviour is a fast and non-intrusive 14 

approach that could be used to improve animal health and welfare. Four pens with 15 

22 pigs in each were selected at a commercial pig farm and monitored for fifteen 16 

days using top view cameras. Three thermal categories were selected relative to 17 

room set-point temperature. An image processing technique based on Delaunay 18 

triangulation (DT) was utilised. Different lying patterns (close, normal and far) were 19 

defined regarding the perimeter of each DT triangle and the percentages of each 20 

lying pattern were obtained in each thermal category. A method using a multilayer 21 

perceptron (MLP) neural network to automatically classify group lying behaviour of 22 

pigs into three thermal categories was developed and tested for its feasibility. The DT 23 
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features (mean value of perimeters, maximum and minimum length of sides of 24 

triangles) were calculated as inputs for the MLP classifier. The network was trained, 25 

validated and tested and the results revealed that MLP could classify lying features 26 

into the three thermal categories with high overall accuracy (95.6%). The technique 27 

indicates that a combination of image processing, MLP classification and 28 

mathematical modelling can be used as a precise method for quantifying pig lying 29 

behaviour in welfare investigations.  30 

Keywords: Animal welfare, Artificial neural network, Delaunay triangulation. Lying 31 

pattern, Pig 32 

 33 

Implications 34 

Defining different lying patterns, based on the Delaunay triangulation (DT) features 35 

extracted from the group lying patterns of pigs, could help farm managers to assess 36 

the adequacy of thermal provision for pigs in large scale farms. Use of a multilayer 37 

perceptron (MLP) classifier network makes it possible to classify the thermal 38 

category in a room using DT features. Such data could be used as a supporting 39 

technology for ventilation system management.     40 

 41 

Introduction 42 

The heat regulation capacity of pigs is poorly developed compared to other mammals 43 

and heat loss is critical for them (Mendes et al., 2013). Controlling environmental 44 

parameters helps to deliver high health, welfare and production performance 45 

efficiency (Mount, 1968; Shao et al., 1998). The activity, feed intake and lying 46 

behaviour of pigs will change in different thermal conditions (Hillmann et al., 2004; 47 
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Renaudeau et al., 2008; Spoolder et al., 2012; Weller et al., 2013). When the 48 

temperature drops, pigs try to increase their heat production by means of 49 

energetically demanding muscular shivering thermogenesis and they try to reduce 50 

their heat loss by social and individual thermoregulatory behaviours. Therefore, by 51 

investigation of pig lying posture, it could be possible to assess how comfortable or 52 

uncomfortable they are in their current environment.  53 

Image processing has been applied in recent years as a cheap, fast and non-contact 54 

way to identify and classify behaviours linked to pig comfort and welfare (Shao and 55 

Xin, 2008; Viazzi et al., 2014; Nilsson et al., 2015; Nasirahmadi et al., 2016). This 56 

technique has been an important approach for a variety of applications involving pig 57 

lying behaviour recognition. Image processing systems have been used for finding 58 

the relation between activity of pigs and environmental parameters by Costa et al. 59 

(2014), and to detect movement and classify thermal comfort state of group-housed 60 

pigs based on their resting behavioural patterns by Shao and Xin (2008). In a 61 

previous study, the DT method was developed by Nasirahmadi et al. (2015) as an 62 

imaging system for finding general changes in group lying behaviours of pigs. The 63 

DT of a set of points on a plane is defined to be a triangulation such that the 64 

circumcircle of every triangle in the triangulation contains no point from the set in its 65 

interior and the circumcircle of a triangle is the unique circle that passes through all 66 

three of its vertices (Hansen et al., 2001). It is one of the most popular techniques for 67 

generation of unstructured meshes and the principal of this method was originally 68 

developed from the study of structures in computational geometry (Jin et al., 2006). 69 

However, the model did not investigate in detail the mathematical relationships 70 

showing how pigs behave in different temperatures. Therefore, in this study, 71 
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classification of pig group lying comfort was further studied using machine vision and 72 

an artificial neural network (ANN) technique. 73 

The ANN is increasingly being applied to the dynamic modelling of process 74 

operations, pattern recognition, process prediction, optimizing, non-linear 75 

transformation, remote sensing technology and parameter estimation for the design 76 

of controllers (Nasirahmadi et al., 2014; Oczak et al., 2014). Some of the ANN 77 

applications in recent years have been in livestock based research: dairy cattle 78 

(Grzesiak et al., 2010), sheep (Kominakis et al., 2002; Tahmoorespur and Ahmadi, 79 

2012) and pigs (Oczak et al., 2014; Wongsriworaphon et al., 2015). The performance 80 

of classifiers has a significant effect on machine vision outputs (Pourreza et al., 81 

2012), and the feed-forward neural network is one of the most powerful classifiers, 82 

which could be fast enough and acceptable for many processes (Khoramshahi et al., 83 

2014). The MLP network is a feed-forward network model which, with its simplicity, 84 

has the ability to provide good approximations and has been designed to function 85 

well in modelling data that are not linearly separable (Hong, 2012). The complexity of 86 

the MLP network depends on the number of layers and neurons in each layer 87 

(Chandraratne et al., 2007).  88 

The frequent fluctuations in external air temperature in the UK make barn ventilation 89 

management difficult. Room temperature in a building for growing pigs is normally 90 

kept within their thermal comfort zone (at around 20 °C), and the conventional 91 

measuring systems in commercial pig farms are based on only one or two air 92 

temperature sensors at fixed points above pig level (Mendes et al., 2013). Therefore, 93 

finding a method which indicates the thermal experience of the pigs themselves by 94 

image processing could be a useful supporting technology to improve control of the 95 

ventilation system for better thermal comfort and welfare of pigs in the room.   96 
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 In this study, different lying patterns (close, normal and far) under commercial pig 97 

farm conditions were defined and computed using the mathematical features of their 98 

lying styles. Then, based on DT features and using a MLP network, lying patterns 99 

were classified in different thermal categories. The lying model developed in this 100 

research is more accurate, faster and yields a precise mathematical model of room 101 

temperature category under commercial farm conditions and could be used as an 102 

input for room ventilation control systems.  103 

 104 

Material and methods 105 

Study area and animals 106 

The study was conducted at a commercial pig farm in Stafford, UK. A series of rooms 107 

each housed 240 finishing pigs; rooms were mechanically ventilated and subdivided 108 

into 12 pens, each 6.75 m wide × 3.10 m long and with a fully slatted floor. The white 109 

fluorescent tube lights were switched on during day and night. Room temperature 110 

was recorded every 15 min over the total experimental period with 16 temperature 111 

sensors (TE sensor Solutions, 5K3A1 series 1 Thermistor, Measurement Specialties 112 

Inc., Massachusetts, USA) arranged in a grid pattern (Figure1). Each temperature 113 

sensor was positioned around 20 cm above the pen walls (suspended from the 114 

ceiling) which was the nearest possible distance to the pigs without risk of damage. 115 

All sensors were set up and calibrated specifically for the experiment and the 116 

average of all sensors was used for room temperature calculation.  117 

All pens were equipped with a liquid feeding trough and one drinking nipple. Four 118 

pens were selected for the experiment from the 12 pens in a room, each containing 119 

22 pigs. The experimental phase started after placement of pigs in the pen at 120 

approximately 30 kg live weight, and lasted for 15 days. The experiment was carried 121 
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out in two periods (cold and warm seasons) giving different room temperatures, from 122 

14 oC in the first days as the batch started in the cold season up to 28 oC in warm 123 

situations; the room set point temperature was 21 oC during the days of the study. 124 

  125 

Image processing  126 

In this study CCTV cameras (Sony RF2938, Board lens 3.6 mm, 90o, Gyeonggi-do, 127 

South Korea) were located directly above each pen, at 4.5 meters from the ground, 128 

to get a top view. Cameras were connected via cables to a PC and video images 129 

from the cameras were recorded simultaneously for 24 h during the day and night 130 

and stored in the hard disk of a PC using Geovision software (Geovision Inc., 131 

California, USA) with a frame rate of 30 fps. The original resolution of an extracted 132 

image from the video was 640 × 480 pixels. In order to find the group lying pattern of 133 

pigs, image processing and the DT method were implemented in MATLAB® software 134 

(the Mathworks Inc., Natick, MA, USA), which is described in detail by Nasirahmadi 135 

et al. (2015). The direct least squares ellipse fitting method was applied to localize 136 

each pig in the image and ellipse parameters such as “major axis (a)”, “minor axis 137 

(b)”, “orientation (β)” and “centroid (c)” were determined for all fitted ellipses (Figure 138 

2) (Nasirahmadi et al., 2015).  The perimeter, length of side of each triangle in the DT 139 

and ellipse features provided the data for computing the distance of each pig in a 140 

group to others and made it possible to calculate how closely pigs lie.  141 

 142 

Lying pattern definition 143 

By using the major and minor axis of each fitted ellipse (Figure 2) the overall lying 144 

pattern was determined as the following:  145 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑦𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (%) = (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠
) × 100              (1)     146 
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where the certain pattern was defined as ‘close pattern’, ‘normal pattern’ or ‘far 147 

pattern’ based on principles which have been reported previously for pigs’ lying 148 

postures in different temperatures (Table 1).  149 

In cold conditions pigs crouch, sometimes shivering violently, and change their lying 150 

posture to support their body on their limbs and reduce conductive heat loss to the 151 

floor. They also huddle together to increase body contact with other pigs. In this 152 

study, we defined this as a ‘close pattern’; here the size of ellipses is considered 153 

almost uniform and the number for each pig in the model can be defined in any 154 

order. Based on the principles in Table 1, this category was recorded if three pigs 155 

presented a pattern like those shown in Figure 3A (all ellipses (pigs) or at least two of 156 

the three possible pairs closely touching each other). Therefore, in a close pattern, 157 

the maximum length of side of triangle (Lmax) and minimum length of side of triangle 158 

(Lmin) are equal to or less than (
𝑏1

2
+
𝑏3

2
+ 𝑏2) and (

𝑏1

2
+
𝑏2

2
), respectively (Table 1).                         159 

In warm conditions, pigs try to avoid touching each other, the limbs are stretched out 160 

and pigs lie extended on their side (Table 1). The image processing data showed 161 

patterns like those in Figure 3C, defined as ‘far pattern’. If three pigs are touching 162 

each other from head to head or head to tail (as sometimes happened in warm 163 

conditions), the Lmax is greater than or equal to (
𝑎1

2
+
𝑎2

2
+
𝑎3

2
); furthermore, if three 164 

pigs do not touch or two partly touch and the third is far from the others (as happens 165 

in grouped pigs), the Lmax is greater than or equal to (
𝑎1

2
+
𝑎2

2
+
𝑏3

2
). Lmin in far patterns 166 

is greater than or equal to (
𝑏1

2
+ 𝑏2) (Table 1).  167 

In normal temperature conditions, pigs lie nearly touching each other and the 168 

resulting pattern is between the close and far patterns (Figure 3B), defined as  169 

‘normal pattern’ (Table 1).  170 
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 171 

 Artificial neural network development 172 

A MLP was employed in MATLAB® software as the modelling network for 173 

classification. The MLP network applied here had four layers: an input layer, two 174 

hidden layers and an output layer. The number of neurons in the input layer was 175 

dependent on the number of features extracted from each triangle of the DT; in this 176 

study the perimeter (P), Lmax and Lmin of side of each triangle were calculated. Then 177 

the mean value of perimeter (MVP) of triangles, mean value of maximum lengths 178 

(MVLmax), mean value of minimum lengths (MVLmin) of side of triangles in each DT 179 

were considered as inputs for the ANN (3 neurons). The output layer was equal to 180 

the number of categories; in this case we divided the room temperatures into 3 181 

thermal categories which were based on the room set point temperature: first for 182 

temperatures around (± 2 oC) the room set temperature (ARST; 19-23 oC), next for 183 

lower than the room set temperature (LRST; 14-18 oC), and third for those higher 184 

than the room set temperature (HRST; 24-28 oC). The categories LRST, ARST and 185 

HRST were represented with the sets of numbers 100, 010, 001, respectively. In 186 

order to simplify the problem with different ranges of values for the network, the 187 

dataset was normalized within the range [0, 1] to achieve fast convergence and to 188 

ensure that all variables received equal attention during the process. The learning 189 

procedure for developing a neural network can be either supervised or unsupervised. 190 

The supervised learning algorithm used in this research was the back propagation 191 

algorithm (Chandraratne et al., 2007). Before updating the weights once at the end of 192 

the epoch, this algorithm gets the average gradient of the error surface across all 193 

cases and minimises the mean square error (MSE) between input layer values and 194 

output layer values. In order to achieve the optimum hidden layer, a trial and error 195 
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procedure was used by trying various numbers of neurons and layers to build the 196 

network (Mashaly and Alazba, 2016) and the network which gave the lowest MSE of 197 

the verification subset was chosen. The two hidden layers of the selected network 198 

had different numbers of neurons, being 16 and 22, respectively. Lastly, the selected 199 

MLP network with 3-16-22-3 was used to evaluate the ability of this multivariable 200 

technique for classification. In this study the MLP used a tansig function (𝑦 =201 

𝑡𝑎𝑛𝑠𝑖𝑔 (𝑥) =
2

1+𝑒−2𝑥
− 1) in the hidden layers and linear function (𝑦 = 𝑥) in the output 202 

layer. In general, datasets of 1800 observations with 600 observations (5 203 

temperatures in each category × 120 frames for each temperature) for each of the 204 

three thermal categories were used.  The ANNs were trained on the first subset 205 

(training set), and its performance was monitored using the second subset (validation 206 

set). In this method the network stops the training before overfitting occurs, which a 207 

technique is automatically provided for all supervised networks in MATLAB Neural 208 

Network Toolbox™. Finally, the last subset (test set) was used to check the 209 

predictive performance of the network, since the data included in this subset were 210 

not used in the network development. Experimental data sets were randomly divided 211 

into training (70%; 1260 observations), validating (15%; 270 observations), and 212 

testing (15%; 270 observations) sets. For finding the classification performance, the 213 

sensitivity, specificity and accuracy (category-specific and the model’s overall 214 

performance) were computed based on the following definitions (Grzesiak et al., 215 

2010; Pourreza et al., 2012):  216 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100         (2)               𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                     (3) 217 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100             (4)  218 
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TP: Samples of a specific category correctly classified as that category. FN: Samples 219 

of a specific category incorrectly classified as other categories. TN: Samples of other 220 

categories correctly classified as their categories. FP: Samples of other categories 221 

incorrectly classified as the specific category. Assessment of the discrimination 222 

accuracy between different classes of individual models also involved the relative 223 

operating characteristic (ROC), which was computed in MATLAB® based on true 224 

positive and false negative rates (Pearce and Ferrier, 2000; Fawcett, 2006) and can 225 

be used for assessment of binary classifiers (Barnes et al., 2010) 226 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1                 (5) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 = 1                 (6) 

Eq. (5 and 6) can be written as (Pearce and Ferrier, 2000): 227 

(
𝑤

𝑥
= 1) + (

𝑣

𝑥
= 1) = 1                 (7)  

(
𝑤

𝑥
= 0) + (

𝑣

𝑥
= 0) = 1                 (8)   228 

Where w is a predicted output greater or equal to the threshold probability, and v is a 229 

predicted output less than the threshold probability. In ROC, two values are 230 

calculated for each threshold: the true positive rate (the number of w, divided by the 231 

number of 1 targets), and the false positive rate (the number of v, divided by the 232 

number of 0 targets) (Pearce and Ferrier, 2000). The area under the ROC curve 233 

(AUC) reflects the proportion of the total area of the unit square and ranges from 0.5 234 

for models with no discrimination ability, to 1 for models with best discrimination. 235 

 236 

 237 
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Results  238 

Lying pattern 239 

Table 1 shows the mathematical description of Lmax and Lmin obtained from the lying 240 

patterns. Since the perimeter of each triangle is the sum of the length of sides (L) of 241 

each triangle, the P value (pixels) for each lying pattern is found as follows. In the 242 

close pattern;   243 

  𝑃 = 𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛 + 𝐿     (9) 244 

 
( 𝑇𝑎𝑏𝑙𝑒 1 𝑎𝑛𝑑 𝐸𝑞.  (9))
→                 𝑃 ≤ (

𝑏1
2
+
𝑏3
2
+ 𝑏2) + (

𝑏1
2
+
𝑏2
2
) + 𝐿           (10) 

The maximum value of P happened when a triangle had two Lmax (isosceles) means; 245 

𝐿 = 𝐿𝑚𝑎𝑥     (11)        
𝐸𝑞.  (10 𝑎𝑛𝑑11)
⇒              𝑃 ≤ (

3𝑏1+5𝑏2+2𝑏3

2
)    (12)  246 

In this study, by computing Eq. (12), the perimeter of each triangle to be considered 247 

as the close pattern gave P≤200 (pixels). 248 

In far pattern;     
(𝑇𝑎𝑏𝑙𝑒 1 𝑎𝑛𝑑 𝐸𝑞.  (9))
→                   𝑃 ≥ (

𝑎1

2
+
𝑎2

2
+
𝑏3

2
) + (

𝑏1

2
+ 𝑏2) + 𝐿              (13) 249 

When triangle had two sides with Lmin value, so; 250 

 𝐿 = 𝐿𝑚𝑖𝑛           (14)       
𝐸𝑞.  (13 𝑎𝑛𝑑 14)
⇒               𝑃 ≥

𝑎1+𝑎2+2𝑏1+4𝑏2+𝑏3

2
            (15)  251 

The perimeter of each triangle in the far pattern, by calculation of Eq. (15), gave 252 

P≥350 (pixels), with the normal pattern having perimeter values between these two, 253 

i.e. 200<P<350 (pixels).  254 

The three lying patterns for the mentioned thermal categories during this study, along 255 

with their temperature and standard deviation (SD) bars, are shown in Figure 4. 256 
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According to this figure, in the LRST category the percentage of close pattern 257 

declined from 71.4% to 54.8% as the temperature increased from 14 to 18 oC; the 258 

values for both normal and far pattern were increased from 17.2 to 30.1% and 11.4 259 

to 15.1%, respectively. In the ARST category, with a temperature range of 19 to 23 260 

oC, the percentage of close pattern showed a downward trend from 46.1 to 20.2%, 261 

while the far pattern showed an increase from 19.6 to 45.5%. As the temperature 262 

increased in the HRST category from 24 to 28 oC, the percentage of normal and 263 

close pattern declined from 34.4 to 27% and 18.8 to 8.4%, respectively. In this 264 

category, an increase of 4 oC of temperature raised the far pattern by 16% (Figure 4).  265 

 266 

Classification 267 

Table 2 shows the average, maximum and minimum values, SDs of the three 268 

extracted features (MVP, MVLmax, MVLmin) from each DT. According to the ANOVA 269 

results, the MVP, MVLmax and MVLmin differed significantly between thermal 270 

categories (all P<0.001). With the five temperatures in the range for the LRST 271 

category, the minimum value of each variable happened in the lowest temperature 272 

(14 oC) while the maximum value was in the highest temperature (18 oC). 273 

Furthermore, the same tendency was obtained for the other two thermal categories.  274 

The results obtained for the described MLP network showed that the selected neural 275 

network was able to correctly classify lying behaviours with overall accuracy 95.6% 276 

according to the different thermal categories, and with satisfactory sensitivity (from 277 

89.1 to 94.2%), specificity (from 94.4 to 95.4%) and accuracy (from 93.3 to 95.2%), 278 

for the test set data (Table 3). Figure 5 presents the ROC curves for individual 279 

thermal categories, comprising both the sensitivity (equivalent to true positive rate) 280 
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and complement of specificity to unity (equivalent to false positive rate). The AUC 281 

values obtained were 0.98 for the LRST, 0.96 for the ARST and 0.98 for the HRST 282 

test sets. The value of AUC represents the discrimination ability of a classifier 283 

(Grzesiak et al., 2010) and the value for a realistic classifier should be more than 0.5, 284 

with the AUC range between 1 (best separation between the values) and 0.5 (no 285 

distributional differences between values) (Fawcett, 2006).  286 

 287 

Discussion 288 

Mathematical model of lying pattern 289 

Results of pig lying patterns, described through the image processing techniques and 290 

using the DT features, showed that in the LRST category pigs at the lowest 291 

environmental temperature (14 oC) adopted a body posture that minimised their 292 

contact with the floor and maximised contact with other pigs. As a result, the number 293 

of triangles with a perimeter of less than 200 pixels in the DT was higher, as a well as 294 

the percentage of close patterns. As the temperature increased in this category the 295 

number of huddling pigs declined, so the number of triangles with P≤200 pixels 296 

decreased. On the other hand, in the HRST category, where the temperature range 297 

was between 24-28 oC, pigs lay down with their limbs extended in a fully recumbent 298 

position and tried to minimise their contact with pen mates. The number of triangles 299 

with perimeter of more than 350 pixels increased and the percentage of far patterns 300 

was higher than other patterns. The maximum value for far pattern in this group 301 

happened when the temperature was at the highest level (28 oC), and the 302 

percentage of close pattern showed the lowest value in the study. This result is in 303 

agreement with other researchers (Shao and Xin, 2008; Costa et al., 2014) who have 304 
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reported that in higher temperatures pigs tended to spread out and in a cold situation 305 

they tried to huddle or touch each other. In the ARST category, because the situation 306 

was around the room set point temperature, pigs had more side-by-side patterns 307 

(Riskowski, 1986; Shao et al., 1998) so that the percentage of triangles with 308 

200<P<350 pixels was higher in this category. It needs to be considered that the 309 

value of P obtained from the DT features for different lying patterns depends on the 310 

age and size of pigs, so more study is needed for generalization of the method and 311 

determination of the values of P in relation to the size and age of pigs.   312 

 313 

Classification model  314 

It is generally difficult to develop a simple linear model to predict data with 315 

overlapping categories. Thus, all three mentioned variables of the DT were assigned 316 

in the MLP network to identify the three thermal categories. As can be inferred from 317 

Table 3, the HRST category showed the lowest value of precision for the test 318 

dataset, in which sensitivity was 89.1%, specificity was 94.7% and accuracy was 319 

93.3%, while the values obtained for LRST were 94.2%, 95.4%, 95.2%, respectively. 320 

Shao et al. (1998), who studied classification of swine thermal comfort using feed-321 

forward network and binary image features (i.e. Fourier coefficients, moments, 322 

perimeter and area, combination of perimeter) in laboratory conditions (4 chambers 323 

and 10 pigs per chamber), obtained values of correctly classified samples of 78, 73, 324 

86 and 90% for the test sets. Computing the mentioned binary image features in a 325 

commercial pig farm, with different pen structures, may increase the error of 326 

classification; for instance some pigs tend to lie close to the walls which makes the 327 

area or perimeter results inaccurate. Therefore, using a method for finding the centre 328 
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of each pig and applying a precise mathematical method, the method used in this 329 

study, could increase the classification precision. In this study, the lower performance 330 

of ANN classification in HRST might be explained by the fact that, in higher 331 

temperatures, pigs increase the space they occupy and normally move to cooler 332 

places like the dunging area (Spoolder et al., 2012). As a result, the DT extracted 333 

features could change more than in the usual situation. On the other hand, in the 334 

LRST condition, they huddle together more in an area which appears warmer to 335 

them and the network could classify with better performance by using arranged DT 336 

features (Table 3). Developing a classifier with high performance could be a basic 337 

step for creating an automatic monitoring system for enhancing pigs’ welfare and, if 338 

the controller system of the environmental conditions can be based on the comfort 339 

behaviour of pigs, better welfare may be achieved (Shao et al., 1998). The technique 340 

presented in this paper allows classification of lying behaviour using an ANN on the 341 

basis of the DT features. Since the experiment was run for a period of only 15 days, 342 

in pens with the same size and shape, the change in size of the pigs during this 343 

period was not great. Thus, further research is needed to model pigs with different 344 

sizes across a whole production batch, and pens with different structures should be 345 

considered in the model before making the method practicable for pig farms. The 346 

major advantage of applying a high performance classification system in commercial 347 

farm conditions is that the changes of lying behaviour in the different thermal 348 

categories, which mainly rely on the room set temperature, could be used in an 349 

automatic and continuous way with a large number of pigs and pens in non-350 

laboratory situations. Changes in environmental temperature in pig farms result in 351 

alterations in body heat transfer and cause energy and meat production losses, so 352 
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using an automatic image analysis and precise mathematical method can provide a 353 

less stressful situation for pigs and workers, and benefit economic outputs.   354 

In the current study, the ventilation system in use was not capable of maintaining the 355 

room at a temperature around the set point temperature for periods in both cold and 356 

warm seasons. This illustrates the need to design more appropriate ventilation 357 

systems in commercial practice. However, a single room set point may not be the 358 

most appropriate for animals in different situations.  Knowing the lying pattern of the 359 

pigs gives the possibility for farm managers to select the best room set temperature 360 

regarding their own animals and farm conditions. Connecting the proposed 361 

monitoring system to the room ventilation and potential heating or cooling system will 362 

be worthwhile to deliver better performance in an automated farm management 363 

system. As a result, more economic outputs and better animal welfare may be 364 

achieved. 365 

 366 

Conclusions 367 

In this study, it was shown that the developed multilayer network with a combination 368 

of DT features can be used in order to classify group lying patterns of pigs in different 369 

thermal categories with high sensitivity, specificity and accuracy (both specific and 370 

overall) in commercial pig farm conditions. Furthermore, the percentage of each 371 

defined lying pattern, obtained through calculating the perimeter of each triangle in 372 

the DT, changed significantly as the environmental temperatures increased. Using 373 

the proposed precise mathematical method for definition and classification of pigs 374 

lying behaviour could make an important contribution in the future to a fully 375 

automated system based on pig behaviour in commercial pig farm management. The 376 



 

 
17 

 

proposed method is an important step towards improving animal welfare in 377 

commercial farm conditions with their changeable environmental parameters. 378 

However, this method needs further study for application of the data as an input for 379 

adjusting fan speed in rooms as an optimal method for controlling and adjusting the 380 

ventilation rate in a fully automated system.  381 
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 499 

Table 1 Group lying patterns of pigs with their subsequent mathematical description 500 

Lying 

pattern 

Lying 

 posture 
Theoretical description 

Mathematical description 

 in the paper 

close 

pattern 
Sternal 

 

Huddle together and lying close 

(Mount, 1968; Riskowski, 1986; 

Shao et al., 1998; Shao and Xin, 

2008). 

 

Lmax ≤ (
b1

2
+
b3

2
+ b2) 

 Lmin ≤ (
b1

2
+
b2

2
) 

 

normal 

pattern 

Side-by-

side 

Nearly touching each other 

(Riskowski, 1986; Shao et al., 

1998; Shao and Xin, 2008). 

 

 

(
b1

2
+
b3

2
+ b2) < Lmax < (

a1

2
+
a2

2
+
b3

2
) 

(
b1

2
+
b2

2
) < Lmin < (

b1

2
+ b2) 

 

far 

pattern 
Spreading 

Avoid touching each other, with 

limbs extended (Riskowski, 1986; 

Hahn et al., 1987; Shao et al., 

1998; Hillmann et al., 2004). 

Lmax ≥ (
a1

2
+
a2

2
+
b3

2
) 

 Lmin ≥ (
b1

2
+ b2) 

 

 501 

Lmax=maximum length of side of triangle, Lmin=minimum length of side of triangle, b= minor axis of 502 

fitted ellipse, a= major axis of fitted ellipse 503 

 504 

 505 
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 506 

 507 

 508 

 509 

Table 2 Statistical data (average, minimum, maximum and SD) of the Delaunay triangulation 510 

features in different thermal categories 511 

 

LRST ARST HRST 

MVP MVLmax MVLmin MVP MVLmax MVLmin MVP MVLmax MVLmin 

Ave 170.8 84.3 46.2 284.9 122.4 71.4 398.3 179.9 92.3 

Max 250.6 126.1 73.3 340.9 162.4 98.2 460.8 230.7 120 

Min 138.1 57.4 30 208.2 85.2 44.2 336 120 70.4 

SD 25.1 14.1 9.1 31.8 13 7.8 33.9 27.3 11.5 

Ave= average, Max= maximum, Min=Minimum 512 

LRST= lower than room set temperature, ARST= room set temperature, HRST= higher than room set 513 

temperature  514 

MVP= mean value of perimeters, MVLmax= mean value of maximum length of triangles, MVLmin= mean 515 

value of minimum length of triangles  516 

 All measures (MVP, MVLmin and MVLmax) differed significantly between temperature categories 517 

(P<0.001) 518 

 519 
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 520 

 521 

 522 

 523 

Table 3 The Artificial neural network (ANN) analysis: sensitivity, specificity and accuracy for 524 

the test dataset 525 

Thermal 

category 

Group data 

Sensitivity  Specificity  Accuracy  

LRST 94.2% 95.4% 95.2% 

ARST 90.6% 94.4% 94.3% 

HRST 89.1% 94.7% 93.3% 

 526 

LRST= lower than room set temperature, ARST= room set temperature, HRST= higher than room set 527 

temperature 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 
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 537 

Figure captions; 538 

 539 

Figure 1 Schematic of research room showing the location of temperature sensors and 540 

cameras. 541 

 542 

Figure 2 Application of the ellipse fitting technique to a group of lying pigs.  543 

 544 

 Figure 3 Fitted ellipses in different lying patterns; (A) Touching ellipses (black) with their 545 

parameters (blue) and a triangle of Delaunay triangulation (red) in cold situations (close 546 

pattern), (B) in normal situations (normal pattern), (C) in warm situations (far pattern). 547 

 548 

Figure 4 The three lying patterns for each thermal category allocated with their SD bar. 549 

LRST= lower than room set temperature, ARST= room set temperature, HRST= higher than 550 

room set temperature. 551 

 552 

Figure 5 The area under curve (ROC) curves and the relative operating characteristic (AUC) 553 

values of network test set. LRST= lower than room set temperature, ARST= room set 554 

temperature, HRST= higher than room set temperature. 555 

  556 
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Fig 5 614 
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