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The detection and assessment of pain in animals is crucial to improving their welfare in a 16 

variety of contexts where humans are ethically or legally bound to do so. Thus clear standards 17 

to judge whether pain is likely to occur in any animal species is vital to inform whether to 18 

alleviate pain or to drive the refinement of procedures to reduce invasiveness thereby 19 

minimising pain. We define two key concepts that can be used to evaluate the potential for 20 

pain in both invertebrate and vertebrate taxa. Firstly, responses to noxious, potentially painful 21 

events should affect neurobiology, physiology and behaviour in a different manner to 22 

innocuous stimuli and subsequent behaviour should be modified including avoidance learning 23 

and protective responses. Secondly, animals should show a change in motivational state after 24 

experiencing a painful event such that future behavioural decision making is altered and can 25 

be measured as a change in conditioned place preference, self-administration of analgesia, 26 

paying a cost to accessing analgesia or avoidance of painful stimuli and reduced performance 27 

in concurrent events. The extent to which vertebrate and selected invertebrate groups fulfil 28 

these criteria is discussed in light of the empirical evidence and where there are gaps in our 29 

knowledge we propose future studies are vital to improve our assessment of pain. This review 30 

highlights arguments regarding animal pain and defines criteria that demonstrate, beyond a 31 

reasonable doubt, whether animals of a given species experience pain.   32 

 33 
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 35 

  36 



 

3 
 

Bateson’s (1991) seminal review on the assessment of pain has been influential in 37 

inspiring numerous researchers investigating pain in animals. Bateson set out a clear 38 

framework upon which hypothesis driven research questions could be derived regarding the 39 

capacity for pain in any species. Indeed the criteria suggested have been applied to numerous 40 

species particularly non-mammalian vertebrates (e.g. fish, Sneddon, 2011) and more recently 41 

to invertebrates (e.g. crustaceans, Barr et al., 2008). Well-defined criteria were proposed and 42 

it was suggested that animals that fulfilled all criteria should be considered capable of pain. 43 

These criteria were possession of nociceptors, receptors that detect damaging stimuli on or in 44 

the body; pathways from nociceptors to the brain; brain structures analogous to the human 45 

cerebral cortex that process pain; opioid receptors and endogenous opioid substances in 46 

nociceptive neural system; a reduction in adverse behavioural and physiological effects after 47 

administration of analgesics or painkillers; learning to avoid potentially painful stimuli and 48 

that this learning is rapid and inelastic; Sneddon (2004) added that normal behaviour should 49 

be suspended for a prolonged period rather than a reflex response with adverse changes in 50 

behaviour reflective of signs of “discomfort” as shown by long-term motivational change. 51 

These robust scientific approaches can provide evidence strongly suggesting that an animal is 52 

capable of experiencing pain and we can then seek to reduce or ameliorate that condition by 53 

reducing the invasiveness of any procedures to which we subject animals or when this is 54 

unavoidable providing pain relief. However, Bateson’s review has been recently criticised as 55 

being outdated (Rose et al., 2014). Given the advances made in the scientific study of pain, 56 

the technologies now at our disposal and more recent evidence from a wider variety of 57 

taxonomic groups this review provides a timely update on the definition, assessment and 58 

importance of animal pain. 59 

 60 

PAIN – A COMPLEX ISSUE 61 
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Nociception, the capacity to respond to potentially damaging stimuli, is a basic 62 

sensory ability (Purves et al., 2012), and even occurs in bacteria (Berg, 1975).  Testing 63 

whether animals are able to respond to noxious stimuli is typically straightforward, even 64 

though many nociceptors are multifunctional (Tsagareli, 2011). Philosophers and scientists, 65 

however, make a distinction between pain and nociception (Allen, 2011) because pain is 66 

primarily a subjective experience of anguish, despair and other negative affective states (e.g. 67 

see Allan et al., 2005). The difficulty in demonstrating whether animals feel pain, as opposed 68 

to just nociception, lies in our ability to recognise negative internal mental states in other 69 

species. 70 

Animals have both physiological and behavioural responses to nociception that 71 

parallel those that accompany the experience of pain in humans and this is the basis for the 72 

argument by analogy (Sherwin, 2001; Allen et al., 2005). However, there are weaknesses to 73 

this concept.  Clearly animal pain behaviour differs from human pain behaviour, as does the 74 

underlying neuroanatomy.  When are these differences important (i.e. rendering the argument 75 

by analogy invalid) and when are they inconsequential?   Understanding the biology of a 76 

given species may be helpful here. Some suggest animals may behave as though they are in 77 

pain, but this behaviour may reflect nociception without suffering (e.g. Allen, 2004). Thus, 78 

analogous behavioural and physiological responses need not imply identical mechanisms. 79 

Allen et al., (2005) reviewed the evidence for pain in rodents and compared it with data from 80 

humans, concluding that the evidence is not conclusive.   However, Shriver (2006) reviewed 81 

similar evidence and concluded that it was ‘beyond a reasonable doubt’ that most mammals 82 

feel pain.  We review here data that has led to a consensus that it is beyond a reasonable 83 

doubt that pain can be experienced in animals (Allen, 2011). This review presents a 84 

combination of behavioural, physiological and evolutionary evidence and arguments, which 85 
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taken together demonstrate, beyond a reasonable doubt, that animals from different phyla 86 

experience pain. 87 

The opposition to the idea that animals experience pain has sparked fierce debates 88 

over the capacity of non-mammalian animals for pain (i.e. non-primates as suggested by e.g. 89 

Bermond, 1997, 2001; Rose, 2002; Rose et al., 2014). However, although it cannot be proven 90 

that animals experience pain, it also cannot be proven that they do not. We propose that if 91 

animals fulfil our criteria below then they should be considered capable, beyond a reasonable 92 

doubt, of experiencing pain with implications for their health and welfare.  93 

 94 

FUNCTION OF PAIN 95 

 96 

Nociception is a fundamental sensory system that alerts an animal or human to 97 

potential damage. Nociceptive pathways connect with brain areas important for motivation, 98 

and animals are motivated to avoid the injurious stimulus and protect themselves from further 99 

damage (Bateson, 1991). Therefore, it would be adaptive to evolve such a system and many 100 

diverse taxa possess specific receptors, i.e. nociceptors that detect damaging stimuli e.g. 101 

Drosophila melanogaster and Caenorhabditis elegans (Wittenburg & Baumeister, 1999; 102 

Neely et al., 2010; Im and Galko, 2012). However, different species are likely to show 103 

specific differences in how these nociceptors operate. 104 

Evolutionary heritage and life history places very different pressures on animal 105 

groups and they are exposed to different types of nociceptive stimuli (e.g. high mechanical 106 

pressure, extremes of temperature, noxious chemicals). Therefore, animals will have evolved 107 

their nociceptive and possible pain systems to meet the demands of their environment 108 

(Broom, 2001; Rutherford, 2002).  109 
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The advantage of nociception seems clear. However, some animals also have an 110 

associated aversive motivational state similar to many of the aspects of pain in humans.  It is 111 

the existence of this aversive motivational state that leads us to propose that, beyond a 112 

reasonable doubt, at least some animals experience pain. We should consider the function of 113 

this aversive motivational state because it might guide us in establishing how pain might be 114 

better defined and shown to be likely in particular taxa. The key function appears to be that 115 

the aversive experience of pain creates a strong and lasting motivation that enables the animal 116 

to avoid getting into a similar situation in the future. That is it increases fitness by assisting 117 

long-term protection from further damage (Bateson, 1991; Sneddon, 2004; Elwood, 2011). 118 

Thus, whilst nociception typically allows for an immediate reduction of tissue damage, pain 119 

typically allows for longer-term protection.  Unfortunately this single criterion, on its own, 120 

does not prove that an animal experiences pain. Nociception can also have long-lasting 121 

effects without invoking higher-order neural processes (e.g. long-term nociceptive 122 

sensitization, Chase, 2002; Smith & Lewin, 2009). Therefore, such long-term behavioural 123 

changes, although consistent with the concept of pain, require further evidence as we discuss 124 

below. 125 

 126 

DEFINITION OF ANIMAL PAIN 127 

 128 

Because it is impossible to know how a human feels when they are in pain, we rely 129 

upon their ability to communicate their experience of pain. This illustrates how difficult it is 130 

to measure pain in humans that cannot speak (e.g. neonates) or animals that do not share our 131 

language. Therefore, the commonly used definition of human pain cannot be directly applied 132 

to animals because it relies on either knowing how an animal feels or requiring them to be 133 
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able to communicate their subjective experiences to us. The International Association for the 134 

Study of Pain, defined human pain as “An unpleasant sensory and emotional experience 135 

associated with actual or potential tissue damage, or described in terms of such damage” 136 

(IASP 1979). However, the IASP (1979) also refers to adults unable to communicate, 137 

neonates and infants and adds that “The inability to communicate verbally does not negate 138 

the possibility that an individual is experiencing pain” and so we believe this can be applied 139 

to animals.  140 

It is vital that an animal-based definition of pain allows rigorous scientific 141 

investigation of disparate species and also allows us to detect, assess and alleviate pain in 142 

animals where possible. The most commonly used definition for animals is “an aversive 143 

sensory experience caused by actual or potential injury that elicits protective and vegetative 144 

reactions, results in learned behaviour, and may modify species specific behaviour” 145 

(Zimmerman, 1986). Sneddon (2009) refines this definition suggesting that animals in pain 146 

should ‘quickly learn to avoid the noxious stimulus and demonstrate sustained changes in 147 

behaviour that have a protective function to reduce further injury and pain, prevent the injury 148 

from recurring, and promote healing and recovery.’ We use these definitions as the 149 

foundation for our criteria by which possible pain experience might be judged.  150 

 Pain provides strong motivation for animals to learn to avoid damaging stimuli in a 151 

few trials (Carlsson et al., 2006). The aversive experience associated with pain is probably an 152 

important driver in ensuring that animals survive in a dangerous habitat avoiding injury that 153 

may otherwise lead to ill health and mortality. Instead of considering pain to be a special 154 

property of humans, it is likely that pain and its associated motivational state has an adaptive 155 

survival function for animals. We believe that the aversive affective component of pain, 156 

therefore, is integral to its evolutionary function (Dawkins, 1980; Stamp Dawkins, 2012) 157 

otherwise animals would frequently damage themselves in the same manner and be incapable 158 
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of altering their behavioural decisions to learn to avoid injury. A negative internal state can 159 

produce robust and repeatable changes in behaviour induced by damaging stimuli in animals. 160 

However, other mechanisms might also produce some similar effects (e.g. nociceptor 161 

sensitization, Smith & Lewin, 2009). Further, animal pain may not be identical to the internal 162 

subjective experience that humans have but it does have the same protective function 163 

(Rutherford, 2002). 164 

Clever experimentation can yield insights into the animal’s experience (e.g. self-165 

administration of analgesia, Danbury et al., 1997; selective attention, Sneddon et al., 2003a; 166 

Ashley et al., 2009; paying a cost to accessing analgesia). Examples of potentially painful 167 

events leading to motivational changes suggest the potential for a negative affective state 168 

associated with injury. Here we list criteria that animals can be tested against to determine 169 

their potential capacity for pain. Determining whether a specific species experiences pain will 170 

typically require species-specific behavioural and physiological tests. These are based upon 171 

the mechanisms to detect, react and respond to pain and have two key sets of evidence (Table 172 

1):  1. Whole animal responses to noxious stimuli such as physiological change and effects of 173 

analgesics and local anaesthetics which differ from those to innocuous stimuli and 2. 174 

Evidence of long-term motivational change that might include rapid learning. These criteria 175 

must be considered as a whole and not as indicators in isolation (Table 1). For many species 176 

specific data are lacking and for the future of the field it is imperative scientists continue to 177 

test the evidence for pain experience in animals (Table 2). Further, we accept that the 178 

distinction between these two sets may mean responses can be considered to belong to both 179 

criteria. Before we review this evidence, however, we examine another criterion suggested by 180 

Bateson (1991), i.e. that an animal requires the neural apparatus to detect, possess and 181 

respond to tissue damage for it to feel pain. That is the animal must have an effective 182 
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nociceptor system to enable a neural input allowing perception of tissue damage. However, 183 

having that system does not mean that pain will follow. 184 

 185 

THE NEURAL APPARATUS 186 

 187 

Nociceptors (A and C fibres) are found in most groups of vertebrates, including 188 

mammals (Carstens & Moberg, 2000, Weary et al., 2006), birds (Breward & Gentle, 1995; 189 

Gentle & Tilston, 2000; Gentle et al., 2001; 2003; McKeegan et al., 2002; McKeegan, 2004; 190 

Hothersall et al., 2011), reptiles (Liang & Terashima, 1993; Terashima & Liang, 1994), 191 

amphibians (review in Guenette et al., 2013) and fish (e.g. Sneddon, 2002; Roques et al., 192 

2010). However, the proportion of A and C fibres may differ between groups. In mammals 193 

these fibres link to CNS structures and pathways (at least at the subcortical level) (Carstens & 194 

Moberg, 2000, Weary et al., 2006,), and so are capable for the sensory (i.e. nociceptive) 195 

component of pain. For example, Hess et al. (2007) demonstrated that nociceptive activation 196 

with inflamed paw in rats, Rattus norvegicus, induced activation of the primary 197 

somatosensory areas (areas in humans associated with affective experience); insula, anterior 198 

cingulate cortex and medial thalamus using fMRI. Avian nociceptive afferents also project to 199 

the brainstem and ascend to the primary presumed pain centres in the forebrain (Dubbeldam, 200 

2009). A key difference between mammals and birds, however, is a substantial divergence in 201 

the sequence of the vanilloid receptor 1 (VR1) that binds capsaicin (~68%; Jordt & Julius, 202 

2002). Whilst mammals find the burning sensation noxious and avoid eating chili peppers 203 

capsaicin does not activate the avian receptor so birds can ingest these and act as an aid to 204 

dispersal of the seeds. This is a convincing example of how evolution shapes nociceptors. 205 
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In amphibians the ascending tracts reach the brainstem and the thalamus and project 206 

to the cortex (Vesselkin et al., 1971; Kicliter & Ebbeson, 1976). Within the teleost brain there 207 

are various connections to the thalamus and cortical areas (Rink & Wulliman, 2004). 208 

Furthermore, forebrain and midbrain areas are active during potentially painful stimulation 209 

and this differs from innocuous treatment (e.g. gene expression in common carp, Cyprinus 210 

carpio, and rainbow trout, Oncorhynchus mykiss, Reilly et al., 2008b; electrical activity in 211 

Atlantic salmon, Salmo salar, Nordgreen et al., 2007; goldfish, Carassius auratus, and 212 

rainbow trout, Dunlop & Laming, 2005; activity using functional magnetic resonance 213 

imaging (fMRI) in common carp, Sneddon, 2013) thus activity is not restricted to merely 214 

hindbrain and spinal cord nociceptive reflex centres (Rose, 2002). Further, nociceptors in 215 

teleost fish are strikingly similar to mammalian nociceptors (Sneddon, 2003a; 2004; 2011; 216 

2013 Ashley et al., 2006; 2007; Mettam et al., 2012). However, rainbow trout nociceptors are 217 

not responsive to cold temperatures below 4°C (Ashley et al., 2007). This is intuitive since 218 

these fish may frequently encounter such low temperatures and it would not be adaptive to 219 

perceive them as noxious. In elasmobranchs unmyelinated C fibres are lacking but small 220 

myelinated fibres are in abundance and could be A-delta fibres (Cameron et al., 1990; Snow 221 

et al., 1993; Kitchener et al., 2010). However, electrophysiological studies are needed to 222 

determine whether nociceptors occur in this group.  223 

 These studies demonstrate that most vertebrates not only have nociceptors but also 224 

that they link to the brain so they at least have the capacity for some sort of “central 225 

experience” of the noxious stimulus and this is essential for pain to be considered as a 226 

possibility. The situation in arthropods and molluscs, however, is not so clear cut. Certainly, 227 

as previously noted, they have nociceptors that allow for perceptual input (reviewed by 228 

Elwood, 2011; Crook et al., 2011; Dyuizen et al., 2012). Indeed, much is known about the 229 

functioning of nociceptors from the elegant work employing specific mutants with specific 230 
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nociceptor variants (Tobin & Bargmann, 2004) but our knowledge of the brains of these 231 

animals is not so established as that for vertebrates. Nevertheless, long-term changes in 232 

central nervous activity have been noted in shore crabs, Hemigrapsus sanguineus, following a 233 

noxious stimulus (Dyuizen et al., 2012) and thus information from nociceptors must be 234 

conveyed to central areas. Further, there are sustained increases in nociceptor firing following 235 

tissue damage in cephalopods, coupled with long term alteration of motivational state (Crook 236 

et al., 2013). Thus there is the potential for central processing of information about noxious 237 

stimuli in some invertebrates. Here we examine evidence that might indicate that at least 238 

some animals fulfil our criteria for pain, starting with the five main groups within the Phylum 239 

Chordata, then the Mollusca and finally the Arthropoda.  240 

 241 

MAMMALS 242 

 243 

Whole animal response 244 

 245 

Stimuli that are considered painful in humans have been shown to induce similar 246 

physiological and behavioural changes in other non-human mammals. The majority of 247 

physiological changes associated with potentially painful stimuli are mediated by the 248 

sympathetic nervous system and hypothalamic-pituitary-adrenal axis (HPA). The sympathetic 249 

responses can be determined either directly by measuring the circulating catecholamines, 250 

adrenaline and nor-adrenaline (e.g. Raekallio et al., 1997, Mellor et al., 2002), or the resulting 251 

autonomic changes such as heart rate (e.g. Peers et al., 2002, Arras et al., 2007), blood 252 

pressure (Peers et al., 2002, Keating et al., 2012), body temperature (e.g. Hellebrekers et al., 253 
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1994), respiratory rate (e.g. Hellebrekers et al., 1994), and body weight change (e.g. Liles et 254 

al., 1998). HPA changes in response to painful stimuli are most commonly assessed by 255 

measuring production of glucocorticoids such as in rodents (e.g. R. norvegicus, Goldkuhl et 256 

al., 2010, Kalliokoski et al., 2010), horses, Equus ferus caballus,  (e.g. Pritchett et al., 2003), 257 

sheep, Ovis aries,  (e.g. Kent et al., 1993), and cattle, Bos primigenius, (e.g. Robertson et al., 258 

1994). These physiological changes are universally considered to reflect negative states that 259 

are inevitably associated with pain, for example, fear (Sapolsky et al., 2000).   260 

Behaviour represents the most commonly used index of animal pain and can be 261 

categorised by its level of complexity. At the simplest level it is a single reflex response to 262 

noxious stimuli (nociception) that does not require higher processing (i.e. experience). 263 

However, as the complexity of a behavioural response increases the likelihood of it requiring 264 

higher processing also increases. Painful stimuli cause changes in general behaviour, pain-265 

specific behaviours and facial expressions that occur beyond acute application of the noxious 266 

stimulus. However, these responses have been argued to represent ‘complex’ reflex responses 267 

(e.g. Rose et al., 2014), and they can be mimicked by robots (e.g. Lee-Johnson & Carnegie, 268 

2010; Breazeal, 2011). However, when potentially painful stimuli alter decisions and choices 269 

made by the animal (e.g. preference for pain relief, reaction to other non-pain related stimuli 270 

etc.) then they are demonstrating a level of behavioural complexity that is likely to require 271 

some negative internal experience (i.e. pain).  272 

Measuring both changes in general behaviour and the development of abnormal 273 

behaviour are often used to assess pain, including demeanour (e.g. Stanway et al., 1996), 274 

reaction to handling (e.g. Thornton & Waterman-Pearson, 1999), posture (e.g. Slingsby & 275 

Waterman-Pearson, 1998), activity (Roughan & Flecknell, 2000), vocalisation (e.g. 276 

Hellebrekers et al., 1994), food and water intake (e.g. Leach et al., 2009), gait (Sprecher et 277 

al., 1997), rearing (Matson et al., 2007) etc. As Weary et al., (2006) propose often the most 278 
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effective behavioural indicators of pain are those that animals are highly motivated to 279 

perform, for example, rodents are highly motivated to rear up in their cages, but this 280 

significantly declines after abdominal surgery (Roughan & Flecknell, 2001). Reviews by 281 

Carsten & Moberg (2000), Rutherford (2002) and Weary et al. (2006) provide a 282 

comprehensive overview of behavioural-based indicators and their validation in mammals. 283 

As a consequence, pain-specific behavioural indices have been identified and constructed into 284 

assessment schemes in a range of species, including rodents (e.g. Roughan & Flecknell, 2001, 285 

2003, Wright-Williams et al., 2007) rabbits, Lepus curpaeums,  (e.g. Leach et al., 2009), 286 

lambs, O. aries, (e.g. Molony & Kent, 1997), cattle (Molony et al., 1995, Faulkner and 287 

Weary, 2000), pigs, Sus scrofa domesticus, (Taylor & Weary, 2003, Leslie et al., 2010), and 288 

horses (Ashley et al., 2005).  289 

Facial expressions are routinely used to assess pain in humans, particularly in those 290 

who are unable to communicate (Williams, 2002) and considered to offer an effective method 291 

using a limited range of indicators that are a rapid and easy measure with minimal training. 292 

Facial expressions are scored using a Facial Action Coding Scheme (FACS) that measures 293 

the individual movements or ‘action units’ of the face that comprise an expression (e.g. 294 

Ekman & Friesman, 1978). Recently similar schemes (‘Grimace Scales’) have been 295 

developed for a limited number of mammalian species including rodents (Mus musculus, 296 

Langford et al., 2010, Leach et al., 2012, R. norvegicus, Sotocinal et al., 2011,), rabbits 297 

(Keating et al., 2012), and horses (e.g. Dalla Costa et al., 2014). Each grimace scale 298 

comprises a number of anatomically based ‘action units’ (e.g. changes in the shape of the 299 

eyes, nose, cheeks, mouth and ears).  300 

The exhibition of both behavioural and facial indicators have been shown to change 301 

from before to after a painful event, and these changes can be reduced by the administration 302 

of routinely used pain-relieving drugs or simply by time (i.e. recovery). Although many 303 
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authors believe that such complex responses that are observed alongside other potential 304 

indices of pain demonstrate higher processing (i.e. experience), we currently have limited 305 

objective evidence that the behaviour reflects an integrated response to external stimuli and 306 

relates directly to an affective state. However, a study by Langford et al. (2010) may provide 307 

such evidence. In this study, mice, M. musculus, underwent lesioning of the rostral anterior 308 

insula (implicated in the affective component of pain in humans) and this prevented changes 309 

in facial expression but not abdominal writhing (the behavioural marker of abdominal pain or 310 

nociception). A similar effect is observed in humans with insular lesions that are associated 311 

with pain asymbolia (the disassociation of the affective [unpleasant experience] and the 312 

sensory component [nociceptive response] of pain) (Langford et al., 2010). In these patients 313 

the emotional responses to pain significantly decline without the associated reduction in 314 

nociceptive response or pain thresholds (Berthier et al., 1987). 315 

 316 

Long-term motivational and behavioural change 317 

 318 

Amongst some of the most complex behavioural responses to pain are those in preference and 319 

avoidance studies. These demonstrate that animals are able to use their internal 'state' (i.e. 320 

apparent experience of pain to learn, make decisions and then perform behaviours that 321 

ameliorate that pain state). For example mammals show avoidance of places in which 322 

potentially painful stimuli are delivered (Gao et al., 2004) and will pay a cost to avoid such 323 

stimuli. Rats will cover electrodes in their cages with bedding so shock can be avoided (Pinel 324 

et al., 1989). Further, there are numerous examples of long-term directed licking or rubbing 325 

of the body area damaged by a noxious stimulus (e.g. Wheeler-Aceto & Gowan, 1991). 326 

Mammals also show “pain relief learning” in which stimuli that are temporally associated 327 

with the termination of a noxious stimulus e.g. electric shock, have a positive valence and are 328 
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preferred over neutral stimuli (Gerber et al., 2014).  Such responses are much more difficult 329 

to account for as being simply a complex reflex or nociceptive sensitization as they require 330 

considerably higher processing (Bateson, 1991). Further behavioural tests commonly assess 331 

how animals respond when given a choice to avoid a situation that is associated with pain or 332 

choose a drug that relieves pain. For example, Colpaert et al. (1980) demonstrated that rats 333 

given a choice between sugar solution and solution containing pain-relief chose the sugar 334 

solution if healthy (non-painful), but the pain-relief containing solution when experiencing a 335 

potentially painful condition (arthritis). These studies on mammals provide the benchmark 336 

upon which other animals are judged by, and certainly provide a basis for testing species 337 

where pain has not been explored.  338 

In the future, ‘cognitive bias’ testing may offer a more direct means of assessing the 339 

affective component of pain in mammals. This technique has only been applied to animals 340 

relatively recently and involves measuring cognitive or judgement biases in the interpretation 341 

of ambiguous information (e.g. Harding et al. 2004, Mendl et al. 2009, Brydges et al. 2010, 342 

Douglas et al. 2010). To date this technique has focused on the impact of environmental and 343 

husbandry procedures on affective state, however, such measures could be directly applicable 344 

to the assessment of affective component of pain. It could be argued that such measures 345 

would offer the most valid indicators of pain as they could determine the significance of the 346 

pain to the animals.  Therefore the potential merits of these techniques warrant their inclusion 347 

in this review, even though they have not been used in this context.  348 

 349 

BIRDS 350 

 351 

Whole animal response 352 

 353 
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Potentially painful stimuli influence a range of physiological responses in birds 354 

(review in Prunier et al., 2010) e.g. plasma corticosterone and heart rate increase after beak 355 

trimming and feather removal (Glatz, 1987; Gentle & Hunter, 1991; Glatz and Lunam, 1994; 356 

Davis et al., 2004). Birds also exhibit withdrawal responses to a variety of noxious treatments 357 

that are used as standard in mammalian pain studies. For example, foot withdrawal in 358 

response to high temperature in parrots, Amazona ventralis, kestrels, Falco sparverius, and 359 

chickens, Gallus gallus domesticus  (Roach & Sufka, 2003; Hothersall et al., 2011; Geelen et 360 

al., 2013; Sanchez-Migallon Guzman et al., 2013); instantaneous removal of the foot from 361 

hot water in Japanese quail, Coturnix japonica (Evrard & Balthazart, 2002) as well as 362 

movement away from mechanical stimuli (Evrard & Balthazart, 2002; Hothersall et al., 363 

2011). Application of analgesics increased the thermal threshold for foot withdrawal in 364 

kestrels and parrots (Geelen et al., 2013; Guzman et al., 2013). Morphine significantly 365 

reduced responsiveness to noxious heat and mechanical pressure in quail (Evrard & 366 

Balthazart, 2002) and the NSAID dexamethasone significantly diminished the inflammation 367 

and hyperalgesia to carrageenan in chickens (Roach & Sufka, 2003). Further, some analgesic 368 

drugs are administered to ameliorate apparent pain, suggesting a high evolutionary 369 

conservation of receptors for drugs such as opioids and NSAIDs (Jordt & Julius, 2002; Nasr 370 

et al., 2012).   371 

 372 

Long-term motivational and behavioural change 373 

 374 

Self-selection of analgesic dosed food has been demonstrated in chickens where lame 375 

birds selectively choose food drugged with carprofen (Danbury et al., 2000). This approach 376 

has had mixed results in other pain models where beak trimmed birds did consume more 377 
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carprofen dosed food but this did not return pecking rates to normal yet the maximum force 378 

exerted while pecking was higher than groups not receiving carprofen (Freire et al., 2008). 379 

Putting chickens in a novel situation or starving them to elicit a motivational shift to feed 380 

reduces pain-related responses (Wiley & Gentle, 1998; Gentle & Tilston, 1999). This may 381 

mean that pain is not as important as satiating hunger or exploring a new habitat. However, 382 

this shows that the reactions to pain are not simple reflexes otherwise the birds would 383 

perform the same behaviour regardless of context. The behaviours seen after a painful event 384 

are indicative of abnormal behaviours and certainly guarding behaviour where an animal does 385 

not use a painful area or limb. Birds with keel fractures substantially reduce their movement 386 

to new perches as well as taking longer to reach a food reward in runway tests (Nasr et al., 387 

2012). Flight from perch to the ground may require more complex motivational decisions as 388 

well as integration of movement and decision making that is impaired by keel fractures but 389 

administration of butorphanol substantially increased mobility (Nasr et al., 2012). Thus, 390 

behavioural decisions are demonstrably affected by pain in birds. 391 

As with mammals, cognitive bias testing may also offer a more direct means of 392 

assessing the affective component of pain in birds. To date, this technique has focused mainly 393 

on the impact of environmental conditions on affective state by measuring cognitive biases in 394 

the interpretation of ambiguous information (e.g. Matheson et al. 2008, Brilot et al. 2010). 395 

Like mammals, this technique has considerable potential utility for the assessment of pain in 396 

birds (see the mammal section for more detail).  397 

 398 

AMPHIBIANS AND REPTILES 399 

 400 

Whole animal response 401 
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 402 

Amphibians show a classic wiping response to application of acetic acid as well as a 403 

withdrawal response to noxious heat and mechanical stimulation (Willenbring & Stevens, 404 

1995) that are attenuated by administration of compounds with analgesic properties (Kanetoh 405 

et al., 2003; Mohan & Stevens, 2006; Stevens et al., 2009). Similarly, reptiles display 406 

characteristic responses to painful stimulation (e.g. limb retraction in response to formalin in 407 

Speke’s hinged tortoise, Kinixy’s spekii Wambugu et al., 2010; withdrawal from high 408 

temperatures in bearded dragons Pogona vitticeps,  and corn snakes, Elaphe guttata,  Sladky 409 

et al., 2008 and in turtles, Trachemys scripta, Sladky et al., 2007; withdrawal from a strong 410 

mechanical pressure in red eared slider turtles, Trachemys scripta elegans Kischinovsky et 411 

al., 2013) that are again reduced by analgesia.  412 

Further, four opioid receptors have been identified in amphibians including the mu, 413 

delta, and kappa opioid receptors but also the opioid receptor-like protein (ORL) (Stevens et 414 

al., 2009). Sequence comparisons have demonstrated that the amphibian opioid receptors are 415 

highly conserved (70-84% similar to mammals) and are expressed in the CNS areas 416 

apparently involved in pain experience (Stevens, 2004; Stevens et al., 2007). Therefore, as 417 

one of the criteria for pain that Bateson (1991) suggested, amphibians and reptiles share a 418 

similar opioid and endogenous opioid system involved in pain mechanisms with mammals.  419 

 420 

Long-term motivational and behavioural change 421 

 422 

Generally, studies on pain in these animal taxa are sparse and much more research is 423 

required to fully understand the implications of potentially painful events on their biology, 424 
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behaviour and welfare (Table 2; Mosley, 2006; 2011). Given the lack of empirical evidence 425 

Mosley (2011) suggests clear criteria when assessing pain in reptiles that could be applied to 426 

amphibians. Parameters such as, gait, unwillingness to perform normal behaviours, 427 

exaggerated flight response, closure of eyes, decreased appetite, colour change, and abnormal 428 

respiration may act as key indicators to assessing affective state (Mosley, 2011). Caution 429 

should also be applied in light of life history and ecological differences since some reptile 430 

species live in deserts where they would regularly experience extreme heat that would be 431 

nociceptive to mammals and as such when applying hot or cold noxious temperatures it may 432 

be important to understand whether cooling or warming the test species is a more relevant 433 

pain test (Mosley, 2006). For example, red eared slider turtles acclimated to 20°C lost 434 

nociceptive sensation compared with those held at 35°C who were fully responsive to 435 

mechanical pinching (Kischinovsky et al., 2013). Thus, an intelligent understanding of what 436 

the species will experience should be used to inform meaningful experimental studies. 437 

 438 

FISH 439 

 440 

Whole animal response 441 

 442 

Teleost fish move away from noxious stimuli that would cause pain in mammals. For 443 

example, koi carp, C. carpio, move away from a clamp exerting high mechanical pressure to 444 

the lip and tail and that this response is decreased when the fish are anaesthetised (Stockman 445 

et al., 2013). Classical conditioning studies using the negative reinforcement of electric shock 446 

is a popular paradigm in fish experiments (e.g. Yoshida & Hirano, 2010). Rainbow trout and 447 

goldfish learn to avoid an area where electric shock is given (Dunlop et al., 2006) but trade 448 

off the risk of entering the shock zone when they are fed there to satiate their hunger after 449 



 

20 
 

three days of food deprivation (Millsopp & Laming, 2008). Ehrensing et al., (1982) 450 

demonstrated that responses to electric shock were reduced by the opioid painkiller, 451 

morphine, and that in turn the effect of morphine was blocked by the antagonists MIF-1 and 452 

naloxone.  453 

In vivo administration of potentially painful stimuli results in prolonged, complicated 454 

responses (reviews in Sneddon, 2009). Physiologically, opercular beat rate (ventilation of the 455 

gills) is enhanced by subcutaneous injection of noxious chemicals in trout, O. mykiss, and 456 

zebrafish, Danio rerio, as well as an increase in plasma cortisol in trout (Sneddon, 2003b; 457 

Reilly et al., 2008a; Ashley et al., 2009). Concomitantly trout and zebrafish exhibit a 458 

reduction in swimming activity (Sneddon, 2003b; Reilly et al., 2008a; Correia et al., 2011). 459 

When injected with noxious chemicals into the frontal lips, trout suspend feeding behaviour 460 

for 3 hours and only resume feeding when their behaviour and physiology returns to normal 461 

(Sneddon, 2003b); sham handled and saline injected controls resume feeding after 80 minutes 462 

as do acid injected fish when administered with morphine. Thus this suspension in feeding is 463 

similar to guarding behaviour where mammals and birds do not use an affected area or limb 464 

to prevent further pain and injury to the site. Fish are the most diverse vertebrate groups and 465 

there are obvious species differences in pain related behaviour in mammals (Flecknell et al., 466 

2007) and studies have demonstrated this between fish species. Piaçu, Leporinus 467 

macrocephalus, injected with formalin and Nile tilapia, Oreochromis niloticus, that have had 468 

the tail fin severed actually increase swimming after the painful treatment (Roques et al., 469 

2010; Alves et al., 2013). In contrast, Atlantic salmon experiencing abdominal peritonitis due 470 

to vaccination decreased swimming and suspended feeding for up to two days (Bjorge et al., 471 

2011). Therefore, these disparate responses highlight that pain indicators will have to be 472 

quantified on a species by species basis and to different modes of pain in fish. Adverse 473 
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changes in behaviour last from three hours up to two days and are not simple instantaneous 474 

nociceptive reflexes.  475 

 476 

Long-term motivational and behavioural change 477 

 478 

Anomalous behaviours such as tail beating in zebrafish with acid injected near the tail 479 

fin (Maximino, 2011); rocking to and fro on the substrate by rainbow trout and common carp 480 

injected with noxious chemicals and rubbing of the injection site by rainbow trout and 481 

goldfish (Sneddon, 2003b; Sneddon et al., 2003b; Reilly et al., 2008a; Newby et al., 2009), 482 

are only seen in fish given a potentially painful treatment and not observed in sham handled 483 

controls, saline injected fish or reported in any other toxicological studies using fish. 484 

Therefore, these are likely to be specific to pain and are ameliorated when painkillers are 485 

given and may be valid indicators of discomfort and suffering (Sneddon, 2003b; Mettam et 486 

al., 2011). 487 

As described above fish are able to learn to avoid noxious stimuli and the experience 488 

affects subsequent behaviour. For example, goldfish and rainbow trout avoid an area where 489 

they received an electric shock (Dunlop et al., 2006). As many studies demonstrate fish do 490 

not feed when in pain, it is difficult to attempt the type of self-administration approaches that 491 

have been used in birds and mammals where food or water is dosed with a painkiller (e.g. 492 

Pham et al., 2010). However, understanding how important the experience is to fish can be 493 

tackled by determining if fish will pay a cost to accessing analgesia. Zebrafish given access to 494 

a barren, brightly lit chamber or an enriched chamber repeatedly choose the enriched area. 495 

When these fish are subcutaneously injected with acetic acid or saline as a control they still 496 

choose the same favourable, enriched chamber. However, if an analgesic is dissolved in the 497 

barren, un-preferred chamber zebrafish injected with noxious acid lose their preference for 498 
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the favourable area and spend over half their time in the unfavourable, barren chamber 499 

(Sneddon, 2013). This suggests they are willing to pay a cost to enter a less preferred 500 

environment to access pain relief. 501 

Selective attention approaches have been employed to understand the importance of 502 

the pain experience to fish. For example, trout will ignore novel objects in fear tests rather 503 

than show neophobia when in apparent pain, however, this is reversed when morphine is 504 

administered (Sneddon et al., 2003b). Noxiously stimulated trout also do not show 505 

appropriate anti-predator responses by seeking cover and performing escape behaviour 506 

(Ashley et al., 2009). Therefore, in the context of fear and predation pain is the imperative. 507 

Piaçu exposed to a predator stimulus show an enhanced stress response and endogenous 508 

analgesia where endorphins reduce the impact of painful treatment (Alves et al., 2013). These 509 

studies combined demonstrate that painful stimuli appear to take priority over competing 510 

stimuli and that central mechanisms are activated to reduce pain. 511 

 512 

MOLLUSCS 513 

 514 

Molluscs include bivalves, gastropods, nudibranchs and cephalopods, which differ 515 

markedly in morphology, behaviour and neural complexity (Crook & Walters, 2011). Various 516 

species respond to noxious stimuli and show associative learning (Kavaliers, 1988; Crook & 517 

Walters, 2011). Cephalopods are highly mobile with a large, complex brain and good 518 

learning ability (Mather 2011) and they have recently been included in the European Union 519 

Directive (2010/63/EU) that provides protection from suffering in animal experimentation. 520 

The responses of squid (Loligo pealeii) to localised injury are difficult to explain without 521 

invoking long term changes within central processing centres in the brain (Crook et al., 522 
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2011). Injured squid showed a greater visual responsiveness to approaching stimuli if tested 523 

more than ten minutes after injury. Increased defensive responses to visual stimuli would 524 

typically have been interpreted as indicating increased fearfulness in mammals. It certainly 525 

demonstrates a long-term change in motivational state after injury, which is consistent with 526 

the concept of pain. Additionally, injured animals show increased sensitivity after injury. 527 

Squid with a small area of a fin crushed with forceps showed more firing of nociceptors when 528 

that area was subsequently touched. This enhanced sensitivity had a rapid onset and lasted for 529 

approximately 70 minutes (Crook et al., 2013). However, squid do not appear to show 530 

targeted wound-tending behaviour (Crook et al., 2011), although increased sensitivity and 531 

prolonged behaviour directed at the site of a wound has also been observed in the octopus 532 

Abdopus aculeatus (Alusay et al., 2014).  Long-term sensitization of nociceptors (Crook et 533 

al., 2013) and defence responses (Crook et al., 2011) have been interpreted as indicating on-534 

going pain in vertebrates, but possibly do not require complex neural processing (Chase, 535 

2002). The function of the sensitization was tested by Crook et al. (2014) by injuring squid, 536 

some with and some without anaesthetic, and comparing to uninjured controls, again some 537 

with and some without anaesthetic. The squid were then exposed to predatory fish which 538 

showed increased attention to the injured animals regardless of anaesthetic treatment. 539 

However, injured squid initiated defensive responses earlier than did controls but this effect 540 

was blocked by the anaesthetic. The anaesthetic also blocked the sensitization that normally 541 

follows injury and these squid had a lower survival from predatory attempts than did those 542 

not given anaesthetic. However, anaesthetic without injury did not reduce survival indicating 543 

that there was a positive fitness effect from the sensitization. These data are important as they 544 

are consistent with the idea that pain-like states function to promote future survival. 545 

Observations of changed predatory tactics of octopus, Octopus joubini Robson, when 546 

hermit crab prey, Pagurus pollicaris, had stinging anemones, Calliactis tricolor, on their 547 
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shells are also consistent with the idea of responses not explained by nociception (review in 548 

Elwood, 2011). These long-term behavioural and neuronal changes should be viewed in the 549 

context of the advanced learning ability of cephalopods (Mather, 2011).  550 

 551 

ARTHROPODS - DECAPODS  552 

 553 

Various decapod crustaceans have been investigated to determine if responses to 554 

noxious stimuli are merely nociceptive reflexes, with no short-term or long-term effects on 555 

CNS function. Shore crabs (C. maenas) show rapid (two trial) discrimination avoidance 556 

learning when shocked in one of two dark shelters (Magee & Elwood, 2013). Further, hermit 557 

crabs that received a single shock within their shell showed a prolonged increase in 558 

motivation to leave that shell and move into a new one (Appel & Elwood 2009a; Elwood & 559 

Appel, 2009). They approached and investigated the new shell more quickly indicating an 560 

increased motivation for shell change (Elwood & Stewart, 1985: Elwood, 1995).  561 

Decapods also show prolonged rubbing or guarding of an affected area as seen in 562 

vertebrates (Weary et al., 2006). Glass prawns (Palaemon elegans) perform prolonged 563 

rubbing and grooming of the specific antenna brushed with either sodium hydroxide or acetic 564 

acid. (Barr et al., 2008). However, if the antenna is pre-treated with a local anaesthetic, the 565 

grooming and rubbing is much reduced.  Prolonged abdominal grooming also occurs in 566 

hermit crabs (Pagurus bernhardus) after shock on the abdomen (Appel & Elwood, 2009a 567 

Appel & Elwood 2009b). Further, edible crabs (Cancer pagurus) with a cheliped (claw) 568 

removed by pulling it off (a practice used in commercial fisheries) repeatedly touch the 569 

wound with their other appendages but not if they had been induced to autotomize the 570 
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cheliped without a wound (McCambridge pers. comm). Further, formalin injection into one 571 

cheliped of shore crabs (Hemigrapsus sanguineus) induces shaking and rubbing of the 572 

appendage and the use of that appendage is markedly reduced (Dyuizen et al., 2012). Thus 573 

prolonged attention and guarding is common in decapods (but see Puri & Faulkes, 2010). We 574 

note also that edible crabs that have had a claw pulled off causing tissue damage showed a 575 

marked prolonged physiological stress response whereas those induced to autotomize do not 576 

(Patterson et al., 2007). 577 

Behavioural trade-offs between avoiding the noxious stimulus and retaining some 578 

other requirement has also been observed. Hermit crabs, for example, leave less preferred 579 

species of shell more readily compared to those in preferred species when subject to 580 

abdominal shock (Appel & Elwood, 2009b,; Elwood & Appel, 2009) and are less likely to 581 

evacuate shells after shock when odours of predators are present (Magee & Elwood, 582 

unpublished).  583 

Morphine has marked effects in reducing responsiveness to noxious stimuli in crabs, 584 

Chasmagnathus granulatus (Lozada et al., 1988), however, this does not appear to be due to 585 

analgesia but rather a general lack of response to any stimulus (Barr & Elwood, 2011). Whilst 586 

analgesic effect has repeatedly demonstrated in vertebrates widely differing animals might 587 

use different regulating pain/nociceptive systems (Barr & Elwood, 2011). 588 

The prolonged rubbing and shaking of a cheliped injected with formalin noted above 589 

in H. sanguineus is accompanied by a gradual change in the central nervous system NO-ergic 590 

neurons that have been implicated in nociceptive reflexes in vertebrates and are present in 591 

primary sensory centres of crustaceans, insects and molluscs (reviewed in Dyuizen et al., 592 

2012). These neurons were shown by expression of the enzyme nitric oxide synthase and this 593 

expression was earlier on the ipsilateral than on the contralateral side of the CNS indicating 594 
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that it was due to a neuronal input from that side of the body. The earliest changes were seen 595 

in specific nerve fibres in the thoracic sensory neuropils and the most prominent seen in 596 

structures considered to modulate cheliped action. These changes occurred over a period of 597 

30-60 minutes depending on location and showed far more than just an immediate reflex 598 

function. They are consistent with the idea of prolonged motivational change after noxious 599 

stimulation.  600 

A recent study on crayfish (Procambarus clarkii) also noted long-term motivational 601 

change coupled with physiological change (Fossat et al., 2014). Some subjects were exposed 602 

to electrical fields that were aversive and induced attempted escape responses and then 603 

allowed to choose where to walk in a cross-shaped apparatus that had two arms in the light 604 

and two in the dark. All animals preferred the dark arms but those recently subjected to the 605 

aversive stimulus showed a stronger preference for the dark than did controls. Those subject 606 

to the electric field also had higher brain serotonin levels and a higher level of blood glucose, 607 

which has previously been recognised as a component of a stress response (Patterson et al., 608 

2007). Control animals injected with serotonin also showed strong avoidance of light and 609 

increased glucose. Further, an anxiolytic drug abolished the light avoidance of stressed 610 

animals. The authors concluded that the stress-induced avoidance is similar to vertebrate 611 

anxiety and indicates the ability of invertebrates to exhibit a state similar to mammalian 612 

emotion.  613 

 614 

ARTHROPODS- INSECTS 615 

 616 

Insects respond vigorously to noxious stimuli, but these responses can be suppressed 617 
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(e.g. during sexual cannibalism, Sakaluk et al., 2004) or intensified (e.g. after ultraviolet 618 

exposure, Babcock et al., 2009).  The molecular mechanisms mediating these behaviours are 619 

at least partially known in some species (e.g. Drosophila melanogaster) and appear to be 620 

homologous to the molecular mechanisms mediating nociception in mammals (Johnson & 621 

Carder, 2012).  Nociception in insects, as in other invertebrates, is transduced by neurons 622 

dedicated to sensing damaging stimuli (nociceptors, Smith & Lewin, 2009). D. melanogaster 623 

larvae have peripheral nociceptors that are studded with receptors sensitive to damaging 624 

stimuli (Tracey et al., 2003).  The best studied of these receptors include transient receptor 625 

potential (TRP) channels such as the TRP channel “Painless” (Tracey et al., 2003) which is 626 

an evolutionary homolog of the mammalian TRPA1 (Smith & Lewin, 2009). However, 627 

insects also differ from vertebrates in some ways in their responses to noxious stimuli.  For 628 

example, insects tend to continue to use damaged limbs (Eisemann et al., 1984) and will self-629 

cannibalize their own guts if injured (Lockwood, 2013).  630 

 How nociceptive information is processed within the insect central nervous system 631 

remains almost entirely unknown (Johnson & Carder, 2012), although there is evidence that 632 

nociceptive information reaches higher learning centres in the insect brain (e.g. Waddell, 633 

2013).  Nociception in insects can be modified using simple peripheral mechanisms, without 634 

the involvement of the central nervous system (Johnson & Carder, 2012).  Therefore, simply 635 

showing that nociception is modifiable (e.g. by endogenous opioids or other molecules) is not 636 

a compelling argument that insects feel pain.  Plasticity in responses to noxious stimuli does 637 

not necessarily indicate that an animal has the complex central nociceptive processing power 638 

required for the experience of 'pain'.   639 

 As in vertebrates, noxious stimuli can be used to ‘teach’ insects a variety of tasks 640 

(Giurfa, 2013).  For example, electric shocks have been used as a negative reinforcer in insect 641 
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learning studies (Tedjakumala & Giurfa, 2013).  Insects can also learn to avoid places 642 

associated with noxious stimuli (Giurfa, 2013). They can also learn to associate otherwise 643 

neutral stimuli with the cessation of electric shock and then prefer those stimuli, a 644 

phenomenon called “pain relief learning” (Gerber et al., 2014).  Therefore, insect nervous 645 

systems are capable of assessing motivational variables and noxious stimuli can act as a 646 

potent motivational force. 647 

 Whether insects have neural circuits capable of processing 'emotional' information 648 

(positive or negative) remains unclear. For example, a recent study in bees suggests that 649 

negative stimuli can induce pessimistic cognitive biases, as is observed in vertebrates 650 

(Bateson at al., 2011). However, Giurfa (2013) points out that Bateson et al.'s (2011) data 651 

equally support the interpretation that bees became better discriminators of a food reward 652 

after shaking (i.e. the negative stimulus used in Bateson's study).  This alternative explanation 653 

is appealing because shaking alters octopamine concentrations in the hemolymph (Bateson et 654 

al., 2011), and octopamine levels are known to influence sensory function (Orchard et al., 655 

1993; Roeder, 1999).  Nevertheless, at present, there is no definitive evidence that insects 656 

have the prerequisite cognitive and emotional abilities to support a negative internal mental 657 

state.  658 

With little neurobiological evidence for the existence of pain-like states in insects, we 659 

are left with trying to stretch the argument-by-analogy (Allen, 2011) to encompass the 660 

behaviour of this group.  Insects may show behaviour that suggests an affective or 661 

motivational component (e.g. it has complex and long-lasting effects), but insects could do 662 

this, at least in some cases, by using mechanisms that require only nociception (e.g. long-term 663 

nociceptive sensitization) and/or advanced sensory processing (i.e. without any internal 664 

mental states).  Moreover, recent advances in artificial intelligence (AI) have shown that 665 
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robots can be programmed to express pain-like behaviour using relatively simple processing 666 

systems (e.g. Castro-González et al., 2013).   The behaviour of these robots fulfils the 667 

behavioural criteria for pain listed in Table 2 (e.g. see Lee-Johnson & Carnegie, 2010; 668 

Castro-González et al., 2013).  For example, a robotic rodent has been programmed to 669 

experience 'discomfort' which can then be used as a learning motivator (Ames et al., 2012).  670 

AI researchers develop such ‘emotional’ robots because they recognize that affective 671 

processes give biological entities a great deal of cognitive flexibility (Lee-Johnson & 672 

Carnegie, 2010).  These ‘emotional’ robots have no subjectively experienced emotions, but 673 

the robot’s artificial emotions allow it to reprioritize its goals, modulate its behaviour, and 674 

provide learning rewards (Lee-Johnson & Carnegie, 2010; Castro-González et al., 2013).  675 

Similarly, insects, and possibly other animals, could use simple processing rules to produce 676 

pain-like behaviour, without any internal experience of pain. 677 

 678 

PRINCIPLE OF TRIANGULATION 679 

 680 

Pain in animals has been assessed using a wide range of indices, and it has been 681 

argued that none of these indices when taken in isolation can be considered as definitive 682 

evidence of ‘pain’ in animals (e.g. Rose et al. 2014). However, we along with other authors 683 

(e.g. Bateson 1991, Mason & Mendl 1993, Sneddon 2004, 2009, 2011, 2013, Weary et al 684 

2006, Nicol et al. 2009) are not advocating taking these individual isolated indices as 685 

evidence of pain, but that these indices should be taken together as representing an increasing 686 

level of complexity of responses to pain that go beyond simple and acute detection and reflex 687 

responses and begin to demonstrate a level of behavioural complexity that would require 688 

some form of experience. Pain is a complex multi-dimensional phenomenon (Rutherford 689 
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2002), therefore in order to effectively identify and then assess the severity of pain may 690 

require a multi-modal approach. Ultimately we are advocating applying the ‘principle of 691 

triangulation’, where all of the indices are taken together as evidence of underlying affective 692 

state (Melissa Bateson, personal communication). Such a principle forms the foundation in 693 

many different scientific fields where a definitive answer cannot be directly measured. For 694 

example, the existence of dark matter in the universe, which cannot be measured directly but 695 

is inferred from gravitational effects of visible matter, radiation and the large scale structure 696 

of the universe (Trimble 1987). 697 

 698 

CONCLUSIONS 699 

 700 

Our summary of the evidence supports the conclusion that many animals can 701 

experience pain-like states by fulfilling our definition of pain in animals although we accept 702 

that 100% certainty cannot be established for any animal species.  Nevertheless, the 703 

‘Precautionary principle’, the idea that it is better to err on the side of more protection for a 704 

group of animals if it is beyond reasonable doubt that they experience pain (e.g. Andrews 705 

2011), proposes that we should act as if at least some animals experience pain. From an 706 

ethical (Bateson, 2005) and often a legal perspective we must ensure the welfare of animals.  707 

Thus here we provide a basis for future studies to direct the investigation of pain in animals 708 

where evidence is lacking or inconclusive. This does not preclude the use of animals but 709 

careful consideration for the assessment and alleviation of pain is vital (Bateson, 2005). 710 

However, even if we cannot be certain that some species experience pain, they should be 711 

treated with respect for reasons that do not hinge on whether or not they experience pain 712 

(Harvey-Clark, 2011; Mather, 2011; Lockwood, 2013). 713 
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