In mathematics , the Segre class is a characteristic class used in the study of cones , a generalization of vector bundles . For vector bundles the total Segre class is inverse to the total Chern class , and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not.
The Segre class was introduced in the non-singular case by Segre (1953).[ 1]
In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.[ 2]
Suppose
C
{\displaystyle C}
is a cone over
X
{\displaystyle X}
,
q
{\displaystyle q}
is the projection from the projective completion
P
(
C
⊕
1
)
{\displaystyle \mathbb {P} (C\oplus 1)}
of
C
{\displaystyle C}
to
X
{\displaystyle X}
, and
O
(
1
)
{\displaystyle {\mathcal {O}}(1)}
is the anti-tautological line bundle on
P
(
C
⊕
1
)
{\displaystyle \mathbb {P} (C\oplus 1)}
. Viewing the Chern class
c
1
(
O
(
1
)
)
{\displaystyle c_{1}({\mathcal {O}}(1))}
as a group endomorphism of the Chow group of
P
(
C
⊕
1
)
{\displaystyle \mathbb {P} (C\oplus 1)}
, the total Segre class of
C
{\displaystyle C}
is given by:
s
(
C
)
=
q
∗
(
∑
i
≥
0
c
1
(
O
(
1
)
)
i
[
P
(
C
⊕
1
)
]
)
.
{\displaystyle s(C)=q_{*}\left(\sum _{i\geq 0}c_{1}({\mathcal {O}}(1))^{i}[\mathbb {P} (C\oplus 1)]\right).}
The
i
{\displaystyle i}
th Segre class
s
i
(
C
)
{\displaystyle s_{i}(C)}
is simply the
i
{\displaystyle i}
th graded piece of
s
(
C
)
{\displaystyle s(C)}
. If
C
{\displaystyle C}
is of pure dimension
r
{\displaystyle r}
over
X
{\displaystyle X}
then this is given by:
s
i
(
C
)
=
q
∗
(
c
1
(
O
(
1
)
)
r
+
i
[
P
(
C
⊕
1
)
]
)
.
{\displaystyle s_{i}(C)=q_{*}\left(c_{1}({\mathcal {O}}(1))^{r+i}[\mathbb {P} (C\oplus 1)]\right).}
The reason for using
P
(
C
⊕
1
)
{\displaystyle \mathbb {P} (C\oplus 1)}
rather than
P
(
C
)
{\displaystyle \mathbb {P} (C)}
is that this makes the total Segre class stable under addition of the trivial bundle
O
{\displaystyle {\mathcal {O}}}
.
If Z is a closed subscheme of an algebraic scheme X , then
s
(
Z
,
X
)
{\displaystyle s(Z,X)}
denote the Segre class of the normal cone to
Z
↪
X
{\displaystyle Z\hookrightarrow X}
.
Relation to Chern classes for vector bundles [ edit ]
For a holomorphic vector bundle
E
{\displaystyle E}
over a complex manifold
M
{\displaystyle M}
a total Segre class
s
(
E
)
{\displaystyle s(E)}
is the inverse to the total Chern class
c
(
E
)
{\displaystyle c(E)}
, see e.g. Fulton (1998).[ 3]
Explicitly, for a total Chern class
c
(
E
)
=
1
+
c
1
(
E
)
+
c
2
(
E
)
+
⋯
{\displaystyle c(E)=1+c_{1}(E)+c_{2}(E)+\cdots \,}
one gets the total Segre class
s
(
E
)
=
1
+
s
1
(
E
)
+
s
2
(
E
)
+
⋯
{\displaystyle s(E)=1+s_{1}(E)+s_{2}(E)+\cdots \,}
where
c
1
(
E
)
=
−
s
1
(
E
)
,
c
2
(
E
)
=
s
1
(
E
)
2
−
s
2
(
E
)
,
…
,
c
n
(
E
)
=
−
s
1
(
E
)
c
n
−
1
(
E
)
−
s
2
(
E
)
c
n
−
2
(
E
)
−
⋯
−
s
n
(
E
)
{\displaystyle c_{1}(E)=-s_{1}(E),\quad c_{2}(E)=s_{1}(E)^{2}-s_{2}(E),\quad \dots ,\quad c_{n}(E)=-s_{1}(E)c_{n-1}(E)-s_{2}(E)c_{n-2}(E)-\cdots -s_{n}(E)}
Let
x
1
,
…
,
x
k
{\displaystyle x_{1},\dots ,x_{k}}
be Chern roots, i.e. formal eigenvalues of
i
Ω
2
π
{\displaystyle {\frac {i\Omega }{2\pi }}}
where
Ω
{\displaystyle \Omega }
is a curvature of a connection on
E
{\displaystyle E}
.
While the Chern class c(E) is written as
c
(
E
)
=
∏
i
=
1
k
(
1
+
x
i
)
=
c
0
+
c
1
+
⋯
+
c
k
{\displaystyle c(E)=\prod _{i=1}^{k}(1+x_{i})=c_{0}+c_{1}+\cdots +c_{k}\,}
where
c
i
{\displaystyle c_{i}}
is an elementary symmetric polynomial of degree
i
{\displaystyle i}
in variables
x
1
,
…
,
x
k
{\displaystyle x_{1},\dots ,x_{k}}
the Segre for the dual bundle
E
∨
{\displaystyle E^{\vee }}
which has Chern roots
−
x
1
,
…
,
−
x
k
{\displaystyle -x_{1},\dots ,-x_{k}}
is written as
s
(
E
∨
)
=
∏
i
=
1
k
1
1
−
x
i
=
s
0
+
s
1
+
⋯
{\displaystyle s(E^{\vee })=\prod _{i=1}^{k}{\frac {1}{1-x_{i}}}=s_{0}+s_{1}+\cdots }
Expanding the above expression in powers of
x
1
,
…
x
k
{\displaystyle x_{1},\dots x_{k}}
one can see that
s
i
(
E
∨
)
{\displaystyle s_{i}(E^{\vee })}
is represented by
a complete homogeneous symmetric polynomial of
x
1
,
…
x
k
{\displaystyle x_{1},\dots x_{k}}
Here are some basic properties.
For any cone C (e.g., a vector bundle),
s
(
C
⊕
1
)
=
s
(
C
)
{\displaystyle s(C\oplus 1)=s(C)}
.[ 4]
For a cone C and a vector bundle E ,
c
(
E
)
s
(
C
⊕
E
)
=
s
(
C
)
.
{\displaystyle c(E)s(C\oplus E)=s(C).}
[ 5]
If E is a vector bundle, then[ 6]
s
i
(
E
)
=
0
{\displaystyle s_{i}(E)=0}
for
i
<
0
{\displaystyle i<0}
.
s
0
(
E
)
{\displaystyle s_{0}(E)}
is the identity operator.
s
i
(
E
)
∘
s
j
(
F
)
=
s
j
(
F
)
∘
s
i
(
E
)
{\displaystyle s_{i}(E)\circ s_{j}(F)=s_{j}(F)\circ s_{i}(E)}
for another vector bundle F .
If L is a line bundle, then
s
1
(
L
)
=
−
c
1
(
L
)
{\displaystyle s_{1}(L)=-c_{1}(L)}
, minus the first Chern class of L .[ 6]
If E is a vector bundle of rank
e
+
1
{\displaystyle e+1}
, then, for a line bundle L ,
s
p
(
E
⊗
L
)
=
∑
i
=
0
p
(
−
1
)
p
−
i
(
e
+
p
e
+
i
)
s
i
(
E
)
c
1
(
L
)
p
−
i
.
{\displaystyle s_{p}(E\otimes L)=\sum _{i=0}^{p}(-1)^{p-i}{\binom {e+p}{e+i}}s_{i}(E)c_{1}(L)^{p-i}.}
[ 7]
A key property of a Segre class is birational invariance: this is contained in the following. Let
p
:
X
→
Y
{\displaystyle p:X\to Y}
be a proper morphism between algebraic schemes such that
Y
{\displaystyle Y}
is irreducible and each irreducible component of
X
{\displaystyle X}
maps onto
Y
{\displaystyle Y}
. Then, for each closed subscheme
W
⊂
Y
{\displaystyle W\subset Y}
,
V
=
p
−
1
(
W
)
{\displaystyle V=p^{-1}(W)}
and
p
V
:
V
→
W
{\displaystyle p_{V}:V\to W}
the restriction of
p
{\displaystyle p}
,
p
V
∗
(
s
(
V
,
X
)
)
=
deg
(
p
)
s
(
W
,
Y
)
.
{\displaystyle {p_{V}}_{*}(s(V,X))=\operatorname {deg} (p)\,s(W,Y).}
[ 8]
Similarly, if
f
:
X
→
Y
{\displaystyle f:X\to Y}
is a flat morphism of constant relative dimension between pure-dimensional algebraic schemes, then, for each closed subscheme
W
⊂
Y
{\displaystyle W\subset Y}
,
V
=
f
−
1
(
W
)
{\displaystyle V=f^{-1}(W)}
and
f
V
:
V
→
W
{\displaystyle f_{V}:V\to W}
the restriction of
f
{\displaystyle f}
,
f
V
∗
(
s
(
W
,
Y
)
)
=
s
(
V
,
X
)
.
{\displaystyle {f_{V}}^{*}(s(W,Y))=s(V,X).}
[ 9]
A basic example of birational invariance is provided by a blow-up. Let
π
:
X
~
→
X
{\displaystyle \pi :{\widetilde {X}}\to X}
be a blow-up along some closed subscheme Z . Since the exceptional divisor
E
:=
π
−
1
(
Z
)
↪
X
~
{\displaystyle E:=\pi ^{-1}(Z)\hookrightarrow {\widetilde {X}}}
is an effective Cartier divisor and the normal cone (or normal bundle) to it is
O
E
(
E
)
:=
O
X
(
E
)
|
E
{\displaystyle {\mathcal {O}}_{E}(E):={\mathcal {O}}_{X}(E)|_{E}}
,
s
(
E
,
X
~
)
=
c
(
O
E
(
E
)
)
−
1
[
E
]
=
[
E
]
−
E
⋅
[
E
]
+
E
⋅
(
E
⋅
[
E
]
)
+
⋯
,
{\displaystyle {\begin{aligned}s(E,{\widetilde {X}})&=c({\mathcal {O}}_{E}(E))^{-1}[E]\\&=[E]-E\cdot [E]+E\cdot (E\cdot [E])+\cdots ,\end{aligned}}}
where we used the notation
D
⋅
α
=
c
1
(
O
(
D
)
)
α
{\displaystyle D\cdot \alpha =c_{1}({\mathcal {O}}(D))\alpha }
.[ 10] Thus,
s
(
Z
,
X
)
=
g
∗
(
∑
k
=
1
∞
(
−
1
)
k
−
1
E
k
)
{\displaystyle s(Z,X)=g_{*}\left(\sum _{k=1}^{\infty }(-1)^{k-1}E^{k}\right)}
where
g
:
E
=
π
−
1
(
Z
)
→
Z
{\displaystyle g:E=\pi ^{-1}(Z)\to Z}
is given by
π
{\displaystyle \pi }
.
Let Z be a smooth curve that is a complete intersection of effective Cartier divisors
D
1
,
…
,
D
n
{\displaystyle D_{1},\dots ,D_{n}}
on a variety X . Assume the dimension of X is n + 1. Then the Segre class of the normal cone
C
Z
/
X
{\displaystyle C_{Z/X}}
to
Z
↪
X
{\displaystyle Z\hookrightarrow X}
is:[ 11]
s
(
C
Z
/
X
)
=
[
Z
]
−
∑
i
=
1
n
D
i
⋅
[
Z
]
.
{\displaystyle s(C_{Z/X})=[Z]-\sum _{i=1}^{n}D_{i}\cdot [Z].}
Indeed, for example, if Z is regularly embedded into X , then, since
C
Z
/
X
=
N
Z
/
X
{\displaystyle C_{Z/X}=N_{Z/X}}
is the normal bundle and
N
Z
/
X
=
⨁
i
=
1
n
N
D
i
/
X
|
Z
{\displaystyle N_{Z/X}=\bigoplus _{i=1}^{n}N_{D_{i}/X}|_{Z}}
(see Normal cone#Properties ), we have:
s
(
C
Z
/
X
)
=
c
(
N
Z
/
X
)
−
1
[
Z
]
=
∏
i
=
1
d
(
1
−
c
1
(
O
X
(
D
i
)
)
)
[
Z
]
=
[
Z
]
−
∑
i
=
1
n
D
i
⋅
[
Z
]
.
{\displaystyle s(C_{Z/X})=c(N_{Z/X})^{-1}[Z]=\prod _{i=1}^{d}(1-c_{1}({\mathcal {O}}_{X}(D_{i})))[Z]=[Z]-\sum _{i=1}^{n}D_{i}\cdot [Z].}
The following is Example 3.2.22. of Fulton (1998).[ 2] It recovers some classical results from Schubert's book on enumerative geometry .
Viewing the dual projective space
P
3
˘
{\displaystyle {\breve {\mathbb {P} ^{3}}}}
as the Grassmann bundle
p
:
P
3
˘
→
∗
{\displaystyle p:{\breve {\mathbb {P} ^{3}}}\to *}
parametrizing the 2-planes in
P
3
{\displaystyle \mathbb {P} ^{3}}
, consider the tautological exact sequence
0
→
S
→
p
∗
C
3
→
Q
→
0
{\displaystyle 0\to S\to p^{*}\mathbb {C} ^{3}\to Q\to 0}
where
S
,
Q
{\displaystyle S,Q}
are the tautological sub and quotient bundles. With
E
=
Sym
2
(
S
∗
⊗
Q
∗
)
{\displaystyle E=\operatorname {Sym} ^{2}(S^{*}\otimes Q^{*})}
, the projective bundle
q
:
X
=
P
(
E
)
→
P
3
˘
{\displaystyle q:X=\mathbb {P} (E)\to {\breve {\mathbb {P} ^{3}}}}
is the variety of conics in
P
3
{\displaystyle \mathbb {P} ^{3}}
. With
β
=
c
1
(
Q
∗
)
{\displaystyle \beta =c_{1}(Q^{*})}
, we have
c
(
S
∗
⊗
Q
∗
)
=
2
β
+
2
β
2
{\displaystyle c(S^{*}\otimes Q^{*})=2\beta +2\beta ^{2}}
and so, using Chern class#Computation formulae ,
c
(
E
)
=
1
+
8
β
+
30
β
2
+
60
β
3
{\displaystyle c(E)=1+8\beta +30\beta ^{2}+60\beta ^{3}}
and thus
s
(
E
)
=
1
+
8
h
+
34
h
2
+
92
h
3
{\displaystyle s(E)=1+8h+34h^{2}+92h^{3}}
where
h
=
−
β
=
c
1
(
Q
)
.
{\displaystyle h=-\beta =c_{1}(Q).}
The coefficients in
s
(
E
)
{\displaystyle s(E)}
have the enumerative geometric meanings; for example, 92 is the number of conics meeting 8 general lines.
Let X be a surface and
A
,
B
,
D
{\displaystyle A,B,D}
effective Cartier divisors on it. Let
Z
⊂
X
{\displaystyle Z\subset X}
be the scheme-theoretic intersection of
A
+
D
{\displaystyle A+D}
and
B
+
D
{\displaystyle B+D}
(viewing those divisors as closed subschemes). For simplicity, suppose
A
,
B
{\displaystyle A,B}
meet only at a single point P with the same multiplicity m and that P is a smooth point of X . Then[ 12]
s
(
Z
,
X
)
=
[
D
]
+
(
m
2
[
P
]
−
D
⋅
[
D
]
)
.
{\displaystyle s(Z,X)=[D]+(m^{2}[P]-D\cdot [D]).}
To see this, consider the blow-up
π
:
X
~
→
X
{\displaystyle \pi :{\widetilde {X}}\to X}
of X along P and let
g
:
Z
~
=
π
−
1
Z
→
Z
{\displaystyle g:{\widetilde {Z}}=\pi ^{-1}Z\to Z}
, the strict transform of Z . By the formula at #Properties ,
s
(
Z
,
X
)
=
g
∗
(
[
Z
~
]
)
−
g
∗
(
Z
~
⋅
[
Z
~
]
)
.
{\displaystyle s(Z,X)=g_{*}([{\widetilde {Z}}])-g_{*}({\widetilde {Z}}\cdot [{\widetilde {Z}}]).}
Since
Z
~
=
π
∗
D
+
m
E
{\displaystyle {\widetilde {Z}}=\pi ^{*}D+mE}
where
E
=
π
−
1
P
{\displaystyle E=\pi ^{-1}P}
, the formula above results.
Multiplicity along a subvariety [ edit ]
Let
(
A
,
m
)
{\displaystyle (A,{\mathfrak {m}})}
be the local ring of a variety X at a closed subvariety V codimension n (for example, V can be a closed point). Then
length
A
(
A
/
m
t
)
{\displaystyle \operatorname {length} _{A}(A/{\mathfrak {m}}^{t})}
is a polynomial of degree n in t for large t ; i.e., it can be written as
e
(
A
)
n
n
!
t
n
+
{\displaystyle {e(A)^{n} \over n!}t^{n}+}
the lower-degree terms and the integer
e
(
A
)
{\displaystyle e(A)}
is called the multiplicity of A .
The Segre class
s
(
V
,
X
)
{\displaystyle s(V,X)}
of
V
⊂
X
{\displaystyle V\subset X}
encodes this multiplicity: the coefficient of
[
V
]
{\displaystyle [V]}
in
s
(
V
,
X
)
{\displaystyle s(V,X)}
is
e
(
A
)
{\displaystyle e(A)}
.[ 13]
^ Segre 1953
^ a b Fulton 1998
^ Fulton 1998 , p.50.
^ Fulton 1998 , Example 4.1.1.
^
Fulton 1998 , Example 4.1.5.
^ a b Fulton 1998 , Proposition 3.1.
^ Fulton 1998 , Example 3.1.1.
^ Fulton 1998 , Proposition 4.2. (a)
^ Fulton 1998 , Proposition 4.2. (b)
^ Fulton 1998 , § 2.5.
^ Fulton 1998 , Example 9.1.1.
^ Fulton 1998 , Example 4.2.2.
^ Fulton 1998 , Example 4.3.1.
Fulton, William (1998), Intersection theory , Ergebnisse der Mathematik und ihrer Grenzgebiete . 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag , ISBN 978-3-540-62046-4 , MR 1644323
Segre, Beniamino (1953), "Nuovi metodi e resultati nella geometria sulle varietà algebriche", Ann. Mat. Pura Appl. (in Italian), 35 (4): 1–127, MR 0061420