2023 in archosaur paleontology: Difference between revisions
Atlantis536 (talk | contribs) I'm not so sure if we should add this, because it seems to straddle the border between paleontology and archaeology Undid revision 1136594075 by Slatetheraptor (talk) |
BORING! When are we going to get a bird taxon from the Romualdo formation? Or for “Styginetta lofgreni” to finally get a published scientific name? Something actually worthwhile? Tags: Reverted Visual edit Mobile edit Mobile web edit |
||
Line 144: | Line 144: | ||
A non-[[Ornithothoraces|ornithothoracine]] [[pygostylia]]n. The type species is ''C. zhui''. |
A non-[[Ornithothoraces|ornithothoracine]] [[pygostylia]]n. The type species is ''C. zhui''. |
||
| |
| |
||
|- |
|||
| |
|||
''[[Macronectes tinae]]''<ref name=TS23>{{Cite journal|last1=Tennyson|first= A.J.D.|last2=Salvador|first2=R.B.|year=2023|title=A New Giant Petrel (Macronectes, Aves: Procellariidae) from the Pliocene of Taranaki, New Zealand|url=https://www.mdpi.com/2673-6500/3/1/6|journal=Taxonomy|volume=3|issue=1|pages=57-67|doi=10.3390/taxonomy3010006}}</ref> |
|||
| |
|||
Sp. nov |
|||
| |
|||
Valid |
|||
| |
|||
Tennyson & Salvador |
|||
| |
|||
Pliocene ([[Piacenzian]]) |
|||
| |
|||
[[Tangahoe Formation]] |
|||
| |
|||
{{Flag|New Zealand}} |
|||
| |
|||
A member of the genus ''[[Macronectes]]''. |
|||
| |
|||
[[File:Macronectes tinae.png|frameless]] |
|||
|- |
|- |
||
| |
| |
Revision as of 07:31, 31 January 2023
| |||
---|---|---|---|
+... |
This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2023, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2023.
Pseudosuchians
New pseudosuchian taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Wilberg et al. |
Early Jurassic (Pliensbachian) |
An early diverging thalattosuchian. |
General pseudosuchian research
Aetosaur research
Crocodylomorph research
- Evidence from the osteological correlates of the trigeminal nerve in extant and fossil taxa, interpreted as indicative of an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding their transitions to a semiaquatic habitat, is presented by Lessner et al. (2023).[2]
- Description of new fossil material of itasuchid crocodyliforms from the Upper Cretaceous Bauru Group (Brazil) is published by Pinheiro et al. (2023), who also confirm the monophyly of Itasuchidae with some variation in its content, and find the South American itasuchid species to occupy a crocodyliform morphospace, possibly indicating distinct niche occupations.[3]
- A collection of isolated gavialoid teeth is reported from the shallow marine deposits of Eocene Turnu Roșu (Romania) by Venczel et al. (2023), who recognize a minimum of five morphotypes.[4]
- A collection of eighteen isolated neosuchian teeth as well as a single isolated crocodyliform osteoderm are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023), who recognize a minimum of three morphotypes among the teeth.[5]
Non-avian dinosaurs
New dinosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Prieto-Márquez & Wagner |
Late Cretaceous (Campanian) |
A basally branching hadrosaurid. Genus includes new species M. deckerti. Announced in 2022; the final article version will be published in 2023. |
General non-avian dinosaur research
- Cullen et al. (2023) reevaluate evidence for anomalously positive stable carbon isotope compositions of dinosaur bioapatite, report that the studied anomaly is present in the carbon isotope compositions of bioapatite in tooth enamel of not only dinosaurs but also mammals and crocodilians and in scale ganoine of gars from the "Rainy Day Site" in the Campanian Oldman Formation (Alberta, Canada) but is absent in extant vertebrates from the near-analogue modern ecosystem in the Atchafalaya Basin (Louisiana, United States), and interpret their findings as indicating that the studied anomaly is not the result of a unique dietary physiology of dinosaurs.[7]
- Dinosaur eggshell fragments with preserved eggshell membranes are reported from the Late Jurassic Brushy Basin Member of the Morrison Formation (Utah, United States) by Lazer et al. (2023).[8]
Saurischian research
- A tracksite of dinosaur footprints is described from the Middle Jurassic Xietan Formation (Hubei, China) by Xing et al. (2023), who interpret the tracks as belonging to small sauropods (similiar to Brontopodus) and probable theropods.[9]
Theropod research
- A study on the relationship between the body size of theropods, the area of muscles important for their balance and locomotion, and their capacity for agility is published by Henderson (2023), who argues that theropod body plan had an upper size limit based on a minimum acceleration threshold.[10]
- Sharma, Hendrickx & Singh (2023) describe dental material of a non-coelurosaur averostran theropod from the Bathonian Fort Member of the Jaisalmer Formation (India), providing evidence of the presence of at least one taxon of a medium to large-bodied theropod on the Tethyan coast of India during the Middle Jurassic.[11]
- A collection of seven isolated spinosaurid teeth as well as a single preungual pedal phalanx of an indetermined theropod are reported from the Berriasian–Valanginian Feliz Deserto Formation (Brazil) by Lacerda et al. (2023).[5]
- Reconstruction of the musculature of the pectoral girdle and forelimbs in megaraptoran theropods is presented by Aranciaga Rolando et al. (2023).[12]
- A pathological third metatarsal of Phuwiangvenator, indicating that the bone experienced a greenstick fracture and healed before the animal's death, is described from the Lower Cretaceous Sao Khua Formation (Khon Kaen, Thailand) by Samathi et al. (2023).[13]
- A study estimating the number of telencephalic neurons in theropod dinosaurs is published by Herculano-Houzel (2023), who argues that Allosaurus and Tyrannosaurus are endotherms with baboon- and monkey-like numbers of neurons;[14] however, this study has been criticized.[15]
- A partial left tibia and articulated proximal tarsals, likely belonging to an indeterminate velociraptorine, are described from the Upper Cretaceous Lo Hueco fossil site (Cuenca, Spain) by Malafaia et al. (2023), who also review the European theropods of the Late Cretaceous.[16]
Sauropodomorph research
- Lockley et al. (2023) evaluate a number of trackways assigned to basal saurischians, including those belonging to the ichnogenera Otozoum, Pseudotetrasauropus, Evazoum, and Kalosauropus, and examine their implications on the gait of "prosauropods".[17]
- Cervical vertebra representing the first record of a titanosauriform sauropod from the Lower Cretaceous Kanmon Group (Japan) is described by Tatehata, Mukunoki & Tanoue (2023).[18]
- Dhiman et al. (2023) report the discovery of 92 titanosaur egg clutches from the Upper Cretaceous Lameta Formation (Madhya Pradesh, India), including three types of clutches and assigned to six oospecies, interpret their findings as suggestive of higher diversity of titanosaur taxa from the Lameta Formation than indicated by body fossils, and evaluate the implications of the studied egg clutches for the knowledge of the reproductive biology of titanosaurs.[19]
Ornithischian research
- A study on the biomechanical properties of the skulls of Heterodontosaurus tucki, Lesothosaurus diagnosticus, Scelidosaurus harrisonii, Hypsilophodon foxii and Psittacosaurus lujiatunensis is published by Button et al. (2023), who interpret their findings as indicative of limited functional convergence among studied taxa, which achieved comparable performance of the feeding apparatus through different adaptations.[20]
- Review of the fossil record of ornithischian dinosaurs from Southeast Asia and southern China is published by Manitkoon et al. (2023)[21]
Thyreophoran research
- Galton (2023) describes a right sternal bone of a specimen of Stegosaurus from the Carnegie Quarry at Dinosaur National Monument (Morrison Formation; Utah, United States) and reevaluates three putative sternal bones from Como Bluff (Wyoming, United States) described by Gilmore (1914),[22] arguing that they are neither sternal bones nor fossils of Stegosaurus.[23]
Cerapod research
- Redescription of Cumnoria prestwichii is published by Maidment et al. (2023), who recover Cumnoria as a non-ankylopollexian iguanodontian, and consider it to be distinct from Camptosaurus.[24]
- García-Cobeña, Cobosa & Verdú (2023) describe bone and trace fossils of styracosternan ornithopods from the Lower Cretaceous El Castellar Formation and Camarillas Formation (Spain), including manus-pes track set from the Camarillas Formation indicative of quadrupedal locomotion, assigned to the ichnogenus Caririchnium and produced by large styracosternans related to Iguanodon.[25]
Birds
New bird taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Li et al. |
Early Cretaceous |
A non-ornithothoracine pygostylian. The type species is C. zhui. |
||||
Sp. nov |
Valid |
Mayr & Kitchener |
Eocene (Ypresian) |
A member of the family Threskiornithidae. |
||||
Gen. et sp. et comb. nov |
Valid |
Mayr & Kitchener |
Early Eocene |
London Clay |
An owl. The type species is Y. michaeldanielsi; genus also includes "Eostrix" gulottai Mayr (2016). Announced in 2022; the final article version was published in 2023. |
Avian research
- Five specimens of Sapeornis chaoyangensis with different-preserved feathers are reported from the Early Cretaceous Jehol Biota (China) by Zhao et al. (2023), who examine their implications for the taphonomy of soft tissues from the Jehol Biota.[29]
- Figueiredo et al. (2023) report a partial coracoid of the genus Morus from the middle Miocene (Langhian) of the Setúbal Peninsula (Portugal), an instance that represents the first Miocene sulid described from the Iberian Peninsula.[30]
Pterosaurs
New pterosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Martill et al. |
Late Jurassic (late Kimmeridgian to Tithonian) |
A member of the family Ctenochasmatidae. The type species is B. maeuseri. |
Pterosaur research
Other archosaurs
Other archosaur research
General research
- Wang, Claessens & Sullivan (2023) establish skeletal features associated with the attachment of uncinate processes to vertebral ribs in extant birds and crocodilians, attempt to determine their distribution in fossil archosaurs, and interpret their findings as indicating that cartilaginous uncinate processes were plesiomorphically present (and likely had a ventilatory function) in dinosaurs, and maybe even in archosaurs in general.[32]
References
- ^ Wilberg, E. W.; Godoy, P. L.; Griffiths, E. F.; Turner, A. H.; Benson, R. B. J. (2023). "A new early diverging thalattosuchian (Crocodylomorpha) from the Early Jurassic (Pliensbachian) of Dorset, U.K. and implications for the origin and evolution of the group". Journal of Vertebrate Paleontology. e2161909. doi:10.1080/02724634.2022.2161909.
- ^ Lessner, E. J.; Dollman, K. N.; Clark, J. M.; Xu, X.; Holliday, C. M. (2023). "Ecomorphological patterns in trigeminal canal branching among sauropsids reveal sensory shift in suchians". Journal of Anatomy. doi:10.1111/joa.13826. PMID 36680380.
- ^ Pinheiro, A. E. P.; Pereira, P. V. L. G. C.; Vasconcellos, F. M.; Brum, A. S.; Souza, L. G.; Costa, F. R.; Castro, L. O. R.; Silva, K. F.; Bandeira, K. L. N. (2023). "New Itasuchidae (Sebecia, Ziphosuchia) remains and the radiation of an elusive Mesoeucrocodylia clade". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2139179.
- ^ Venczel, M.; Codrea, M.; Trif, N. (2023). "Eocene gavialoid teeth from southern Transylvania with notes on the diversity of Paleogene crocodilians from Romania" (PDF). North-Western Journal of Zoology. 19 (1).
- ^ a b Lacerda, M.B.S.; de Andrade, M.B.; Sales, M.A.F.; Aragão, P.R.L.; Vieira, F.S.; Bittencourt, J.S.; Liparini, A. (2023). "The vertebrate fossil record from the Feliz Deserto Formation (Lower Cretaceous), Sergipe, NE Brazil: paleoecological, taphonomic, and paleobiogeographic implications". Cretaceous Research. doi:10.1016/j.cretres.2022.105463. ISSN 0195-6671.
- ^ Prieto-Márquez, A.; Wagner, J. R. (2022). "A new 'duck-billed' dinosaur (Ornithischia: Hadrosauridae) from the upper Campanian of Texas points to a greater diversity of early hadrosaurid offshoots". Cretaceous Research. 143. 105416. doi:10.1016/j.cretres.2022.105416.
- ^ Cullen, T. M.; Longstaffe, F. J.; Wortmann, U. G.; Huang, L.; Evans, D. C. (2023). "Anomalous 13C enrichment in Mesozoic vertebrate enamel reflects environmental conditions in a "vanished world" and not a unique dietary physiology". Paleobiology: 1–15. doi:10.1017/pab.2022.43.
- ^ Lazer, Kayla; Stout, Ian; Simpson, Edward; Wizevich, Michael; Keebler, Abigal; Hetrick, Grace (2023). "Preserved membrane on dinosaur eggshell fragments, Upper Jurassic Morrison Formation, eastern Utah". Palaios. 38 (1): 43–55. doi:10.2110/palo.2022.002.
- ^ Xing, Lida; Wang, Yongdong; Lockley, Martin G.; Klein, Hendrik; Liu, Chang; Persons, W. Scott (2023-01-02). "The first record of dinosaur track from Hubei Province, Central China". Historical Biology: 1–6. doi:10.1080/08912963.2022.2164494. ISSN 0891-2963.
- ^ Henderson, D. M. (2023). "Growth constraints set an upper limit to theropod dinosaur body size". The Science of Nature. 110 (1). 4. doi:10.1007/s00114-023-01832-1. PMID 36715746.
- ^ Sharma, A.; Hendrickx, C.; Singh, S. (2023). "First theropod record from the Marine Bathonian of Jaisalmer Basin, Tethyan Coast of Gondwanan India". Rivista Italiana di Paleontologia e Stratigrafia. 129 (1): 49–64. doi:10.54103/2039-4942/18306.
- ^ Aranciaga Rolando, A. M.; Novas, F. E.; Calvo, J. O.; Porfiri, J. D.; Dos Santos, D. D.; Lamanna, M. C. (2023). "Reconstruction of the pectoral girdle and forelimb musculature of Megaraptora (Dinosauria: Theropoda)". The Anatomical Record. doi:10.1002/ar.25128. PMID 36647300.
- ^ Samathi, Adun; Weluwanarak, Jakkrapat; Duanyai, Punyawee; Kaikaew, Siripat; Suteethorn, Suravech (2023-01-13). "An unusual metatarsal of theropod dinosaur from the lower cretaceous of Thailand: the first detailed study of paleopathology in Megaraptora". Historical Biology: 1–6. doi:10.1080/08912963.2023.2166833. ISSN 0891-2963.
- ^ Herculano-Houzel, S. (2023). "Theropod dinosaurs had primate-like numbers of telencephalic neurons". Journal of Comparative Neurology. doi:10.1002/cne.25453. PMID 36603059.
- ^ Rodrigo Pérez Ortega (2023-01-10). "Some dinos may have been as brainy as modern primates, controversial study argues". Science.org.
- ^ Malafaia, Elisabete; Escaso, Fernando; Coria, Rodolfo A.; Ortega, Francisco (2023-01-19). "An Eudromaeosaurian Theropod from Lo Hueco (Upper Cretaceous. Central Spain)". Diversity. 15 (2): 141. doi:10.3390/d15020141. ISSN 1424-2818.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Lockley, Martin G.; Lallensack, Jens N.; Sciscio, Lara; Bordy, Emese M. (2023). "The early Mesozoic saurischian trackways Evazoum and Otozoum: implications for 'prosauropod' (basal sauropodomorph) gaits". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2022.2163170.
- ^ Tatehata, J.-I.; Mukunoki, T.; Tanoue, K. (2023). "Description of a Titanosauriform (Sauropoda, Dinosauria) Cervical Vertebra from the Lower Cretaceous Kanmon Group, Southwestern Japan". Paleontological Research. 27 (3): 350–358. doi:10.2517/PR220009.
- ^ Dhiman, H.; Verma, V.; Singh, L. R.; Miglani, V.; Jha, D. K.; Sanyal, P.; Tandon, S. K.; Prasad, G. V. R. (2023). "New Late Cretaceous titanosaur sauropod dinosaur egg clutches from lower Narmada valley, India: Palaeobiology and taphonomy". PLOS ONE. 18 (1). e0278242. doi:10.1371/journal.pone.0278242. PMC 9848018. PMID 36652404.
- ^ Button, D. J.; Porro, L. B.; Lautenschlager, S.; Jones, M. E. H.; Barrett, P. M. (2023). "Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution". Current Biology. doi:10.1016/j.cub.2022.12.019. PMID 36603586.
- ^ Manitkoon, S.; Deesri, U.; Warapeang, P.; Nonsrirach, T.; Chanthasit, P. (2023). "Ornithischian dinosaurs in Southeast Asia: a review with palaeobiogeographic implications". Fossil Record. 26 (1): 1–25. doi:10.3897/fr.26.e93456.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Gilmore, C. W. (1914). "Osteology of the armored Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus". Bulletin of the United States National Museum. 89: 1–143. hdl:10088/30429.
- ^ Galton, P. M. (2023). "A sternal bone of plated ornithischian dinosaur Stegosaurus (Upper Jurassic, Utah), the first for Stegosauria, and the enigmatic "sternal bones" of Gilmore (1914)". Revue de Paléobiologie, Genève. 42 (1): 129–141. doi:10.5281/zenodo.7446065.
- ^ Maidment, S. C. R.; Chapelle, K. E. J.; Bonsor, J. A.; Button, D.; Barrett, P. M. (2023). "Osteology and relationships of Cumnoria prestwichii (Ornithischia: Ornithopoda) from the Late Jurassic of Oxfordshire, UK". Monographs of the Palaeontographical Society. 176 (664): 1–55. doi:10.1080/02693445.2022.2162669.
- ^ García-Cobeña, J.; Cobosa, A.; Verdú, F. J. (2023). "Ornithopod tracks and bones: Paleoecology and an unusual evidence of quadrupedal locomotion in the Lower Cretaceous of eastern Iberia (Teruel, Spain)". Cretaceous Research. 105473. doi:10.1016/j.cretres.2023.105473.
- ^ Li, Z; Wang, M.; Stidham, T. A.; Zhou, Z. (2023). "Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies". Nature Ecology & Evolution. 7 (1): 20–31. doi:10.1038/s41559-022-01921-w. PMID 36593291.
- ^ Mayr, G.; Kitchener, A. C. (2023). "Multiple skeletons of Rhynchaeites from the London Clay reveal the osteology of early Eocene ibises (Aves, Threskiornithidae)". PalZ. doi:10.1007/s12542-022-00647-1.
- ^ Mayr, G.; Kitchener, A. C. (2022). "Early Eocene fossil illuminates the ancestral (diurnal) ecomorphology of owls and documents a mosaic evolution of the strigiform body plan". Ibis. 165 (1): 231–247. doi:10.1111/ibi.13125. S2CID 251455832.
- ^ Zhao, Yan; Tian, Qian; Ren, Guang-Ying; Guo, Ying; Zheng, Xiao-Ting (2023). "Taphonomic analysis of the exceptional preservation of early bird feathers during the early Cretaceous period in Northeast China". Frontiers in Earth Science. 10. doi:10.3389/feart.2022.1020594.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Figueiredo, Silvério; de Carvalho, Carlos Neto; Cachão, Mário; Fonseca, Alexandre (2023-01-09). "A marine bird (sulidae, Aves) from the Langhian (middle Miocene) of Penedo beach (Setúbal Peninsula—SW Portugal) and its paleoenvironmental context". Journal of Iberian Geology. doi:10.1007/s41513-022-00203-5. ISSN 1886-7995.
- ^ Martill, D. M.; Frey, E.; Tischlinger, H.; Mäuser, M.; Rivera-Sylva, H. E.; Vidovic, S. U. (2023). "A new pterodactyloid pterosaur with a unique filter-feeding apparatus from the Late Jurassic of Germany". PalZ. doi:10.1007/s12542-022-00644-4.
- ^ Wang, Y.; Claessens, L. P. A. M.; Sullivan, C. (2023). "Deep reptilian evolutionary roots of a major avian respiratory adaptation". Communications Biology. 6. 3. doi:10.1038/s42003-022-04301-z. PMC 9845227. PMID 36650231.