choked flow
(redirected from Choke flow)Choked flow
Fluid flow through a restricted area whose rate reaches a maximum when the fluid velocity reaches the sonic velocity at some point along the flow path. The phenomenon of choking exists only in compressible flow and can occur in several flow situations. See Compressible flow
Through varying-area duct
Choked flow can occur through a convergent flow area or nozzle attached to a huge reservoir. Flow exits the reservoir through the nozzle if the back pressure is less than the reservoir pressure. When the back pressure is decreased slightly below the reservoir pressure, a signal from beyond the nozzle exit is transmitted at sonic speed to the reservoir. The reservoir responds by sending fluid through the nozzle. Further, the maximum velocity of the fluid exists at the nozzle throat where the area is smallest.
When the back pressure is further decreased, fluid exits the reservoir more rapidly. Eventually, however, the velocity at the throat reaches the sonic velocity. Then the fluid velocity at the throat is sonic, and the velocity of the signal is also sonic. Therefore, further decreases in back pressure are not sensed by the reservoir, and correspondingly will not induce any greater flow to exit the reservoir. The nozzle is thus said to be choked, and the mass flow of fluid is a maximum. See Mach number, Sound
With friction
Choked flow can also occur through a long constant-area duct attached to a reservoir. As fluid flows through the duct, friction between the fluid and the duct wall reduces the pressure acting on the fluid. As pressure is reduced, other fluid properties are affected, such as sonic velocity, density, and temperature. The maximum Mach number occurs at the nozzle exit, and choked flow results when this Mach number reaches 1.
With heat addition
A reservoir with a constant-area duct attached may also be considered in the case that the flow through the duct is assumed to be frictionless but heat is added to the system along the duct wall. See FLuid flow, Gas dynamics