
WER: Maximizing Parallelism of Irregular Graph Applications Through
GPU Warp EqualizeR

En-Ming Huang†, Bo-Wun Cheng†, Meng-Hsien Lin‡, Chun-Yi Lee†, and Tsung Tai Yeh‡
†Elsa Lab, Department of Computer Science, National Tsing Hua University, Hsinchu City, Taiwan

‡Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan

Abstract

Irregular graphs are becoming increasingly prevalent
across a broad spectrum of data analysis applications.
Despite their versatility, the inherent complexity and irreg-
ularity of these graphs often result in the underutilization
of Single Instruction, Multiple Data (SIMD) resources
when processed on Graphics Processing Units (GPUs).
This underutilization originates from two primary issues:
the occurrence of inactive threads and intra-warp load
imbalances. These issues can produce idle threads, lead to
inefficient usage of SIMD resources, consequently hamper
throughput, and increase program execution time. To
address these challenges, we introduce Warp EqualizeR
(WER), a framework designed to optimize the utiliza-
tion of SIMD resources on a GPU for processing irreg-
ular graphs. WER employs both software API and a
specifically-tailored hardware microarchitecture. Such a
synergistic approach enables workload redistribution in
irregular graphs, which allows WER to enhance SIMD lane
utilization and further harness the SIMD resources within
a GPU. Our experimental results over seven different graph
applications indicate that WER yields a geometric mean
speedup of 2.52× and 1.47× over the baseline GPU and
existing state-of-the-art methodologies, respectively.

I. Introduction

Graph analytics offers a means of discovering key in-
sights from vast volumes of highly interconnected data
and has been extensively integrated into various fields, in-
cluding social networks [1], medical sciences [2], and cryp-
tocurrency transactions [3]. A graph is typically defined
as a structure that consists of vertices and edges, and is
employed predominantly for interpreting the relationships
between distinct data components. In the context of large-
scale graph processing, programmable General-Purpose
Graphics Processing Units (GPGPUs) are often considered
favorable due to their ability to execute graph workloads
in parallel. Nevertheless, mapping vertices and edges of a
graph onto the Single Instruction Multiple Thread (SIMT)
execution units of GPGPUs, while fully exploiting the
potential of parallel cores, presents a formidable challenge.
This difficulty arises as the quantity of edges associated
with each vertex in a graph often exhibits variability in
real-world graph workloads. Such irregular graph appli-
cations often lead to inefficiencies when paired with the
uniform Single Instruction Multiple Data (SIMD) execu-
tion units, primarily due to inactive threads and intra-warp
load imbalance issues. These challenges, as demonstrated
in Fig. 1, necessitate prompt and effective solutions.
Fig. 1 (a) presents an example execution order of the

Breadth-First Search (BFS) algorithm, where the arrows in

Vertex
2

Source

Vertex
6

Vertex
5

Vertex
4

Vertex
3

Vertex
1

Iter. 1

Iter. 2

Iter. 3

Vertex
3~6

inactive

Vertex
1~2

Vertex
1~6

active

��������	�
������
����� ������������
��������������������

������

������

�	���� ���

�
���
��

	�	� 	�	�
��
���
���
���
���
���
���
	��

��
���

��� �� �� ��� ���	���� �

���������

����

��	�

��
��
��

��
	�
�

���
��
��
�
��
��
��
��
�

������������	
���
�������������������������������������	��
��������������
����������

Fig. 1. Challenges in processing irregular graphs on GPUs: (a) A
breadth first search (BFS) graph algorithm for highlighting the
inactive threads and intra-warp load imbalance issues, and (b) a
percentage breakdown of inactive threads in seven graph algorithms.

the figure represent the directed edges of the graph. In each
iteration, vertices are classified into two types, activated
and inactive. Only activated vertices perform calculations
on their neighbors (e.g., marking the vertex as ‘traveled’ in
BFS). It can be observed that the degree of parallelism is
dependent on the number of active threads, which can vary
across iterations. Therefore, mapping vertices onto GPU
threads can lead to the inactive threads issue, and results
in underutilization of SIMD lanes. Fig. 1 (b) serves as
a motivational experiment that compares the percentage
of inactive threads in several representative graph algo-
rithms [4,5]. The results reveal that approximately 70%
or more of threads are inactive in the majority of these
graph algorithms. Such control flow inefficiency reduces
the SIMD lane utilization and the overall performance.

On the other hand, Fig. 1 (a) also emphasizes the issue of
intra-warp load imbalance. In the SIMT execution model,
where the threads in a warp operate in lock-step, any load
imbalance can lead to idle SIMD lanes and prolong the
completion time of the warp. Unlike the inactive threads
problem which is dependent on the algorithm, the intra-
warp load imbalance issue represents a critical challenge
posed by irregular graphs. This is due to the significant
variance in the number of edges associated with each vertex.
This problem is comparatively more noticeable than the
inactive threads issue and has therefore been attempted
in several state-of-the-art (SOTA) works. Previous SOTA
software approaches, such as collaborative task engagement
(CTE) [6, 7] and warp-centric [8], have adopted an edge-
based processing scheme as depicted in Fig. 2. This scheme
processes the workloads of a single vertex simultaneously
by the threads within a warp. In contrast, Tigr [9] aimed
to adapt the data layout of irregular graphs to a SIMD
execution-friendly format by limiting the maximum degree
of each vertex. GraphPEG [10] and SCU [11], on the other
hand, proposed custom hardware units in conjunction with
the GPU to balance workloads. However, these hardware
approaches demand additional memory space, and none of
them mentioned above address the inactive threads issue.

To address the unresolved issues from previous endeav-
ors, this paper introduces Warp EqualizeR (WER), a

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

3A-2

201

20
24

 2
9t

h
A

si
a

an
d

So
ut

h
Pa

ci
fic

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

95
5

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

http://crossmark.crossref.org/dialog/?doi=10.1109%2FASP-DAC58780.2024.10473955&domain=pdf&date_stamp=2024-04-03

synergistic software and hardware framework specifically
designed to tackle the challenges of intra-warp load imbal-
ance and inactive threads. WER comprises the develop-
ment of a software programming API, which incorporates
two custom intrinsics to enable communication between
programs and the WER microarchitecture. In addition, it
includes the integration of a custom hardware microarchi-
tecture and control flow into a GPU pipeline. This setup
is designed to synergize with the WER programming API.
Through this holistic approach, the workloads of active
threads within a warp are redistributed across the active
SIMD lanes, effectively addressing the intra-warp load im-
balance issue. Moreover, we extend WER into WER+ by
modifying the SIMT stack to allow all inactive threads
to contribute to the computation. This enables tackling
the performance bottleneck caused by inactive threads. As
a result, WER+ achieves a geometric mean speedup of
2.52× and 1.47× over the baseline GPU and the most
effective SOTA method across seven representative graph
algorithms on five real-world graph datasets. WER also
significantly reduces the average energy consumption by
over 50%. The contributions of this work are as follows.

• Identification and thorough examination of the inac-
tive threads and the intra-warp load imbalance issues.

• Development of a synergistic software-hardware frame-
work called WER. This framework includes a program-
ming API and a custom hardware microarchitecture
designed to address intra-warp load imbalance issue.

• Extension of WER to WER+ to harness the inactive
threads for enhancing the overall SIMD efficiency.

• Validation with extensive experiments across vari-
ous representative graph algorithms and real-world
datasets for demonstrating the effectiveness and prac-
ticality of the proposed WER and WER+ frameworks.

The paper is organized as follows. Section II highlights
the challenges and the motivation of this work, Section III
elaborates on the proposed framework, Section IV presents
the experimental results. Section V concludes the paper.

II. Challenges of Processing Irregular Graphs

In this section, we present the problem specification
and discuss the motivation of this work. As outlined in
Section I, a number of contemporary graph-based algo-
rithms demand multiple rounds of iterative computations
to reach convergence. To enact parallel processing on a
GPU, previous endeavors typically utilize either of two
different assignment strategies for distributing tasks to
the SIMD lanes: (1) a vertex-based scheme, and (2) an
edge-based scheme, as depicted in Fig. 2 (a) and Fig. 2 (b),
respectively. The former allocates each vertex to a specific
GPU thread (i.e., a SIMD lane) for processing, while the
latter assigns edges connected to the same vertex to be
processed within a single warp. Unfortunately, these two
schemes face significant challenges from the issue of idle
threads. These idle threads arises from from the disparity
in the number of edges connected to different vertices, a

(b) Edge-based scheme.

Lane 0
tid: 0

Lane 1
tid: 1

Lane 2
tid: 2

Lane 3
tid: 3

(c) WER.

Lane 0
tid: 0

Lane 1
tid: 1

Lane 2
tid: 2

Lane 3
tid: 3

Iter. 0

Iter. 1

Iter. 2

Iter. 3

Iter. 4

(a) Vertex-based scheme.

Lane 0
tid: 0

Lane 1
tid: 1

Lane 2
tid: 2

Lane 3
tid: 3

vertex 0
edge 1

vertex 0
edge 2

vertex 0
edge 3

vertex 1
edge 1

vertex 2
edge 1

vertex 2
edge 2

vertex 2
edge 3

vertex 2
edge 4

vertex 2
edge 5

vertex 3
edge 1

vertex 3
edge 2IDLE

IDLE

IDLE IDLE

IDLEIDLE

IDLE

IDLE

IDLE

vertex 0
edge 1

vertex 0
edge 2

vertex 0
edge 3

vertex 1
edge 1

IDLE

IDLE IDLE IDLE

vertex 2
edge 1

vertex 2
edge 2

vertex 2
edge 3

vertex 2
edge 4

vertex 2
edge 5 IDLE IDLE IDLE

vertex 3
edge 1

vertex 3
edge 2 IDLE IDLE

vertex 0
edge 1

vertex 0
edge 2

vertex 0
edge 3

vertex 1
edge 1

vertex 2
edge 1

vertex 2
edge 2

vertex 2
edge 3

vertex 2
edge 4

vertex 2
edge 5

vertex 3
edge 1

vertex 3
edge 2 IDLE

Fig. 2. An illustrative comparison of task distribution schemes,
highlighting the intra-warp load imbalance issue for vertex-based
methods [9, 10], edge-based approaches [6, 7, 8], and our WER.

������������������	���
�� �!�"�
#����������� $����	����� %����	����� &���
��������'
(���������
����������������)#*+,'
-����������� .����������!"
*�������������������������������� "
+� �������
��$�
��)���,'��������'
/�
0��� ��"
1��������������	���
��

�2)	��)����,,�$$�3��44�

���
��5$�����3 �!��"
�6���������������%�����$��'���
����������������������	����4�������)��
��������,7�

����������)	��)����,,!'
�#����������8�99�������
�(� 8�99�������

�-� �����)���,�$�����)��
��������,'�88

������������������	���
�� �!�"�
#����������� $����	����� %����	����� &���
��������'
(���������
����������������)#*+,'
-����������� .����������!"
*����������	���
��

�2)���,�$$�3�!�"
+� �������
��$�
��)���,'��������'
/�
0�������!"�#�$�� �����%�������&&���	����������
1�������'#���!�!�$��(�������"�&&���	����������
�6� ����	���
��

�2)	��)����,,�$$�3��44�

���
��5$�����3 �!�"
��� %�����$��'
�#�����������������	����4�������)�#����
�)*),7�

����������)	��)����,,!'
�(����������8�99�������
�-�����8�99����������
�*����������)���,�$�����)��
��������,'�88

������������� 	��
����
������������������� ������������� 	��
������������
��
����

Fig. 3. An GPU kernel function vs. the one with WER intrinsics.

characteristic particularly prominent in irregular graphs.
In the motivational example illustrated in Fig. 3 (a), if the
number of edges associated with the vertices vary (e.g.,
line 8, where ‘start’ and ‘end’ denote the index range of the
edges linked to a vertex), intra-warp load imbalance issue
could arise. In addition to the above issue, problems stem-
ming from inactive threads may further undermine GPU
usage efficiency. Inactive threads typically result from
branch conditions, and this inefficiency can inherently be
caused by the algorithm itself. For instance, the coloring
max kernel function in Fig. 3 (a) requires a branch con-
dition (e.g., line 5) to choose the uncolored vertices, and
therefore only a subset of vertices are selected to perform
updates. In light of these challenges, the primary objec-
tive of this work is to formulate a WER framework that
effectively overcomes these obstacles, and fully harnesses
the SIMD resources in a GPU, as visualized in Fig. 2 (c).

III. WER: A Synergistic SW & HW Framework

To accomplish our objective, the WER framework in-
tegrates both software and hardware components. These
include the introduction of new software programming API
(i.e., Fig. 3 (b)), along with tailored hardware microar-
chitectures (i.e., Fig. 4). They are described as follows.

A. WER Programming API for Workload Reassignment

WER optimizes the utilization of SIMD lanes by inte-
grating the benefits of vertex- and edge-based schemes.
Initially, tasks are distributed in a vertex-based manner.
WER pushes and logs the workloads of each vertex, cor-
responding to each SIMD lane, into an indexing table, as
depicted in Fig. 4 (a). It then redistributes the workloads
in an edge-based fashion by ‘popping’ tasks and redis-
tributing them across the active SIMD lanes. This process

3A-2

202
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

Fetch

I-Cache Decoder

I-Buffer

Issue

SIMT stack

Operand
collector

WER

MEM

CUDA
core

Score
board

(d) The global operand forwarding bus

(b) The WER�task redistribution table

(a) The WER indexing table

�Job progress: r31

�Start index operand:
�End index operand:

r32
r33

SIMD lane Task source (i.e., edge
origin for each SIMD lane)

Lane 0
...

1
Lane 31 30

0
Lane 1 0

Lane 30

Before
redirect

After
redirect

x

...

y

w
z

x

y
z

...

(c) The global operand flag

valid readyreg�operand

1 1rd13

1 1rd21

fma %rd29, %rd13, %rd21, %rd22�

SIMD lane data

1 1rd22

global

1

0

0

x y ... z w
α β ... γ δ
Α ...Β Γ Δ x

Bus controller

x

x30

*Tasks from the same SIMD lane are denoted by the same color

Fig. 4. The WER-enhanced GPU architecture. In this example, the operands r32 and r33 store the index bounds in the register file.
Threads 0∼29 are processing the edges from lane 0, while the edges in lanes 1 and 30 are redistributed to threads 30 and 31, respectively.

addresses the intra-warp load imbalance issue by ensuring
that the active SIMD lanes are all engaged with tasks.

The WER programming API, as illustrated in Fig. 3 (b),
is composed of two custom intrinsics: push job and
pop job. During compilation, the original ‘for’ loop struc-
ture that assigns a specific vertex to a GPU active thread
(e.g., lines 8-13 of Fig. 3 (a)), is replaced by these custom
intrinsics, which are then translated into the corresponding
equivalent PTX assembly codes. The push job intrinsic
is responsible for recording the index bounds of edges for
each active thread, while the pop job intrinsic retrieves
and redistributes workloads across the active SIMD lanes.
When these intrinsics are encountered during execution,
the WER microarchitecture logs the quantity of remaining
workloads (i.e., edges) into the WER indexing table and
reassigns them. This enables rescheduling of vertex tasks.

B. WER Microarchitecture for Workload Redistribution

Fig. 4 presents the WER microarchitecture and con-
trol flow integrated into the stream microprocessor (SM)
pipeline in a GPU. This is designed to work in synergy with
the WER programming API. The incorporated WER mod-
ule interacts with three main components: the decoder,
operand collector, and CUDA cores. This microarchitec-
ture is designed to redistribute the workloads of active
threads within a warp across the active SIMD lanes. WER
examines the SIMT stack to determine the number of ac-
tive threads in a warp. Redistribution of edges in WER
occurs only when the decoder detects the assembly code
associated with the custom intrinsics. In order to facilitate
this process, several hardware tables and control unit are
introduced: the indexing table, task redistribution table,
global operand flag, and global operand forwarding bus.

Indexing table : In its implementation, the WER mi-
croarchitecture utilizes an indexing table to log and refer-
ence the operand that stores the ‘start’ and ‘end’ indices
of edges associated with each vertex as conveyed by the
push job custom intrinsic. In the example illustrated
in Fig. 4 (a), the ‘start’ and ‘end’ indices in the same
warp are stored in operands r32 and r33, respectively. An
additional operand, r31, is employed to track job progress
for different vertices. Each operand corresponds to a set

of registers across the SIMD lanes, and is housed in the
register file of the SM. Assuming the maximum number
of operands is 210, we allocate a mere ten bits to repre-
sent each operand, and thus drastically reduce the storage
overhead to just 30 bits per warp. Please note that the in-
dexing table records only the operand numbers, obviating
the need for creating a new one to store the index bounds.

Task redistribution table : WER employs a task redis-
tribution table to facilitate workload redistribution among
the active SIMD lanes within a warp, as shown in Fig. 4 (b).
It records the source SIMD lane to which each task was
initially assigned. However, simply distributing a lane’s
workload to other active lanes could lead to incorrect exe-
cution results due to potential differences in the necessary
register values of variables. For example, in line 12 of
Fig. 3 (b), threadIdx.x is referenced and expected to be
stored in a register. If, due to workload redistribution,
threads 0 and 1 are both executing thread 0’s tasks, their
threadIdx.x must both be set to 0 to guarantee program
correctness. This represents a data dependency problem
that necessitates the implementation of a register redi-
rection mechanism. To deal with this challenge, the task
redistribution table keeps track of the originating SIMD
lane for each operand. By consulting the redistribution
table, register values can be correctly forwarded from the
originating lanes to the newly assigned lanes to ensure
correct data referencing and consistent program execution.

Global operand flag : While the task redistribution
table governs task distribution, the process of identifying
and forwarding the necessary operands to different SIMD
lanes remain crucial. In assembly instructions for graph
processing, operands can be either global or local. Global
operands represent data required across lanes during pro-
cessing, while local operands pertain to data specific to
each individual lane. The global operand flag in WER is
adopted to identify the register operands that are global
and hence should be forwarded to different SIMD lanes
according to the aforementioned task redistribution table
during edge processing. During compilation, the compiler
identifies whether a operand is global and encodes this in-
formation into the instruction. Upon instruction decoding,
the global attribute is dispatched to the operand collector’s

3A-2

203
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

global indicator field. If an operand is a global variable, the
global operand forwarding bus work in conjunction with
the task redistribution table to forward operand values to
ensure data dependency across different SIMD lanes.

Fig. 4 (c) illustrates an example implementation of the
global operand flag, represented as the global column within
the operand collector. The operand collector in a GPU
is tasked with gathering the source operands from the
register file for instruction execution. In the provided
example, the fused multiply-add (fma) instruction (a*b+c)
multiplies operands rd13 (a global operand) and rd21 (a
local operand). The result is then incremented by rd22

and stored in rd29. In our design, destination registers
(e.g., rd29) are identified as local operands and are not for-
warded, because the computed result is written back to the
shared or global memory in common graph applications,
as line 12 in Fig. 3(b) shows. Given that a GPU’s instruc-
tion set (which is equivalent to NVIDIA’s PTX) typically
contains at most three source operands, WER designates
three bits within the PTX instructions to indicate the
global flags, as depicted in Fig. 4 (c). It is important to
note that encoding the global operand flag into instructions
does not lead to additional hardware overhead, owing to
the abundance of unused bits in the PTX instruction set,
as revealed by the reverse engineering endeavors in [12].
Global operand forwarding bus: Upon identifying

the global operands to be forwarded and their sources,
these operands are transported to different SIMD lanes by
the global operand forwarding bus, as depicted in Fig. 4 (d).
The global operand forwarding bus fulfills two primary func-
tions: (1) selecting the SIMD lanes to which the global
operand should be forwarded by referring to the task re-
distribution table, and (2) broadcasting the global operand
to the relevant SIMD lanes. This bus is governed by a
bus controller, which uses the task redistribution table to
arbitrate access to the shared bus. The number of cycles
required to broadcast is determined by the number of dis-
tinct source lanes presented in the task redistribution table.
For instance, WER incurs a three-cycle delay to forward
data when there are three task sources (0, 1, and 30).
Although it requires a maximum of 32 cycles in the worst-
case scenario (where all 32 lanes are assigned workload
from 32 different originating lanes), this design still offers
substantial hardware efficiency compared to alternatives
such as crossbars or dedicated networks. According to the
experimental results discussed in Section IV.D, the latency
overhead associated with the proposed design is minimal.

C. WER+: Utilizing the Potential of Inactive SIMD Lanes

While WER effectively redistributes edges among the ac-
tive SIMD lanes to balance the workload, inactive threads
can still exist. These inactive threads potentially reduce
parallelism and limit the efficiency of WER’s edge redis-
tribution. As illustrated in Fig 5, divergent control flows
resulting from the branch condition in line 5 can lead
to inactive threads within a warp. The WER approach,

�� �������������	
�������������
�� 	����	
 ����
�� �������
���	��������� !��
"� 	#���	
 $��%����
����
�� ��������	
�		���������������
 � 	�������������&��	
!��	�����
�����&��	
:!�
'� #�����
�������������
���$���
���
��::���
(� �
;�)
*� ����
��	
!������������
+
���!�
� �))

�������� �������	 �������
 ��������
�������
�����	

��	����� �������
�����

��	�����

������

�����	

��	����� ������

�����

��	�����

������

������

��	����� ���� ��	�����

�������� �������	 �������
 ��������
�������
�����	

�������
�����

������

�����	

������

�����

������

������

���� ���� ����

�������

�������	

�
����������	
���
�������������
��������������������

Fig. 5. WER vs WER+: Tackling the inactive threads problem.

GPU Graph kernel codeWER+'s SIMT Stack

11111111

11111000

11111111

01010101

Ti
m

e

01010101

11111111

11111000

11111111

3'

2'

1'

0'

Push

Pop

1

3

3'

1'

0'

2'

1. __global__ void kernel() {

2.� �tid = threadIdx.x;

3.� �if (tid < num_vertex) {

4.� � �push_job(start, end);

5.� � �while (pop_job(&edge)) {

6.� � � �if (tid & 1 == 0) {

7.� � � �...

8.� � � �}

9.� � �}

10.� �}

11. }

0

1

2

3
2

0

Fig. 6. A detailed illustration of WER+’s SIMT stack operations.

discussed in Section III.B, does not utilize these inactive
threads. To address this, we further introduce WER+, an
enhanced microarchitecture that adjusts the mask of the
SIMT stack to harness inactive threads. As depicted in
Fig. 5 (b), WER+ offers the potential to further optimize
parallelism within a warp for irregular graph applications.

To illutrate the functionality of WER+, Fig. 6 presents
an example of a graph processing kernel and the corre-
sponding status of the SIMT stack when utilizing WER+.
The SIMT stack is a feature of a GPU that maintains the
active mask of threads within a warp. The top-of-stack
entry is updated or removed as the program’s control
flow progresses, particularly when it reaches reconvergence
points or other synchronization events. This mask serves
to indicate the divergence of each thread due to a branch
condition. In our example, lines 1-2 initiate the process by
pushing an entry onto the SIMT stack that sets all SIMD
lanes as active. Upon reaching a branch condition at line
3, threads diverge to different control flow paths based on
the comparison statement. Consequently, only a subset of
SIMD lanes remains active, which limits WER’s capability
to use inactive threads for processing a vertex’s edges.

To address this limitation and maximize the utilization
of available SIMD lanes, WER+ introduces an enhanced
push job instruction that sets an active mask for all lanes.
In practice, the push job instruction in WER+ injects
an additional mask that activates all entries. The inserted
activation mask enables GPU to fully utilize all SIMD
lanes for workload redistribution, without being confined
to active lanes only. This technique activates inactive
SIMD lanes during the processing phase. Once the region
determined by the last pop job is exited, the mask is
restored to its previous state. It is important to note
that the forwarding mechanism described in Section III.B
ensures the correctness of WER+ even when inactive
SIMD lanes are revived for usage.

3A-2

204
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

AC AD AZ HR HU AC AD AZ HR HU AC AD AZ HR HU AC AD AZ HR HU AC AD AZ HR HU AC AD AZ HR HU AC AD AZ HR HU
MEAN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
or

m
al

iz
ed

 s
pe

ed
up

 o
ve

r t
he

 b
as

el
in

e
G

P
U WC [8]

CTE [6,7]
Tigr [9]
WER
WER+
Baseline

BFS CM BC MIS SPFA SSSP PR GME

��������

���	
���� ��
��
�

�	

��
���

��
��
��
��

��
	�
�

���

��
��
��
���
��
��

�

Fig. 7. Normalized performance speedup of various approaches with respect to the baseline GPU for seven representative graph algorithms.

TABLE I
The configuration of the baseline GPU in our experiments.

of streaming multiprocessors (SM) 30
of maximum warps / SM 32
Warp scheduler policy Greedy-Then-Oldest
of warp schedulers 4
of registers / SM 32,768
L1 data cache + shared memory 128 KB
WER table size / SM (i.e. Fig. 4 (a)(b)) 720 Bytes

IV. Experimental Results

In this section, we present the experimental results from
our evaluation of WER and WER+, specifically analyzing
their performance and energy consumption. In addition,
we carry out a latency analysis on the design of the global
operand forwarding bus to validate its practicality.

A. Experimental Setup

We model the baseline GPU and the proposed WER
using GPGPU-Sim 4.2 [13], a cycle-accurate GPU sim-
ulator. Table I provides the specification of the base-
line GPU, which is configured to be similar to that of
NVIDIA RTX 2060. This GPU, featuring compute capa-
bility 75, represents the most advanced architecture that
GPGPU-Sim currently supports. To estimate energy con-
sumption, we calculate the energy consumption of WER
using CACTI [14], and the GPU components using Accel-
Wattch [15]. We compare our work against the baseline
GPU and two edge-based solutions: virtual warp-centric
programming algorithm (WC) [8] and collaborative task
engagement (CTE) [6,7]. Moreover, we also compare to
the graph transformation approach, Tigr [9] with a degree
bound (Kv) of ten, which is the best parameter setup
presented in their original paper. Seven graph algorithms,
consisting of six from the Pannotia benchmark suite [4]
and the Shortest Path Faster Algorithm (SPFA) [5], are
selected as the benchmarks. Five of these algorithms, in-
cluding BFS, Coloring Max (CM), Betweenness Centrality
(BC), Max Independent Set (MIS), and SPFA, encountered
the inactive thread issue. On the other hand, Single-Source
Shortest Path (SSSP) and PageRank (PR) do not suffer
from this inefficiency problem. We evaluate these algo-
rithms on a total of five real-world graph datasets from
the DIMACS Implementation Challenge [16] and SNAP
graph collection [17], with details provided in Table II.

TABLE II
Irregular graph datasets adopted in the experiments.

of vertices # of edges Average degree

coAuthorsCiteseer(AC) [16] 0.237M 1.63M 7
coAuthorsDBLP(AD) [16] 0.299M 1.96M 6
amazon0302(AZ) [17,18] 0.262M 2.47M 9
HR edges(HR) [17,19] 0.054M 1.00M 18
HU edges(HU) [17,19] 0.048M 0.45M 9

These datasets span a variety of domains, including social
networks and citation data. The irregular graph structures
inherent in these real-world datasets reinforce the validity
and broad applicability of our proposed WER and WER+.

B. Performance Analysis and Comparison to the Baselines

Fig. 7 presents the performance speedup of WER and
WER+ compared to the baseline GPU and several SOTA
solutions. It can be observed that WER, by redistribut-
ing the workload among the active SIMD lanes, is able
to achieve a geometric mean (abbreviated as ‘GMEAN’)
speedup of 1.74× over the baseline GPU. As for other
SOTA methods, our insights from the experiments in-
dicate that WC [8], due to the typically fewer than 32
edges in the average degree of real-world datasets (i.e., Ta-
ble II), often fails to fully utilize the available SIMD lanes.
This limitation hinders its performance, often resulting
in it being unable to even match the performance of the
baseline GPU. Meanwhile, CTE experiences performance
degradation due to the binary searching in each iteration.
Although Tigr’s data layout addresses intra-warp load im-
balance and achieves performance comparable to WER, it
does not address the inactive thread issue, resulting in un-
derutilization of computational resources. WER+ further
optimizes WER by modifying the SIMT stack to activate
all threads to participate in workload processing, thus
pushing the performance of WER to achieve a speedup
of 2.52×. Particularly for algorithms that suffer from the
inactive thread issue (i.e., BFS, CM, BC, MIS, and SPFA),
WER+ can attain a speedup of 1.67× over WER. On the
whole, WER+ achieves a GMEAN speedup of 2.52× and
1.47× over the baseline GPU and the best SOTA method
across seven representative graph algorithms, respectively.

C. Energy Evaluation and Efficiency Validation

Table III presents the average normalized energy con-
sumption for executing graph applications across five dif-

3A-2

205
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

TABLE III
Normalized energy consumption of WER+ and the baseline.

BFS CM BC MIS SPFA SSSP PR GMEAN

Baseline GPU 1 1 1 1 1 1 1 1
WER+ 0.446 0.439 0.456 0.690 0.433 0.470 0.531 0.495

TABLE IV
Analysis of normalized energy consumption for CM.

AC AD AZ HU HR GMEAN

Baseline 1 1 1 1 1 1

WER+ 0.444 0.500 0.423 0.497 0.349 0.439
WER+’s Table 0.00001 0.00001 0.00004 0.00003 0.00001 0.00002

�����
�����
�����
�����
����	
�����

� ��
� ��� ��� ���� ��

��
 �
��
�!�
��

"�
 ��

 �
�#
�� �������	
� ����

�����
Fig. 8. Normalized performance between WER+-ideal and WER+.

ferent graph datasets. WER+ achieves a geometric mean
energy reduction of over 50% compared to the baseline
GPU, highlighting its efficiency enhancements. Table IV
further offers a comparison of the total normalized energy
consumption for WER+ and the tables (i.e., Fig. 4 (a)(b)
in Section III.B) for the CM algorithm. The compact
720-byte table size per SM, as shown in Table I, results
in negligible energy consumption. These findings validate
that the overhead induced by WER+ is minimal, whereas
the energy efficiency benefits from WER+ are substantial.

D. Latency Analysis of the Operand Forwarding Bus

Fig. 8 compares the performance of WER+-ideal and
WER+, with WER+-ideal representing an ideal version of
WER+ that forwards data without any overhead. The re-
sults suggest that on average, the difference between them
is less than 0.1%. Given that only few global operands
require forwarding, the forwarding bus introduces a negli-
gible latency overhead. Moreover, since graph algorithms
are often memory-bound, any latency can be effectively
overlapped by warp schedulers. As a result, the perfor-
mance impact of WER+’s forwarding bus is insignificant.

V. Conclusion

In this work, we introduced WER and WER+, two
novel solutions crafted to address the challenges in han-
dling irregular graphs on GPGPUs, specifically the inactive
threads and intra-warp load imbalance issues. Our ap-
proach uniquely combines software and hardware elements
in the WER framework to effectively mitigate the issue of
intra-warp imbalance. We further enhance computational
efficiency with the WER+ extension, which strategically
employs inactive threads. The robustness and effectiveness
of these innovations were rigorously tested, revealing a
significant speedup compared to the baseline GPU and the
existing SOTA methods and considerable energy savings.

Acknowledgments

The authors acknowledge the support from the National
Science and Technology Council in Taiwan under grant
numbers MOST 111-2223-E-007-004-MY3 and 111-2221-
E-A49-131-MY3, as well as the support from Google Inc.

References

[1] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed
node embedding,” J. Complex Networks, vol. 9, no. 2, Apr. 2021.

[2] X. Chen and L. Pan, “A survey of graph cuts/graph search based
medical image segmentation,” IEEE Reviews in Biomedical Engi-
neering, vol. 11, pp. 112–124, Jan. 2018.

[3] K. Shamsi, Y. R. Gel, M. Kantarcioglu, and C. G. Akcora,
“Chartalist: Labeled graph datasets for utxo and account-based
blockchains,” in Proc. Advances in Neural Information Process-
ing Systems (NeurIPS), Dec. 2022, pp. 1–14.

[4] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pan-
notia: Understanding irregular gpgpu graph applications,” in Proc.
Int. Symp. on Workload Characterization, 2013, pp. 185–195.

[5] E. F. Moore, “The shortest path through a maze,” in Proc. Int.
Symp. on the Theory of Switching, 1959, pp. 285–292.

[6] F. Khorasani, B. Rowe, R. Gupta, and L. N. Bhuyan, “Eliminating
intra-warp load imbalance in irregular nested patterns via collab-
orative task engagement,” in Proc. Int. Parallel and Distributed
Processing Symp. (IPDPS), May 2016, pp. 524–533.

[7] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-
efficient graph processing on GPUs,” in Proc. Int. Conf. on Paral-
lel Architectures and Compilation Techniques (PACT), Oct. 2015,
pp. 39–50.

[8] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerat-
ing CUDA graph algorithms at maximum warp,” ACM SIGPLAN
Notices, vol. 46, no. 8, pp. 267–276, Aug. 2011.

[9] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming
irregular graphs for GPU-friendly graph processing,” in Proc. Int.
Conf. on Architectural Support for Programming Languages and
Operation Systems (ASPLOS), Mar. 2018, pp. 622–636.

[10] Y. Lü, H. Guo et al., “GraphPEG: Accelerating graph processing
on GPUs,” ACM Trans. on Architecture and Code Optimization,
vol. 18, no. 3, pp. 1–24, May 2021.

[11] A. Segura, J.-M. Arnau, and A. González, “SCU: A gpu stream
compaction unit for graph processing,” in Proc. Int. Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 424–435.

[12] NIRVANA, “Maxas SASS Assembler,” [Online]. Available: https:
//github.com/NervanaSystems/maxas, 2016.

[13] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An extensible simulation framework for validated GPU modeling,”
in Proc. Int. Symp. on Computer Architecture (ISCA), May-Jun.
2020, pp. 473–486.

[14] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimiz-
ing NUCA organizations and wiring alternatives for large caches
with CACTI 6.0,” in Proc. Int. Symp. on Microarchitecture (MI-
CRO), Dec. 2007, pp. 3–14.

[15] V. Kandiah, S. Peverelle et al., “AccelWattch: A power modeling
framework for modern GPUs,” in Proc. Int. Symp. on Microarchi-
tecture (MICRO), Oct. 2021, pp. 738–753.

[16] DIMACS, “DIMACS10 graph partitioning challenge,” [Online].
Available: https://sparse.tamu.edu/DIMACS10, 2010.

[17] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[18] J. Leskovec, L. A. Adamic, and B. Adamic, “The dynamics of viral
marketing,” ACM Trans. on the Web, vol. 1, no. 1, pp. 1–39, May
2007.

[19] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, “GEM-
SEC: Graph embedding with self clustering,” in Proc. IEEE/ACM
Int. Conf. on Advances in Social Networks Analysis and Mining
(ASONAM), Aug. 2019, pp. 65–72.

3A-2

206
Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

