2-Chloropyridine
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
2-Chloropyridine | |||
Identifiers | |||
3D model (JSmol)
|
|||
105788 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.003.316 | ||
EC Number |
| ||
130818 | |||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
UN number | 2822 | ||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C5H4ClN | |||
Molar mass | 113.54 g/mol | ||
Appearance | colorless liquid | ||
Density | 1.2 g/mL | ||
Melting point | −46 °C (−51 °F; 227 K) | ||
Boiling point | 166 °C (331 °F; 439 K) | ||
27 g/L | |||
Acidity (pKa) | 0.49 [1] | ||
Hazards | |||
GHS labelling: | |||
Danger | |||
H301, H310, H315, H319, H330, H400 | |||
P260, P261, P262, P264, P270, P271, P273, P280, P284, P301+P310, P301+P312, P302+P350, P302+P352, P304+P340, P305+P351+P338, P310, P311, P312, P314, P320, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P391, P403+P233, P405, P501 | |||
Safety data sheet (SDS) | MSDS | ||
Related compounds | |||
Related compounds
|
3-Chloropyridine 3-Bromopyridine 2-Chloromethylpyridine | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
2-Chloropyridine is an aryl chloride with the formula C5H4ClN. It is a colorless liquid that is mainly used to generate fungicides and insecticides in industry. It also serves to generate antihistamines and antiarrythymics for pharmaceutical purposes.[2] It is one of three isomers of chloropyridine.
Preparation
[edit]2-Chloropyridine is produced by direct reaction of pyridine with chlorine. The initially formed 2-chloropyridine reacts further to give 2,6-dichloropyridine.[2]
Alternatively, 2-chloropyridines can be conveniently synthesized in high yields from pyridine-N-oxides.[3]
2-Chloropyridine was originally prepared by the chlorination of 2-hydroxypyridine with phosphoryl chloride.[4]
Main reactions and applications
[edit]2-Chloropyridine reacts with nucleophiles to generate pyridine derivatives substituted at the second and fourth carbons on the heterocycle. Therefore, many reactions using 2-chloropyridine generate mixtures of products which require further workup to isolate the desired isomer.[2]
Some commercial products include pyrithione, pyripropoxyfen, chlorphenamine, and disopyramide. In these conversions, chloride is displaced.[2] Pyrithione, the conjugate base of 2-mercaptopyridine-N-oxide, is a fungicide found in some shampoos. Oxidation 2-chloropyridine gives 2-chloropyridine-N-oxide.[5] The antihistamine pheniramine may be generated via the reaction of phenylacetonitrile with 2-chloropyridine in the presence of a base.[6]
Environmental properties
[edit]Although pyridine is an excellent source of carbon, nitrogen, and energy for certain microorganisms, introduction of a halogen moiety significantly retards degradation of the pyridine ring. With the exception of 4-chloropyridine, each of the mono- and di-substituted chloropyridines were found to be relatively resistant to microbiological degradation in soil or liquid media.[7] Estimated time for complete degradation was > 30 days. 2-Chloropyridine exhibits extensive volatilization losses from water, less so when present in soil.[8]
Toxicity
[edit]The LD50 is 64 mg/kg (dermal, rabbit).[2]
References
[edit]- ^ Linnell, R. H., J. Org. Chem., 1960, 25, 290.
- ^ a b c d e Shimizu, Shinkichi; Watanabe, Nanao; Kataoka, Toshiaki; Shoji, Takayuki; Abe, Nobuyuki; Morishita, Sinji; Ichimura, Hisao (2007). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. ISBN 978-3527306732.
- ^ Narendar, P.; Gangadasu, B.; Ramesh, Ch.; China Raju, B.; Jayathirtha Rao, V. (2004). "Facile and Selective Synthesis of Chloromethylpyridines and Chloropyridines Using Diphosgene/Triphosgene". Synthetic Communications. 34 (6): 1097–1103. doi:10.1081/SCC-120028642. S2CID 95706122.
- ^ Pechmann, H. V.; Baltzer, O. (1891). "Ueber das α-Pyridon (α-Oxypyridin)". Berichte der Deutschen Chemischen Gesellschaft. 24 (2): 3144–3153. doi:10.1002/cber.189102402155.
- ^ Cheng, Hefeng; She, Ji. 14. Improved preparation of 2-mercaptopyridine-N-oxide. Zhongguo Yiyao Gongye Zazhi. 1990, 21, (2), pp. 55-56. ISSN 1001-8255
- ^ Botteghi, Carlo et al. New Synthetic Route to Pheniramines via Hydroformylation of Functionalyzed Olefins. 1994, 59, pp. 7125-7127. doi:10.1021/jo00102a044
- ^ Sims, G. K. and L.E. Sommers. 1986. Biodegradation of pyridine derivatives in soil suspensions. Environmental Toxicology and Chemistry. 5:503-509.
- ^ Sims, G. K. and L.E. Sommers. 1985. Degradation of pyridine derivatives in soil. Journal of Environmental Quality. 14:580-584.