Deinococcota (synonym, Deinococcus-Thermus) is a phylum of bacteria with a single class, Deinococci, that are highly resistant to environmental hazards, also known as extremophiles.[4] These bacteria have thick cell walls that give them gram-positive stains, but they include a second membrane and so are closer in structure to those of gram-negative bacteria.[5][6][7]

Deinococcota
Scientific classification Edit this classification
Domain: Bacteria
Subkingdom: Negibacteria
Phylum: Deinococcota
Weisburg et al. 2021[2]
Class: Deinococci
Garrity and Holt 2002[1]
Orders & families
Synonyms
  • "Deinobacteria" Cavalier-Smith 2006
  • "Deinococcobacteria" Margulis & Schwartz 1998
  • "Deinococcaeota" Oren et al. 2015
  • "Deinococcota" Whitman et al. 2018
  • "Deinococcus–Thermus" Weisburg et al. 1989
  • "Hadobacteria" Cavalier-Smith 2006[3]
  • "Xenobacteria"

Taxonomy

edit

The phylum Deinococcota consists of a single class (Deinococci) and two orders:

Though these two groups evolved from a common ancestor, the two mechanisms of resistance appear to be largely independent.[11][15]

Molecular signatures

edit

Molecular signatures in the form of conserved signature indels (CSIs) and proteins (CSPs) have been found that are uniquely shared by all members belonging to the Deinococcota phylum.[4][11] These CSIs and CSPs are distinguishing characteristics that delineate the unique phylum from all other bacterial organisms, and their exclusive distribution is parallel with the observed differences in physiology. CSIs and CSPs have also been found that support order and family-level taxonomic rankings within the phylum. Some of the CSIs found to support order level distinctions are thought to play a role in the respective extremophilic characteristics.[11] The CSIs found in DNA-directed RNA polymerase subunit beta and DNA topoisomerase I in Thermales species may be involved in thermophilicity,[16] while those found in Excinuclease ABC, DNA gyrase, and DNA repair protein RadA in Deinococcales species may be associated with radioresistance.[17] Two CSPs that were found uniquely for all members belonging to the Deinococcus genus are well characterized and are thought to play a role in their characteristic radioresistant phenotype.[11] These CSPs include the DNA damage repair protein PprA the single-stranded DNA-binding protein DdrB.

Additionally, some genera within this group, including Deinococcus, Thermus, and Meiothermus, also have molecular signatures that demarcate them as individual genera, inclusive of their respective species, providing a means to distinguish them from the rest of the group and all other bacteria.[11] CSIs have also been found specific for Truepera radiovictrix .

Phylogeny

edit
16S rRNA based LTP_08_2023[18][19][20] 120 marker proteins based GTDB 08-RS214[21][22][23]
"Deinococcia"

Taxonomy

edit

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[24] and National Center for Biotechnology Information (NCBI)[25]

  • Phylum Deinococcota Oren and Garrity 2021
    • Class Deinococci Garrity & Holt 2002 ["Deinococcia" Oren, Parte & Garrity 2016 ex Cavalier-Smith 2020; "Thermi" Rinke et al. 2013; "Thermia" Cavalier-Smith 2020]

Sequenced genomes

edit

Currently there are 10 sequenced genomes of strains in this phylum.[26]

  • Deinococcus radiodurans R1
  • Thermus thermophilus HB27
  • Thermus thermophilus HB8
  • Deinococcus geothermalis DSM 11300
  • Deinococcus deserti VCD115
  • Meiothermus ruber DSM 1279
  • Meiothermus silvanus DSM 9946
  • Truepera radiovictrix DSM 17093
  • Oceanithermus profundus DSM 14977

The two Meiothermus species were sequenced under the auspices of the Genomic Encyclopedia of Bacteria and Archaea project (GEBA), which aims at sequencing organisms based on phylogenetic novelty and not on pathogenicity or notoriety.[27]

See also

edit

References

edit
  1. ^ Garrity GM, Holt JG. (2001). "The Road Map to the Manual". In Boone DR, Castenholz RW, Garrity GM. (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (The Archaea and the deeply branching and phototrophic Bacteria) (2nd ed.). New York, NY: Springer–Verlag. pp. 119–166.
  2. ^ Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi:10.1099/ijsem.0.005056. PMID 34694987. S2CID 239887308.
  3. ^ Cavalier-Smith T (2006). "Rooting the tree of life by transition analyses". Biol. Direct. 1: 19. doi:10.1186/1745-6150-1-19. PMC 1586193. PMID 16834776.
  4. ^ a b Griffiths E, Gupta RS (September 2007). "Identification of signature proteins that are distinctive of the Deinococcus–Thermus phylum" (PDF). Int. Microbiol. 10 (3): 201–8. PMID 18076002. Archived from the original (PDF) on 2011-06-14.
  5. ^ Gupta RS (2011). "Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes". Antonie van Leeuwenhoek. 100 (2): 171–182. doi:10.1007/s10482-011-9616-8. PMC 3133647. PMID 21717204.
  6. ^ Campbell C, Sutcliffe IC, Gupta RS (2014). "Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria" (PDF). Arch Microbiol. 196 (4): 307–310. Bibcode:2014ArMic.196..307C. doi:10.1007/s00203-014-0964-4. PMID 24535491. S2CID 10721294.
  7. ^ Sutcliffe IC (2010). "A phylum level perspective on bacterial cell envelope architecture". Trends Microbiol. 18 (10): 464–470. doi:10.1016/j.tim.2010.06.005. PMID 20637628.
  8. ^ a b Albuquerque L, Simões C, Nobre MF, et al. (2005). "Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov". FEMS Microbiol Lett. 247 (2): 161–169. doi:10.1016/j.femsle.2005.05.002. PMID 15927420.
  9. ^ a b Garrity GM, Holt JG. (2001) Phylum BIV. "Deinococcus–Thermus". In: Bergey’s manual of systematic bacteriology, pp. 395-420. Eds D. R. Boone, R. W. Castenholz. Springer-: New York.
  10. ^ a b Garrity GM, Bell JA, Lilburn TG. (2005) Phylum BIV. The revised road map to the Manual. In: Bergey’s manual of systematic bacteriology, pp. 159-220. Eds Brenner DJ, Krieg NR, Staley JT, Garrity GM. Springer-: New York.
  11. ^ a b c d e f g Ho J, Adeolu M, Khadka B, Gupta RS (2016). "Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus–Thermus" and distinguish its main constituent groups". Syst Appl Microbiol. 39 (7): 453–463. doi:10.1016/j.syapm.2016.07.003. PMID 27506333.
  12. ^ Battista JR, Earl AM, Park MJ (1999). "Why is Deinococcus radiodurans so resistant to ionizing radiation?". Trends Microbiol. 7 (9): 362–5. doi:10.1016/S0966-842X(99)01566-8. PMID 10470044.
  13. ^ "Classification of bacteria". www.bacterio.cict.fr. Archived from the original on 2013-01-27.
  14. ^ Nelson RM, Long GL (1989). "A general method of site-specific mutagenesis using a modification of the Thermus aquaticus". Anal Biochem. 180 (1): 147–151. doi:10.1016/0003-2697(89)90103-6. PMID 2530914.
  15. ^ Omelchenko MV, Wolf YI, Gaidamakova EK, et al. (2005). "Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: Divergent routes of adaptation to thermophily and radiation resistance". BMC Evol. Biol. 5 (1): 57. Bibcode:2005BMCEE...5...57O. doi:10.1186/1471-2148-5-57. PMC 1274311. PMID 16242020.
  16. ^ Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999). "Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution". Cell. 98 (6): 811–824. doi:10.1016/S0092-8674(00)81515-9. PMID 10499798. S2CID 15695915.
  17. '^ Tanaka M, Earl AM, Howell HA, Park MJ, Eisen JA, Peterson SN, Battista JR (2004). "Analysis of Deinococcus radioduranss transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance". Genetics. 168 (1): 21–23. doi:10.1534/genetics.104.029249. PMC 1448114. PMID 15454524.
  18. ^ "The LTP". Retrieved 20 November 2023.
  19. ^ "LTP_all tree in newick format". Retrieved 20 November 2023.
  20. ^ "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  21. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  22. ^ "bac120_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  23. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  24. ^ J.P. Euzéby. "Deinococcota". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-01-22.
  25. ^ Sayers; et al. "Deinococcus-Thermus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-03-20.
  26. ^ "Microbial Genomes".
  27. ^ Wu, D.; Hugenholtz, P.; Mavromatis, K.; Pukall, R. D.; Dalin, E.; Ivanova, N. N.; Kunin, V.; Goodwin, L.; Wu, M.; Tindall, B. J.; Hooper, S. D.; Pati, A.; Lykidis, A.; Spring, S.; Anderson, I. J.; d'Haeseleer, P.; Zemla, A.; Singer, M.; Lapidus, A.; Nolan, M.; Copeland, A.; Han, C.; Chen, F.; Cheng, J. F.; Lucas, S.; Kerfeld, C.; Lang, E.; Gronow, S.; Chain, P.; Bruce, D. (2009). "A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea". Nature. 462 (7276): 1056–1060. Bibcode:2009Natur.462.1056W. doi:10.1038/nature08656. PMC 3073058. PMID 20033048.