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Abstract 
This review is the second in a series of three articles considering how different types of dietary fibre 

may affect gut function and health, focusing on the impact of dietary fibre intake on the small 

intestinal digestive processes. While the small intestinal structure supports the large proportion of 

gastrointestinal absorption that occurs there, the processes of digestion of macronutrients are 

largely dependent on the exocrine secretions of the pancreas and liver.  The impact of dietary fibre, 

either as isolates or an integral part of foods such as fruits and vegetables, is therefore also 

considered on the exocrine functions of these accessory organs. 

The physiological processes of these three interconnected organs of digestion are outlined and the 

evidence that dietary fibre impacts on these processes is considered. Evidence for the association of 

long-term dietary fibre intake on health outcomes related to these organs is also evaluated. 
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Introduction 
This review is a second of a series of three aimed at pooling together some of the recent evidence 

that dietary fibre impacts many major aspects of gastrointestinal physiology. The first of these 

reviews (Brownlee, 2014) focused on the effect of various types of dietary fibre on gastrointestinal 

processes from the mouth to the stomach. Here, the authors focus on the impact of dietary fibres on 

the physiology of the small intestine and its accessory organs (the liver and pancreas). Similar to the 

previous review, this article will consider the impact of a wide range of dietary fibres both as isolates 

and within fibre-rich foods on the physiological function of this section of the gastrointestinal tract. 

A subsequent review within this journal will focus on how dietary fibres impact on the physiological 

processes of the large intestine. 

The small intestine is the major site of absorption of the end products of the digestive process due to 

its enormous surface area (a result of three levels of anatomical folding (Helander & Fändriks, 2014)) 

and orchestrated motility (WorsØe, Fynne, Gregersen, Schlageter, Christensen, Dahlerup, et al., 

2011). To allow macronutrient digestion, the small intestine must also act as a major site of 

digestion, although this process is almost entirely dependent on exocrine secretions from the 

pancreas and liver (Chandra & Liddle, 2013; Maldonado-Valderrama, Wilde, MacIerzanka, & MacKie, 

2011; Nawrot-Porabka, Jaworek, Leja-Szpak, Kot, & Lange, 2015). These accessory organs are not 

only important in allowing appropriate intestinal digestion to occur but also in orchestrating the 

body’s utilisation of the products of digestion and possibly linking dietary intake to many longer-

term systemic disease trajectories (Strowig, Henao-Mejia, Elinav, & Flavell, 2012; Unger, Clark, 

Scherer, & Orci, 2010). Although the ideas that dietary fibres can affect the processes of digestion 

and absorption and can impact on systemic health are not new, the putative mechanisms through 

which such effects could be brought are often poorly characterised and do not always agree with 

longer-term studies on health outcomes. 

This review therefore aims to explore the potential of dietary fibres to impact short-term changes in 

small intestinal, pancreatic and hepatic function and to evaluate longer-term impacts on health 

outcomes related to the correct functioning of these organs in relation to the processes of digestion.  

Dietary fibres and the commencement of the intestinal phase of digestion 

During the non-digestive state, small intestinal motility is limited to a series of migrating motor 

complexes which are believed to maintain aboral movement of luminal contents to reduce the build-

up of secreted mucus and other secreted factors and to limit the potential of microbial infiltration 

into the underlying mucosa (Birchenough, Johansson, Gustafsson, Bergström, & Hansson, 2015; 

Pelaseyed, Bergström, Gustafsson, Ermund, Birchenough, Schütte, et al., 2014). Motility patterns 

rapidly shift as a result of the pyloric sphincter allowing chyme to enter the duodenum. This action 

also heralds the commencement of the intestinal phase of digestion. The motility pattern within the 

intestinal phase of digestion consists of migrating, clustered contractions that tend to move contents 

along the small intestine up to 30 centimetres at a time at varying frequencies (Otterson, Leming, 

Fox, & Moulder, 2010; Otterson & Sarr, 1993). Segmentation along the small intestine ensures 

adequate mixing of luminal contents with digestive juices and improves the chances of contact with 

the villi (Gwynne, Thomas, Goh, Sjövall, & Bornstein, 2004; Huizinga & Lammers, 2009). The villi 

themselves pass through the luminal content in waving motions, as a result of the contraction of 

both the muscularis mucosae as well as the action of the surrounding smooth muscle layers below 

the mucosa (Schulze, 2015). This smooth muscle in the intestine features distinct, continuous bands 



of longitudinal and circular muscle along the entire length of the duodenum, jejunum and ileum 

(Huizinga & Lammers, 2009). Within the intestinal phase of digestion, a series of reflexes act to 

control the distal and proximal motility of the gut (Brownlee, 2011). The myenteric reflex, driven by 

local distension of the gut wall by a bolus of digesta, results in a local increase in the number and 

strength of contractions mediated by the myenteric plexus within the smooth muscle layers (Fujita, 

Okishio, Fujinami, Nakagawa, Takeuchi, Takewaki, et al., 2004). The myenteric reflex is initiated by 

the interstitial cells of Cajal and is driven by release of acetylcholine (Klein, Seidler, Kettenberger, 

Sibaev, Rohn, Feil, et al., 2013), leading to the orchestration of contraction and relaxation events in 

the immediate vicinity. Separate neurohumorally-driven feedback mechanisms also occur, as a result 

of digesta entering the duodenum. This impacts on gastric activity and also leads to a reflex increase 

in motility of the jejunum, ileum and large intestine (Furness, Rivera, Cho, Bravo, & Callaghan, 2013) 

to ensure that subsequent segments of the gut are prepared to receive the incoming luminal 

content. 

As acidic digesta (chyme) enters the duodenum from the stomach, this triggers perhaps the key 

event in the commencement of the intestinal phase of digestion. Cholecystokinin (CCK) is released 

from the enteroendocrine I cells in the duodenum, resulting in an increase in pancreatic secretion (Y. 

U. Wang, Prpic, Green, Reeve Jr, & Liddle, 2002) and release of bile from the gall bladder (West & 

Mercer, 2004). Alongside secretin, motilin and gastric inhibitory peptide, CCK release appears to 

orchestrate the small intestinal digestive processes and may also have roles in the reduction of 

gastric secretion and increased intestinal motility (Ellis, Chambers, Gwynne, & Bornstein, 2013; West 

& Mercer, 2004). Previous studies note that the presence of luminal amino acids is key to CCK 

release (Daly, Al-Rammahi, Moran, Marcello, Ninomiya, & Shirazi-Beechey, 2013). The presence of 

low concentrations of amino acids in chyme, as a result of protein digestion in the stomach, is 

possible but may also be dependent on the presence of basal protease activity in the intestine (Nishi, 

Hara, Hira, & Tomita, 2001).  

Studies in animals and humans have noted that some types of dietary fibre appear to impact on 

circulating concentrations of CCK. Human studies have particularly focused on the acute, 

postprandial impact of fibre ingestion on plasma CCK levels. Purified preparations of cellulose and 

hydrolysed guar gum were shown to significantly increase the amplitude and time length of 

postprandial CCK peaks (Geleva, Thomas, Gannon, & Keenan, 2003; Heini, Lara-Castro, Schneider, 

Kirk, Considine, & Weinsier, 1998), while flaxseed fibre and polydextrose appeared to have no effect 

(Kristensen, Savorani, Christensen, Engelsen, Bügel, Toubro, et al., 2013; Olli, Salli, Alhoniemi, 

Saarinen, Ibarra, Vasankari, et al., 2015). A similar increase in postprandial CCK response was noted 

upon inclusion of dried bean flakes (which increased dietary fibre content by almost 12 g/100 g) in a 

test meal compared to the bean-free control (Bourdon, Olson, Backus, Richter, Davis, & Schneeman, 

2001). A three-month supplementation of two different dosages of oat β-glucan within an energy 

restricted diet did not result in greater increases to fasting plasma CCK compared to energy 

restriction alone and did not benefit weight loss (Beck, Tapsell, Batterham, Tosh, & Huang, 2010).  

A study in rats noted that the presence of guar gum and fructo-oligosaccharides within chow 

reduced ad libitum energy intake. This effect was removed when competitive ligands of CCK 

receptors were given to the animals (Rasoamanana, Chaumontet, Nadkarni, Tomé, Fromentin, & 

Darcel, 2012), strongly suggesting that the impact of fibres was mediated by the action of CCK. 

However, it must be noted that postprandial plasma CCK concentration was not measured within 



this study. Consumption of a standard chow incorporating resistant starch did not impact the food 

intake of rats who were intraperitoneally dosed with a specific amount of CCK (L. Shen, Keenan, 

Martin, Tulley, Raggio, McCutcheon, et al., 2009), suggesting that there was no indirect impact of 

dietary fibre inclusion on the sensitivity of the test animals to CCK responses. 

Secretin is a hormone secreted from the enteroendocrine S cells within the duodenum. Its release 

causes increases in pancreatic exocrine secretion and is linked to reduction in feelings of hunger and 

reduced gastric emptying rates (Sekar & Chow, 2013). Secretin is believed to be the first hormone 

ever to be isolated (Dockray, 2014). Secretin therefore exerts a number of similar roles to those of 

CCK.  Motilin is mainly released from duodenal enteroendocrine cells (Goswami, Tanaka, Jogahara, 

Sakai, & Sakata, 2015). While secretin tends to reduce gastric emptying, motilin tends to increase 

pyloric sphincter relaxation to increase flow into the duodenum, with peak motilin concentrations 

occurring at the same time the gastric phase of digestion is being completed (Ozaki, Onoma, 

Muramatsu, Sudo, Yoshida, Shiokawa, et al., 2009). Classical studies have highlighted that both 

hormones are released over a relatively short time frame (less than 30 minutes) in response to 

intestinal acidification, with secretin reaching a peak faster than motilin and maintaining values 

above baseline levels of a longer period of time (Ozaki, et al., 2009), suggesting that their actions are 

not necessarily in direct competition with each other. A range of other peptides released from the 

small intestinal mucosa, including vasoactive intestine peptide, neurotensin and gastric inhibitory 

peptide are also believe to play roles in the regulation of the intestinal phase of digestion 

Long-term incorporation of various types of dietary fibre in animal feeds have been suggested to 

increase pancreatic exocrine secretion in response to secretin stimulation (Low, 1989; Sommer & 

Kasper, 1984; Stock Damge, Bouchet, & Dentinger, 1983). Three-week supplementation of pectin or 

cellulose did not impact on fasting or postprandial motilin levels in comparison to a (low fibre) 

control diet (Schwartz, Levine, Singh, Scheidecker, & Track, 1982). A study in type II diabetics noted 

consumption of 15 g a day of guar gum over a two-week period resulted in a blunting the gastric 

inhibitory peptide response and an increased output of motilin (Requejo, Uttenthal, & Bloom, 1990). 

Dietary fibre and ileocaecal flow 
The ileal brake reflex is a mechanism by which the flow of digesta into the large intestine can be 

limited (Maljaars, Peters, Mela, & Masclee, 2008). It appears as though this mechanism is driven by 

the release of glucagon-like peptide-1 (GLP-1 and Peptide YY (PYY) from the enteroendocrine L cells 

in the terminal ileum (Joshi, Tough, & Cox, 2013). Classical work highlighted how the ileal brake 

mechanism could be triggered by fat reaching/being instilled the terminal ileum (Spiller, Trotman, 

Adrian, Bloom, Misiewicz, & Silk, 1988; Spiller, Trotman, Higgins, Ghatei, Grimble, Lee, et al., 1984). 

However, a more recent study suggests that this effect can also be triggered in healthy adults by the 

instillation of proteins and sugars into the ileum (Van Avesaat, Troost, Ripken, Hendriks, & Aam, 

2015) and is more dependent on the total amount of macronutrient energy instilled into the 

terminal ileum than the source of energy, suggesting that L cells are sensitive to a broad range of 

luminal factors. Recent evidence would also suggest that the two separate gene products are 

expressed and produced by the same cells in humans (Habib, Richards, Rogers, Reimann, & Gribble, 

2013).The ileal brake mechanism is thought to maximise the small intestinal absorption of a number 

of nutrients and may be a key component to the “salvage” of digested macronutrients that have 

escaped absorption proximally in the intestine (Maljaars, Peters, Mela, & Masclee, 2008; Van 

Avesaat, Troost, Ripken, Hendriks, & Aam, 2015). A continuation of GLP-1 and PYY release occurs 



from colonic X and Y cells but plasma concentrations appear to not reach the same peaks as when 

digesta is in the ileum (Johansson, Nilsson, Östman, & Björck, 2013). Fibres may have indirect effects 

on the control of the ileal brake mechanism, such as binding to nutrients or reducing their ability to 

diffuse towards the enteroendocrine cells. However, with the recent observation that free fatty acid 

receptors are found in the terminal ileum (in rats at least), it has also been postulated that the 

production of short-chain fatty acids from microbial degradation of fibres could elicit the same reflex 

action (Darzi, Frost, & Robertson, 2011) through a different secondary effect of fermentable fibre 

intake. 

A range of previous studies in human participants have highlighted that the acute impact of inclusion 

many types of dietary fibre in a meal tends to prolong the postprandial peak of GLP-1 and PYY. In 

previous studies where the postprandial response in both gut hormones was measured, 

polydextrose and a high fibre barley product were suggested to increase the area under the curve of 

GLP-1 but not PYY (Ames, Blewett, Storsley, Thandapilly, Zahradka, & Taylor, 2015; Olli, et al., 2015). 

Other studies have suggested that both postprandial GLP-1 and PYY responses are both elevated as a 

result of inclusion of arabinoxylan or ispaghula husk in comparison to a low fibre test meal 

(Karhunen, Juvonen, Flander, Liukkonen, Lähteenmäki, Siloaho, et al., 2010; Lafond, Greaves, Maki, 

Leidy, & Romsos, 2014). Previous research has also suggested impacts of fibre inclusion on either 

ileal brake-associated hormone but have only measured outcomes related to either GLP-1 or PYY 

(Joo, Muraoka, Hamasaki, Harada, Yamane, Kondo, et al., 2015; Klosterbuer, Thomas, & Slavin, 2012; 

Vitaglione, Lumaga, Stanzione, Scalfi, & Fogliano, 2009) and not both. However, due to the 

prolonged time it takes for digesta to pass through the ileocaecal valve and PYY/GLP-1-producing 

cells occurring in both the terminal ileum and colon, it is difficult to separate the impact of dietary 

fibres on the ileal brake mechanism in the absence of parallel estimates of ileocaecal transit. One 

previous study noted an increased peak in GLP-1 and overall response (as assessed by area under 

the curve) within the timescale prior to ileocaecal emptying, as estimated by appearance of breath 

hydrogen peaks (Johansson, Nilsson, Östman, & Björck, 2013). 

Longer-term studies have noted that increased habitual fibre intake (β-glucan or high viscosity β-

glucans)  over 3 to 14 weeks appeared to cause an increase in fasting GLP-1 and PYY concentrations 

(Beck, Tapsell, Batterham, Tosh, & Huang, 2010; Greenway, O'Neil, Stewart, Rood, Keenan, & 

Martin, 2007; Reimer, Pelletier, Carabin, Lyon, Gahler, Parnell, et al., 2010). It is possible that 

changes to fasting concentrations of GLP-1 and PYY are more driven by changes to colonic L cells 

secretion than those from the terminal ileum. Nonetheless, these findings could also suggest that 

longer-term there is a need for an increased threshold of PYY and GLP-1 to be met to result in the 

triggering of the ileal brake mechanism. 

Dietary fibre and the small intestinal epithelium 
The small intestine is the longest part of the gastrointestinal tract and has by far the largest surface 

area (Helander & Fändriks, 2014). As a result, it is the major site of absorption of nutrients in 

humans (Schulze, 2015). Absorptive cells are the major cell type that occurs within the epithelium 

produced by the differentiation of stem cells that reside towards the base of the crypt of Lieberkuhn 

(Marshman, Booth, & Potten, 2002). The crypt-villus unit is often considered the functional unit of 

the small intestine (Marshman, Booth, & Potten, 2002).  A recent study noted that exposing cell 

cultures to an intestine-like milieu within a microchannel device appeared to result in the 

spontaneous production of structures resembling intestinal villi within the monolayer (H. J. Kim & 



Ingber, 2013), suggesting that exposure to the luminal environment is vital in the development and 

regulation of the mucosal structure. 

Other cell types within the small intestinal epithelium include goblet cells (that produce a protective 

mucus barrier) (Hino, Takemura, Sonoyama, Morita, Kawagishi, Aoe, et al., 2012), Paneth cells (that 

act in both sensing and defence roles) (Roth, Franken, Sacchetti, Kremer, Anderson, Sansom, et al., 

2012) and enteroendocrine cells (key in sensing the chemical composition of the intestinal milieu) 

(Egerod, Engelstoft, Grunddal, Nøhr, Secher, Sakata, et al., 2012; Formeister, Sionas, Lorance, 

Barkley, Lee, & Magness, 2009). A morphologically distinct cell type that appears to have secretory 

roles (the tuft cells) have also been recently identified across the entire intestinal epithelium. While 

they appear to have a secretory role, their exact role is not well characterised (Gerbe, Legraverend, 

& Jay, 2012; Gerbe, Van Es, Makrini, Brulin, Mellitzer, Robine, et al., 2011). Intestinal M cells are 

believed to be a class of distinct cells that are spread diffusely across the small intestinal epithelium. 

Their major role is believed to be in the sampling and presentation of luminal content to the 

underlying lymphoid tissue, thereby acting as the epithelial gateway to the intestinal and systemic 

immune systems (Lopes, Abrahim, Cabral, Rodrigues, Seiça, de Baptista Veiga, et al., 2014). 

A large body of work is currently on-going to understand the gene protein factors that regulate the 

differentiation of small intestinal stem cells to produce an appropriate cross-section of healthy 

daughter cells (Al Alam, Danopoulos, Schall, Sala, Almohazey, Fernandez, et al., 2015; Formeister, 

Sionas, Lorance, Barkley, Lee, & Magness, 2009; Melendez, Liu, Sampson, Akunuru, Han, Vallance, et 

al., 2013; Middendorp, Schneeberger, Wiegerinck, Mokry, Akkerman, Van Wijngaarden, et al., 2014; 

Yamada, Kojima, Fujimiya, Nakamura, Kashiwagi, & Kikkawa, 2001). However, there is currently 

limited understanding of how luminal content (driving chemical, immunological or shear-stress 

changes to the underlying tissues) could affect these key intracellular regulatory pathways. recent 

evidence has suggested one potential impact of dietary fibre intake on intestinal stem cell activity 

could be mediated though microbial Short-chain fatty acid (SCFA) production (Petersen, Reimann, 

Bartfeld, Farin, Ringnalda, Vries, et al., 2014), although due to the relatively low amounts of SCFA 

produced in the small intestine, this is potentially more significant to differentiation within colonic 

crypts. Some evidence from organoid models of small intestinal crypts has suggested that stem cells 

already have been programmed to have specific functionality prior to reaching their final location. 

The authors concluded that this suggests that luminal content does not have an impact on the fate 

of the cells (Middendorp, et al., 2014). While this may be true of transient changes within the 

luminal content, it is still likely that the programming of stem cell is still impacted on by the long-

term intestinal milieu. However, cultured cell/organoid work does not allow the complex interplay 

between different tissues and organs and animal-based studies would be difficult to apply to 

elucidating mechanistic pathways. Further work is clearly needed within this area. Consideration of 

the impact of the influence of individual luminal factors on stem cell differentiation would be a 

sound initial approach but further consideration should also be given for how the myriad of luminal 

agents interact with each other, which will be challenging to model in cell culture based systems. 

Absorption across the small intestinal epithelium occurs through a number of processes; passive 

diffusion, carrier mediated diffusion, active transport and pinocytosis (a form of non-specific 

endocytosis), with the major cell type being involved in this role often termed “enterocytes”. These 

absorptive cells are the common cell type found within the small intestinal epithelium. Their roles in 

absorption and completion of the digestive process (through brush-border membrane-bound 



enzymes) are integral to the effective functioning of the small intestine. One previous study noted 

that inclusion of potato fibre into the diets of acrylamide-dosed mice improved the maintenance of 

enterocyte numbers, among other effects that offset the impacts of toxicity (Dobrowolski, Huet, 

Karlsson, Eriksson, Tomaszewska, Gawron, et al., 2012). 

Recent studies have suggested that dietary restriction (and therefore dietary fibre restriction) of 

rodents resulted in an overall reduction in small intestinal length alongside morphological and 

functional changes in the duodenum consistent with a drive for increased absorptive capacity 

(increased height of villi, decreased enterocyte depth and increased expression of brush border 

membrane proteins) alongside the occurrence of atrophy of the ileal mucosa (de Oliveira Belém, 

Cirilo, de Santi-Rampazzo, Schoffen, Comar, Natali, et al., 2015). A reduction in the number of goblet 

cells was also noted. It is unlikely that these morphological changes are simply a result of reduced 

dietary fibre intake within the dietary restriction group. However, this study does highlight how 

important dietary intake appears to be in the regulation of stem cell differentiation within the 

intestine. 

Alongside the secretion of mucin granules, intestinal goblet cells also produce a range of other 

antimicrobial factors, such as secretory immunoglobulin A (H. Chen, Wang, Degroote, Possemiers, 

Chen, De Smet, et al., 2015). It has also been recently postulated that goblet cells are directly 

involved in luminal sampling and the delivery of antigen to the underlying lamina propria and 

immune response-mediating tissues (Knoop, McDonald, McCrate, McDole, & Newberry, 2015), 

although this action is more frequently assumed to mediated by enteroendocrine cells. A number of 

previous animal studies have highlighted how inclusion of different types of dietary fibre with the 

diet of laboratory animals impacts on the number of goblet cells along the small intestinal 

epithelium (Hedemann, Eskildsen, Lærke, Pedersen, Lindberg, Laurinen, et al., 2006; Tanabe, 

Sugiyama, Matsuda, Kiriyama, & Morita, 2005). Such changes can be assessed by histological staining 

of sections of the mucosa and can give details both on the capacity for the mucosa to secrete mucins 

(Ito, Satsukawa, Arai, Sugiyama, Sonoyama, Kiriyama, et al., 2009) as well as the charge of the sugar 

residues on the mucin side chains (Hino, et al., 2012). The inclusion of most types of dietary fibres 

consistently tends to increase the numbers of goblet cells found in the mucosa in comparison to low 

fibre or fibre-free controls (Hino, Sonoyama, Bito, Kawagishi, Aoe, & Morita, 2013; Hino, et al., 2012; 

Ito, et al., 2009). Certain types of fibre, such as isolated cellulose, appear to have minor of no effects 

on goblet cell numbers, while other fibre types (e.g. arabinoxylans) appear to have a profound effect 

on goblet cell coverage (100% increase vs control) in the villus and modest impacts (c.25% increase) 

in the intestinal crypts (H. Chen, et al., 2015). 

However, an alteration in goblet cell numbers does not necessarily equate to a change to the 

physical or functional capacity of the mucus barrier. Due to methodological complexities (Strugala, 

Allen, Dettmar, & Pearson, 2003), there are relatively few studies that have assessed the impact of 

different types of dietary fibres on the thickness and functionality of the mucus barrier. A number of 

other studies have also used immunochemistry or other analytical techniques within animal models 

to estimate the impact of fibre intake on mucin release into the lumen (Morel, Melai, Eady, & Coles, 

2005; Morita, Tanabe, Ito, Sugiyama, & Kiriyama, 2008; Morita, Tanabe, Ito, Yuto, Matsubara, 

Matsuda, et al., 2006; Tanabe, Ito, Sugiyama, Kiriyama, & Morita, 2006; Tanabe, Sugiyama, Matsuda, 

Kiriyama, & Morita, 2005). The measured mucin output may relate well to total mucus production 

but is dependent on the method by which mucins are isolated from tissues. There is a potential for 



factors, such as the accidental retrieval of luminally-occurring gastric mucins or unsecreted mucin 

granules from sloughed cells, cross-reactivity resulting from the diverse nature of factors present in 

the small intestine and the rate of mucus barrier degradation (affected by other luminal factors) to 

affect the outcomes of such analytical techniques.  

Paneth cells reside at the base of small intestinal crypts are believed to play important roles in the 

maintenance of the epithelial layer, particularly after insult or injury to the surrounding epithelial 

cells  (Roth, et al., 2012). Work carried out with experimental models of crypts would suggest that 

Paneth cells are important in the overall functional development of crypt-villus units (Sato, Van Es, 

Snippert, Stange, Vries, Van Den Born, et al., 2011). Paneth cells have a particularly long life span 

(around 100 days) compared to other small intestinal cell types (Roth, et al., 2012). Paneth cells 

produce a gambit of antimicrobial peptides to help protect the intestinal crypts from infiltration by 

luminal microbes (Sato, et al., 2011). A recent study noted that polysaccharides isolated from squid 

ink appear to cause upregulation the expression of genes governing these antimicrobial peptides 

during chemically-induced mucosal injury (Zuo, He, Cao, Xue, & Tang, 2015). This study highlights 

that other polysaccharides have the potential to impact on Paneth cells directly, although the 

authors note they cannot find other evidence linking the intake of commonly-consumed dietary 

fibres to this action. 

Enteroendocrine cells contain specific membrane bound protein receptors at act to sense the 

concentration of specific chemical factors within the small intestinal milieu (Daly, Al-Rammahi, 

Moran, Marcello, Ninomiya, & Shirazi-Beechey, 2013; Jang, Kokrashvili, Theodorakis, Carlson, Kim, 

Zhou, et al., 2007; Margolskee, Dyer, Kokrashvili, Salmon, Ilegems, Daly, et al., 2007). As a result of 

being triggered, enteroendocrine cells release a range of different neurohumoral mediators to effect 

changes at a local and systemic level via the circulatory system and enteric nervous system (Gribble, 

2012). 

The commonly accepted model of enteroendocrine cells within the small intestine are that certain 

cell types produce specific neurohumoral mediators within specific segments (i.e. CCK, secretin and 

gastric inhibitory peptide within the duodenum and GLP-1 and PYY within the ileum (Egerod, et al., 

2012; Habib, Richards, Rogers, Reimann, & Gribble, 2013)). However, a recent study that labelled 

CKK-producing cells within transgenic mice suggests that co-expression of genes necessary to 

produce a range of neurohumoral mediators was found both in nascent enteroendocrine cells 

(occurring within the crypts), alongside mature cells (occurring within the villi) (Egerod, et al., 2012). 

The authors cannot find evidence of a direct interaction between enteroendocrine cells of the small 

intestine and dietary fibre. However, as these cells appear to be triggered by the presence of fats, 

lipids and carbohydrates in the small intestinal, impacts of fibres on binding these substrates or 

inhibiting the presentation of their products to the intestinal epithelium would be likely to affect 

neurohumoral responses from the enteroendocrine cells. 

A novel cell type (termed tuft cells) was recently found to exist within the small intestinal epithelium 

(Gerbe, et al., 2011). Tuft cells appear to occur in both the small and large intestine and have a 

unique morphology and may have roles in both chemosensation, local inflammatory mediation and 

other possibly other secretory processes (Gerbe, Legraverend, & Jay, 2012; Nakanishi, Seno, 

Fukuoka, Ueo, Yamaga, Maruno, et al., 2012). The exact role of these cells and the putative impact 

that dietary fibres may have on their functionality is currently unclear. 



The small intestine mucosa contains discrete sites of follicular lymphoid tissue (sometimes referred 

to as the Peyer’s patches) which are in close proximity to the overlying mucosa (Santaolalla & Abreu, 

2012). Small intestinal M cells are believed to exist in high numbers in these areas and appear to be 

the key sites of antigen sampling and presentation in the small intestine due to their high potential 

for transcytosis (Lopes, et al., 2014). Previous evidence also exists to suggest that other cells types 

(i.e. goblet cells and enteroendocrine cells) may also be involved in the process of sampling luminal 

contents (McDole, Wheeler, McDonald, Wang, Konjufca, Knoop, et al., 2012; Nagatake, Fujita, 

Minato, & Hamazaki, 2014; Schulz & Pabst, 2013). Within these areas of high M cell density, a 

number of other specialist cells exist that may also be key to the action of this area for antigen 

sampling and immunomodulation. Recent work has suggested that dendritic cells, existing in the 

follicular below the M cells, may actually drive the process of translocation across the epithelium by 

extending dendrites through specialised channels that run through each M cell (Lelouard, Fallet, De 

Bovis, Méresse, & Gorvel, 2012). 

Previous studies would suggest that micro- or nanoparticles encapsulated with positively charged 

fibres like chitosan may preferentially bind to intestinal Peyer’s Patches M cells (Lopes, et al., 2014; 

Yoo, Kang, Choi, Park, Na, Lee, et al., 2010), highlighting that the presence of certain types of fibre 

could influence antigen uptake at the surface of M cells directly. It is also likely that the impact of 

various fibres on nutrient binding and the small intestinal microfloral community are also likely to 

affect the processes of these small intestine associated lymphoid tissue, as was recently suggested in 

a study looking at M cell translocation in the presence of soluble fibres extracted from plantains 

(Roberts, Keita, Parsons, Prorok-Hamon, Knight, Winstanley, et al., 2013). 

Dietary fibre and small intestinal motility 
It is often suggested that dietary fibre per se tends to slow the rate of transit of digesta along the 

small intestine. However, previous radiographic studies highlighted how both the form and type of 

dietary fibre appeared to impact small intestinal motility by estimation of small intestinal transit 

time. Within these studies, it was noted that coarse bran significantly accelerated small intestinal 

transit in some participants (as did plastic particles of similar size), while fine bran and ispaghula 

husk did not have a significant effect (McIntyre, Vincent, Perkins, & Spiller, 1997; Vincent, Roberts, 

Frier, Perkins, MacDonald, & Spiller, 1995). This previous work also highlighted the complexity of 

estimation of small intestinal transit time through minimally invasive means. In essence, it is 

necessary to assess both gastric emptying and colonic filling. As both of these events happen over a 

long period of time, an assumption must be based on an arbitrary cut-off (the ones used in the 

previously cited work were 50% of the digesta leaving the stomach and 50% of the digesta entering 

the large bowel). Other minimally invasive methods that are employed to estimate gastric emptying 

include paracetamol or synthetic substrate appearance rates in the bloodstream and changes to 

gastric volume assessed by clinical imaging methods (Kar, Jones, Horowitz, Chapman, & Deane, 

2015), while colonic filling can be estimated by appearance of peaks of exhaled hydrogen in the 

breath (produced by microbial fermentation and transported to the lungs through the systemic 

circulation) (Bertram, Andresen, Layer, & Keller, 2014; Bianchi & Capurso, 2002), or more directly by 

clinical imaging (Camilleri, Iturrino, Bharucha, Burton, Shin, Jeong, et al., 2012) and the use of 

swallowed devices (WorsØe, et al., 2011). 

The inclusion of 5 g of guar gum in solid or liquid meals appeared to increase the time length over 

which the small intestine was motile in comparison to control meals (V. Schönfeld, Evans, & 

Wingate, 1997). Within this study, guar gum did not seem to affect the frequency or intensity of 



contraction within the small intestine. The effect also seemed to be dependent on the presence of 

other nutrients, as inclusion of guar gum within water did not increase motility compared to a fibre-

free water control and also had much less impact on motility than control or guar-containing meals. 

A separate study that assessed the impact of different dosages of guar gum ( 0 to 4.5 g - provided 

within a viscous meal) suggested that guar viscosity did not impact on estimated small intestinal 

transit time (Van Nieuwenhoven, Kovacs, Brummer, Westerterp-Plantenga, & Brouns, 2001), 

although it must be noted that all intestinal transit times measured within this study were very short 

(around 150 minutes on average). This could have been due to the addition of lactulose to estimate 

orocaecal transit time but which may have also caused a decrease within the habitual, non-

experimental, transit time of the individuals (Carlin & Justham, 2011; Wirz, Nadstawek, Elsen, 

Junker, & Wartenberg, 2012).  

Evidence from animal studies would suggest that long-term intake of dietary fibre also causes the 

muscular layer of the small intestine to become thicker (Ma & Zhang, 2003; Stark, Nyska, & Madar, 

1996), although this would be challenging to evidence in humans. The ileal smooth muscle of guinea 

pigs fed diets containing various convenience foods appeared to be less sensitive to electrical 

stimulation in the brown rice congee group compared to the white rice congee and baked bean-fed 

groups (Patten, Bird, Topping, & Abeywardena, 2004). This could suggests that insoluble fibres affect 

the contractile nature of smooth muscle but it must be noted that the incorporation of the 

convenience foods into the guinea pig diets only accounted for a very small proportion of the total 

dietary fibre. 

Dietary fibre and changes to small intestinal morphology and absorptive capacity 
The inclusion of pectin to the diets of pigs fed over a 9-day period resulted in a reduction in the 

average villous height and an increase in the number of villi per unit area sampled at two site on the 

small intestine (Hedemann, et al., 2006). For a longer study (3 months feeding – also carried out in 

pigs), there appeared to be no effect of inclusion of 5.2% fibre (mainly pea fibre and pectin) on the 

overall length of the small intestine versus a low fibre control (Jørgensen, Zhao, & Eggum, 1996). 

Differential effects of different types of dietary fibre on small intestinal crypt-villus height have also 

been frequently noted in rodent models (Gomez-Conde, Garcia, Chamorro, Eiras, Rebollar, Pérez De 

Rozas, et al., 2007; H. S. Shen, Chen, Wu, Li, & Zhou, 2012). These findings perhaps highlight that 

dietary fibre could act, both directly (through the mechanical activation of intestinal stretch 

receptors) or indirectly (through actions on the small intestinal microflora or by binding to nutrients 

or exocrine secretions). Previous studies feeding fibre to germ-free and conventional mice, 

suggested that microbial fermentation in the small intestine was an important driver of these 

changes to mucosal morphology (Goodlad, Ratcliffe, Fordham, & Wright, 1989). 

Previous evidence suggests that soluble, gel-forming dietary fibres would be expected to reduce the 

intestinal absorption of other dietary factors. Evidence exists to suggest that fibre types such as 

alginate (Wilcox, Brownlee, Richardson, Dettmar, & Pearson, 2014), guar gum (Ou, Kwok, Li, & Fu, 

2001) and other fibre isolates could affect changes that limit the rate of nutrient 

digestion/absorption in the small intestine (Fabek, Messerschmidt, Brulport, & Goff, 2014; Zacherl, 

Eisner, & Engel, 2011). In the case of certain nutrients, this action has been suggested to be linked to 

improved health (e.g. glucose, cholesterol and dietary fats) via mechanisms of delayed postprandial 

appearance in the plasma (Ou, Kwok, Li, & Fu, 2001; Wilcox, Brownlee, Richardson, Dettmar, & 

Pearson, 2014; Zacherl, Eisner, & Engel, 2011), while others are considered as being potentially 



negative, particularly in the case of fibres that might bind to essential minerals (Elhardallou & 

Walker, 1999; Wong & Cheung, 2005). In most cases, these methods have modelled the acute effect 

of meal consumption in vivo or in vitro and do not consider long-term health or nutrient status. It is 

possible reduced absorption in the small intestine might be expected to increase the salvage of 

nutrients in the colon (Miyada, Nakajima, & Ebihara, 2012) or lead to longer-term changes in 

absorptive capacity in the small intestine, such as increased crypt-villus depth and epithelial surface 

area (as discussed above). 

Consumption of dietary fibre may also lead to molecular changes to the epithelial organisation. In 

previous intestinal permeability studies, it was noted that inclusion of inulin within a pasta resulted 

in a reduction of intestinal permeability (assessed by urinary lactulose-mannitol excretion) versus a 

control pasta in a double-blind, crossover study (Russo, Linsalata, Clemente, Chiloiro, Orlando, 

Marconi, et al., 2012), believed to be a result of a reduction in the circulating levels of zonulin, a 

protein that can act to disassemble tight junctional complexes along the gut epithelium (Asmar, 

Panigrahi, Bamford, Berti, Not, Coppa, et al., 2002) and an increase in circulating GLP-2, which is 

believed to increase the number of absorptive cells within the mucosa (Sangild, Tappenden, Malo, 

Petersen, Elnif, Bartholome, et al., 2006). In short-term (9 days) feeding studies in pigs, it was noted 

that high fibre diets increased the activity of brush-border bound disarrachidases isolated from the 

small intestinal mucosa (Hedemann, et al., 2006). This is likely to be due to an increase in expression 

of the enzymes, which could be suggestive of either an increased availability of disaccharides in the 

small intestine, or an attempt by the intestinal epithelium to increase its absorptive potential, similar 

to how the number of intestinal iron transport proteins have been reported to increase in response 

to a low iron diet (Zoller, Koch, Theurl, Obrist, Pietrangelo, Montosi, et al., 2001). 

Dietary fibre and small intestinal exocrine secretions 

Although the small intestine is the major site of macronutrient digestion within the human gut, the 

majority of enzymes it produces appear to be membrane-bound. Enteropeptidase (also known as 

enterokinase) is believed to be one of these membrane-bound entities (Long Zheng, Kitamoto, & 

Evan Sadler, 2009; Song, Choi, & Seong, 2002) that could also be released within the intestinal juice 

(succus entericus) from the crypts of Lieberkühn. mRNA studies suggest that enteropeptidase is 

produced by both enterocytes and goblet cells within the normal human duodenum (Imamura & 

Kitamoto, 2003). Enteropeptidase has a very high specificity for cleaving the tetra aspartyl-lysil 

sequence that occurs within the trypsinogen chain (Mikhailoya & Rumsh, 2000). This results in the 

production of the active form (trypsin) that drives the cleavage of other zymogens released within 

the pancreatic exocrine secretion (Simeonov, Zahn, Sträter, & Zuchner, 2012)and is the key step in 

intestinal protein digestion (J. M. Chen, Kukor, Le Maréchal, Tóth, Tsakiris, Raguénès, et al., 2003). 

The authors are aware of only one study that has looked at the impact of dietary fibre on 

enteropeptidase activity. Within this study, it was noted that a range of very different fibre 

preparations (wheat bran, guar gum, ispaghula husk, cellulose and lignin) had no measureable 

impact on the activity of free enteropeptidase in solution (Hansen, 1986). It could be postulated that 

this is down to the high specificity of enterokinase to its substrates. However, future studies into 

how different dietary fibres could affect diffusion of substrates (such as trypsinogen) to the brush 

border (or other models including membrane-bound enteropeptidase) would also be valuable in 

understanding how different types of fibres could affect this key activation process. 



The major exocrine secretion that the intestinal epithelium produces is the functional bilayer of 

mucus (Allen & Flemström, 2005) that protects the underlying mucosa from shear stress and 

chemical, microbial or enzymatic degradation (Atuma, Strugala, Allen, & Holm, 2001). This functional 

is hypothesised to be selectively permeable so as to allow diffusion of nutrients and substrates for 

the brush border-bound enzymes to the epithelial surface (Macierzanka, Mackie, Bajka, Rigby, Nau, 

& Dupont, 2014). The adherent and loosely adherent mucus layers have been measured (in 

anaesthetised rats) to be much thinner than the mucus that covers the stomach and large intestine 

(Atuma, Strugala, Allen, & Holm, 2001) and therefore uptake is affected by the thickness and 

constitution of the unstirred layer. 

Alongside having impacts on the secretion of mucus/mucins, it also appears that dietary fibres could 

have direct actions on the rheological properties of the function mucus barrier. Previous studies 

suggested that gel-forming fibres (guar gum and carboxymethylcellulose) could limit the absorption 

of glucose within excised sections of rat jejunum, possibly by affecting the mucus barrier function 

(Johnson & Gee, 1981).  

Dietary fibre and pancreatic exocrine physiology 
Due to the spectrum of digestive enzymes secreted by the pancreas (Christiansen, Backensfeld, & 

Weitschies, 2010; Layer & Keller, 1999) and the proportionate contribution of these enzymes to 

human digestive processes (Kammlott, Karthoff, Stemme, Gregory, & Kamphues, 2005; Lindkvist, 

2013), pancreatic juice could be considered the single most important digestive secretion in healthy 

adults. A sizeable body of evidence has been accumulated that isolated dietary fibre fractions can 

modulate the activity of pancreatic enzymes in vitro, as summarised in Table 1. Previous evidence 

suggests that fibre isolates do not have the same impact on all isolated digestive enzymes , which 

could be based either on specificity or interference with other factors involved in catalytic activity, 

such as free cations and hydrogen ions, or the availability of co-factors (Dukehart, Dutta, & Vaeth, 

1989).  Table 1 below summarises some of the in vitro evidence that different fibre fractions affect 

digestive enzyme activity. 

[Table 1 here] 

The potential for some fibres to impact on the enzyme activity of specific digestive enzymes suggests 

the potential for targeted therapeutic roles. For example, reduction of pepsin activity has been 

suggested as a potential therapy for gastrointestinal reflux (Strugala, Kennington, Campbell, Skjåk-

Bræk, & Dettmar, 2005) but at the same time, total inhibition of protease activity might be expected 

to have negative consequences on amino acid absorption (Lindkvist, 2013). Previous work suggested 

that specific alginate fractions could inhibit pepsin activity but not trypsin activity (Chater, Wilcox, 

Brownlee, & Pearson, 2015).  

Inhibition of pancreatic lipase by high intake of specific types of dietary fibre could be responsible for 

fibre-induced steatorrhea (Roerig, Steffen, Mitchell, & Zunker, 2010). Previous studies suggested 

that high fibre diets accentuate fat malabsorption in patients with pancreatic insufficiency - high 

fibre intake was associated with a 32% increase in faecal fat excretion in a group of 12 patients 

(Dutta & Hlasko, 1985). Conversion from an omnivorous to a vegan diet (which significantly 

increased fibre intake) over a 6-week period altered the faecal output of some proteases but did not 

cause a measurable change in lipase activity ( alkowiak,  a dry,  isowska,   aflarska-Popławska, 

Gr ymisławski,  tankowiak-Kulpa, et al., 2012). This effect could also have been driven by a lower 



intake of protein in the vegan versus omnivorous dietary pattern. Inclusion of generic alginate 

preparations within test meals was evidenced to increase fat excretion and attenuation of circulating 

post-prandial blood lipids in ileostomists ( andberg, Andersson, Bosœus, Carlsson, Hasselblad, & 

Härröd, 1994). This could be due to the previous in vitro observation that some alginates can reduce 

pancreatic lipase activity (Wilcox, Brownlee, Richardson, Dettmar, & Pearson, 2014). Pancreatic 

lipase-specific inhibition has been suggested as a means that other fibres, such as chitosan could be 

used as weight loss therapies (Gades & Stern, 2003). Currently, evidence for efficacy of this mode of 

therapy only exists for pharmacological agents like orlistat in long-term weight loss studies(Douglas, 

Bhaskaran, Batterham, & Smeeth, 2015). 

While it is well established that dietary fibres have modulatory effects on the activity of digestive 

enzymes once they have entered the intestinal lumen. It is however less clear how dietary fibre 

modulates pancreatic exocrine secretions. Although evidence suggests that acute ingestion of 

dietary fibre can lead to inhibition of digestion, there is evidence to suggest that sustained intake of 

dietary fibre can lead to pancreatic compensation with increased secretion of digestive enzymes. 

Previous studies in pigs have suggested that potato fibre consumption result in an increased 

pancreatic exocrine secretion with increased lipolytic, proteolytic and amylolytic activity (Jakob, 

Mosenthin, Thaela, Weström, Rehfeld, Olsen, et al., 2000). Sustained, increased inclusion of dietary 

fibre in the diets of rodents has also been suggested to increase pancreatic exocrine secretions 

(Liener & Hasdai, 1986; Schneeman, Richter, & Jacobs, 1982), although it is uncertain whether this 

effect is mediated by fibre directly inhibiting digestive enzyme activity, or whether this is a result of 

the presence of increased phytochemical inhibitors (e.g. of trypsin activity) within such feeds. 

It is thought that dietary fibre interferes with the negative feedback regulation of pancreatic enzyme 

secretion leading to increased pancreatic exocrine function.  Levels of pancreatic exocrine secretion 

have been evidenced to be regulated by intraluminal enzyme concentration through oral or 

duodenal addition of enzymes (Morisset, 2008; Walkowiak, Witmanowski, Strzykala, Bychowiec, 

Songin, Borski, et al., 2003). It was previously observed that participants fed a diet supplemented 

with 20g/day fibre for 4 weeks increased total postprandial pancreatic lipase output (Dukehart, 

Dutta, & Vaeth, 1989). 

Dietary fibre and hepatic exocrine secretion 
The liver is a multifunctional organ that is key in the storage and handling of nutrients absorbed by 

the gut (Kullak-Ublick, Beuers, & Paumgartner, 2000). The major role that the liver plays in digestion 

is through the production of bile, which is key to the process of triglyceride digestion through 

pancreatic lipase activity (Wilde & Chu, 2011). 

In humans, bile is secreted by hepatocytes into a series of canaliculi which eventually drain into the 

gall bladder through the common hepatic duct where it is subsequently stored (Boyer, 2013). During 

this storage, the bile is further processed within the gall bladder, where large proportions of bile 

water can be reabsorbed over prolonged periods of retention (van Erpecum, 2005). Bile aids the 

digestion of dietary fats through the detergent effect of bile acids and bile salts, thereby dispersing 

dietary fats into mixed micelles and increasing the surface area upon which digestive lipases can act 

(Torcello-Gómez, Maldonado-Valderrama, de Vicente, Cabrerizo-Vílchez, Gálvez-Ruiz, & Martín-

Rodríguez, 2011; Wilde & Chu, 2011). 



Bile acids are cholesterol derivatives. Within healthy humans, the dominant forms of secreted bile 

acids are believed to be  cholic and chenodeoxycholic acid, with almost all molecules conjugated to 

glycine (75 %) and taurine, existing either as bile salts (in combination with sodium or potassium) or 

bile acids (Pearson, Parikh, Orlando, Johnston, Allen, Tinling, et al., 2011), although there is also clear 

evidence that the proportion of these bile acids having high intra- and inter-individual variability 

(Brockerhoff, Höckel, Holtermüller, Köhl, Weis, & Rathgen, 1982; Duane, 1994; Hanson & Duane, 

1994). In the terminal ileum, a large proportion of secreted bile acids (>90 %) are reabsorbed (by 

specific bile acid transporters) and recycled via the hepatic portal vein to the liver where they are 

reutilised (Zhou, Levin, Pan, McCoy, Sharma, Kloss, et al., 2014). Bile mixes with pancreatic exocrine 

secretions in the ampulla of Vater, where the pancreatic duct and common bile duct merge (Blidaru, 

Blidaru, Pop, Crivii, & Seceleanu, 2010).  A small amount of secondary bile acids are produced by 

bacterial metabolism within the small intestine. Secondary bile acids are produced in much higher 

amounts in the large intestine and high faecal, biliary or circulating levels of these metabolites are 

associated with increased risk of colorectal cancer and gallstone formation (Ridlon, Kang, & 

Hylemon, 2006). 

A number of previous studies have assessed the impact of dietary fibre fractions on adsorption of 

bile acids which would be expected to limit the reuptake of bile acids within the terminal ileum and 

thereby drive the need for further production of bile acids within the liver, thereby hypothetically 

positively affecting plasma cholesterol profiles and utilising stores of saturated fatty acids within the 

liver (Cornfine, Hasenkopf, Eisner, & Schweiggert, 2010; Daou & Zhang, 2014; Kanauchi, Serizawa, 

Araki, Suzuki, Andoh, Fujiyama, et al., 2003; Peerajit, Chiewchan, & Devahastin, 2012; Sreenivas & 

Lele, 2013; Takekawa & Matsumoto, 2012; Torcello-Gómez & Foster, 2014; N. Zhang, Huang, & Ou, 

2011). It must be noted that previous in vitro studies on purified bile acids highlights that this action 

is as dependent on the structure and presence of conjugate amino acids greatly affects the 

interactions with isolated fibre fractions (Araki, Mukaisho, Fujiyama, Hattori, & Sugihara, 2012; 

Beysseriat, Decker, &  cClements, 2006; Gao, Yan, Xu, Ye, & Chen, 2015; Górecka, D ied ic, & Hȩś, 

2014; Torcello-Gómez, Fernández Fraguas, Ridout, Woodward, Wilde, & Foster, 2015; W. Wang, 

Yoshie, & Suzuki, 2002).   

Dietary fibre and diseases of the small intestine, liver and exocrine pancreas 

Epidemiological evidence linking dietary fibre intake to diseases of the small intestine and its 

accessory organs appears to be relatively limited in scope, as outlined by recent studies (post 2000) 

in Tables 2 and 3. This may be appropriate in certain cases, where the disease aetiology is well 

evidenced to be communicable (e.g. hepatitis) or as a result of the intake of other dietary factors 

(e.g. some forms of liver cirrhosis and excessive alcohol intake) (Lachenmeier, Kanteres, & Rehm, 

2011). In other cases, where disease prevalence may be increasing worldwide and aetiology is less 

well defined (e.g. non-alcoholic fatty liver disease), this highlights a potential research gap that 

future studies could attempt to address. Due to the large number of up-to-date guidelines, meta-

analyses and  reviews already are in existence on the association of dietary fibre intake with type II 

diabetes (e.g. (Ajala, English, & Pinkney, 2013; Boeing, Bechthold, Bub, Ellinger, Haller, Kroke, et al., 

2012; Franz, Powers, Leontos, Holzmeister, Kulkarni, Monk, et al., 2010; Lattimer & Haub, 2010)) and 

obesity/metabolic syndrome (e.g. (Abete, Astrup, Martínez, Thorsdottir, & Zulet, 2010; Boeing, et al., 

2012; Catapano, Reiner, De Backer, Graham, Taskinen, Wiklund, et al., 2011; Perk, De Backer, 

Gohlke, Graham, Reiner, Verschuren, et al., 2012)), these health conditions are omitted from the 

current review. 



[Tables 2 and 3 near here] 

Non-alcoholic fatty liver disease is defined as the excess build-up of parenchymal fat in the liver in 

the absence of excessive habitual alcohol consumption  (Than & Newsome, 2015). A recent 

observational study suggested no association of dietary intake with markers of severity of non-

alcoholic fatty liver disease (Ricci, Canducci, Pasini, Rossi, Bersani, Ricci, et al., 2011), highlighting the 

need for larger, longer-term studies in the future. Such studies may be challenging using existing 

longitudinal datasets, as non-alcoholic fatty liver disease diagnosis has been historically difficult and 

the condition is associated with many co-morbidities (Abd El-Kader & El-Den Ashmawy, 2015). One 

previous study in a small cohort (n = 12) of patients noted that compared intake of a Mediterranean 

diet to a low fat, high carbohydrate diet in a randomised, crossover trial. While both groups lost 

weight, a larger reduction in liver fat content and a greater improvement in insulin sensitivity were 

noted in the Mediterranean diet treatment arm. Dietary fibre intake significantly increased (by an 

average of almost 9 g per day from a high baseline intake of 27.6 g/day) from the baseline/washout 

dietary period in the participants receiving the Mediterranean Diet but not the low fat high 

carbohydrate diet. It must be noted that other dietary factors with potential to affect the study 

outcomes, such as the percentage of energy from each macronutrient and fatty acid profiles were 

also significantly altered within these treatment arms, so these findings are unlikely to be due simply 

to changes in fibre intake. 

Despite a large number of studies focusing on other hepatic conditions and dietary fibre intake, 

there seems to be no available evidence to consider an association between fibre intake and risk of 

liver cancer. A number of previous studies have looked at how other dietary factors may be 

associated with risk of hepatocarcinoma and these findings have been reviewed fairly recently 

(Gomaa, Khan, Toledano, Waked, & Taylor-Robinson, 2008) but it appears that only  two studies 

have previously evaluated the association of dietary fibre/fruit and vegetable intake with hepatic 

cancer. This is surprising due to the recent increase in prevalence of liver cancer (Bosch, Ribes, Díaz, 

& Cléries, 2004). This is in contrast with the number of articles linking dietary fibre to pancreatic 

cancer (see Table 2), where prevalence is both lower than hepatic cancer in developed countries and 

has tended to remain relatively stable over time (Lowenfels & Maisonneuve, 2006). 

Small intestinal cancer incidence is around 30 times less frequent than colorectal cancer in both men 

and women in the US (Schatzkin, Park, Leitzmann, Hollenbeck, & Cross, 2008). Although the small 

intestine makes up a large proportion of the gastrointestinal tract by length, the low incidence may 

be in part due to relatively short exposure time to potential carcinogens compared to the large 

bowel (Lee, Erdogan, & Rao, 2014), as well as the relatively high water content of the digesta within 

the small intestine (Chowdhury, Murray, Hoad, Costigan, Marciani, Macdonald, et al., 2014), thereby 

diluting harmful factors of dietary and endogenous origin. 

Pancreatitis broadly refers to inflammation of the pancreas and is believed to be caused by multiple 

aetiologies (Artifon, Chu, Freeman, Sakai, Usmani, & Kumar, 2010).  A randomised, double-blinded 

parallel trial in a sample (n = 30) of Turkish patients with acute pancreatitis (Karakan, Ergun, Dogan, 

Cindoruk, & Unal, 2007) noted that patients who received 24 g/day of mixed soluble and insoluble 

fibre within their nasojejunal feeds reduced the length of total hospital stay by a median of 5 days, 

compared to median stay length of 15 days for the control group who received only standard enteral 

feeds. The frequency of serious complications was also reduced in the fibre group (7 of 15 patients 

versus the 9 of 15 control patients).  hile the authors inferred that this was down to the “prebiotic” 



impact of the fibre supplementation, this effect was not evidenced by any microbial data and further 

detail of the fibre supplementation (other than the formulation containing 47% soluble fibres)  was 

not reported. A previous meta-analysis that compared the impact of inclusion of probiotic 

formulations and fibres to enteral feeds noted no improvement in pancreatitis patient outcome 

compared with control treatments only supplemented with fibre (Petrov, Loveday, Pylypchuk, 

McIlroy, Phillips, & Windsor, 2009), which further suggests that any positive impact that fibre 

inclusion may have on pancreatitis outcomes appears to not be due to microfloral mediation. 

Summary 
The above evidence (see Table 2 and 3) highlights that a lack of quality observational studies carried 

out on dietary fibre/fibre-rich food intake and diseases of the small intestine, pancreas and liver. In 

some cases, this is surprising considering the high prevalence of these diseases/dysfunctions. 

Isolated fibres from varying sources have different impacts on the activity of enzymes involved in the 

intestinal phase of digestion, although this effect does not simply seem to be a result of viscosity or 

gel-forming nature. This action is likely to impact enteroendocrine cell-mediated signalling in the gut 

which may further result in differential effects of fibres on intestinal motility and exocrine secretion 

into the intestine. 

In vivo studies in animals currently point to the potential of incorporation of certain fibre types in 

foods or supplements to manage body weight. In vitro evidence (see Table 1) would provide 

potential mechanisms through which intake of dietary fibres could impact energy absorption in the 

small intestine. Limited evidence from intervention-based studies hampers the potential for health 

claims in relation to specific fibre fractions and weight loss (Poddar, Kolge, Bezman, Mullin, & 

Cheskin, 2011; Wanders, van den Borne, de Graaf, Hulshof, Jonathan, Kristensen, et al., 2011) 

Further from this, development of high fibre products targeted at benefitting various health 

outcomes can be hampered by poor palatability of high fibre products (van Kleef, van Trijp, van den 

Borne, & Zondervan, 2012), technical issues with industrial scale production of foods with higher 

fibre content and limited potential of many fibre-fortified foods to provide a relevantly high amount 

of dietary fibre to the consumer to cause the desired effects at each meal. Even if a highly 

acceptable product is developed, there is still the potential that incorporation of high amounts of 

fibre isolates within the diet could lead to unwanted gastrointestinal consequence, such as 

steatorrhea or altered whole gut transit times (resulting in constipation or diarrhoea).  

There is also a drive by public health agencies around the world to increase the dietary intake of 

fibre-rich foods, such as fruits, vegetables and whole grains at a population level within an ideal diet 

and lifestyle template. The above evidence highlights that different plant foods or fibre isolates 

appear to have differential effects on small intestinal physiology. There is currently no good 

evidence to support the notion that fibre supplementation with fibre isolates to meet daily 

recommendations should replace an overall sound dietary pattern based in on intake of fibre-rich 

foods. While isolated fibres may have impacts that would be expected to be beneficial to health, 

impacts on specific, long-term health outcomes must be better evidenced using highly acceptable, 

well-focused food products in appropriately designed clinical trials. 
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Table 1: Summary of the impact of selected types of isolated dietary fibre on the activity of pepsin, 

trypsin, pancreatic α-amylase and pancreatic lipase. Activity Relative to 100% control.

Fibre 

Additional 
Notes on 

source and 
characterist
ics of fibre 

Percentage Activity Relative to 100% control 

Source 
Notes on 

methodolog
y 

Amyla
se 

Pepsi
n 

Lipas
e 

Tryps
in 

Chymotryp
sin 

Pectin Lemon 64.8 a, 

1, α 
67 b, 

2, α 
- 71.9 c, 

3, α 
74.7 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Substrate: 
a - Soluble 
starch 
b – Casein 
c - BTpNA - 
Benzoyl-L-
trypsin p-
nitroanilide 
d – Succinyl 
albumin 
e - 1,2 Di-o-
lauryl-rac-
glycero-3-
(glutaric acid 
6-methyl 
resorufin 
ester) 
(DGGR) 
f - 
Trioleoylglyc
erol 
g –Corn oil 
emulsion 
h - β-
Lactoglobulin
  
I – 
Encapsulated 
egg yolk 
J - Maize 
starch (MS) 
K – Potato 
starch 
J - Triolein 
L – Corn 
starch 
M – 
Tributyrin 
 
Enzyme 
1 - Amylase 
from bacillus 
subtilis 
2 - Pepsin 
from hog 
stomach 
mucus 

Apple 50.7 a, 

1, α 
42.6 
b, 2, α 

- 52.4 c, 

3, α 
72.8 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Citrus 169.6 
5, β 

 123.
4 5, β 

100.8 
5, β 

128.3 5, β (Dunaif & 
Schneeman
, 1981a, 
1981b) 

Citrus (mw 
~750k) 

- - ~30 
10, f, α 

- - (Tsujita, 
Sumiyoshi, 
Han, 
Fujiwara, 
Tsujita, & 
Okuda, 
2003) 

Citrus (mw 
~750k) 

- - 80 10, 

f, ζ 
- - (Edashige, 

Murakami, 
& Tsujita, 
2008) 

Citrus (Low 
mw) 

- - 60 10, 

f, ζ 
- - (Edashige, 

Murakami, 
& Tsujita, 
2008) 

Citrus (High 
mw) 

- - 2010, 

f, ζ 
- - (Edashige, 

Murakami, 
& Tsujita, 
2008) 

No 
additional 
information 
(NAI) 

- - ~64 
12, g, η 

- - (Espinal-
Ruiz, 
Parada-
Alfonso, 
Restrepo-
Sánchez, 
Narváez-
Cuenca, & 
McClement
s, 2014) 



LM Pectin - 104.
4 h, 13, 

θ 

- ← 55.0 h, 14+15, θ → (Mouécouc
ou, 
Sanchez, 
Villaume, 
Marrion, 
Frémont, 
Laurent, et 
al., 2003) 

3  -Bovine 
pancreatic 
trypsin 
4 - Bovine 
pancreatic 
chymotrypsi
n 
5 - Human 
pancreatic 
juice 
collected by 
fistula 
6 - Porcine 
pepsin 
7 - Porcine 
trypsin 
8 – Bovine 
pre-gastric 
lipase 
9 - Porcine 
pancreatic 
lipase  
10 - 
Pancreatic 
lipase from 
rat pancreas 
11 – Porcine 
pancreatic 
lipase 
12 – 
Simulated 
intestinal 
juice 
13 – Pepsin 
(unknown 
source) 
14 - Bovine 
trypsin 
15 - Porcine 
chymotrypsi
n 
16 –Porcine 
pancreatic α-
amylase 
17 - α-
amylase 
from human 
saliva 
18 - α-
amylase 
19 – Porcine 
pancreatin  
 
Fibre 
Concentratio
n: 
α - 1.25 
mg/ml 
β- 2.5% by 
weight 
γ - 5% by 
weight 

Citrus fruits 
- 
galacturonic 
acid 
content 
86.3%, 
methoxy 
content 
8.9% 

- - 80.8 
M, 23, 

Λ 

- (O'Connor, 
Sun, Smith, 
& Melton, 
2003) 

Alginate Sodium 
alginate 

67.5 a, 

1, α 
>100 
b, 2, α 

- 78.5 c, 

3, α 
54.4 c, 4, α (K. Ikeda & 

Kusano, 
1983; K. K. 
Ikeda, T, 
1983) 

Alginates 
varying in 
M:G 
content 
from 
F[G]=0.34-
0.68 

- 53.9-
88.6 
d, 6, α 

- 88.5-
110.3 
d, 7, α 

- (Chater, 
Wilcox, 
Brownlee, 
& Pearson, 
2015) 

As above - 19.4
2-

60.8
4 d, 1, 

δ 

- - - (Strugala, 
Kennington
, Campbell, 
Skjåk-Bræk, 
& Dettmar, 
2005) 

As above - - 27.8-
102.
3 e, 9, 

ε 

- - (Wilcox, 
Brownlee, 
Richardson, 
Dettmar, & 
Pearson, 
2014) 

Fucoidan Extracted 
from F. 
vesiculosus 

100 a, 

17, ο 
- - - - (K. T. Kim, 

Rioux, & 
Turgeon, 
2014) 

Extracted 
from A. 
nodosum at 
varying 
harvesting 
periods  

0-93 a, 

17, ο 
- - - - (K. T. Kim, 

Rioux, & 
Turgeon, 
2014) 



Chitosan NAI - - ~811

2, g, η 
- - (Espinal-

Ruiz, 
Parada-
Alfonso, 
Restrepo-
Sánchez, 
Narváez-
Cuenca, & 
McClement
s, 2014) 

δ - 0.71 
mg/ml 
ε - 3.43 
mg/ml 
ζ - 0.5 mg/ml 
η – 0.9% by 
weight 
θ - 1.7% by 
weight 
ι- 500% w/w 
compared to 
substrate 
κ - 1 mM 
Λ – 10 mg/ml 
μ – 2 mg/ml 
ν - 6.8 - 9.8% 
w/w 
depending 
on the 
moisture 
content and 
bulk density 
of the fibre. 
Ξ 0.4% by 
weight 
ο – 5 mg/ml 
π – 13.3 
mg/ml 
 

Gum 
arabic 

NAI - 104.
1 h, 13, 

θ 

- ←51.0 h, 14+15, θ → (Mouécouc
ou, et al., 
2003) 

From Acacia 
tree 

- - 76.2 

M, 23, 

Λ 

- (O'Connor, 
Sun, Smith, 
& Melton, 
2003) 

Wheat 
Bran 

Water-
insoluble 
dietary fibre 
from wheat 
bran 

89.1 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Water-
soluble 
dietary fibre 
from wheat 
bran 

82.1 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Fibre 
component 
of Kellogg’s 
AllBran® 

174.5 
k, 19, ν 

- - - - (Hardacre, 
Yap, Lentle, 
& Monro, 
2015) 

 As above 142.2 l, 

19, ν 
- - - - (Hardacre, 

Yap, Lentle, 
& Monro, 
2015) 

Wheat 
Fibre 

‘ F600’(J. 
Rettenmaie
r & Söhne, 
Rosenberg, 
Germany) 

115.3 
k, 19, ν 

- - - - (Hardacre, 
Yap, Lentle, 
& Monro, 
2015) 

As above 105.5 l, 

19, ν 
- - - - (Hardacre, 

Yap, Lentle, 
& Monro, 
2015) 

‘Prolux’ 
(Oppenhei
mer Pty 
Ltd., NSW, 
Australia) 

120.4 
k, 19, ν 

- - - - (Hardacre, 
Yap, Lentle, 
& Monro, 
2015) 

As above 109.0 l, 

19, ν 
- - - - (Hardacre, 

Yap, Lentle, 



& Monro, 
2015) 

Resistant 
Starch  

From maize 79.8 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Methyl 
Cellulose 

NAI - - ~451

2, g, η 
- - (Espinal-

Ruiz, 
Parada-
Alfonso, 
Restrepo-
Sánchez, 
Narváez-
Cuenca, & 
McClement
s, 2014) 

Carboxymet
hyl cellulose 

80.1 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Carboxymet
hyl cellulose 
sodium salt 

57.1 a, 

1, α 
74.3 
b, 2, α 

- 88.2 c, 

3, α 
57.7 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Carboxymet
hyl cellulose 

- - 93.3 
 , 8, Λ 

- - (O'Connor, 
Sun, Smith, 
& Melton, 
2003) 

NAI - - - - -  
Guar gum NAI 82.6 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

NAI 268.5 
k, 19, ν 

- - - - (Ou, Kwok, 
Li, & Fu, 
2001) 

NAI 229.7 k 

19, ν 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Yeast 
mannan 

NAI 77.4 a, 

1, α 
86.5 
b, 2, α 

- 84.9 c, 

3, α 
56.0 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Agar-agar NAI 80.2 a, 

1, α 
84.0 
b, 2, α 

- 38.3 c, 

3, α 
59.5 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Inulin NAI 86.7 a, 

1, α 
88.3 
b, 2, α 

- 98.0 c, 

3, α 
66.9 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Xylan NAI 76.7 a, 

1, α 
82.8 
b, 2, α 

- 23.0 c, 

3, α 
46.5 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

NAI 32.7 5, γ - 31.0 
5, γ 

11.2 5, 

γ 
20.0 5, γ (Dunaif & 

Schneeman
, 1981b) 

NAI - . - ← 45.1 h, 14+15, θ → (Mouécouc



ou, et al., 
2003) 

Cellulose Powder 
99% pure 

78.9 a, 

1, α 
81.1 
b, 2, α 

- 90.6 c, 

3, α 
57.1 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Solka Floc 
(Brown Co.) 

20.4 5, γ - 4.6 5, 

γ 
55.3 5, 

γ 
52.9 5, γ (Dunaif & 

Schneeman
, 1981b) 

Alpha-
cellulose 
(Sigma 
C8002)  

67.1 j, 
16, ι 

- - - - (Dhital, 
Gidley, & 
Warren, 
2015) 

Galacturo
nic acid 

NAI 63.4 a, 

1, α 
90.7 
b, 2, α 

- 78.2 c, 

3, α 
48.5 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

Xantham 
gum 

NAI 84.7 k, 

18, Λ 
- - - - (Ou, Kwok, 

Li, & Fu, 
2001) 

Lignin Sigma ~615 a, 

16, κ 
- - - - (J. Zhang, 

Cui, Yin, 
Sun, & Li, 
2013) 

(Lignocel® 
Type C120, 
J. 
Rettenmaie
r & Söhne, 
Rosenberg, 
Germany) 
with high 
lignin 
content 

180.9 
k, 19, ν 

- - - - (Hardacre, 
Yap, Lentle, 
& Monro, 
2015) 

NAI 124.2 l, 
19, ν 

- - - - (Hardacre, 
Yap, Lentle, 
& Monro, 
2015) 

 8-54kDa 
Lignin from 
Sigma 

- - 155-
362.
5 j, 11, 

μ 

- - (J. Zhang, 
Cui, Yin, 
Sun, & Li, 
2013) 

Citrus 
Unshui 

Dietary 
fibre extract 
of Citrus 
Unshui 
containing 
arabinose, 
galactose, 
xylose and 
glucose 

- - 47 j, 
11, π 

- - (Iwata, 
Hotta, & 
Goto, 2012) 

Carrageen
an 

Λ 
Carrageena

- - 82.9 

M, 23, 
- - (O'Connor, 

Sun, Smith, 



n, type IV Λ & Melton, 
2003) 

Guluronic 
acid 

NAI 100 a, 1, 

α 
81.7 
b, 2, α 

- 99.2 c, 

3, α 
53.9 c, 4, α (K. Ikeda & 

Kusano, 
1983) 

 

  



    

 

Table 2: Dietary fibre and observational risk of small intestinal/pancreatic and liver cancers 

Disease/condition Study design Comparative 

statistics  (95% CI)  

Notes Reference 

Small intestinal 

cancer 

Prospective study 

of 492,321 

individuals with 

an mean of 7 

years of follow-up 

Adjusted RR for 

highest quintile of 

fibre intake was 0.79 

(0.43 – 1.44) vs 1 for 

lowest. 

Carcinoid cancer 

risk appeared to 

be increased by 

increasing intake 

of fruit and 

vegetable cancer 

with fibre from 

grains associated 

with a lower total 

incidence. 

(Schatzkin, 

Park, 

Leitzmann, 

Hollenbeck, & 

Cross, 2008) 

Pancreatic cancer Case-control 

study with 326 

cases of 

pancreatic cancer 

Adjusted OR of 0.4 

(0.2-0.7) of highest 

quintile of fibre intake 

vs 1 for lowest 

quintile 

Increased intakes 

of both soluble 

and insoluble 

fibre were linked 

a significantly 

reduced OR 

(Bidoli, 

Pelucchi, 

Zucchetto, 

Negri, Dal 

maso, Polesel, 

et al., 2012) 

 Case-control 

study with 384 

cases of 

pancreatic cancer 

Adjusted OR of 0.57 

(0.37-0.86) and 0.56 

(0.37 – 0.84) for 

highest quintile of 

frequency of fruit and 

vegetable 

consumption and  vs 1 

for lowest quintile 

Insoluble fibre 

consumption also 

significantly 

associated with 

reduced OR of 

pancreatic cancer 

risk. Potential for 

diet-gene 

interaction also 

noted. 

(Jansen, 

Robinson, 

Stolzenberg-

Solomon, 

Bamlet, De 

Andrade, 

Oberg, et al., 

2011; Jansen, 

Robinson, 

Stolzenberg-

Solomon, 

Bamlet, Tan, 

Cunningham, 

et al., 2013) 

 Case-control 

study with 532 

cases of 

pancreatic cancer 

Adjusted OR of 0.60 

(0.31-1.2) for ≥2 

servings of whole 

grains/day versus 1 

for <1 serving/day 

Frequency of 

consumption of 

brown rice and 

tortillas was 

negatively 

associated with 

OR while 

frequency of 

(Chan, Wang, & 

Holly, 2007) 



oatmeal/oat bran 

were positively 

associated with 

OR. 

 Case-control 

study with 186 

cases of 

pancreatic cancer 

Adjusted OR of 0.52 

(0.21–1.30) for 

highest quartile of 

fibre intake versus 1 

for lowest 

No significant 

trend also noted 

for association of 

frequency of fruit 

and vegetable 

consumption and 

OR 

(J. Zhang, 

Dhakal, Gross, 

Lang, Kadlubar, 

Harnack, et al., 

2009) 

Hepatic cancer Case-control, 

multicentre study 

with 185 cases of 

hepatocellular 

carcinoma 

Adjusted OR of 0.72 

(0.31–1.64) for top 

quartiles of 

vegetables and 0.48 

(0.22–1.05) for fruit 

consumption vs 1 for 

lowest quartile 

- (Talamini, 

Polesel, 

Montella, Dal 

Maso, Crispo, 

Tommasi, et 

al., 2006) 

     

 Prospective 

multicentre study 

of 477,206 

individuals with a 

mean follow-up of 

11.4 years 

HR of 0.51 (0.31–0.83) 

for highest quartile of 

fibre intake vs 1 for 

lowest quartile 

Adjusted HR of 

0.59 (0.37–0.95) 

per 10 g of fibre 

consumed daily 

suggested. No 

association 

between fibre 

intake and biliary 

tract cancer 

evidenced.  

(Fedirko, 

Lukanova, 

Bamia, 

Trichopolou, 

Trepo, 

Nöthlings, et 

al., 2013) 

HR = Hazard Ratio, OR = Odds ratio, RR = relative risk. Data searches were carried out using 

www.scopus.com and focused on publications from 2000 onwards. 

http://www.scopus.com/


Table 3: Summary of associative studies linking dietary fibre intake and observational risk of selected 

pancreatic and hepatic/biliary tract disease 

Disease/condition Study design Comparative statistics  

(95% CI)  

Notes Reference 

Pancreatitis A prospective 

study with 

36,436 women, 

aged over 65 

years in cases of 

acute and chronic 

pancreatitis 

Adjusted OR of 0.98 

(0.72-1.33 - acute) 1.67 

(0.87-3.21 - chronic) for 

the highest quartile of 

crude fibre intake vs 1 

for the lowest and 0.97 

(0.74-1.26 - acute) and 

0.96 (0.57-1.60 - 

chronic) for the highest 

tertile of fruit and 

vegetable intake 

frequency vs 1 for the 

lowest. 

 (Prizment, 

Jensen, 

Hopper, Virnig, 

& Anderson, 

2015) 

     

Non-alcoholic 

fatty liver disease 

Observational 

study in 63 obese 

patients 

Markers of non-

alcoholic fatty liver 

disease were not 

associated with dietary 

fibre intake across 

different classifications 

of obesity. 

 (Ricci, et al., 

2011) 

Gall bladder 

removal 

A prospective 

study with 

69,778 women 

aged 35 to 61 

over 16 years of 

follow-up 

Adjusted RR of 0.87 

(0.78-0.96) for highest 

quintile of intake vs 1 

for lowest. 

Every 5 g of 

fibre consumed 

led to a 

significant 

reduction of RR 

(0.94, 95% CI 

0.92-0.98) of 

gall bladder 

removal and 

insoluble fibre 

appeared to be 

particularly 

associated with 

reduced RR 

(Tsai, 

Leitzmann, 

Willett, & 

Giovannucci, 

2004) 

OR = Odds ratio, RR = relative risk. Data searches were carried out using www.scopus.com and 

focused on publications from 2000 onwards. 

 

http://www.scopus.com/
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Highlights [3 to 5 bullet points. Separate file] 
 Dietary fibres impact on small intestinal motility and digestion rates. 

 Different dietary fibres can also affect the exocrine secretions of the pancreas and liver. 

 These effects are likely to have consequences on long-term health if fibre is consumed 

habitually, although limited evidence from intervention studies supports this hypothesis. 

 There is limited evidence evaluating the association of dietary fibre or fibre-containing plant 

foods with diseases of the small intestine, liver and exocrine pancreas. 

 

 

 




