Wheat leaf rust
Wheat leaf rust | |
---|---|
Symptoms of wheat leaf rust | |
Common names | Brown rust Leaf rust |
Causal agents | Puccinia triticina |
Hosts | wheat |
EPPO Code | PUCCRT |
Distribution | Worldwide |
Wheat leaf rust | |
---|---|
Scientific classification | |
Kingdom: | Fungi |
Division: | Basidiomycota |
Class: | Pucciniomycetes |
Order: | Pucciniales |
Family: | Pucciniaceae |
Genus: | Puccinia |
Species: | P. triticina |
Binomial name | |
Puccinia triticina Erikss. (1899) | |
Synonyms | |
|
Wheat leaf rust is a fungal disease that affects wheat, barley and rye stems, leaves and grains. In temperate zones it is destructive on winter wheat because the pathogen overwinters. Infections can lead up to 20% yield loss, which is exacerbated by dying leaves, which fertilize the fungus. The pathogen is a Puccinia rust fungus. It is the most prevalent of all the wheat rust diseases, occurring in most wheat growing regions.[1] It causes serious epidemics in North America, Mexico and South America and is a devastating seasonal disease in India. P. triticina is heteroecious, requiring two distinct hosts (alternate hosts).[1][2]
Host resistance
Plant breeders have tried to improve yield quantities in crops like wheat from the earliest times. In recent years, breeding for resistance against disease proved to be as important for total wheat production as breeding for increase in yield. The use of a single resistance gene against various pests and diseases plays a major role in resistance breeding for cultivated crops. The earliest single resistance gene was identified as effective against yellow rust. Numerous single genes for leaf rust resistance have since been identified.
Leaf rust resistance gene is an effective adult-plant resistance gene that increases resistance of plants against P. recondita f.sp. tritici (UVPrt2 or UVPrt13) infections, especially when combined with genes Lr13 and gene Lr34 (Kloppers & Pretorius, 1997[3]). Lr37 originates from the French cultivar VPM1 (Dyck & Lukow, 1988[4]). The line RL6081, developed in Canada for Lr37 resistance, showed seedling and adult-plant resistance to leaf, yellow and stem rust. Crosses between the French cultivars will therefore introduce this gene into local germplasm. Not only will the gene be introduced, but the genetic variation of South African cultivars will also increase.
Molecular techniques have been used to estimate genetic distances among different wheat cultivars. With the genetic distances known predictions can be made for the best combinations concerning the two foreign genotypes carrying gene Lr37, VPMI and RL6081 and local South African cultivars. This is especially important in wheat with its low genetic variation. The gene will also be transferred with the least amount of backcrosses to cultivars genetically closest to each other, generation similar genetic offspring to the recurrent parent, but with gene Lr37, Genetic distances between near isogenic lines (NILs) for a particular gene will also give an indication of how many loci, amplified with molecular techniques, need to be compared in order to locate putative markers linked to the gene.
Nomenclatural history
Fungal names are important. These are the keys to all information behind them. Then, an appropriate name can lead users to the right information. In the case of plant pathogenic fungi using an appropriate name is more important for practical reasons. There are several examples among rust fungi of one species called with different names during different eras. However, one of the most interesting ones is the name for Puccinia species causing Wheat Leaf Rust (WLR). This species has been called by at least six different names since 1882, when G. Winter (1882) described the Puccinia rubigo-vera.[5] For a long time WLR was interpreted as a specialized form of P. rubigo-vera. Later, Eriksoon and Henning (1894) put it under the P. dispersa f.sp. tritici. In 1899 and after some experiments Eriksson concluded that the rust should be considered as a separate authentic species. For this reason he described P. triticina. This name was used by Gaeumann (1959)[6] in his comprehensive book about rust fungi of middle Europe. Mains (1933) was among the first scientists who used a species name with a broad species concept for WLR.[7] He considered P. rubigo-vera as a current name and put 32 binomials as synonyms of that species. The next important article about naming WLR was published by Cummins and Caldwell (1956).[8] They considered the same broad species concept and also discussed the validity of P. rubigo-vera which was based on an uredinial stage basionym. Finally, they introduced P. recondita as the oldest valid name for WLR and also other grass rusts. Their idea and publication was followed by Wilson & Henderson (1966) in another comprehensive rust flora (viz. British Rust Flora). Wilson and Henderson (1966)[9] also used a broad species concept for P. recondita and divided this broad species into 11 different formae speciales. The accepted name for WLR in their flora was P. recondita f.sp. tritici.
Cummins (1971) in his rust monograph for Poaceae introduced an ultra-broad species concept for P. recondita and listed 52 binomials as its synonyms.[10] Such a concept found great attention among mycologists and plant pathologists around the world and that is the reason we still can see P. recondita as an appropriate name for WLR in some publications. There was another stream opposite to broad morphologically-based concepts among uredinologists. This idea was introduced into the classification of graminicolous rust fungi Urban (1969) who created P. perplexans var. triticina as an appropriate name for WLR.[11] To Urban's understanding, a taxonomic name should reflect both morphology and ecology of the species. Savile (1984) was also among the uredinologists who believed in narrowing the species concept and considered P. triticina as an authentic taxonomic name for WLR.[12] Urban's research continued and he put many morphological, ecological and also field experiences together. Finally he came to consider WLR as a part of the species Puccinia persistens with its aecial stage on Ranunculaceae members, totally different from P. recondita which produces its aecial stage on Boraginaceae family members. His final name for this rust was P. persistens subsp. triticina.[13] Recent molecular and also morphological studies proved Urban's taxonomy for WLR to be correct.[14] It seems after more than a century and after introducing several names, we have an appropriate name for WLR.
Life cycle
Wheat leaf rust spreads via airborne spores. Five types of spores are formed in the life cycle: Urediniospores, teliospores, and basidiospores develop on wheat plants and pycniospores and aeciospores develop on the alternate hosts.[15] The germination process requires moisture, and works best at 100% humidity. Optimum temperature for germination is between 15–20 °C (59–68 °F). Before sporulation, wheat plants appear completely asymptomatic.
Primary hosts
Wheat (Triticum aestivum), durum (T. turgidum var. durum), domesticated emmer (T. dicoccon) and wild emmer (T. dicoccoides), Aegilops speltoides, jointed goatgrass (Ae. cylindrica), and triticale (X Triticosecale).[2]
Secondary hosts
Thalictrum speciosissimum (synonym T. flavum glaucum) and Isopyrum fumaroides.[2]
Thalictrum flavum
P. triticina has an asexual and sexual life cycle phase. In order to complete its sexual phase P. triticina requires a second host (Thalictrum flavum glaucum)[2] on which it will overwinter. In places where Thalictrum does not grow, such as Australia, the pathogen will only undergo its asexual life cycle and will overwinter as mycelium or uredinia. The germination process requires moisture and temperatures between 15–20 °C (59–68 °F). After around 10–14 days of infection, the fungi will begin to sporulate and the symptoms will become visible on the wheat leaves.
Epidemiology
Location is an important characteristic in the spread of wheat rust. In some places wheat rust can easily flourish and spread. In other areas, the environment is marginally suited for the disease. Urediniospores of the wheat rusts initiate germination within one to three hours of contact with free moisture over a range of temperatures depending on the rust. Urediniospores are produced in large numbers and can be blown considerable distances by the wind, but most urediniospores are deposited close to their source under the influence of gravity. Urediniospores are relatively resilient and can survive in the field away from host plants for periods of several weeks. They can withstand freezing if their moisture content is lowered to 20 to 30 percent. Viability rapidly decreases at moisture contents of more than 50 percent. Long-distance spread of urediniospores is influenced by wind patterns and by the latitude. In general, spores move west to east due to the winds resulting from the rotation of the earth. At progressively higher latitudes, winds tend to become more southerly in the Northern Hemisphere and more northerly in the Southern Hemisphere. Puccinia triticina can survive the same environmental conditions as the wheat leaf, provided infection but no sporulation has occurred. The fungus can infect in less than three hours in the presence of moisture and temperatures below 20 °C (68 °F); however, more infections occur with longer exposure to moisture. (Stubbs,[16] Chester[17])
Symptoms
Small brown pustules develop on the leaf blades in a random scatter distribution. They may group into patches in serious cases. Onset of the disease is slow but accelerated in temperatures above 15 °C (59 °F), making it a disease of the mature cereal plant in summer, usually too late to cause significant damage in temperate areas. Losses of between 5 and 20% are normal but may reach 50% in severe cases. Symptoms can range in severity from barely aesthetic to completely overrun on the leaf surface. On barberry leaf the disease appears as powdery yellow spots with aecia being dispersed from the underside of the leaf.
Control
Varietal resistance is important. Chemical control with triazole fungicides may be useful for control of infections up to ear emergence but is difficult to justify economically in attacks after this stage. Control often is not as common as prevention through the creation of genetically-resilient varieties and the removal of common barberry. Cultivars are the best method of controlling the disease and have been utilized for over 100 years. However, resistance linked to single genes has been out maneuvered by the pathogen adapting to new cultures. This is why destruction of alternate hosts is key to control. Early-maturing cultivars as well as spring wheat should be sown as early as possible to avoid peak rust periods. Self-sown wheat (volunteers) should be destroyed as not to further spread urediniospores at the end of harvest. (Huerta-Espino. J,[18] Yehuda[19])
See also
- List of Puccinia species
- Wheat diseases
- Rust (fungus)
- Rice blast
- Stem rust
References
- ^ a b Liu, M; Rodrigue, N; Kolmer, J (2013-12-04). "Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution". Heredity. Nature/Springer. 112 (4): 443–453. doi:10.1038/hdy.2013.123. ISSN 0018-067X. S2CID 26583039.
- ^ a b c d BOLTON, MELVIN D.; KOLMER, JAMES A.; GARVIN, DAVID F. (2008). "Wheat leaf rust caused by Puccinia triticina". Molecular Plant Pathology. Wiley-Blackwell/British Society for Plant Pathology. 9 (5): 563–575. doi:10.1111/j.1364-3703.2008.00487.x. ISSN 1464-6722. PMC 6640346.
- ^ Kloppers, F. J.; Pretorius, Z. A. (1997). "Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust". Plant Pathology. 46 (5): 737–750. doi:10.1046/j.1365-3059.1997.d01-58.x.
- ^ Dyck, P. L.; Lukow, O. M. (1988). "The genetic analysis of two interspecific sources of leaf rust resistance and their effect on the quality of common wheat". Can. J. Plant Sci. 68: 633–639. doi:10.4141/cjps88-076.
- ^ Winter, George (1882). in Rabenhorst Kryptogamen Flora. p. 924.
- ^ Gaeumann, Ernst (1959). Rostpilze Mitteleuropas.
- ^ Mains, E. B. (1932). "Host specialization in the leaf rust of grasses, Puccinia rubigo-vera". Mich. Acad. Sci. (17): 289–394.
- ^ "The validity of binomials in the leaf rust fungus complex of cereals and grasses. Cummins, G. B. ; Caldwell, R. M. Phytopathology 1956 Vol.46 No.2 pp.81-82 pp. ISSN : 0031-949X Record Number : 19561101781".
- ^ Wilson, M; D. M. Henderson (1966). British Rust Fungi. Cambridge University Press. ISBN 9780521068390.
- ^ Cummins, George B. (1971). Rust Fungi of Cereals, Grasses and Bamboos. Springer. ISBN 9780387053363.
- ^ Urban, Z. (1969). "Die Grasrostpilze Mitteleuropas mit besonderer Brücksichtigung der Tschechoslowakei". Rozpr. Cs. Akad. Ved. Ser. Mat. Prir.
- ^ Savile, D. B. O. (1984). Taxonomy of the Cereal Rust Fungi (in The Cereal Rusts vol1).
- ^ Marková, J; Urban, Z. (1998). "The rust fungi of grasses in Europe. 6. Puccinia persistens". Acta Univ Carol. 41: 329–402.
- ^ Abbasi, M.; Ershad, D.; Hedjaroude, G. A. (2005). "Taxonomy of Puccinia recondita s. lat. causing brown rust on grasses". Iranian Journal of Plant Pathology. 41 (4): 631–662.
- ^ Singh, Prof. V.; Dr. P. C. Pandey; Dr. D. K. Jain (2008). A Text Book of Botany. India: Rastogi. p. 15.132. ISBN 978-81-7133-904-4.
- ^ Stubbs, R.W. (1986). Cereal disease methodology manual. Mexico, DF, CIMMYT. p. 46.
- ^ Chester, K.S. (1946). The nature and prevention of the cereal rusts as exemplified in the leaf rust of wheat. In Chronica botanica. Walthan, MA, USA. p. 269.
- ^ Huerta-Espino, J. First report of virulence to wheat with leaf rust resistance gene Lr19 in Mexico. Plant Digest. p. 78.
- ^ Yahuda, P.B. Leaf rust on Aegilops speltoides caused by a new forma specialis of Puccinia triticina. Phytopathology. pp. 89–101.