ROTOR was an elaborate air defence radar system built by the British Government in the early 1950s to counter possible attack by Soviet bombers. To get it operational as quickly as possible, it was initially made up primarily of WWII-era systems, notably the original Chain Home radars for the early warning role, and the AMES Type 7 for plotting and interception control. Data from these stations was sent to a network of control stations, mostly built underground, using an extensive telephone and telex network.

Entrance bungalow to former ROTOR station at Kelvedon Hatch

Work also began on a new microwave frequency radar to replace Chain Home c. 1957. The experimental system Green Garlic was so successful that it began replacing Chain Home starting in 1954. In service, these proved so accurate that they could replace the Type 7 radars as well, and their greatly improved range meant that fewer radars would be needed to provide coverage over the entire United Kingdom. This led to the Master Radar Stations that filled both early warning and ground controlled interception roles. The original ROTOR plans for 66 radars was repeatedly reduced, ultimately only requiring half that number of stations. Many of the operations rooms, recently completed, were sold.

ROTOR called for the continual upgrading of the network over time, both the radars and the command and control systems. The introduction of the carcinotron radar jammer in the mid-1950s was a serious blow to these plans; a single aircraft carrying a carcinotron could jam the ROTOR radars so completely that they were rendered useless. At the same time, the introduction of the hydrogen bomb and ballistic missile greatly changed the nature of the strategic threat, and the idea of whole-country defence became untenable. The only way to defend against missile attacks was deterrence, and if that failed, interceptor aircraft and missiles would have no measurable effect on the eventual outcome.

ROTOR was initially to be replaced by a new network dedicated largely to defending the V-bomber force, the "1958 Plan". This role was eventually abandoned, leaving only the task of locating aircraft carrying jammers to keep the BMEWS radars free from interference and prevent a successful sneak attack by missiles. Such a system did not require a large number of radars nor country-wide coverage. To reduce the cost of this much smaller network, studies on integrating the military radars with civilian air traffic control led to the Linesman/Mediator system of only five primary stations. The original ROTOR was replaced by Linesman in stages, starting in 1967.

A similar expedient system in the United States was the Lashup Radar Network.

Post-war situation

edit

As the threat of German air attack became ever more remote, UK radar operations were wound down late in the war, and by the time the war ended were already largely unused. When the war ended, there was a general feeling that another war was at least ten years in the future. Given the rapid ongoing improvements in radar systems through this period, the Air Ministry felt there was no point introducing new radars that would likely become obsolete in a few years. They planned to allow radar to continue developing through this period and use the existing WWII-era systems in the meantime.[1]

To consider the issue in more depth, the Cherry Report was commissioned in 1945. This report noted that the increasing speeds of new bombers, and especially future designs that were jet-powered, would travel across the plotting boards of the existing Dowding system so rapidly that they would fly off the maps before the interception could be arranged. The report suggested that a radar with 250 miles (400 km) range would be needed to replace the existing AMES Type 7/GCI systems, which were limited to about 90 miles (140 km) against bomber-sized targets. Estimating that such a radar would be available around 1957, the report suggested that existing GCI stations should receive upgraded antennas with more accuracy, new electronics for better performance, upgrades to their display systems, four Type 13's for height measuring, and two Type 14 units for anti-jamming use.[2] Additionally, their information would be sent to six new command centres, who would produce much larger maps of the airspace, up to 1,000 miles (1,600 km) across. Additionally, all of the sites would be upgraded with hardened bunkers to allow them to survive a near miss.[3]

New urgency

edit

The Berlin Blockade of July 1948 led to concerns about the next war's estimated time-frame. A White Paper on the state of the network was completed in March 1949. This found that the stations were in a terrible state, with many of them suffering weather damage and a number of them having been broken into and vandalized. A complete defense would also require 1152 fighters and 265 AA regiments, of which only 352 fighters and 75 regiments were actually available.[4] All of this was given extreme urgency with the 29 August 1949 test of the first Soviet atomic bomb. That month, a new directive stated RAF Fighter Command's mission was the defense of Great Britain.[5]

It was known that the Soviets had made exact copies of the B-29 Superfortress as the Tupolev Tu-4, and these aircraft had the performance needed to reach the UK with a nuclear payload. These were fast, but not fast enough to escape the existing radars if they were upgraded as the Cherry Report suggested. Most of the new network would be made up of 28 rebuilt Chain Home systems, while the rest were taken from the existing selection of Chain Home Low, Chain Home Extra Low and the various Ground-controlled interception (GCI) radars. This was, in part, a stop-gap measure anticipating the availability of the dramatically improved radar, which was now known as the Microwave Early Warning, which was expected in the 1957 time-frame. Interception guidance would still be handled by existing systems in either case.[2]

All of the radars were to be improved in terms of siting, with the addition of hardened control bunkers to protect the operators from a conventional attack. On the east coast, where a Soviet attack would be most likely, the bunkers were underground in the 'R' series (R1, R2, R3 and R4 etc.), while those on the western side of the UK were generally semi-sunken hardened structures ('R6') or above ground 'Secco' type huts (Hartland Point etc.). The R-series bunkers themselves were otherwise similar, featuring 10-foot-thick (3.0 m) concrete walls with all equipment, operations generators and air conditioning located inside.[3]

Additionally, ROTOR re-arranged the existing RAF Fighter Command structure into six "Sector Operational Commands" (SOC) with their own command bunkers (three level 'R4' protected accommodation). Only four of these were built. Additional "Anti-Aircraft Operations Rooms" were built to coordinate the British Army's AA defences in the same overall system. The entire network of bunkers, radars, fighter control and command centres used up 350,000 tons of concrete, 20,000 tons of steel and thousands of miles of telephone and telex connections.

The work was mainly carried out by the Marconi Wireless and Telegraph Company in several phases, called ROTOR 1, ROTOR 2 and ROTOR 3.

Post-ROTOR

edit

As work on the Microwave Early Warning system began, researchers at the Royal Radar Establishment were experimenting with new cavity magnetrons and crystal detectors that, combined with a ad hoc antenna, increased the range of their existing microwave radars on the order of four times. While the resulting "Green Garlic" did not meet all of the requirements for the original MEW, it was close enough and would be available years earlier.

The decision was made to make the MEW a long-term development with additional features such as moving target indication while the Green Garlic would be mated to an enormous antenna that would give it range over 200 nautical miles (370 km; 230 mi). Installations, under the name AMES Type 80, began in 1954 with the first systems declared operational the next year. As installations continued, it was found that the accuracy was such that it could also be used to direct the interceptors, with no need to forward the information to the ROTOR control centres. By concentrating all of the plotting at a single site the total number of operators was greatly reduced.

As a result of the introduction of the Type 80, many of the existing ROTOR sites were rationalized into Master Radar Stations (MRS), while the rest were made redundant, some only two years after opening. During the same period, the introduction of the first surface-to-air missiles rendered the anti-aircraft guns obsolete, and the Army handed the air defence mission entirely to the RAF. All of the AAOR sites were closed.

A few of the ROTOR and AAOR stations were re-used for Regional Seats of Government or local authority wartime headquarters. Until the end of the Cold War, many of the sites were retained by the government. They were later sold to private buyers, converted into museums (for example Hack Green) or transferred to the National Air Traffic Control Centre.

UK sites

edit
 
 
Anstruther
 
Bawburgh
 
Box
 
Buchan
 
Calvo
 
Chenies
 
Cold Hesledon
 
Comberton
 
Crosslaw
 
Danby Beacon
 
Douglas Wood
 
Drone Hill
 
Drytree
 
Dunkirk
 
Fairlight
 
Folly
 
Foreness
 
Gailes
 
Hartland Point
 
Hayscastle Cross
 
High Street
 
Hill Head
 
Hope Cove
 
Hopton
 
Inverbervie
 
Kilchiaran
 
Killard Point
 
Langtoft
 
Longley Lane
 
Murlough Bay
 
Neatishead
 
Netherbutton
 
Pevensey
 
Poling
 
Portland
 
Prestatyn
 
Rye
 
Sandwich
 
Scarinish
 
School Hill
 
Seaton Snook
 
Sennen
 
Snaefell
 
Sopley
 
St Annes
 
St Margarets
 
St Twynnells
 
Stenigot
 
Stoke Holy Cross
 
Swingate
 
Trelanvean
 
Treleaver
 
Trerew
 
Trewan Sands
 
Trimingham
 
Truleigh Hill
 
Ventnor
 
West Beckham
 
West Myne
 
West Prawle
 
Wick
Locations of former ROTOR sites in the United Kingdom


Site Name Site Designator Grid Reference Site Purpose
Aird Uig WIU NB 047390 R10 CEW Type 80
Anstruther FAT NO 568088 R3 Type 80
Barnton Quarry MHA NT 203748 R4 SOC Caledonian Sector
Bawburgh WRK TG 165080 R4 SOC Eastern Sector
Bawdsey PKD TM 347388 R3 GCI(E)
Beachy Head HEB TV 590959 R1 CEW Type 80
Bempton RMF TA 192736 R1 CEW
Boulmer EZS NU 240125 R3 GCI Type 80
Box XOB ST 850690 SOC Southern Sector
Buchan GBU NK 113408 R3 GCI Type 80
Calvo CAL NY 144545 R8 GCI
Charmy Down CHA ST 768702 R8 GCI
Chenies HAM TQ 015997 R8 GCI
Cold Hesledon IDW NZ 417468 R1 CEW/CHEL
Comberton COB SO 968461 R8 GCI
Crosslaw HCV NT 880680 R2 CHEL
Danby Beacon NZ 732097 CH
Douglas Wood NO 488415 CH
Drone Hill NT 845665 CH
Drytree SW 732218 CH
Dunkirk TDE TR 076595 CH Type 80
Fairlight GWB TQ 862113 R2 CHEL(A)
Faraid Head RAI NC 389714 R10 CEW Type 80
Folly SM 858195 CH
Foreness WJW TR 385710 R2 CHEL
Gailes FUL NS 327361 R8 GCI Type 80
Goldsborough JEX NZ 830138 R2 CHEL(A)
Hack Green HAK SJ 647483 R6 GCI
Hartland Point HAT SS 237277 R8 GCI
Hayscastle Cross CHX SM 920256 CH Type 80
High Street TM 411720 CH
Hill Head NJ 947616 CH
Holmpton VQJ TA 367225 R3 GCI(B) Type 80
Hope Cove HOP SX 716374 R6 GCI
Hopton TOH TM 540990 R2 CHEL(B)
Inverbervie LGZ NO 841734 R1 CEW
Kelvedon Hatch XSL TQ 561995 R4 SOC Metropolitan Sector
Kilchiaran ECK NR 207616 R11 CHEL
Killard Point IJ 605435 R8 GCI Type 80
Langtoft LAT TF 155129 R6 GCI Type 80
Longley Lane LOA SD 541365 SOC Western Sector
Murlough Bay URB ID 213407 R11 CHEL
Neatishead BWP TG 346184 R3 GCI
Netherbutton BNT HY 464045 CH
Pevensey TQ 644073 CH
Poling TQ 043052 CH
Portland NIB SY 696735 R1 CEW
Prestatyn SYP SJ 079819 R11 CHEL
Ringstead SRD SY 751817 CH
Rye TQ 968232 CH
Sandwich (Ash) YTM TR 303574 R3 GCI Type 80
Saxa Vord AXA HP 629165 R10 CEW Type 80
Scarinish FLY NM 032456 R8 GCI Type 80
School Hill HSL NO 908982 CH
Seaton Snook DYR NZ 519280 R3 GCI Type 80
Sennen SW 376246 CH
Shipton KFY SE 542618 R4 SOC Northern Sector
Skendleby UPI TF 438709 R3 GCI
Snaefell MOI SC 397869 R11 CHEL
Sopley AVO SZ 163977 R3 GCI Type 80
St Annes SAN SD 348303 R8 GCI
St Margarets AGC TR 370451 R1 CEW
St Twynnells TWY SR 944976 R6 GCI Type 80
Staxton Wold TA 023778 CH
Stenigot TF 256827 CH
Stoke Holy Cross TG 257028 CH
Swingate TR 335429 CH
Trelanvean SW 762193 CH
Treleaver TEL SW 766174 R6 GCI(B) Type 80
Trerew RTW SW 812585 CH
Trewan Sands TES SH 322754 R8 GCI
Trimingham QLE TG 290385 R1 CEW Type 80 CHEL
Truleigh Hill SNG TQ 224109 R2 CHEL
Ventnor OJC SZ 565784 CH R1 CEW Type 80
Wartling ZUN TQ 662088 R3 GCI Type 80
West Beckham TG 142389 CH
West Myne ZEM SS 928486 R11 CHEL
West Prawle SX 771374 CH
Wick IKA ND 326537 R8 GCI

At the Radar Research Establishment in Malvern, Worcestershire a ROTOR bunker was constructed above ground to allow equipment to be tested in an operational environment. The building, locally designated as H Building, originally incorporated a replica of the sector operations centre at RAF Bawburgh. The building was demolished June 2020.[citation needed]

The sites today

edit

RAF Staxton Wold is the only Chain Home site still used as a military radar site but with no remains of the CH station on site after being rebuilt for Linesman/Mediator in 1964. Today it is the former home of an RAF TPS 77 RRH (remote radar head).[6]

RAF Boulmer is a working RAF building, which is housed in an ex-"ROTOR" R3 RAF Boulmer ('EZS') GCI R3 ROTOR Radar Station & Control and Reporting Centre in the UK Air Surveillance and Control System.

In terms of current condition, the ROTOR sites vary from demolished to intact.

For example, West Myne[7] in Somerset was the last ROTOR 3 CHEL site. It was completed in 1957 after the introduction of the Type 80 radar and after many ROTOR stations had already closed. The site was within Exmoor National Park and its creation was strenuously opposed by the National Trust who lost no time in obliterating the site immediately after closure.

Many of the buildings have been re-purposed since being active as ROTOR sites. An example is the Bawburgh R4 SOC[8] which was re-purposed as SRHQ4.1 and then RGHQ4.1 to suit the evolving needs of government. The building is intact, but it has been significantly reconfigured since its use as a ROTOR SOC, notably with the addition of an extra floor and the flooring-over of the original R4 operations well.

July 2019; Kent Underground Exploration are starting talks with TDC hoping to be given access to find and uncover the Foreness, Kent station which grid ref is TR 385710

References

edit
  1. ^ Gough 1993, p. 42.
  2. ^ a b Gough 1993, p. 51.
  3. ^ a b Morris 1996, p. 104.
  4. ^ Gough 1993, p. 44.
  5. ^ Gough 1993, p. 48.
  6. ^ "RAF Staxton Wold". RAF. Royal Air Force. Retrieved 28 February 2016.
  7. ^ "West Myne Rotor Radar Station – Subterranea Britannica".
  8. ^ "Bawburgh Rotor SOC and RGHQ – Subterranea Britannica".

Sources

edit

Further reading

edit
  • Cold War: Building for Nuclear Confrontation 1946-89, Cocroft, Thomas and Barnwell, English Heritage 2003, ISBN 1873592817
edit