
Physically Observable Cryptography

Silvio Micali∗ Leonid Reyzin†

November 29, 2003

Abstract

Complexity-theoretic cryptography considers only abstract notions of computation, and
hence cannot protect against attacks that exploit the information leakage (via electromag-
netic fields, power consumption, etc.) inherent in the physical execution of any cryptographic
algorithm. Such “physical observation attacks” bypass the impressive barrier of mathemati-
cal security erected so far, and successfully break mathematically impregnable systems. The
great practicality and the inherent availability of physical attacks threaten the very relevance
of complexity-theoretic security.

To respond to the present crisis, we put forward physically observable cryptography: a power-
ful, comprehensive, and precise model for defining and delivering cryptographic security against
an adversary that has access to information leaked from the physical execution of cryptographic
algorithms.

Our general model allows for a variety of adversaries. In this paper, however, we focus on
the strongest possible adversary, so as to capture what is cryptographically possible in the worst
possible, physically observable setting. In particular, we

• consider an adversary that has full (and indeed adaptive) access to any leaked information;

• show that some of the basic theorems and intuitions of traditional cryptography no longer
hold in a physically observable setting; and

• construct pseudorandom generators that are provably secure against all physical-observation
attacks.

Our model makes it easy to meaningfully restrict the power of our general physically observ-
ing adversary. Such restrictions may enable schemes that are more efficient or rely on weaker
assumptions, while retaining security against meaningful physical observations attacks.

1 Introduction

“Non-Physical” Attacks. A non-physical attack against a cryptographic algorithm A is one in
which the adversary is given some access to (at times even full control over) A’s explicit inputs (e.g.,
messages and plaintexts) and some access to A’s outputs (e.g., ciphertexts and digital signatures).
The adversary is also given full knowledge of A —except, of course, for the secret key— but
absolutely no “window” into A’s internal state during a computation: he may know every single
line of A’s code, but whether A’s execution on a given input results in making more multiplications

∗MIT Computer Science and Artificial Intelligence Laboratory, 200 Technology Sq., Cambridge, MA 02139, USA.
†Boston University Department of Computer Science, 111 Cummington St., Boston, MA 02215, USA.

reyzin@cs.bu.edu

1

than additions, in using lots of RAM, or in accessing a given subroutine, remains totally unknown
to him. In a non-physical attack, A’s execution is essentially a black box. Inputs and outputs may
be visible, but what occurs within the box cannot be observed at all.

For a long time, due to lacking cryptographic theory and the consequent naive design of crypto-
graphic algorithms, adversaries had to search no further than non-physical attacks for their devious
deeds. (For instance, an adversary could often ask for and obtain the digital signature of a properly
chosen message and then forge digital signatures at will.) More recently, however, the sophisticated
reduction techniques of complexity-theoretic cryptography have shut the door to such attacks. For
instance, if one-way functions exist, fundamental tools such as pseudorandom generation [17] and
digital signatures [27, 24] can be implemented so as to be provably secure against all non-physical
attacks.

Unfortunately, other realistic and more powerful attacks exist.
“Physical-Observation” Attacks. In reality, a cryptographic algorithm A must be run in a
physical device P , and, quite outside of our control, the laws of Nature have something to say on
whether P is reducible to a black box during an execution of A. Indeed, like for other physical
processes, a real algorithmic execution generates all kinds of physical observables, which may thus
fall into the adversary’s hands, and be quite informative at that. For instance, Kocher et al. [20]
show that monitoring the electrical power consumed by a smart card running the DES algorithm
[25] is enough to retrieve the very secret key! In another example, a series of works [26, 2] show
that sometimes the electromagnetic radiation emitted by a computation, even measured from a few
yards away with a homemade antenna, could suffice to retrieve a secret key.
Physically Observable Cryptography. Typically, physical-observation attacks are soon
followed by defensive measures (e.g., [9, 19]), giving us hope that at least some functions could be
securely computed in our physical world. However, no rigorous theory currently exists that identifies
which elementary functions need to be secure, and to what extent, so that we can construct complex
cryptographic systems provably robust against all physical-observation attacks. This paper puts
forward such a theory.

Our theory is not about “shielding” hardware (neither perfectly1 nor partially2) but rather
about how to use partially shielded hardware in a provably secure manner. That is, we aim at
providing rigorous answers to questions of the following relative type:

(1) Given a piece of physical hardware P that is guaranteed to compute a specific, elementary
function f(x) so that only some information LP,f (x) leaks to the outside,

is it possible to construct

(2) a physical pseudorandom generator, encryption scheme, etc., provably secure against all
physically-observing adversaries?

Notice that the possibility of such reductions is far from guaranteed: hardware P is assumed
“good” only for computing f , while any computation outside P (i.e., beyond f) is assumed to be
fully observable by the adversary.

1Perfectly shielded hardware, so that all computation performed in it leaks nothing to the outside, might be
impossible to achieve and is much more than needed.

2We are after a computational theory here, and constructing totally or partially shielded hardware is not a task
for a computational theorist.

2

Providing such reductions is important even with the current, incomplete knowledge about
shielding hardware.3 In fact, physically observable cryptography may properly focus the research
in hardware protection by identifying which specific and elementary functions need to be protected
and how much.
A New and General Model. Physically observable cryptography is a new and fascinating
world defying our traditional cryptographic intuition. (For example, as we show, such fundamental
results as the equivalence of unpredictability and indistinguishability for pseudorandom generators
[30] fail to hold.) Thus, as our first (and indeed main) task, we construct a precise model, so as to
be able to reason rigorously.

There are, of course, many possible models for physically observable cryptography, each rigorous
and meaningful in its own right. How do we choose? We opted for the most pessimistic model
of the world that still leaves room for cryptography. That is, we chose a very general model for
the interplay of physical computation, information leakage, and adversarial power, trying to ensure
that security in our model implies security in the real world, no matter how unfriendly the latter
turns out to be (unless it disallows cryptographic security altogether).
First Results in the General Model. A new model is of interest only when non-trivial work
can be done within its confines. We demonstrate that this is the case by investigating the fun-
damental notion of pseudorandom generation. In order to do so, we provide physically-observable
variants of the traditional definitions of one-way functions, hardcore bits, unpredictability and in-
distinguishability. Already in the definitions stage, our traditional intuition is challenged by the
unexpected behavior of these seemingly familiar notions, which is captured by several (generally
easy to prove) claims and observations.

We then proceed to the two main theorems of this work. The first theorem shows that un-
predictable physically observable generators with arbitrary expansion can be constructed from any
(properly defined) physically observable one-way permutation. It thus provides a physically ob-
servable analogue to the results of [13, 7] in the traditional world. Unfortunately, this construction
does not result in indistinguishable physically observable generators.

Our second main theorem shows that indistinguishable physically observable generators with
arbitrary expansion can be constructed from such generators with 1-bit expansion. It is thus the
equivalent of the hybrid argument (a.k.a. “statistical walk”) of [15].

Both of these theorems require non-trivial proofs that differ in significant ways from their
traditional counterparts, showing how different the physically observable world really is.
Specialized Models. The generality of our model comes at a price: results in it require cor-
respondingly strong assumptions. We wish to emphasize, however, that in many settings (e.g.,
arising from advances in hardware manufacturing) it will be quite meaningful to consider special-
ized models of physically observable cryptography, where information leakage or adversarial power
are in some way restricted. It is our expectation that more efficient results, or results relying on
lesser assumptions, will be awaiting in such models.
Passive vs. Active Physical Adversaries. Traditional cryptography has benefited from
a thorough understanding of computational security against passive adversaries before tackling
computational security against active adversaries. We believe similar advantages can be gained
for physical security. Hence, for now, we consider physically observing adversaries only. Note,
however, that our adversary has a traditional computational component and a novel physical one,
and we do not start from scratch in its computational component. Indeed, our adversary will be

3Had complexity-theoretic cryptography waited for a proof of existence of one-way functions, we would be waiting
still!

3

computationally quite active (e.g., it will be able to adaptively choose inputs to the scheme it
attacks), but will be passive in its physical component (i.e., it will observe a physical computation
without tampering with it). Attacks (e.g., [4, 8, 6, 5, 28]), defenses (e.g., [26, 23]), and models (e.g.,
[12]) for physically active adversaries are already under investigation, but their full understanding
will ultimately depend on a full understanding of the passive case.
Other Related Work. We note that the question of building protected hardware has been
addressed before with mathematical rigor. In particular, Chari, Jutla, Rao and Rohatgi [9] consider
how to protect a circuit against attackers who receive a noisy function of its state (their motivation is
protection against power analysis attacks). Ishai, Sahai and Wagner [18] consider how to guarantee
that adversaries who can physically probe a limited number of wires in a circuit will not be able to
learn meaningful information from it. This line of research is complementary to ours: we consider
reductions among physical computing devices in order to guarantee security against all physical
observation attacks under some assumptions, whereas the authors of [9] and [18] consider how to
build particular physical computing devices secure against a particular class of physical observations
attacks. In a way, this distinction is analogous to the distinction in traditional cryptography between
research on cryptographic reductions on the one hand, and research on finding instantiations of
secure primitives (one-way functions, etc.) on the other.

2 Intuition for Physically Observable Computation

Our model for physically observable (PO for short) computation is based on the following (over-
lapping)

Informal Axioms

1. Computation, and only computation, leaks information

Information may leak whenever bits of data are accessed and computed upon. The leaking
information actually depends on the particular operation performed, and, more generally,
on the configuration of the currently active part of the computer. However, there is no
information leakage in the absence of computation: data can be placed in some form of
storage where, when not being accessed and computed upon, it is totally secure.

2. Same computation leaks different information on different computers

Traditionally, we think of algorithms as carrying out computation. However, an algorithm
is an abstraction: a set of general instructions, whose physical implementation may vary. In
one case, an algorithm may be executed in a physical computer with lead shielding hiding
the electromagnetic radiation correlated to the machine’s internal state. In another case, the
same algorithm may be executed in a computer with a sufficiently powerful inner battery
hiding the power utilized at each step of the computation. As a result, the same elementary
operation on 2 bits of data may leak different information: e.g., (for all we know) their XOR
in one case and their AND in the other.

3. Information leakage depends on the chosen measurement

While much may be observable at any given time, not all of it can be observed simultaneously
(either for theoretical or practical reasons), and some may be only observed in a probabilistic
sense (due to quantum effects, noise, etc.). The specific information leaked depends on the

4

actual measurement made. Different measurements can be chosen (adaptively and adversar-
ially) at each step of the computation.

4. Information leakage is local

The information that may be leaked by a physically observable device is the same in any
execution with the same input, independent of the computation that takes place before the
device is invoked or after it halts. In particular, therefore, measurable information dissipates:
though an adversary can choose what information to measure at each step of a computation,
information not measured is lost. Information leakage depends on the past computational
history only to the extent that the current computational configuration depends on such
history.

5. All leaked information is efficiently computable from the computer’s internal configuration.

Given an algorithm and its physical implementation, the information leakage is a polynomial-
time computable function of (1) the algorithm’s internal configuration, (2) the chosen mea-
surement, and possibly (3) some randomness (outside anybody’s control).

Remarks

As expected, the real meaning of our axioms lies in the precise way we use them in our model and
proofs. However, it may be worthwhile to clarify here a few points.

• Some form of security for unaccessed memory is mandatory. For instance, if a small amount
of information leakage from a stored secret occurs at every unit of time (e.g., if a given
bit becomes 51% predictable within a day) then a patient enough adversary will eventually
reconstruct the entire secret.

• Some form of security for unaccessed memory is possible. One may object to the requirement
that only computation leaks information on the grounds that in modern computers, even
unaccessed memory is refreshed, moved from cache and back, etc. However, as our formal-
ization below shows, all we need to assume is that there is some storage that does not leak
information when not accessed. If regular RAM leaks, then such storage can be the hard
drive; if that also leaks, use flash memory; etc.

• Some form of locality for information leakage is mandatory. The hallmark of modern cryp-
tography has been constructing complex systems out of basic components. If the behavior of
these components changed depending on the context, then no general principles for modular
design could arise. Indeed, if corporation A produced a properly shielded device used in
computers build by corporation B, then corporation B should not damage the shielding on
the device when assembling its computers.

• The restriction of a single adversarial measurement per step should not misinterpreted. If
two measurements M1 and M2 can be “fruitfully” performed one after the other, our model
allows the adversary to perform the single measurement M = (M1,M2).

• The polynomial-time computability of leaked information should not be misinterpreted. This
efficient computability is quite orthogonal to the debate on whether physical (e.g., quantum)
computation could break the polynomial-time barrier. Essentially, our model says that the
most an adversary may obtain from a measurement is the entire current configuration of the

5

cryptographic machine. And such configuration is computable in time linear in the number
of steps executed by the crypto algorithm. For instance, if a computer stores a Hamiltonian
graph but not its Hamiltonian tour, then performing a breadth-first search on the graph
should not leak its Hamiltonian tour.

(Of course, should an adversary more powerful than polynomial-time be considered, then the
power of the leakage function might also be increased “accordingly.”)

Of course, we do not know that these axioms are “exactly true”, but definitely hope to live in a
world that “approximates” them to a sufficient degree: life without cryptography would be rather
dull indeed!

3 Models and Goals of Physically Observable Cryptography

Section 3.1 concerns itself with abstract computation, not yet its physical implementation. Sec-
tion 3.2 describes how we model physical implementations of such abstract computation. Section 3.3
defines what it means, in our model, to build high-level constructions out of low-level primitives.

3.1 Computational Model

Motivation. Axiom 1 guarantees that unaccessed memory leaks no information. Thus we need
a computing device that clearly separates memory that is actively being used from memory that
is not. The traditional Turing machine, which accesses its tape sequentially, is not a suitable
computational device for the goal at hand: if the reading head is on one end of the tape, and
the machine needs to read a value on the other end, it must scan the entire tape, thus accessing
every single memory value. We thus must augment the usual Turing machine with random access
memory, where each bit can be addressed individually and independently of other bits, and enable
the resulting machine to copy bits between this random-access memory and the usual tape where
it can work on them. (Such individual random access can be realistic implemented.)

Axiom 4 guarantees that the leakage of a given device is the same, independent of the computa-
tion that follows or precedes it. Thus we need a model that can properly segregate one portion of a
computation from another. The traditional notion of computation as carried out by a single Turing
machine is inadequate for separating computation into multiple independent components, because
the configuration of a Turing machine must incorporate (at a minimum) all future computation.
To enable the modularity of physically observable cryptography, our model of computation will
actually consist of multiple machines, each with its own physical protection, that may call each
other as subroutines. In order to provide true independence, each machine must “see” its own
memory space, independent of other machines (this is commonly known as virtual memory). Thus
our multiple machines must be accompanied by a virtual memory manager that would provide for
parameter passing while ensuring memory independence that is necessary for modularity. (Such
virtual memory management too can be realistically implemented.)
Formalization Without Loss of Generality. Let us now formalize this model of compu-
tation (without yet specifying how information may leak). A detailed formalization is of course
necessary for proofs to be meaningful. This is particularly true in the case of a new theory, where
no strong intuition has yet been developed. However, the particular choice of these details is not
crucial. Our theorems are robust enough to hold also for different reasonable instantiations of this
model.

6

Abstract Virtual-Memory Computers. An abstract virtual-memory computer, or abstract
computer for short, consists of a collection of special Turing machines, which invoke each other
as subroutines and share a special common memory. We call each member of our collection an
abstract virtual-memory Turing machine (abstract VTM or simply VTM for short). We write
A = (A1, . . . , An) to mean that an abstract computer A consists of abstract VTMs A1, . . . , An,
where A1 is a distinguished VTM: the one invoked first and whose inputs and outputs coincide with
those of A. Note that abstract computers and VTMs are not physical devices: they represent logical
computation, may have many different physical implementations. We consider physical computers
in Section 3.2, after fully describing logical computation.

In addition to the traditional input, output, work and random tapes of a probabilistic Turing
machine, a VTM has random access to its own virtual address space (VAS): an unbounded array
of bits that starts at address 1 and goes on indefinitely.

The salient feature of an abstract virtual memory computer is that, while each VTM “thinks”
it has its own individual VAS, in reality all of them, via a proper memory manager, share a single
physical address space (PAS).
Virtual-Memory Management. As it is common in modern operating systems, a single virtual-
memory manager (working in polynomial time) supervises the mapping between individual VASes
and the unique PAS. The virtual-memory manager also allows for parameter passing among the
different VTMs.

When a VTM is invoked, from its point of view every bit in its VAS is initialized to 0, except
for those locations where the caller placed the input. The virtual-memory manager ensures that
the VAS of the caller is not modified by the callee, except for the callee’s output values (that are
mapped back into the caller’s VAS).

Virtual-memory management is a well studied subject (outside the scope of cryptography), and
we shall refrain from discussing it in detail. The only explicit requirement that we impose onto
our virtual-memory manager is that it should only remap memory addresses, but never access their
content. (As we shall discuss in later sections, this requirement is crucial to achieving cryptographic
security in the physical world, where each memory access may result in a leakage of sensitive
information to the adversary.)
Accessing Virtual Memory. If A is a VTM, then we denote by mA the content of A’s VAS,
and, for a positive integer j, we denote by mA[j] the bit value stored at location j. Every VTM has
an additional, special VAS-access tape. To read the bit mA[j], A writes down j on the VAS-access
tape, and enters a special state. Once A is in that state, the value mA[j] appears on the VAS-access
tape at the current head position (the mechanics of this are the same as for an oracle query). To
write a bit b in location j in its VAS, A writes down (j, b) on the VAS-access tape, and enters
another special state, at which point mA[j] gets set to b.

Note that this setup allows each machine to work almost entirely in VAS, and use its work tape
for merely computing addresses and evaluating simple gates.
Inputs and Outputs of a VTM. All VTM inputs and outputs are binary strings always residing
in virtual memory. Consider a computation of a VTM A with an input i of length
 and an output
o of length L. Then, at the start of the computation, the input tape of A contains 1�, the unary
representations of the input length. The input i itself is located in the first
 bit positions of A’s
VAS, which will be read-only to A. At the end of the computation, A’s output tape will contain
a sequence of L addresses, b1, . . . , bL, and o itself will be in A’s VAS: o = mA[b1] . . .mA[bL]. (The
reason for input length to be expressed in unary is the preservation of the notion of polynomial
running time with respect to the length of the input tape.)

7

Calling VTMs as Subroutines. Each abstract VTM in the abstract virtual-memory computer
has a unique name and a special subroutine-call tape. When a VTM A′ makes a subroutine call to
a VTM A, A′ specifies where A′ placed the input bits to A and where A′ wants the output bits of
A, by writing the corresponding addresses on this tape. The memory manager remaps locations in
the VAS of A′ to the VAS of A and vice versa. Straightforward details are provided in Appendix B.

3.2 Physical Security Model

Physical Virtual-Memory Computers. We now formally define what information about
the operation of a machine can be learned by the adversary. Note, however, that an abstract
virtual-memory computer is an abstract object that may have different physical implementations.
To model information leakage of any particular implementation, we introduce a physical virtual-
memory computer (physical computer for short) and a physical virtual-memory Turing machine
(physical VTM for short). A physical VTM P is a pair (L,A), where A is an abstract VTM and
L is the leakage function described below. A physical VTM is meant to model a single shielded
component that can be combined with others to form a computer. If A = (A1, A2, . . . , An) is
an abstract computer and Pi = (Li, Ai), then we call Pi a physical implementation of Ai and
P = (P1, P2, . . . Pn) a physical implementation of A.

If a physical computer P is deterministic (or probabilistic, but Las Vegas), then we denote by
fP(x) the function computed by P on input x.
The Leakage Function. The leakage function L of a physical VTM P = (L,A) is a function
of three inputs, L = L(·, ·, ·).
• The first input is the current internal configuration C of A, which incorporates everything that
is in principle measurable. More precisely, C is a binary string encoding (in some canonical
fashion) the information of all the tapes of A, the locations of all the heads, and the current
state (but not the contents of its VAS mA). We require that only the “touched” portions of
the tapes be encoded in C, so that the space taken up by C is polynomially related to the
space used by T (not counting the VAS space).

• The second input M is the setting of the measuring apparatus, also encoded as a binary string
(in essence, a specification of what the adversary chooses to measure).

• The third input R is a sufficiently long random string to model the randomness of the mea-
surement.

By specifying the setting M of its measuring apparatus, while A is in configuration C, the adversary
will receive information L(C,M,R), for a fresh random R (unknown to the adversary).

Because the adversary’s computational abilities are restricted to polynomial time, we require
the function L(C,M,R) to be computable in time that is polynomial in the lengths of C and M .
The Adversary. Adversaries for different cryptographic tasks can be quite different (e.g., com-
pare a signature scheme adversary to a pseudorandom generator distinguisher). However, we will
augment all of the them in the same way with the ability to observe computation. We formalize
this notion below.

Definition 1. We say that the adversary F observes the computation of a physical computer
P = (P1, P2, . . . , Pn), where Pi = (Li, Ai) if:

1. F is invoked before each step of a physical VTM of P, with configuration of F preserved
between invocations.

8

2. F has a special read-only name tape that contains the name of the physical VTM Pi of P
that is currently active.

3. At each invocation, upon performing some computation, F writes down a string M on a
special observation tape, and then enters a special state. Then the value Li(C,M,R), where
Pi is the currently active physical VTM and R is a sufficiently long fresh random string
unknown to F , appears on the observation tape, and P takes its next step.

4. This process repeats until P halts. At this point F is invoked again, with its name tape
containing the index 0 indicating that P halted.

Notice that the above adversary is adaptive: while it cannot go back in time, its choice of what
to measure in each step can depend on the results of measurements chosen in the past. Moreover,
while at each step the adversary can measure only one quantity, to have a strong security model,
we give the adversary all the time it needs to obtain the result of the previous measurement, decide
what to measure next, and adjust its measuring apparatus appropriately.

Suppose the adversary F running on input xF observes a physical computer P running on input
xP , then P halts and produces output yP , and then F halts and produces output yF . We denote
this by

yP ← P(xP) ❀ F (xF)→ yF .

Note that F sees neither xP nor yP (unless it can deduce these values indirectly by observing the
computation).

3.3 Assumptions, Reductions, and Goals

In addition to traditional, complexity-theoretic assumptions (e.g., the existence of one-way per-
mutations), physically observable cryptography also has physical assumptions. Indeed, the very
existence of a machine that “leaks less than complete information” is an assumption about the
physical world. Let us be more precise.

Definition 2. A physical VTMs is trivial if its leakage function reveals its entire internal configu-
ration4 and non-trivial otherwise.

Fundamental Premise. The very existence of a non-trivial physical VTM is a physical assump-
tion.

Just like in traditional cryptography, the goal of physically observable cryptography is to rigor-
ously derive desirable objects from simple (physical and computational) assumptions. As usual, we
refer to such rigorous derivations as reductions. Reductions are expected to use stated assumptions,
but should not themselves consist of assumptions!

Definition 3. Let P ′ and P be physical computers. We say that P ′ reduces to P (alternatively, P
implies P ′) if every non-trivial physical VTM of P ′ is also a physical VTM of P.

4It suffices, in fact, to reveal only the current state and the characters observed by the reading heads—the adversary
can infer the rest by observing the leakage at every step.

9

4 Definitions and Observations

Having put forward the rules of physically observable cryptography, we now need to gain some
experience in distilling its first assumptions and constructing its first reductions.

We start by quickly recalling basic notions and facts from traditional cryptography that we use
in this paper.

4.1 Traditional Building Blocks

We assume familiarity with the traditional GMR notation (recalled in our Appendix A).
We also assume familiarity with the notions of one-way function [10] and permutation; with

the notion of of hardcore bits [7]; with the fact that all one-way functions have a Goldreich-Levin
hardcore bit [13]; and with the notion of a natural hardcore bit (one that is simply a bit of the
input, such as the last bit of the RSA input [3]). Finally, recall the well-known iterative generator
of Blum and Micali [7], constructed as follows:

iterate a one-way permutation on a random seed, outputting the hardcore bit at each iteration.

(All this traditional material is more thoroughly summarized in Appendix C.)

4.2 Physically Observable One-Way Functions and Permutations

Avoiding a Logical Trap. In traditional cryptography, the existence of a one-way function
is currently an assumption, while the definition of a one-way function does not depend on any
assumption. We wish that the same be true for physically observable one-way functions. Unfor-
tunately, the most obvious attempt to defining physically observable one-way functions does not
satisfy this requirement. The attempt consists of replacing the Turing machine T in the one-way
function definition of Appendix C with a physical computer P observed by F . Precisely,

Definition Attempt: A physically observable (PO) one-way functions is a function f : {0, 1}∗ →
{0, 1}∗ such that there exists a polynomial-time physical computer P that computes f and, for any
polynomial-time adversary F , the following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) ❀ F (1k)→ state ; z ← F (state, y) : f(z) = y].

Intuitively, physically observable one-way functions should be “harder to come by” than tra-
ditional ones: unless no traditional one-way functions exist, we expect that only some of them
may also be PO one-way. Recall, however, that mathematically a physical computer P consists of
pairs (L,A), where L is a leakage function and A an abstract VTM, in particular a single Turing
machine. Thus, by setting L be the constant function 0, and A = {T}, where T is the Turing
machine computing f , we obtain a non-trivial computer P = {(L,A)} that ensures that f is PO
one-way as soon as it is traditionally one-way. The relevant question, however, is not whether such
a computer can be mathematically defined, but whether it can be physically built. As we have said
already, the mere existence of a non-trivial physical computer is in itself an assumption, and we
do not want the definition of a physically observable one-way function to rely on an assumption.
Therefore, we do not define what it means for a function f to be physically observable one-way.
Rather, we define what it means for a particular physical computer computing f to be one-way.

We shall actually introduce, in order of strength, three physically observable counterparts of
traditional one-way functions and one-way permutations.

10

Minimal One-Way Functions and Permutations. Avoiding the logical trap discussed above,
the first way of defining one-way functions (or permutations) in the physically observable world
is to say that P is a one-way function if it computes a permutation fP that is hard to invert
despite the leakage from P’s computation. We call such physically observable one-way functions
and permutations “minimal” in order to distinguish them from the other two counterparts we are
going to discuss later on.

Definition 4. A polynomial-time deterministic physical computer P is minimal one-way function
if for any polynomial-time adversary F , the following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← P(x) ❀ F (1k)→ state ; z ← F (state, y) : fP(z) = y].

Furthermore, if fP is length-preserving and bijective, we call P a minimal one-way permutation.

Durable Functions and Permutations. A salient feature of an abstract permutation is that
the output is random for a random input. The following definition captures this feature, even in
the presence of computational leakage.

Definition 5. A durable function (permutation) is a minimal one-way function (permutation) P
such that, for any polynomial-time adversary F , the value |pP

k − pR
k | is negligible in k, where

pP
k = Pr[x R← {0, 1}k ; y ← P(x) ❀ F (1k)→ state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← P(x) ❀ F (1k)→ state ; z

R← {0, 1}k : F (state, z) = 1] .

Maximal One-Way Functions and Permutations. We now define physically observable
one-way functions that leak nothing at all.

Definition 6. A maximal one-way function (permutation) is a minimal one-way function (permu-
tation) P such that the leakage functions of its component physical VTMs are independent of the
input x of P (in other words, x has no effect on the distribution of information that leaks).

One can also define statistically maximal functions and permutations, where for any two inputs
x1 and x2, the observed leakage from P(x1) and P(x2) is statistically close; and computationally
maximal functions and permutations, where for any two inputs x1 and x2, what P(x1) leaks is
indistinguishable from what P(x2) leaks. We postpone defining these formally.

4.3 Physically Observable Pseudorandomness

One of our goals in the sequel will be to provide a physically observable analogue to the Blum-Micali
[7] construction of pseudorandom generators. To this end, we provide here physically observable
analogues of the notions of indistinguishability [30] and unpredictability [7].
Unpredictability. The corresponding physically observable notion replaces “unpredictability of
bit i+1 from the first i bits” with “unpredictability of bit i+1 from the first i bits and the leakage
from their computation.”

Definition 7. Let p be a polynomially bounded function such that p(k) > k for all positive integers
k. Let G be a polynomial-time deterministic physical computer that, on a k-bit input, produces
p(k)-bit output, one bit at a time (i.e., it writes down on the output tape the VAS locations of the
output bits in left to right, one a time). Let Gi denote running G and aborting it after it outputs the
i-th bit. We say that G is a PO unpredictable generator with expansion p if for any polynomial-time
adversary F , the value |pk − 1/2| is negligible in k, where

11

pk = Pr[(i, state1)← F (1k) ; x
R← {0, 1}k ; y1y2 . . . yi ← Gi(x) ❀ F (state1)→ state2 :

F (state2, y1 . . . yi) = yi+1] ,

(where yj denotes the j-th bit of y = G(x)).
Indistinguishability. The corresponding physically observable notion replaces “indistinguisha-
bility” by “indistinguishability in the presence of leakage.” That is, a polynomial-time adversary
F first observes the computation of a pseudorandom string, and then receives either that same
pseudorandom string or a totally independent random string, and has to distinguish between the
two cases.

Definition 8. Let p be a polynomially bounded function such that p(k) > k for all positive integers
k. We say that a polynomial-time deterministic physical computer G is a PO indistinguishable
generator with expansion p if for any polynomial-time adversary F , the value |pG

k −pR
k | is negligible

in k, where

pG
k = Pr[x R← {0, 1}k ; y ← G(x) ❀ F (1k)→ state : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← G(x) ❀ F (1k)→ state ; z

R← {0, 1}p(k) : F (state, z) = 1] .

4.4 First Observations

Reductions in our new environment are substantially more complex than in the traditional setting,
and we have chosen a very simple one as our first example. Namely, we prove that minimal one-way
permutations compose just like traditional one-way permutations.

Claim 1. A minimal one-way permutation P implies a minimal one-way permutation P ′ such that
fP ′(·) = fP(fP(·)).
Proof. To construct P ′, build a trivial physical VTM that simply runs P twice. See Appendix D
for details. We wish to emphasize that, though simple, the details of the proof of Claim 1 illustrate
exactly how our axioms for physically observable computation (formalized in our model) play out
in our proofs.

Despite this good news about our simplest definition, minimal one-way permutations are not
suitable for the Blum-Micali construction due to the following observation.

Observation 1. Minimal one-way permutations do not chain. That is, an adversary observing
the computation of P ′ from Claim 1 and receiving fP(fP(x)) may well be able to compute the
intermediate value fP(x).

This is so because P may leak its entire output while being minimal one-way.

Unlike minimal one-way permutations, maximal one-way permutations do suffice for the Blum-
Micali construction.

Claim 2. A maximal one-way permutation P implies a PO unpredictable generator.

12

Proof. The proof of this claim, whose details are omitted here, is fairly straightforward: simply
mimic the Blum-Micali construction, computing x1 = P(x0), x2 = P(x1), . . . , xn = P(xn−1)
and outputting the Goldreich-Levin bit of xn, of xn−1, . . . , of x1. Note that the computation of
Goldreich-Levin must be done on a trivial physical VTM (because to do otherwise would involve
another assumption), which will result in full leakage of xn, xn−1, . . . , x0. Therefore, for unpre-
dictability, it is crucial that the bits be computed and output one at a time and in reverse order
like in the original Blum-Micali construction.

Observation 2. Using maximal (or durable or minimal) one-way permutations in the Blum-Micali
construction does not yield PO indistinguishable generators.

Indeed, the output from the above construction is easily distinguishable from random in the presence
of leakage, because of the eventual leakage of x0, x1, . . . , xn.

The above leads to the following observation.

Observation 3. A PO unpredictable generator is not necessarily PO indistinguishable.

However, indistinguishability still implies unpredictability, even in this physically observable world.

If the maximal one-way permutation satisfies an additional property, we can obtain PO indis-
tinguishable generators. Recall that a (traditional) hardcore bit of x is natural if it is a bit in some
fixed location of x.

Claim 3. A maximal one-way permutation P for which fP has a (traditional) natural hardcore bit
implies a PO indistinguishable generator.

Proof. Simply use the previous construction, but output the natural hardcore bit instead of the
Goldreich-Levin one. Because all parameters (including inputs and outputs) are passed through
memory, this output need not leak anything. Thus, the result is indistinguishable from random in
the presence of leakage, because there is no meaningful leakage.

The claims and observations so far have been fairly straightforward. We now come to the two
main theorems.

5 Theorems

Our first main theorem demonstrates that the notion of a durable function is in some sense the
“right” analogue of the traditional one-way permutation: when used in the Blum-Micali construc-
tion, with Goldreich-Levin hardcore bits, it produces a PO unpredictable generator; moreover, the
proof seems to need all of the properties of durable functions. (Identifying the minimal physically
observable assumption for pseudorandom generation is a much harder problem, not addressed here.)

Theorem 1. A durable function implies a PO unpredictable generator (with any polynomial ex-
pansion).

Proof. Utilize the Blum-Micali construction, outputting (in reverse order) the Goldreich-Levin bit of
each xi, just like in Claim 2. The hard part is to show that this is unpredictable. Durable functions,
in principle, could leak their own hardcore bits—this would not contradict the indistinguishability
of the output from random (indeed, by the very definition of a hardcore bit). However, what helps
us here is that we are using specifically the Goldreich-Levin hardcore bit, computed as r · xi for a

13

random r. Note that r will be leaked to the adversary before the first output bit is even produced,
during its computation as r ·xn. But crucially, the adversary will not yet know r during the iterated
computation of the durable function, and hence will be unable to tailor its measurement to the
particular r. We can then show (using the same error-correcting code techniques for reconstructing
xi as in [13]) that r · xi is unpredictable given the leakage obtained by the adversary. More details
of the proof are deferred to Appendix E.

Our second theorem addresses the stronger notion of PO indistinguishability. We have already
seen that PO indistinguishable generators can be built out of maximal one-way permutations with
natural hardcore bits. However, this assumption may be too strong. What this theorem shows is
that as long as there is some way to a build the simplest possible PO indistinguishable generator—
the one with one-bit expansion—there is a way to convert it to a PO indistinguishable generator
with arbitrary expansion.

Theorem 2. A PO indistinguishable generator that expands its input by a single bit implies a PO
indistinguishable generator with any polynomial expansion.

Proof. The proof consists of a hybrid argument, but such arguments are more complex in our
physically observable setting (in particular, rather than a traditional single “pass” through n inter-
mediate steps —where the first is pseudorandom and the last is truly random— they now require
two passes: from 1 to n and back). Details can be found in Appendix F.

6 Some Further Directions

A New Role for Older Notions. In traditional cryptography, in light of the Goldreich-
Levin construction [13], it seemed that finding natural hardcore bits of one-way functions became a
nearly pointless endeavor (from which only minimal efficiency could be realized). However, Claim 2
changes the state of affairs dramatically. This shows how physically observable cryptography may
provide new impetus for research on older subjects.

(Another notion from the past that seemed insignificant was the method of outputting bits back-
wards in the Blum-Micali generator. It was made irrelevant by the equivalence of unpredictability
and indistinguishability. In our new world, however, outputting bits backwards is crucially impor-
tant for Claim 2 and Theorem 1.)
Inherited vs. Generated Randomness. Our definitions in the physically observable model do
not address the origin of the secret input x for a one-way function P: according to the definitions,
nothing about x is observable by F before P starts running. One may take another view of a
one-way function, however: one that includes the generation of a random input x as the first
step. While in traditional cryptography this distinction seems unimportant, it is quite crucial in
physically observable cryptography: the very generation of a random x may leak information about
x. It is conceivable that some applications require a definition that includes the generation of a
random x as part of the functionality of P. However, we expect that in many instances it is possible
to “hardwire” the secret randomness before the adversary has a chance to observe the machine,
and then rely on pseudorandom generation.
Deterministic Leakage and Repeated Computations. Our definitions allow for repeated
computation to leak new information each time. However, the case can be made (e.g., due to proper
hardware design) that some devices computing a given function f may leak the same information

14

whenever f is evaluated at the same input x. This is actually implied by making the leakage
function deterministic and independent of the adversary measurement. Fixed-leakage physically
observable cryptography promises to be a very useful restriction of our general model (e.g., because,
for memory efficiency, crucial cryptographic quantities are often reconstructed from small seeds,
such as in the classical pseudorandom function of [16]).
Signature Schemes. In a forthcoming paper we shall demonstrate that digital signatures provide
another example of a crucial cryptographic object constructible in our general model. Interestingly,
we shall obtain our result by relying on some old constructions (e.g., [21] and [22]), highlighting
once more how old research may play a role in our new context.

Acknowledgment

The work of the second author was partly funded by the National Science Foundation under Grant
No. CCR-0311485.

References

[1] Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle,
Washington, 15–17 May 1989.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s). In
Cryptographic Hardware and Embedded Systems Conference (CHES ’02), 2002.

[3] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr. RSA and Rabin functions: Certain parts
are as hard as the whole. SIAM J. Computing, 17(2):194–209, 1988.

[4] Ross Anderson and Markus Kuhn. Tamper resistance — a cautionary note. In The Second
USENIX Workshop on Electronic Commerce, November 1996.

[5] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices. In Fifth
International Security Protocol Workshop, April 1997.

[6] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Burton S.
Kaliski, Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer-Verlag, 1997.

[7] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM Journal on Computing, 13(4):850–863, November 1984.

[8] D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic protocols
for faults. In Walter Fumy, editor, Advances in Cryptology—EUROCRYPT 97, volume 1233
of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag, 11–15 May 1997.

[9] S. Chari, C. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power
analysis attacks. In Wiener [29], pages 398–412.

[10] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[11] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. Journal
of Cryptology, 9(1):35–67, Winter 1996.

15

[12] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Tamper Proof
Security: Theoretical Foundations for Security Against Hardware Tampering. Proceedings of
the Theory of Cryptography Conference, 2004.

[13] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In ACM [1], pages
25–32.

[14] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
2001.

[15] Oded Goldreich and Silvio Micali. Unpublished.

[16] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of
the ACM, 33(4):792-807, October 1986.

[17] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[18] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, Advances in Cryptology—CRYPTO 2003, Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[19] Joshua Jaffe, Paul Kocher, and Benjamin Jun. United states patent 6,510,518: Balanced
cryptographic computational method and apparatus for leak minimizational in smartcards
and other cryptosystems, 21 January 2003.

[20] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Wiener [29],
pages 388–397.

[21] Leslie Lamport. Constructing digital signatures from a one way function. Technical Report
CSL-98, SRI International, October 1979.

[22] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in Cryptology—
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 218–238. Springer-
Verlag, 1990, 20–24 August 1989.

[23] S. W Moore, R. J. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving smartcard
security using self-timed circuits. In Asynch 2002. IEEE Computer Society Press, 2002.

[24] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In ACM [1], pages 33–43.

[25] FIPS publication 46: Data encryption standard, 1977. Available from
http://www.itl.nist.gov/fipspubs/.

[26] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA): Measures and
counter-measures for smart cards. In Smart Card Programming and Security (E-smart 2001)
Cannes, France, volume 2140 of Lecture Notes in Computer Science, pages 200–210, September
2001.

[27] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceed-
ings of the Twenty Second Annual ACM Symposium on Theory of Computing, pages 387–394,
Baltimore, Maryland, 14–16 May 1990.

16

[28] Sergei Skorobogatov and Ross Anderson. Optical fault induction attacks. In Cryptographic
Hardware and Embedded Systems Conference (CHES ’02), 2002.

[29] Michael Wiener, editor. Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes
in Computer Science. Springer-Verlag, 15–19 August 1999.

[30] A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

A Minimal GMR Notation

• Random assignments. If S is a probability space, then “x← S” denotes the algorithm which
assigns to x an element randomly selected according to S. If F is a finite set, then the
notation “x← F” denotes the algorithm which assigns to x an element selected according to
the probability space whose sample space is F and uniform probability distribution on the
sample points.

• Probabilistic experiments. If p(·, ·, · · ·) is a predicate, we use Pr[x← S; y ← T ; ... : p(x, y, · · ·)]
to denote the probability that p(x, y, · · ·) will be true after the ordered execution of the
algorithms x← S, y ← T,

B Calling VTMs as Subroutines

If A′ wants to call A on the
-bit input i = mA′ [a′1] . . .mA′ [a′�], and if A returns an L-bit output on
an
-bit input, then the VTM A′ has to write down on its subroutine-call tape

1. name of A;

2. a sequence of
 addresses in its own VAS, a′1, . . . , a′�;

3. a sequence of L distinct addresses in its own VAS, b′1, . . . , b′L.

Then A′ enters a special “call” state and suspends its computation. At this point, the memory
manager creates a new VAS for A, ensuring that

• location i in the VAS of A, for 1 ≤ i ≤
, is mapped to the same PAS location as a′i in the
VAS of A′, and

• all the other locations in the VAS of A map to blank and unassigned PAS locations. (Namely,
in case of nested calls, any VAS location of any machine in the call stack —i.e., A′, the caller
of A′, etc.— must not map to these PAS locations.)

Then the computation of A begins in the “start” state, with a blank work tape and the input tape
containing 1�. When A halts, the memory manager remaps location b′i, for 1 ≤ i ≤ L, in the VAS
of A′ to the same PAS location as bi in the VAS of A. (Recall that bi appears on the output tape
of A, and that all the b′i are distinct, so the remapping is possible.) The output value of A is taken
to be the value o = mA′ [b′1] . . .mA′ [b′�], and A′ resumes operation.

Note that the input locations a′i in the caller’s VAS do not need to be distinct; nor do the output
locations bi in the callee’s VAS. Therefore, it is possible that the memory manager will need to

17

map two or more locations in a VTM’s VAS to the same PAS location (indeed, because accessing
memory may cause leakage, remapping memory is preferable to copying it). When a VAS location
is written to, however, the memory manager ensures that only one PAS location is affected: if the
VAS location is mapped to the same physical address as another VAS location, it gets remapped
to a fresh physical address.

C Traditional Building Blocks

• One-way functions [10]. A one-way function is a function f : {0, 1}∗ → {0, 1}∗ such that there
exists a polynomial-time Turing machine T that computes f and, for any polynomial-time
adversary F , the following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← T (x) ; z ← F (1k, y) : f(z) = y].

• One-way permutations. A one-way permutation is a one-way function that is length-preserving
and bijective.

• One-way permutations are composable. For all n, if f is a one-way permutation, so is fn.

• One-way permutations are chainable. For all 0 ≤ i < n and for all polynomial-time adversary
F , the following probability is negligible as a function of k:

Pr[x R← {0, 1}k ; y ← fn(x) ; (i, state)← F (y) ; z ← F (state, fn−i(x)) : f i+1(z) = y].

• Hardcore Bits [7]. Let f be a one-way permutation, and B a polynomial-time computable
predicate. We say that B is a hardcore bit (for f) if, for any polynomial-time adversary F ,
the value |pk − 1/2| is negligible in k, where

pk = Pr[x R← {0, 1}k ; y ← f(x) ; g ← F (1k, y) : g = B(x)].

The first hardcore bit was exhibited for the discrete-log function [7].

• All one-way permutations have a hardcore bit [13]. Let f be a one-way permutation, and let
r1, . . . , rk be a sequence of random bits. Then, informally, the randomly chosen predicate Br

is overwhelmingly likely a hardcore bit for f , where Br is the predicate so defined: for a k-bit
string x = x1 · · ·xk, Br(x) = x1 × r1 + . . . xk × rk mod 2.

• Natural hardcore bits. We call a hardcore bit B natural if B(x) returns the bit in a fixed
location of the bit string x. Some specific one-way permutations possess natural hardcore
bits —for instance, the last bit is hardcore for the RSA function [3].

• Unpredictable pseudorandom generators [7]. Let p be a polynomially bounded function such
that p(k) > k for all positive integers k. Let G be a polynomial-time deterministic algo-
rithm that, on a k-bit input, produces a p(k)-bit output. We say that G is an unpredictable
pseudorandom generator with expansion p if for any polynomial-time adversary F , the value
|pk − 1/2| is negligible in k, where

pk = Pr[(i, state)← F (1k) ; x
R← {0, 1}k ; y ← G(x) : F (state, y1 . . . yi) = yi+1] ,

(where yj denotes the j-th bit of y).

18

• Indistinguishable pseudorandom generators [30]. Unpredictable pseudorandom generators are
provably the same as indistinguishable generators, defined as follows. Let G, again, be a
polynomial-time deterministic algorithm that, on a k-bit input, produces a p(k)-bit output.
We say that G is an indistinguishable pseudorandom generator with expansion p if for any
polynomial-time adversary F , the value |pG

k − pR
k | is negligible in k, where

pG
k = Pr[x R← {0, 1}k ; y ← G(x) : F (state, y) = 1]

pR
k = Pr[x R← {0, 1}k ; y ← G(x) ; z

R← {0, 1}p(k) : F (state, z) = 1]

Because every unpredictable pseudorandom generator is indistinguishable and vice versa, we
refer to them as simply “pseudorandom generators” or “PRGs.”

• The iterative PRG construction [7].

For any one-way permutation f , the following is a pseudorandom generator:

choose a random secret seed, and iterate f on it, outputting the hardcore bit at each
iteration.

D Proof of Claim 1

Proof of Claim 1. Let P = (P1, . . . , Pn) be a minimal one-way permutation, where each physical
VTM Pi is a pair consisting of a leakage function Li and an abstract VTM Ai. Intuitively, P ′

simply runs P twice (i.e., it calls twice P1 which is the entry point to all other Pi of P). Formally
this is accomplished by creating a new trivial physical VTM P0 that twice calls P1. Define P0 to
be the (new) trivial physical VTM (L0, A0), where L0 is the trivial leakage function (i.e., the one
leaking everything) and A0 is the following abstract VTM:

On input a k-bit value x in VAS locations 1, 2, . . . , k, call A1(x) as a subroutine specifying
that the returned value y1 be placed in VAS locations k + 1, k + 2, . . . , 2k.

Then, run A1 again on input y1, specifying that the returned value y2 be placed in VAS
locations 2k + 1, 2k + 2, . . . , 3k.

Output y2 (i.e., place the addresses 2k + 1, 2k + 2, . . . , 3k on the output tape) and halt.

Consider now the physical computer P ′ that has the above specified P0 as the first machine, together
with all the machines of P, that is, P ′ = (P0, P1, . . . , Pn). It is clear that P ′ is implied by P and
that P ′ computes fP(fP(x)) in polynomial time. Therefore, all that is left to prove is the “one-
wayness” of P ′: that is, that the adversary will not succeed in finding z such that fP(fP(z)) = y2

as described in the experiment of Definition 4. This is done by the following elementary reduction.
Because f ′

P = f2
P is a permutation, finding any inverse z of y2 means finding the original input

x. Suppose there exists an adversary F ′ that succeeds in finding x after observing the computation
of P ′ and receiving y2 = fP(fP(x)). Then, in the usual style of cryptographic reductions, we derive
a contradiction by showing that there exists another adversary F that (using F ′) succeeds in finding
x after observing the computation of P and receiving y1 = fP(x).

F (1k) “virtually” executes P ′(x) ❀ F ′(1k): at at each (virtual) step of P ′, F receives the
measurement that F ′ wishes to make, and responds with the appropriately distributed leakage. In
so doing, however, F is only entitled to observe P(x) once.

Recall that F ′ expects to observe a five-stage computation:

19

1. P0 prepares the tapes for the subroutine call to P1(x)

2. P1 and its subroutines compute y1 = fP(x)

3. P0 prepares the tapes for the subroutine call to P1(y1)

4. P1 and its subroutines compute y2 = fP(y1)

5. P0 places the address of y2 on the output tape

During Stage 1, F can very easily answer any measurement made by F ′. In fact, (1) because
P0 trivial, any measurement of F ′ should be answered with the entire configuration of P0 and, (2)
because P0 just reassigns VAS pointers without reading or handling any secret VAS bits, each of
P0’s configurations can be computed by F from 1k (which is given to F as an input).

After so simulating Stage 1, F starts observing the computation of P(x). At each step, F is
allowed a measurement M , and the measurement it chooses coincides with the one F ′ wants, thus
F can easily forward to F ′ the obtained result. At the end of Stage 2 F receives y1 = fP(x) (which
it stores but does not forward to F ′).

Stage 3 is as easily simulated as Stage 1.
During Stage 4, F “virtually runs” physical computer P(y1), that is, it runs the corresponding

abstract computer A(y1). At each step, if Ai is the active machine in configuration C, and F ′

specifies a measurement M , then F returns the leakage Li(C,M,R) for a random R.
Upon simulating stage 5 (as easily as Stage 1), F computes y2 = fP(y1), and gives it to F ′ to

receive x.

The Axioms in Action

Let us show that all our axioms for physically observable computation are already reflected in the
very simple proof of Claim 1.

• The simulation of Stages 1, 3, and 5 relies on Axiom 1. In fact, F can simulate P0 only
because P0 does not access the VAS, and unaccessed VAS leaks no information.

• The simulation of Stage 2 relies on Axiom 4. Specifically, we relied on the fact that P(x)
run in “isolation” has the same leakage distribution as P(x) “introduced” by P0, and more
generally in the “context” of P ′.

Similarly, also the simulation of Stage 4 relies on Axiom 4: the leakage of running P from
scratch on a string y1 is guaranteed to be the same as the leakage of running P after y1 is
computed as P(x).

• The simulation of Stage 4 relies on Axiom 5. In fact F was not observing the real P, but
rather was running P on its own and simulating P’s leakage which therefore had to be
polynomial-time computable.

• Axiom 2 is implicitly relied upon. In a sense, Axiom 2 says that the same algorithm can
have different leakage distributions, depending on the different physical machines which run
it. In particular, therefore, it makes the very existence of a physically observable one-way
permutation plausible. Trivial machines that leak everything certainly exist, and using them
to compute f(x) from x would make it easy to find an inverse of f(x). Thus, if the f ’s

20

leakage were the same for every machine, PO one-way permutations would not exist, making
the entire theory moot.

• Axiom 3 has been incorporated into the model, by giving adversary F ′ the power of choosing
its own measurements at every step of the computation.

E Proof Sketch of Theorem 1

Proof sketch of Theorem 1. Let P be a durable function. To construct out of P a PO unpredictable
generator G with expansion p, we will mimic the iterative construction of Blum and Micali [7],
combining it with the Goldreich-Levin [13] hardcore bit. For this construction, it is crucial that the
bits are output in reverse order, as in [7]: namely, that all computations of P take place before any
Goldreich-Levin bits are computed (because we are not assuming a secure machine for computing
Goldreich-Levin bits, and hence the hardcore bit computation will leak everything about its inputs).

Specifically, given a random seed (x0, r), to output
 = p(|x|+ |r|) bits, G computes x1 = P(x0),
x2 = P(x1), . . . , x� = P(x�−1), and outputs b1 = x�−1 · r, b2 = x�−2 · r, . . . , b� = x0 · r, where
“·” denotes the dot product modulo 2 (i.e., the Goldreich-Levin bit). Formally, this is done by
constructing a trivial physical VTM to “drive” this process and compute the hardcore bits; we
omit the details here, as they are straightforward and similar to the proof of Claim 1.

To prove that this is indeed unpredictable, consider first a simpler situation. Starting from
a random x, compute P(x), letting the adversary observe the computation. Now provide the
adversary with P(x) and a random r, and have it predict r · x. If the adversary is successful with
probability significantly better than 1/2, then it is successful for significantly more than 50% of
all possible values for r. Thus, we can run it for multiple different values of r, and reconstruct x
using the same techniques as in [13], which would contradict the minimal one-wayness of P. Note
that even though we use the adversary to predict x · r for multiple values r, the adversary needs
to observe P(x) only once. This is because the observation takes place before r is provided to the
adversary, and therefore the choices made by the adversary during the observation are independent
of r.

The actual generator, of course, is more complex than the above scenario. To prove that bit
bi is unpredictable, first note that x�−i is not computable by the adversary even if the adversary
observes the computation until bi−1 is output (this can be shown by a properly constructed hybrid
argument based on the definition of durable, similarly to the hybrid argument in the proof of
Theorem 2). Also observe that the previous bits, b1, . . . , bi−1 are all efficiently computable from
x�−i+1 = P(x�−i), which the adversary receives anyway when it observes the computation of bi−1.
Thus, proving that bi is unpredictable reduces to the simpler case already proven above.

F Proof Sketch of Theorem 2

Proof sketch of Theorem 2. Let G1 be a PO indistinguishable generator with one-bit expansion
that, on input s0 of length k, outputs s1 of length k followed by a single bit b. To construct out
of G1 a PO indistinguishable generator G with expansion p, we will simply mimic the iterative
construction of [7]: to generate
 = p(k) pseudorandom bits on a k-bit input seed s0, compute
(s1, b1) = G1(s0) and output b1; then compute (s2, b2) = G1(s1) and output b3, and so on for

times (note that there is no need here to output bits in reverse order). Formally, this is done by

21

Pseudo-

random:

Random:

G
1

s
1

b
1

G
1

s
2

b
2

G
1

s
3

b
3

F

s
0

R
1

r
1

s
2

r
2

R
3

r
3

0/1

G
1

s
1

b
1

G
1

s
2

b
2

G
1

s
3

b
3

F

s
0

R
1

r
1

R
2

r
2

R
3

r
3

0/1

G
1

s
1

b
1

G
1

s
2

b
2

G
1

s
3

b
3

F

s
0

s
1

r
1

s
2

r
2

R
3

r
3

0/1

H
y
b
ri
d
s

G
1

s
1

b
1

s
1

G
1

s
2

b
2

s
2

G
1

s
3

b
3

s
3

F

s
0

0/1

G
1

s
1

b
1

G
1

s
2

b
2

G
1

s
3

b
3

s
3

F

s
0

R
1

r
1

R
2

r
2

0/1

G
1

G
1

s
1

b
1

s
2

b
2

s
2

G
1

s
3

b
3

s
3

F

s
0

R
1

r
1

0/1

22

constructing a trivial physical VTM to “drive” this process; we omit the details here, as they are
straightforward and similar to the proof of Claim 1.

The proof that the resulting G is PO indistinguishable is by a hybrid argument, somewhat
similar to (but more complex than) the hybrid argument that shows that unpredictability implies
indistinguishability for traditional pseudorandom generators ([30]; see [14] for an excellent exposi-
tion). We recall the essence of that hybrid argument here to prepare for the more complex hybrid
argument in our case. Suppose that the pseudorandom string b1b2 . . . b� is unpredictable (i.e., bi can-
not be predicted given b1 . . . bi−1), but can be distinguished from a truly random string r1r2 . . . r�.
Then consider the
− 1 “hybrid” strings, the i-th string hi being b1b2 . . . b�−ir�−i+1ri+2 . . . r� (then
h0 = b1b2 . . . b� and h� = r1r2 . . . r�). If the i-th string can be distinguished from the (i+1)-th, then
the bit b�−i+1 can be distinguished from r�−i+1 in the presence of b1b2 . . . b�−i, i.e., the bit b�−i+1

can be predicted (which is a contradiction).
In our proof, our hybrids are not just strings. Rather, because we have to also deal with the

leakage, our hybrids are processes. The pseudorandom process consists of running G1(s0) and then
giving the adversary b1 . . . b� (actually, we can give s� as well, it will not change the proof, just like
in the hybrid argument above). The random process consists of running G1(s0) and then giving
the adversary random bits r1 . . . r� (and a random R� in place of s�). There are 2(n − 1) hybrid
processes, depicted in the figure on page 22 and defined as follows.

The i-th hybrid process Hi for i ≤ n is the process that runs G1(s0) to obtain (s1, b1); then
replaces (s1, b1) with new random (R1, r1), outputs r1 and runs G1(R1) to obtain (s2, b2); then
replaces (s2, b2) with new random (R2, r2), outputs r2 and runs G1(R2) to obtain (s3, b3); it continues
in this manner until it replaces (si, bi) with (Ri, ri), at which point it proceeds properly as G would.
Thus, H0 is the pseudorandom process. The i-th hybrid process Hi for i > n is the same as the
(2n − 1 − i)-th hybrid process, except that it always outputs truly random bits and a random
Rl (even where (2n − 1 − i)-th hybrid process would have output a pseudorandom bit bj and the
actual sl) (see figure on page 22). Thus, H2n−1 is the random process from the definition of PO
indistinguishability.

If any two consecutive hybrids were distinguishable, then the output of G1 on a random input
would be distinguishable from random, by a simple reduction, which we omit here (but depict via
large rectangles in the figure on page 22). This is a contradiction, however, because G1 is a PO
indistinguishable generator.

23

