Kejlia tabelo
Aspekto
Algebraj strukturoj | |
---|---|
Grupo-similaj Grupo-teorio
Duvalenta operacio
A Asocieco • N Neŭtrala elemento • I Inversa elemento • K KomutecoAbela grupo (ANIK) • Grupo (ANI) • Monoido (AN) • Duongrupo (A) • Magmo Kvazaŭgrupo • Lopo • Lie-grupo • Cikla grupo • Simetria grupo Grupa homomorfio • Normala subgrupo | |
Ringo-similaj
| |
Modulo-similaj
| |
Kejlia tabelo aŭ tabelo de Cayley, nomita laŭ la brita matematikisto Arthur Cayley, estas maniero difini duvalentan operacion de finia algebra strukturo kiel finia magmo, finia duongrupo aŭ finia grupo. Ĝi estas kvadrata tabelo kun la nombro de horizontaloj kaj vertikaloj egala al la nombro de elementoj en la subtena aro.
Ekzemple jena tabelo montras la multiplikon module je 4 en la aro :
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 |
2 | 0 | 2 | 0 | 2 |
3 | 0 | 3 | 2 | 1 |