Paper 2021/915
A PCP Theorem for Interactive Proofs and Applications
Abstract
The celebrated PCP Theorem states that any language in NP can be decided via a verifier that reads $O(1)$ bits from a polynomially long proof. Interactive oracle proofs (IOP), a generalization of PCPs, allow the verifier to interact with the prover for multiple rounds while reading a small number of bits from each prover message. While PCPs are relatively well understood, the power captured by IOPs (beyond NP) has yet to be fully explored. We present a generalization of the PCP theorem for interactive languages. We show that any language decidable by a $k(n)$-round IP has a $k(n)$-round public-coin IOP, where the verifier makes its decision by reading only $O(1)$ bits from each (polynomially long) prover message and $O(1)$ bits from each of its own (random) messages to the prover. Our result and the underlying techniques have several applications. We get a new hardness of approximation result for a stochastic satisfiability problem, we show IOP-to-IOP transformations that previously were known to hold only for IPs, and we formulate a new notion of PCPs (index-decodable PCPs) that enables us to obtain a commit-and-prove SNARK in the random oracle model for nondeterministic computations.
Note: Minor fix to section 6.2
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- A major revision of an IACR publication in EUROCRYPT 2022
- Keywords
- interactive proofsprobabilistically checkable proofsinteractive oracle proofs
- Contact author(s)
-
galarnon42 @ gmail com
alexch @ berkeley edu
eylony @ gmail com - History
- 2023-01-17: last of 8 revisions
- 2021-07-08: received
- See all versions
- Short URL
- https://ia.cr/2021/915
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2021/915, author = {Gal Arnon and Alessandro Chiesa and Eylon Yogev}, title = {A {PCP} Theorem for Interactive Proofs and Applications}, howpublished = {Cryptology {ePrint} Archive, Paper 2021/915}, year = {2021}, url = {https://eprint.iacr.org/2021/915} }