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Abstract—SAR image change detection is playing an important
role in various Earth Observation (EO) applications. There exist
a large number of different methods that have been proposed to
address this issue. However, due to the fact that several kinds
of changes with diverse characteristics can arise in SAR images,
there is no consensus on the their performances because most
methods have been evaluated using different datasets, probably
facing several kinds of changes, but without an in-depth analysis
of the characteristics of SAR image changes. Therefore, two
important problems arise. The first is what kind of change each
approach can detect. The second is how much they can detect a
kind of change. Although the importance to model any kind of
changes has been realized, there is no principled methodology
to carry out the analysis due to the difficulty in modeling
various kinds of changes. In this paper, we propose a benchmark
methodology to reach this goal by simulating selected kinds of
changes in addition to using real data with changes. Six kinds of
SAR changes for eight typical image categories are simulated, i.e.,
reflectivity changes, first order, second order, and higher order
statistical changes, linear and nonlinear changes. Based on this
methodology for change simulation, a comprehensive evaluation
of information similarity measures is carried out. An explicit
conclusion we have drawn from the evaluation is that the various
methods behave very differently for all kinds of changes. We hope
that this study will promote the advancement of this topic.

Index Terms—Change detection, change simulation, informa-
tion similarity measure, Synthetic Aperture Radar (SAR).

I. INTRODUCTION

N Earth Observation (EO), with the availability of high

resolution SAR images acquired by modern spaceborne
systems, such as TerraSAR-X and TanDEM-X [1], multi-
temporal SAR change detection is playing an important role
in various applications such as environmental monitoring,
disaster assessment, and land cover dynamics. Accordingly,
many methods have been proposed and developed to address
this task. We first give a brief review of related methods.

Most approaches fall into two categories: supervised [2]] and
unsupervised [3]] approaches. In supervised change detection,
reliable training samples based on prior knowledge of the
area are collected and used to train a classifier, which will be
used after training to classify each pixel as being changed or
unchanged. On the contrary, in unsupervised change detection,
the first step is to generate a change index by comparing
extracted features or even the two images using some Sim-
ilarity metrics, and then to threshold or label the change index
to produce a final binary change detection map consisting
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of changed and unchanged pixels. In the sense of sample
selection, unsupervised approaches are more preferable to
supervised ones in practice as training samples are not always
available. Therefore, in this paper, we consider only (pixel-
based) unsupervised SAR change detection.

Most unsupervised change detection methods comprise
three steps: preprocessing such as despeckling and co-
registration, image comparison to generate a change index,
and change index analysis to generate a final binary change
map. Preprocessing includes image registration, radiometric
corrections, despeckling, etc. One widely used image com-
parison technique for SAR images is the log-ratio operator
[4]1-[6]] which is particularly suited to SAR change detection
due to the presence of multiplicative noise. Recently, methods
based on information measures have shown promising per-
formance for multi-temporal change detection. They assess
image similarity by quantifying the dependence or distance
between two random variables associated with two images.
One prominent work in [7] proposed a method for multi-
temporal SAR change detection based on the evolution of the
local statistics, which was extended to object-based change
detection in [8]]. A similar method has been extended to the
wavelet domain [9]. In [10], several information similarity
measures including distance to independence, mutual infor-
mation, cluster reward, Woods criterion, and correlation ratio,
were compared for change detection, among which mutual
information has been demonstrated to be rather efficient. Tak-
ing advantage of mutual information, a pixel-based approach
comparing localized mutual information was proposed in [[11].
Intuitively, if two pixels share a lot of information, it is
reasonable to assume no change at their location. Based on
this idea, another information measure for change detection
derived from mutual information was introduced in [12],
namely mixed information, which unifies mutual information
and variational information by a parameter. Furthermore,
stochastic kernels including both Kullback-Leibler divergence
and mutual information were used in [13] as features in a
support vector machine for SAR change detection. Based
on the estimation of a bivariate Gamma distribution, mutual
information was applied to SAR change detection in [14]. A
region-based local mutual information change indicator was
proposed by [15]] to perform a change analysis of urbanization
processes from multi-temporal panchromatic SPOT 5 images.
Through a two-scale implementation, mutual information can
be split into two terms to be linked to a change detection part
and a registration part [|16].

After obtaining a change index, many techniques have been
proposed to analyze it in order to derive a final binary change
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map. The most intuitive method is to threshold the change
index. In [I7], a method was proposed for thresholding the
change index under the assumption that both changed and
unchanged pixels follow a generalized Gaussian distribution.
Therefore, the distribution of the change index is a mixture of
two generalized Gaussian distributions, which can be solved
efficiently through the Expectation-Maximization (EM) algo-
rithm. The same framework was used in [6]] in the wavelet
instead of the spatial domain. However, these methods do not
consider contextual information. To overcome this drawback,
a method was published in to incorporate contextual
information by a Markov random field model.

Although a large number of methods as reviewed above
have been developed, there is no consensus about their
performances because most of them were evaluated using
different datasets, probably facing different kinds of changes,
but without an in-depth analysis of the characteristics of the
changes. Thus, it is not fair to claim one method to be
superior or inferior to another method because they are not
evaluated using the same kind of changes. In practice, several
kinds of changes with different characteristics can arise in
SAR images. A number of examples of various kinds of
changes are given in Section [[I} where we describe each kind
of change. Here, two important problems arise. The first is
what kind of changes each approach can detect. The second
is to what extent one can detect different kinds of changes. To
solve these two problems, we have to identify the different
kinds of changes and develop a method to represent their
characteristics. Although the importance to model different
kinds of changes has been realized, there is no principled
methodology to carry out the analysis due to the difficulty
in modeling different kinds of changes. Another problem is
the lack of standard benchmark approaches and datasets.

In this paper, we limit to the same SAR imaging geometry
and propose a benchmark methodology to solve these prob-
lems by simulating six different kinds of changes. First, we
try to define each kind of change based on our experience in
browsing a large amount of TerraSAR-X images. Then, six
kinds of SAR changes for eight typical image categories are
simulated, i.e., reflectivity changes, first order, second order,
and higher order statistical changes, as well as linear and
nonlinear changes. Based on this methodology for change sim-
ulation, a comprehensive evaluation of information similarity
measures is carried out. To the best of our knowledge, this is
the first endeavor to present the problems in a systematic way
and to solve them in a benchmark framework.

This rest of this paper is organized as follows. The bench-
mark methodology for SAR image change simulation is pre-
sented in Section[ll] In Section [[I} information similarity mea-
sures for SAR image change detection are briefly reviewed.
A performance evaluation of information similarity measures
using both synthetic data and real data is presented in Section
[[V] and [V] Finally, a conclusion is given in Section [VI]

II. A BENCHMARK METHODOLOGY FOR SAR IMAGE
CHANGE SIMULATION

In this section, we present a benchmark methodology for
SAR image change simulation of six kinds of changes. This

categorization of changes is mainly based on our experiences
in browsing a large amount of TerraSAR-X images.

A. Simulation of Reflectivity Changes

Reflectivity changes are the main changes investigated in the
literature, and happen quite often in the case of a flooding. As a
rough surface becomes smoother after a flooding, its reflection
is changed from diffuse reflection to specular reflection away
from the observer as shown in Fig. [T{a). Thus, the pixel bright-
ness values in SAR images are usually reduced significantly,
which can be verified from the data distributions of the pixel
values as shown in Fig. [I(b). Six real examples of reflectivity
changes selected from a pair of calibrated TerraSAR-X images
acquired before and after the big tsunami in Japan in 2011 are
shown in Fig. 2]
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Fig. 1. An example of reflectivity changes in the case of a flooding: (a)

Color image taken from |http://www.clipartbest.com and TerraSAR-X images
before and after the flooding; (b) data distributions of the pixels in the red
and green windows before and after the flooding.

Let us consider two co-registered SAR images X (i,7)
and Y(i,7), 1 < i < M,1 < j < N acquired over the
same area at different times. Suppose = € {1, z2,..x, } and
y € {y1,Y2,...yn} are the pixel values in two corresponding
windows w; and w, of image X and Y.

Definition 1: We define a set of pixels S = {i | |z; —
yi| > T}, where T is a large value. The pixel values from
the two windows falling into the set .S are denoted by x, and
ys. The cardinality of S is denoted by |S|. If |S| ~ n and
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Fig. 2.
Japan, 2011.

o(zs) > o(ys), then we consider there is a reflectivity change
associated with these two windows.

Based on this definition, most pixels are changed signifi-
cantly and a post-event image becomes more homogeneous
compared to its pre-event image. In order to simulate this
kind of change, we first estimate the Probability Density
Function (PDF) px(x) using the pixel values of a selected
window. Then, we change the parameters governing Px (z)
and simulate reflectivity changes via a probability integral
transform [[19] based on the new Cumulative Distribution
Function (CDF) F (). In this paper, we choose the G° model
proposed in to model the pixel distribution because it
outperforms many other models . The G° model of a SAR

amplitudeﬂ image is defined as
2LET(L — «) p2b-1
PAW) = SN (a) (4 B 070
(1)

where x is the SAR amplitude value, L is the number of looks,
~y is a scale parameter, « is a shape parameter, and I'(.) is the
Gamma function. The ith order raw moment is given by

o (VDL A+ ) (—a — i)
Ba') = (Z) T(L)T(—a) @

The corresponding CDF for SAR amplitude data is given by

O[(EQ

Fy(z) = F2L772oz( - T)v (3)

where F), ,, is the CDF of an F distribution with two
parameters v; and va.

We can observe from (2) that the expectation values are
associated with the parameter . The effect of different ~
parameters is demonstrated in Fig. [}} We can modify this
parameter by 4/ = « x « in order to simulate reflectivity
changes of different degree. Thus, the degree of reflectivity
change can be fully controlled by the parameter «, which
is demonstrated in Fig. [ Its influence on change detection
accuracy will be evaluated in Section [[V]

I'The distribution of SAR intensity can be derived by the transform relation
from amplitudes pr(xz) = 2 X /T X pa(/T).

Six typical examples of reflectivity changes selected from TerraSAR-X images acquired before (upper row) and after the tsunami (lower row) in
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Fig. 3. GV distribution with different y parameters but the same L = 2.9
and o« = —1.2.

B. Simulation of Statistical Changes

Statistical changes, for instance, due to crop growing, are
also quite common in SAR images, and are more difficult to
detect. One prominent method in detecting statistical changes
was proposed in based on the evolution of local statistics
which are estimated by a one-dimensional Edgeworth series
expansion. The degree of evolution of the local statistics
is measured by Kullback-Leibler divergence. It has shown
advantages over classical SAR change detection methods,
such as the mean ratio detector. To better understand the
performances of this kind of statistical change detectors, we
need to differentiate between changes of different orders. In
this section, we present our methodology to simulate changes
in first, second and higher order statistics.

1) First Order Statistical Changes: First order statistical
changes are related with the differences in first order distribu-
tions. We first give a definition of first order statistical change
and then give some examples.

Definition 2: We define the first order statistical distribu-
tions of the pixel values in two corresponding windows as
px(x) and py (y) and a similarity measure D(.) defined for
two PDFs. If there is a large discrepancy between these two
distributions D(px (x), py (y)) > T, we consider it as a first
order statistical change associated with these two windows.

Three typical examples selected from a pair of TerraSAR-X
images acquired before and after the tsunami in Sendai in 2011
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Fig. 4. The influence of parameter v on reflectivity changes. From left to right o = (1.0, 0.8,0.6,0.4,0.2).
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Three row-wise examples of first order statistical changes. The first two images in each row are the pre- and post-event images, The histograms in

the middle are the first order distributions of the two corresponding pre- and post-event images. The last two scatter plots in each row are the second order
distributions of the two pre- and post-event images. From these three examples, we can observe that the first order distributions are different while the second
order distributions are very similar. We consider this kind of changes associated with the first order distribution as first order statistical changes.

are shown in Fig. 5] We can see there are obvious changes in
the first order distributions from the histograms (shown in the
middle), while the second order distributions remain similar.

There are many different methods to modify a first order
statistical distribution. In this paper, a first order statistical
change is simulated by a probabilistic transform of the pixel
values. Recall that if a random variable X has a cumulative
distribution function (CDF) F'(z), the transformed random
variable U = F'(X) will follow a uniform distribution defined
on the interval [0, 1]. By applying the inverse CDF of any other
distribution G to the uniform random variable U, we can get
a desired random variable, whose distribution is exactly G(x).
In principle, any valid SAR model for an input SAR image
and the resulting output image can be used for simulation.
In our case, we assume that the input image follows a G°
distribution, which has been demonstrated for high resolution
SAR images in [21]]. We transform the pixels using the CDF
of the G model given by and then apply the inverse of
a Gaussian CDF but keep the mean and multiply the pre-
event standard deviation o per window by «. The resulting
pixels follow a Gaussian distribution with the same mean and
a standard deviation of a x ¢. This is demonstrated in Fig. [
The degree of first order statistical changes can be partially
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Fig. 6. Demonstration of a change simulation in first order statistics. The
violet bars are the histogram of a patch before transformation, which is
assumed to follow a G° distribution corresponding to the red curve. After
transforming the pixels to a normal distribution, the histogram of green bars
is fit using a normal distribution (light blue curve). It is worth to note that
the mean value is preserved while the variance is changed.

controlled by the parameter « and its effect on simulated
changes is demonstrated in Fig. [7] Its influence on change
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Fig. 7.
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Fig. 8. Demonstration of a change simulation in second order statistics
by modifying the slope of the power spectrum of an image patch. The blue
dashed curve is the plot of amplitude power as a function of frequency on a
log-log scale. The blue solid line is the least squares straight line fit of the
blue dashed curve. Its slope is —1.7121. By multiplying the amplitude of
each frequency by f~2% Aa = 0.8, the slope of the power spectrum is
changed to —2.5481, which corresponds to the green solid line. The green
dashed curve is the plot of amplitude power after multiplication as a function
of frequency on a log-log scale.

detection accuracy will be evaluated in Section [[V]

2) Second Order Statistical Changes: Although first order
statistics provide considerable information about the probabil-
ity distribution of all pixels, they can not describe the structure
of an image because its pixels are assumed to be independent
and identically distributed (i.i.d.). Therefore, we step further
to simulate changes in second order statistics, which consider
the relation between pairs of pixels.

Definition 3: We define the second order statistical distri-
butions of the pixel values in two corresponding windows
as px.x’ (xaxl) and Py’ (yv y/)’ where (xaml) and (y7 y/)
are two pairs of pixel values from the two corresponding
windows, and a similarity measure D(.) defined for two PDFs.
If there is a large discrepancy between these two distributions
D(px x/(z,2"),py,y(y,y")) > T, we consider there is a
second order statistical change associated with these two
windows.

Three examples of second order statistical changes selected
from a pair of TerraSAR-X images acquired before and after
the tsunami in Sendai in 2011 are shown in Fig. [0} We can
see there are obvious changes in the second order distributions
from the last two scatter plots shown in each row, while the
first order distributions shown in the middle are very similar.

Based on its definition, second order statistical changes
indicate a change in the relation between pairs of pixels, which
can be characterized by their auto-correlation. Based on the

The influence of parameter o on first order statistical changes. From left to right o = (1.0, 0.8,0.6,0.4,0.2).

Wiener-Khintchine theorem, stating that the auto-correlation
function and the power spectrum form a Fourier transform
pair, changes in second order statistics can be simulated
by modifying the slope of the power spectrum. The power
spectrum of an N x N image is defined by

_ [P (wv)P
=Nz
where F'(u,v) is the Fourier transform of an image. By
transforming the frequency v = fcosf and v = fsinf to polar
coordinates and averaging over all orientations, the amplitude
power as a function of frequency on a log-log scale lies
approximately on a straight line, as shown by the blue solid
line, which represents the well-known power law P = 1/f®
in image analysis [23]]. The slope of this line o, —1.7121 in
this case, is a second order statistic that can be modified for
simulation. Any other desired slope o + A« can be obtained
by multiplying the amplitude power of each frequency by
f —Aa In other words, second order statistical changes can
be simulated through a digital, finite impulse response filter
with the following frequency response

S(u,v) 4

1 fu=v=0
H(u,v) = L otherwise ©)
(verv)

To see the influence of Aq, we use a series of different
values Ao = (—1.2,—0.8,—0.2,0.2,0.8,1.2) for simulation.
The simulated results are shown in Fig. [I0] It seems that
the changes in slope correspond to band pass filtering. With
increasing Aq, the images become smoother. The influence
on change detection accuracy will be evaluated in Section [[V]

3) Higher Order Statistical Changes: We consider further
the ability of change detection methods in detecting higher
order changes. Higher order statistical changes can be con-
sidered as texture changes as well. For this kind of changes,
the pre- and post-event images have similar appearances but
different higher order statistics.

Definition 4: We define the higher order statistical distri-
butions of the pixel values in two corresponding windows
as px(x) and py(y), where x and y are two corresponding
groups of pixel values from the two windows, and a similarity
measure D(.) defined for two PDFs. If there is a large discrep-
ancy between these two distributions D(px (x),py(y)) > T,
we consider there is a higher order statistical change associated
with these two windows.

Higher order statistical changes can be simulated through
texture synthesis. In the literature, Markov random fields
[24] have been successfully used for texture synthesis. They
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Fig. 9. Three row-wise examples of second order statistical changes and their first order and second order data distributions. The first two images in each
row are pre- and post-event images. The histogram in the middle are the first order distributions of the two pre- and post-event images. The last two scatter
plots in each row are the second order distributions of the two images. From these three examples, we can observe that the second order distributions are
different while the first order distributions are very similar. Thus, we consider this kind of changes in second order distribution as second order statistical

changes.

Fig. 10. Effect of Aav = (—0.8,—0.2,0.2,0.8,1.2) (from left to right) in second order change simulation. With a negative A« value, the high frequency
content will be emphasized. On the contrary, with a positive A« value, the image will be smoothed.

generate similar texture patterns using parameters learned from
input images. However, due to their computational complexity,
we choose another patch-based approach [25] for texture
simulation that is nonparametric and has low computational
complexity.

The main idea of this algorithm is to stitch together texture
patches with a size of s x s pixels selected from an input
image and allow overlap between two neighboring patches
which are selected based on their similarity in the overlapping
part. The novelty of this algorithm is that it allows neighboring
patches to match smoothly at the border. It achieves texture
synthesis in two iterative steps until the entire image to be
synthesized is covered. The first step is to choose randomly a
small patch from the input image to initialize the simulation
and then to select from all available patches another patch with
most similarity to the previous patch within the overlapping
part. The second step is to calculate the error surface and
to determine the minimum error cut between the overlapping
patches such that they match smoothly at the boundary. A
minimum error cut can be solved by dynamic programming
algorithms, like Dijkstra’s algorithm. This is demonstrated in
Fig.[T1] The image after simulation has a similar texture as the

input image, the images are difficult to discriminate visually
but they are indeed different in higher order statistics, as shown

in Fig. [I2]

C. Simulation of Linear and Nonlinear Changes

In addition to statistical changes, we consider another two
categories of linear and nonlinear changes. Some examples of
linear and nonlinear changes are shown in Fig. [I3]and [T4] We
can see from the data distributions shown in these two figures
that they have obvious linear and nonlinear relations. First,
we give a definition of these two kinds of changes. Suppose
x = {x;,x2,...,xn} and y = {y;,y2,...,yn} are the pixel
values in two corresponding windows of image X and Y.

Definition 5: For Vz, if the relation y ~ f(z) = ax + b
holds, we consider there is a linear change between these two
patches.

Definition 6: Similarly, for Vz, if the relation y ~ g(z)
holds with g(z) being a nonlinear function, we consider there
is a nonlinear change between these two patches.

Changes due to linear and nonlinear transformations can
be easily simulated through linear and nonlinear functions to
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(b) (©

Fig. 11. Texture synthesis by image quilting for texture change simulation. Two similar patches (a) from the intersection part are selected. In this case, the
patch size is 100 x 100 pixels and the overlap size is 20 x 20 pixels. If we stitch together the two patches without further processing, we would get a straight
line at the border. To reduce this effect, the error surface is computed within the overlapping part, which is the squared difference between two corresponding
pixels. Dynamic programming is applied to find the minimum error bound (b), where the two patches match best (c).

Fig. 12. The influence of parameter s on higher order statistical changes. From left to right s = (10, 12, 14, 16, 18).
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Fig. 13.  Four examples of linear changes and their joint data scatter plots. It can be seen that there is a linear relation between pairs of corresponding
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Fig. 14. Four examples of nonlinear changes and their joint data scatter plots. It can be seen that there is a nonlinear relation between pairs of corresponding
patches.

transform the pixel values. For linear transforms, the simula-  change. Its effect is demonstrated in Fig. [I3]
tion can be performed by a linear function y = a(x — Zynin) +
Tymin, Where Z,,;, is the minimum value of the input patch
for simulation. The parameter a controls the degree of linear

In contrast, there are many different nonlinear functions that
can be applied. In this paper, we select a quadratic function
y = ax?®+bx+c to achieve a nonlinear transform for nonlinear
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Fig. 15.

change simulation.

III. INFORMATION SIMILARITY MEASURES FOR CHANGE
DETECTION

In this section, information similarity measures are briefly
reviewed in the context of multi-temporal SAR image change
detection. In the following, we define px y(z,y),px(x) and
py (y) as the joint and marginal probability density functions
of the pixel values of two corresponding sliding windows in
two images.

A. Information Similarity Measures

1) Mutual Information: Mutual information [26]], as a dis-
tance measure to independence, is defined as

1067) = [ pxte o pX(Y>( <)>

Compared with correlation, mutual information is a general
measure to quantify statistical dependence. Mutual informa-
tion is always positive and is zero if and only if the two
random variables X and Y are independent px y (z,y) =
px (x)py (y). On the contrary, if they are similar, their mutual
information is higher.

2) Variational Information: Variational information, de-
fined by (7), was proposed to compare clusters by mea-
suring the amount of information lost and gained in changing
from one cluster to another

V(X,Y) //pxy x,y) log px(y§ ())dxdy. @)

While mutual information quantifies the common information
between X and Y, variational information quantifies the differ-
ent information transmitted through X and Y. The relationship
between these information measures is shown by the Venn
diagram in Fig. 16, where H(X) is the entropy and H (Y| X)
is the conditional entropy. In contrast to mutual information,
a large value of variational information denotes a high degree
of change.

3) Mixed Information: A new information measure, namely
mixed information, was proposed in which unifies mutual
and variational information by a parameter « to trade off
between mutual information and variational information. It is
defined as

) = [[rxry 1Ogm((> v ()

As o may vary between 0 and 1, I, can be viewed as a mixture
of mutual and variational information measures. In particular,
when o = I(X,Y)/H(X,Y), the mixed information becomes
ZEero.

dxdy. (6)

)1+a
dxdy. (8)

The influence of parameter o on linear changes. From left to right a = (0.2,0.6,1.0, 1.4, 1.8). The image in the middle is the original image.

V(X,Y)

H(X) H(Y)

Fig. 16. Venn diagram of information measures

4) Kullback-Leibler Divergence: As an effective distance
measure between two probability density functions, Kullback-
Leibler divergence is defined as

LX|Y) = / px(z)log (ixy—g)dx. ©)

If the two probability density functions px () and py () are
close to each other, the Kullback-Leibler divergence is small.
In contrast, it is larger if there is a great deviation between
the two probability density functions.

B. SAR Image Change Detection Based on Information Simi-
larity Measures

In order to apply these similarity measures to change
detection, we first need a method to estimate the involved
marginal and joint probability density functions. Then, we
need to use these probability density functions to compute
the value of a similarity measure. In general, change detection
based on information similarity measures is performed locally
in a sliding window by assessing the similarity between two
windows. However, one critical issue is that there should
exist an analytical expression of the information similarity
measure, otherwise, certain approximations or a Monte
Carlo simulation should be applied for approximation,
like the work in , where an Edgeworth series was used to
approximate the divergence. A Monte Carlo simulation relies
on sampling the estimated distribution to obtain a large amount
of samples, which are then used to approximate a similarity
measure. Although it can approximate an information measure
precisely as long as the number of samples is sufficient, it is
prohibitively slow to apply to change detection especially with
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a sliding window. Unfortunately, there are almost not closed-
form expressions for all the information similarity measures
presented in Section for most distributions. Therefore,
we resort to a local average of the information measures
as used in [31f, except for Kullback-Leibler divergence in
our case. Since Kullback-Leibler divergence involves only the
first order distributions, we separate it from the other three
similarity measures and present it separately in the following.

1) Estimation of Local Similarity Measures: For density es-
timation, we use Kernel Density Estimation (KDE) for mutual
information, variational information and mixed information.
Suppose z = {z1,x2,..2,} and y = {y1,y2,...yn} are the
pixel values in two corresponding windows w, and w, of
image X and Y. The marginal and the joint probability density
functions px (x),py (y) and px y(z,y) of the pixels in the
sliding window from the two images are estimated using
kernel density estimation. The kernel density estimator of the
unknown distribution is defined as

nhZ

where h is a smoothing parameter (also called bandwidth), and
K(.) is the kernel function which should be a valid probability
density function. As can be seen, the estimator px(x) is a
weighted mixture of a series of kernel functions located at
each data point. Because the smoothing parameter plays an
important role in the estimation quality, the method presented
in [32] for computing the best bandwidth is used. The kernel
function we used is a Gaussian kernel

x—xz

(10)

1 x?
W exp( 5 ). (11)
With the above density estimates, the local mutual informa-
tion, variational information and mixed information as change
indicators can be estimated (as an average of point-wise local
information measures over the pixels in the local window) as
follows

K(z) =

Zl pXY x’myl) (12)

— 7 px(@i)py (yi)’

- PXAY(%" yi)2
V 5 = - 1 - ) 13
@) ; % px(mpy (1) 4
I, ( Zlogpxy(ivuyz) . (14)

=1 px (zi)py (¥:)

As mutual information measures the common information,
high mutual information indicates a high probability of change.
The opposite holds for the variational information. Mixed
information is a combination of mutual information and vari-
ational information through the parameter «. As proposed
by Gueguen et al. in [31], the o parameter in the mixed
information is selected by a brute force search such that the
accuracy is optimized.

2) Estimation of Kullback-Leibler Divergence: In contrast
to mutual information, variational information, and mixed
information, there is an analytical formula of Kullback-Leibler
divergence for most parametric SAR image models. Thus,
we choose three parametric distributions, i.e., the Gamma
distribution, the one-sided generalized Gamma GI'D, and the
GO distribution. The probability density function of the G°
distribution is given in (I). The probability density functions
of the Gamma distribution and GI'D and their parameters are
given as follows

2 Lip ar La?
)= ——(—)"x exp| ———), L,u>0,
pro(z) F(L)(M) p( p ) I
_ pa ! T 5
pGFD(x)—meXp(—(a) )> a,B,A>0,

15)

The parameters £ and L in prp(x) are the scale parameter and
the number of looks. The parameters 3, A and « in pgrp ()
are power, shape and scale parameters. The method we used
for estimating the parameters of these three distributions is the
method of log-cumulants (MoLC) [33]]. The detailed equations
for parameter estimation can be found in [21]].

The closed-form expressions of Kullback-Leibler diver-
gence for the parametric Gamma, the generalized Gamma, and
the G° distribution are given by (16), (17), and respective-
ly, where p;(z) and pa(x) are the corresponding parametric
probability density functions estimated for the two windows.
The functions ¥(x),I'(z) and B(z,y) are the digamma func-
tion, the gamma function and the beta function. Due to its
asymmetry, the symmetric version of Kullback-Leibler diver-
gence KLD(X,Y) = KL(X|Y)/2 + KL(Y|X)/2 is used
for assessing similarity. They are abbreviated as KLD_I'D,
KLD GI'D, and KLD G°D. The integral in the last term of
KLD G°D can be computed using Gauss-Kronrod quadrature
[34].

1V. EVALUATION ON SYNTHETIC DATA
A. Simulation and Evaluation Setup

To evaluate and assess comprehensively the performances of
information similarity measures for change detection, synthetic
data are generated by simulating changes using TerraSAR-
X images selected from eight categories, i.e., agriculture,
grass land, strongly reflecting buildings, dense buildings,
crops, forest, industrial area, and mountains. These images are
sub-scenes of Geocoded Ellipsoid Corrected (GEC) products
acquired in Stripmap mode. Their ground range resolution
and azimuth resolution are 1.9406 m and 3.2999 m and
their number of looks is 1.0. The incidence angle is 35.20°
(ascending orbit). The patches of the eight typical categories
shown in the first column in Fig. |17|are selected and used for
simulation.

The assumed distribution in simulating reflectivity and first
order statistical changes is a G° distribution. Its parameters
are estimated using the Method-of-Log-Cumulants (MoLC).
The equations for parameter estimation can be found in [21]].
The quadratic function for nonlinear simulation is a(z —
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KLDrp (Pl(% Ly, pa)||p2(; Lo, Mz)) =—L1+ L21n
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xmean)2/(xmin - xmax) + Timax, Where Tiin, Tmasz, and
Tmean are the minimum, maximum and mean value of each
patch. To test the robustness of the information similarity
measures to noise, Gaussian white noise (¢ = 4) is added
to the synthesized images for all six simulated cases. The
parameters used for all simulations are summarized in Table
[ As density estimation depends heavily on the sample size,
we choose different window sizes (9 x 9, 11 x 11, 13 x 13,
15 x 15, 17 x 17, 19 x 19, 21 x 21, and 23 x 23 pixels) for
evaluation. The simulated images are shown in Fig.

To evaluate the accuracy of a change map independent of
any thresholding algorithm, the receiver operating character-
istic (ROC) curve is used and the area under the ROC curve
(AUC) is computed as a performance measure. A ROC curve
can be considered as the evolution of the true positive rate
(TPR) as a function of the false alarm rate (FAR). TPR is
defined as the fraction of correctly detected changes and FAR
is the fraction of correctly detected no changes. The area under
the ROC curve (AUC) is a good performance measure. The
larger the area under ROC curve, the better the performance.
As AUC is an overall performance measure, thresholding or
labeling of the change index should be also applied to generate
a binary change detection map such that TPR and FAR can
also be used for evaluation and comparison. Although many
thresholding methods have been proposed, none of them is
perfect. Therefore, an optimal threshold corresponding to the
nearest point to (0.0, 1.0) on the ROC curve is selected, which
gives the best performance, as shown in Fig. [I8]

As our baseline for evaluation and comparison, the method
based on an Edgeworth series approximation in [7] is al-
so included in the following experiments. All the informa-
tion measures, i.e., Kullback-Leibler divergence estimated
respectively by Edgeworth series (KLD_EW), Gamma dis-
tribution (KLD I'D), GT'D (KLD GI'D), and G° distribu-
tion (KLD G°D) as well as mutual information (Mi_Info),
variational information (Vi_Info), and mixed information
(Mix_Info) estimated by KDE, are applied to generate change
indices. In the following, we first present an overall evaluation
of similarity measures by computing the average accuracy over

10
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Fig. 18. ROC curve of mixed information performed on first order statistical
changes in agriculture using a 9 X 9 window. We select the optimal threshold
corresponding to the closest point to (0.0, 1.0).

all classes. Then, we evaluate the influence of the parameters
shown in Table [[] on change detection accuracy.

B. Results on Synthetic Data

All the information similarity measures are applied to each
kind of simulated changes. The accuracy in terms of AUC is
summarized in Fig.|19] The detailed results are presented in the
supplementary material. In general, all the similarity measures
do not have much difference for different window sizes. For
reflectivity changes as shown Fig. [[9(a), we can clearly see
that both Kullback-Leibler divergence and mixed information
perform quite well. On the contrary, variational information
ranks far behind and mutual information comes last. The only
difference among mutual information, variational information
and mixed information is the parameter «. The impact of
a on the accuracy for reflectivity changes in the first class
(agriculture) is plotted in Fig. 20[a). We can see the reason
why mixed information performs better than mutual informa-
tion and variational information. This indicates a necessity to
search for the best o parameter in the definition of mixed
information when we apply it to SAR change detection.
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Fig. 17. Examples of change simulation for the eight selected classes. Each row is a class and from top to bottom contains agriculture, grass, bright buildings,
dense buildings, crops, forest, industrial areas, and mountains. The first column is the patch for simulation which has been selected from a large image. The
following columns contain the simulated changes, which are reflectivity changes, first order statistical changes, second order statistical changes, higher order
statistical changes, linear and nonlinear changes.

TABLE 1
VALUES OF PARAMETERS USED FOR CHANGE SIMULATION.

Change index Parameter Values
Reflectivity change a 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0
First order statistical change « 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0
Second order statistical change Aa —-1.2,-0.8,-0.2,0.0,0.2,0.8,1.2
Higher order statistical change S 8,10,12,14,16,18,20
Linear change a 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8
Nonlinear change a 2.0,4.0,6.0,8.0,10.0

For first order statistical changes shown in Fig. [I9(b), Similar to reflectivity changes, both variational and mutual
we can observe an obvious diversity in their performances. information have an accuracy of less than 75%. However,
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Fig. 19. Accuracy comparison of similarity measures for six kinds of simulated changes: (a) reflectivity changes; (b) first order statistical changes; (c) second
order statistical changes; (d) higher order statistical changes; (e) linear changes; (f) nonlinear changes.
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Fig. 20. Impact of o on the performance of mixed information measure for intensity changes, second order statistical changes, and linear changes in the

case of agriculture.

mixed information shows a much better accuracy (of around
92.5%) than mutual information and variational information.
It is surprising that KLD_I'D and KLD_GI'D rank on top
and they have a similar accuracy of more than 99%. The
potential reason is that the images selected for simulation have
fully developed speckle. KL, EW has about 6% lower accuracy
than KLD I'D and KLD_GI'D. The underlying reason is
the Edgeworth series expansion because it assumes that the
underlying distribution is close to a Gaussian distribution.
Otherwise, the fitting accuracy will be lower. However, for
SAR images, the underlying distribution is rarely a Gaussian.
KLD _G°D has a lower accuracy than KL._EW. The reason can
be the numerical integral in (T8).

When we move to second order statistical changes as shown

in Fig. [[9c), mutual information and mixed information
perform much better than those for first order statistical
changes. The reason can be seen in Fig. 20[b). As before,
KLD I'D and KLD_GI'D have a very good performance
which is similar to mutual information and mixed information.
Another notable observation is that the accuracy of variational
information decreases as the window size increases. KL EW
and KLD G°D have lower accuracies of around 90%. For
higher order statistical changes as shown in Fig. [I9(d), all
similarity measures have similar behaviors as for second order
statistical changes.

For linear changes shown in Fig. [I9(e), both variational and
mutual information have an inferior performance than in the
the case of reflectivity changes. However, mixed information
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Fig. 21. Influence of the parameters shown in Tableon the change detection accuracy: (a) reflectivity changes; (b) first order statistical changes; (c) second
order statistical changes; (d) higher order statistical changes; (e) linear changes; (f) nonlinear changes.

performs much better. This can be explained by Fig. 20fc).
KLD_T'D, KLD_GI'D, and KLL_EW are on top with accuracies
of more than 99%. Mixed information and KLD G°D have
similar performances which are about 2% lower than that of
KL _EW. For nonlinear changes shown in Fig. [I9[f), Kullback-
Leibler divergence shows an obvious advantage over mutual
information, variational information and mixed information.
Mixed information has the best accuracy among these three
similarity measures, but it is still much lower than the accuracy
obtained by Kullback-Leibler divergence.

Since each kind of change simulation involves a parameter,
its influence on change detection accuracy is presented in Fig.
[21] For reflectivity changes, the parameter « fully controls
the degree of change. Therefore, as expected, the accuracy
decreases as « increases from 0.1 to 1.0, as shown in Fig.
[21}a). For first order statistical changes, we change the pixel
probability density distribution to a Gaussian distribution by
varying the standard deviation. Thus, the parameter « does
not fully control the degree of change. Its influence is shown
in Fig. b). For second order statistical changes, the effect
of Ac is shown in Fig. 2I]c). We can see that the accuracy
decreases as A« becomes close to zero. The influence of the
patch size used in higher order statistical change simulation
is shown in Fig. 21(d). It is clear that it does not have
much influence on the accuracy. Similar to the parameter
Aq in second order statistical changes, the effect of varying
parameter a in linear changes is shown in Fig. [21]e). Finally,
the influence of parameter a on nonlinear changes is shown in
Fig. 21|f). In addition, we can observe that all the similarity
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Fig. 22. Computational complexity comparison of all similarity measures in
terms of average CPU time.

measures behave consistently as shown in Fig.

The computational complexities of all similarity measures
versus window size are presented in Fig. KL_EW and
KLD_GI'D have the lowest computational complexity because
these two methods can be computed analytically without
any other numerical optimization. Although KLD_I'D can be
computed analytically by (I6), we have to rely on a nu-
merical optimization method for parameter estimation, which
is, in our case, a Levenberg-Marquardt method [35]]. Thus,
it has a bit higher computational complexity than KL EW
and KLD GI'D. In the case of KLD G°D, the Gauss-Kronrod
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quadrature algorithm for computing the integral in slows
down the method significantly, in addition to the numerical
method for parameter estimation. However, a notable advan-
tage of Kullback-Leibler divergence is that the computational
complexity does not increase with window size because the
parameter estimation relies only on log-cumulants of the
samples, which is different from KDE being used for the other
three similarity measures. Mutual information and variational
information have similar computational complexities. Mixed
information is slightly slower than mutual information and
variational information because a number of change index
maps have to be computed for a series of parameter . The
computational time of these three similarity measures increas-
es rapidly with window size because more and more samples
are available for density estimation. The most time-consuming
part for these three methods is kernel density estimation,
which is implemented in a MATLAB MEX function using
C language.

To sum up, different methods perform quite differently
for different kinds of changes. Kullback-Leibler divergence
generally performs quite well for SAR image change detection
provided that a good SAR image model is chosen. In most of
our cases, variational information has an inferior performance.
Mutual information is better to be applied for detecting second
and higher order statistical changes. It is necessary to search
for the best o parameter when we apply mixed information
to SAR change detection, and gives a better accuracy than
mutual information.

V. EVALUATION ON REAL SAR DATA SETS

In this section, all the similarity measures are evaluated
using real data of TerraSAR-X images.

A. Selected Datasets

We selected five datasets of TerraSAR-X images corre-
sponding to reflectivity changes and statistical changes. The
first four datasets are selected, as shown in the first two rows
in Fig. from two radiometrically enhanced TerraSAR-X
images acquired in Stripmap mode prior to (on Oct. 20, 2010)
and after (on May 6, 2011) the Sendai earthquake in Japan.
Their pixel spacing is about 2.5 m. The sizes of these four
image pairs are respectively 549 x 560, 613 x 641, 590 x 687,
and 689 x 734 pixels. As the two TerraSAR-X images acquired
before and after the disaster have nearly the same imaging
parameters, we can reasonably assume that there is only a
linear geometrical translation between the images. To achieve
precise registration, ten strong point scatterers from each
image were manually selected to determine the translation
along both azimuth and range direction. To make sure that
the translation is precise, the normalized cross-correlation is
computed to check the translation and the residual pixel shift
is less than one pixel. The reference data shown in the third
row were produced through careful manual interpretation of
optical images. In optical images, these changes are more
visible. Thus, referring to optical images makes the reference
data reliable. Due to the earthquake, a tsunami occurred,
which led to a devastating flooding, as can be seen from

the images. In the first two datasets, the agricultural fields
were severely flooded and the image intensities changed
dramatically; these are appropriate scenarios for performance
assessment in detecting reflectivity changes. The third and
fourth datasets contain both reflectivity and statistical changes,
which were used for assessing statistical changes. These four
datasets are abbreviated as “Sendail”, “Sendai2”, “Sendai3”,
and “Sendai4” in the following descriptions and figures. The
fifth dataset is selected from another TerraSAR-X image
covering the Valcea county in Romania. The images have a
pixel spacing of 2.5 m and an incidence angle of around 36°.
The image registration was performed as described above. In
this scenario, some underwater grass and vegetation in the
three lakes changed the statistical characteristics of the images.
This dataset is referred to as “Valcea” in the following sections
and figures. The experimental setup for evaluation follows the
evaluation of the synthetic data. In the following sections,
change index maps are shown using color for highlighting.

B. Results on Real Datasets

The average AUCs of all the similarity measures versus
window size on the five datasets are shown in the first row in
Fig. @ The detailed results of AUCs, TPRs, and FARs are
presented in the supplementary material. Different from the
evaluation on synthetic data, Mix_Info, Mi_Info and Vi_Info
have similar performances as indicated by the ROC curves
shown in Fig. although Mix_Info performs slightly better.
The impact of « for the first three datasets is shown in Fig.
[26] where we can see that the impact of « is negligible.
The best change index maps of the five datasets by Mix_Info,
Mi_Info and Vi_Info are shown in Fig. 23] By comparing the
performances on the first two datasets and other three datasets,
we can see they are much better at detecting statistical changes
than reflectivity changes.

In contrast to these three information measures, Kullback-
Leibler divergence performs better for the first two datasets,
which mainly consist of reflectivity changes. For the remaining
three datasets, especially the third and the fifth one, Kullback-
Leibler divergence performs worse with an accuracy of around
80% for the third dataset and 70% for the fifth dataset.
This result is consistent with the conclusion drawn from the
evaluation of synthetic data that Kullback-Leibler performs
well for reflectivity changes and both mutual information
and mixed information perform well in detecting changes in
second and higher order statistics.

As for the parametric models used in computing the
Kullback-Leibler divergence, all the three models, i.e., Gamma
distribution, GT'D, and G° distribution, have a similar perfor-
mance. For example, in the case of the second and the fourth
dataset, the best change index maps (in terms of AUC) of
KLD EW, KLD I'D, KLD GI'D, and KLD G°D are shown in
Fig. However, as can be seen from the first column in Fig.
there are many false detections, which can be confirmed by
the TPRs and FARs presented in the supplementary material.
The reason is that KLD_EW relies on an Edgeworth series
expansion, which is based on the assumption that the pixel
amplitude distribution is close to a Gaussian, which is not
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Fig. 23.

the images before changes and the second row are the images after changes. The third row are the reference data generated by manual interpretation.
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The average AUCs, TPRs, and FARs of the five datasets (from left to right: “Sendail”, “Sendai2”, “Sendai3”, “Sendai4”, and “Valcea”). Each

column shows the average AUCs, TPSs, and FARs for each dataset. The horizontal axis of each bar plot denotes the similarity measure. Columns 1 to 7 of
each bar plot represent KL EW, KLD I'D, KLD GI'D, KLD G°D, Mi _Info, Vi Info, and Mix_Info.

the case for SAR images. Furthermore, a fluctuating Hermite interpolation is applied to fill the missing values. However, the
polynomial is used for series expansion, which could introduce  change index maps obtained by both KLD_I'D and KLD_GI'D
false detections. Please note that there are some singular points have almost no numerically invalid values, which results in
in the change index maps of KLD G°D shown in the fourth better convergence in solving the equations of the Levenberg-
columns. For those pixels, no solutions can be found. Local Marquardt algorithm.

TerraSAR-X datasets (from left to right: “Sendail”, “Sendai2”, “Sendai3”, “Sendai4”, and “Valcea”) being used for evaluation. The first row are
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Fig. 25. The best change index map (in terms of AUC) and ROC curves of the five datasets (from left to right: “Sendail”, “Sendai2”, “Sendai3”, “Sendai4”,
and “Valcea”) obtained by Mix_Info, Mi_Info and Vi_Info (row by row form top to bottom). We can observe that the accuracies of all these three similarity
measures are similar. Therefore, the influence of the parameter « is negligible for the best cases. Note that the change index maps in the second row are

inverted such that changed pixels have large values.
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Fig. 26. Impact of « on the performance of the mixed information measure for real datasets: (a) the first dataset “Sendail” (o has a similar impact on the

fourth dataset “Sendai4”); (b) the second dataset “Sendai2”; (c) the third dataset “Sendai3” (« has a similar impact on the fifth dataset “Valcea”).

From the TPRs and FARs shown in Fig. [24] we
can see that Kullback-Leibler divergences estimated by
KLD I'D, KLD GI'D, and KLD G°D perform much better
than Mix_Info, Mi_Info and Vi_Info for the first two datasets
and achieve similar performance for the fourth dataset. In con-
trast, Mix_Info, Mi_Info and Vi_Info have better accuracy than
KLD I'D, KLD GI'D, and KLD G°D for the third and the
fifth data sets, which is consistent with the conclusion drawn
previously from the evaluation on synthetic data. This can

be seen from the change index maps generated by Kullback-
Leibler divergence for the third and the fifth datasets shown
in Fig. [28] Comparing the change index maps in Fig. 28] with
the ones shown in Fig. 23] we can see that the change index
maps generated by Kullback-Leibler divergence for the third
and the fifth datasets are inferior.

In addition, it seems that KLD_EW has a better performance
when using a smaller window size and degrades as the window
size increases. For the second and fifth datasets, KLD EW



IEEE JSTARS

Fig. 27.
KLD I'D, KLD GT'D, and KLD G°D (from left to right).

Change index maps of the second dataset “Sendai2” (first row) and the fourth dataset “Sendai4” (second row) datasets obtained by KLD EW,

Fig. 28.
KLD I'D, KLD GT'D, and KLD G°D (from left to right).

achieves the best performance with a window size of 9 x 9
pixels. Similarly, it achieves its maximum accuracy for the
first and third data sets with a window size of 11 x 11 pixels.
Beyond that point, the accuracy decreases when the window
size is expanded. The other three information measures achieve
the best accuracy using a window size of around 15 x 15 pixels.

VI. CONCLUSION

Although a large number of different methods have been
developed for SAR image change detection, there is no
consensus about their performances because most methods
have been evaluated using different datasets, facing probably

The best change index maps for the third dataset “Sendai3” (first row) and the fifth dataset “Valcea” (second row) datasets obtained by KLD_EW,

different kinds of changes. Thus, it is not fair to claim one
method is superior or inferior to another method because
they are not evaluated using the same kind of changes. In
practice, several different kinds of changes with different
characteristics can arise. To solve these two problems, we have
to identify different kinds of changes and develop a method
to represent their characteristics. Although the importance to
model different kinds of changes has been realized, there is
no principled methodology to carry out the analysis due to
the difficulty in modeling different kinds of changes. Another
problem is the lack of standard benchmark approaches and
datasets. We believe this is a severe problem, which should be
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solved by joint efforts of the entire community.

In this paper, we propose a methodology that can partially
solve these problems. We propose a principled methodology
for evaluating change detection methods by simulating dif-
ferent kinds of changes. Six kinds of SAR changes for eight
typical categories are simulated, i.e., reflectivity changes, first
order, second order, and higher order statistical changes, linear
and nonlinear changes. Based on this methodology, we try
to find out what kind of changes each approach can detect
and to what extent the different kinds of changes can be
detected. Based on this methodology for change simulation, a
comprehensive evaluation of information similarity measures
is carried out. An explicit conclusion we have drawn from the
evaluation is that different methods behave very differently
for different kinds of changes. Kullback-Leibler divergence
generally performs quite well for SAR image change detection
provided that a good SAR image model is chosen. Mutual
information is more appropriate to be applied for detecting
second and higher order statistical changes. It is necessary
to search for the best a parameter when we apply mixed
information to SAR change detection, which often gives a
better accuracy than mutual information. We hope this study
will promote the advancement of this topic.
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