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Abstract—In recent years, there has been increased interest
in using synthetic aperture radar (SAR) to study and monitor
glaciers and ice sheets for glaciological and climate change re-
search. However, due to the medium’s complexity, SAR backscat-
tering from ice remains poorly understood, including the relative
importance of scattering from surface and volume layers and also
dependences on frequency and glacier zone. Extreme weather con-
ditions can result in quickly changing surface conditions influenc-
ing backscatter signatures while leaving the underlying volume of
interest unchanged. Surface and volume components must thus be
separated in order to infer information regarding the properties of
the ice volume. This paper describes a three-component scattering
model to decompose polarimetric SAR (PolSAR) images of glacier
ice. Total backscatter is modeled as the incoherent summation of
surface, volume, and sastrugi (wind-induced feature) components.
The proposed model adapts and extends the Freeman and Durden
decomposition for an ice volume scenario in which the volume is
a dielectric medium. Forms of the model for both random and
oriented volumes are considered, and a new oriented sastrugi
component is introduced which is able to explain backscatter
behavior between different winter scenes. Validation is performed
with airborne PolSAR data at L- and P-band collected using
the E-SAR system of the German Aerospace Center over the
Austfonna ice cap in Svalbard, Norway, as part of the ICESAR
campaign.

Index Terms—Land ice, polarimetric synthetic aperture radar
(PoISAR), scattering mechanism, target decomposition.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is a powerful remote
sensing tool with which to monitor glaciers and ice sheets
due to its high spatial resolution and wide coverage and its abil-
ity to penetrate beneath the ice surface to observe subsurface
structure. However, owing to the medium’s complexity, SAR
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backscattering from ice remains poorly understood, including
the relative importance of scattering from surface and volume
layers and also dependences on frequency and glacier zone
(facie).

The radar signal is a function of the material and structural
properties of the illuminated scene, including volume and sur-
face backscatter at various roughness scales. Due to extreme
and variable weather conditions, surface properties of glacier
ice such as surface roughness and wind-induced features can
change quickly over a period of days or even hours [1]. In
addition, features correlating with wind direction can display
considerable orientation [2]. As polarimetry is sensitive to
the shape and orientation of the scatterer, these effects can
have a significant influence upon observed polarimetric SAR
(PolSAR) signatures. To infer geophysical properties of the un-
derlying ice volume such as extinction and density, separation
of the ground and volume contributions becomes necessary.

The objective of this paper is to investigate how well the vol-
ume response can be isolated using decomposition techniques
in order to separate the radar return into several scattering
components. Cloude and Pottier [3] identified three main types
of target decomposition theorems: those employing a coherent
decomposition of the scattering matrix, those using an eigen-
vector analysis of the covariance or coherency matrix, and those
modeling the covariance or coherency matrix. Decompositions
of the scattering matrix are well suited for high-resolution low-
entropy scattering problems [3], in which scattering is due to a
few dominant scattering centers, but are generally inappropriate
for modeling distributed targets such as ice volumes. Similarly,
eigendecomposition provides an interpretation of the coherency
matrix in terms of orthogonal rank-one elementary scattering
processes, which are ill suited for describing ice scattering at
long wavelengths. For these reasons, a model-based approach
is used in this paper.

For natural terrain, Freeman and Durden proposed a three-
component scattering model, decomposing the measured co-
variance matrix into surface, dihedral, and volume scattering
contributions [4]. Extensions of this decomposition have been
published for urban [5], wetland [6], and agricultural appli-
cations [7]. However, no polarimetric decompositions of the
covariance matrix have been published for glacier ice, primarily
because of a lack of experimental data.

PolSAR results in the ice literature are limited to those using
airborne sensors over Greenland [8], [9] and also results using
SIR-C and AIRSAR data in the Alps, Tibet, and the Andes
[10]-[13]. The focus to date has been on descriptions of po-
larimetric properties [8], [12], [13] and discrimination between
snow and bare ice areas [10], [11] rather than modeling. Rignot
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[9] developed a backscatter model for the percolation zone in
Greenland, where ice inclusions were modeled as dielectric
cylinders embedded in a transparent snow medium and surface
scattering was not included in the model. The agreement be-
tween modeled and measured backscatter was fairly good at
C-band; however, comparisons at L- and P-band were poorer.

Interferometric SAR (InSAR) provides additional infor-
mation on the vertical distribution of scatterers in the ice.
C-band InSAR observables have been used to parameterize
the relation between interferometric coherence and penetration
depth [14], and snow accumulation [15]. A common problem
is the separation of ground (surface) and volume contributions
that requires the use of a scattering model. Furthermore, long
satellite revisit times induce temporal decorrelation and limit
the use of InSAR to periods without intervening precipitation,
wind, or melt events. Polarimetric interferometry (Pol-InSAR)
using airborne sensors has been used to investigate glaciers and
ice sheets at L- and P-band [16], [17], although again, a model
is required to separate the individual scattering contributions
and to interpret results. The deep penetration of the signals
at these longer wavelengths complicates both modeling and
interpretation.

As a first step and to limit the complexity of the problem,
a polarimetric model of glacier ice backscatter is considered
in this work. A new polarimetric decomposition is proposed,
modeling PolSAR observables as a combination of contribu-
tions from a slightly rough surface (at the snow—ice interface),
a volume response from a potentially oriented particle cloud,
and an oriented wind-induced surface sastrugi field. Since ice
volumes may often be expected to have a preferential ori-
entation of scatterers, particularly horizontal stratification and
layering, such an extension is important for quantitative remote
sensing inversion. A unique fully polarized airborne SAR data
set is available for validation acquired at L- and P-band and
with a one-month temporal baseline to investigate the temporal
evolution of polarimetric properties.

Section II presents scattering models for surface, volume,
and sastrugi components. The combined model and decompo-
sition approach, as well as simulations demonstrating its sensi-
tivity, is outlined in Section III. Experimental data collected at
L- and P-band using the E-SAR system of the German
Aerospace Center (DLR) and their polarimetric signatures are
described in Section IV and are used in Section V to perform
polarimetric decomposition. A discussion of the results is pro-
vided in Section VI, and conclusions and recommendations are
given in Section VII.

II. SCATTERING CONTRIBUTIONS OVER GLACIER ICE

This section reviews several elementary scattering mech-
anisms which may be of importance in polarimetric model-
ing of land ice. Electromagnetic models are developed for
long-wavelength microwaves, e.g., L- and P-band, with cen-
ter frequencies of 1.3 and 0.35 GHz, respectively. At these
wavelengths, surface as well as volume contributions can be
expected. Winter and early spring conditions without melt are
assumed.

Natural scenes contain many spatially distributed determin-
istic scattering centers, each of which may be represented by an

individual scattering matrix in the HV basis as [18]-[20]

S .- Sun  Suv
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For the monostatic case, with backscattering from reciprocal
media such that Syyv = Svyy, the response from a single de-
terministic particle is completely described by a three-element
lexicographic scattering vector kr = [Stm, V2Suv, Svv]T,
where superscript T represents the matrix transpose.

For distributed targets, it is necessary to evaluate the second-
order statistics of the scattering matrix, and thus, the polarimet-
ric covariance matrix CHV is introduced. It is formed from the
outer product of k 1, with its conjugate transpose [20]-[22]

cHV .— <ELETL>

(I1Sunl®)  vV2(SunShy)  (SuuSyy)
= |V2(SuvSim)  2{(|Suv[*)  V2(SuvSyy)
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where { denotes the conjugate transpose, * denotes the complex
conjugate, and (.) denotes the ensemble average.

A. Surface Scattering

The well-documented decrease in backscatter (o) with in-
creasing incidence angle over land ice at microwave frequencies
ranging from X- to L-bands [10], [13] suggests the presence
of a surface scattering component. Surface scatter at L- and
P-band wavelengths is postulated to originate from the
snow—ice interface and to conform to the first-order small
perturbation method (SPM) for a slightly rough interface.

Although, in general, surface roughness is depolarizing, the
surface or ground covariance matrix C’;{V is modeled as
a rank-one reflection symmetric matrix with zero crosspolar
response through the use of the SPM [1]

82 0 B
cV=rf,10 00 ©)
g 0 1
where
5:&63‘455_ 4)

v

In (3) and (4), f, is the ground power coefficient, R, and R, are
the Bragg coefficients for horizontally and vertically polarized
waves, j is the imaginary unit, and ¢ is a copolar phase
component. Ry and R, are given in [23], where, in this paper,
the relative permittivity e, is replaced by ea,./£1,., representing
the ratio of the relative permittivities in the second medium
(ice) and the first medium (snow), and the incidence angle is
replaced by the angle in the snow after refraction according to
Snell’s law.

As opposed to [4], | 3] is fixed to conform to the SPM using
knowledge of the approximate snow and ice dielectric con-
stants, although the unknown phase component ¢ is retained.
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B. Ice Volume Scattering

Modeling the ice volume component is challenging due to
the complex electromagnetic interactions involved, the lack of
in situ measurements, and test-site-dependent variations in ice
structure, such that the dominant scatterers can be ice crystals
[24], ice inclusions (ice pipes or lenses) [9], buried sastrugi,
or layers [15]. Assuming that one of the first three aforemen-
tioned components dominates the volume return, the volume
is modeled as a homogeneous cloud of identically shaped and
sized scatterers [4], [25]. Scattering is principally controlled
by three factors: the density and extinction properties of the
volume (affecting the scattered power), the particle shape, and
the orientation distribution of the particles. Up to an amplitude
factor, the scattering matrix of a single spheroid in a local
coordinate system aligned parallel to the axes of symmetry of
the particle can be given by [21]

1 0
Ssphcroid = |:0 Ap:| (5)

where A, is the ratio of the principal polarizabilities. For
simplicity and to reduce the number of unknowns, the scatterers
are assumed to be thin dipoles as in [1] for which A, = 0.
The influence of scatterer orientation—of significant interest in
this paper—is maximized with a dipole particle shape. A more
generalized treatment of the scattering matrix for the spheroid
case can be found in [25] and [26].

Particle orientations can be simulated as being completely
random [1], in which case the volume is azimuthally symmetric,
or as being oriented [5], [25], where orientation distributions
are typically referenced to the plane perpendicular to the line
of sight (LOS). To avoid the implications of a variation in LOS
induced by the inherent variation of incidence angle in airborne
SAR systems, an Earth-based coordinate system is chosen as a
reference in this work.

1) Oriented Volume: A polarimetric decomposition is pro-
posed in which the volume of scatterers is permitted to have
an orientation. It is assumed that topographic variations are
negligible, which is reasonable for ice caps and sheets which are
relatively flat. To begin, we assume the simplest possible case
where the incident field intensity remains the same everywhere
in the volume and only single scattering is considered (Born
approximation).

We define a coordinate system with axes (z,y, z), where the
z-axis is normal to the Earth’s surface, x is along the line of
flight (i.e., azimuth), and y is in the ground-range direction
(perpendicular in a right-handed system). Let us further write
(z,y,2) in a spherical coordinate system defined by angles
(v, 1) and radius r such that

cos v cos P
sin v cos ¢ (6)

sin vy

where —7/2 < ¢ < x/2and 0 < v < 2, as shown in Fig. 1.
The radar geometry is defined by a new coordinate system
(2',y/,2") created by a rotation about the z-axis by —d, where
4 is the complement of the incidence angle (6 = 7/2 — Oinc).
Note that, for glacier applications, the incidence angle 6;,.

=T
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Fig. 1. Relation between Earth-based (z,y,z) and radar geometry
(z',y’,2") coordinate systems. Orientation of a single particle is shown,
described by orientation angles (v, ). (= 7/2 — 0inc) is a rotation about
the z-axis.

must be replaced by the refracted angle in the medium 6, as
dictated by Snell’s law. LOS is along the 1/-axis, and the plane
perpendicular to the LOS is defined by the z'z'-plane. The
horizontal polarization h-axis is along the line of flight, and
the vertical polarization v-axis is parallel to 2. The relation
between (z,y, z) and (2, ', ) is then

x 1 0 0 x
y | =10 cos(—=d) sin(—9) Yy
z 0 —sin(—0) cos(—d)| | =
COS I COS
=7 | sinvcostcosd —sinysind | . @)

sin v cos v sin § + sin ¢ cos &

Considering a single dipole, the equivalent scattering matrix
observed by a monostatic radar for this particle can be ex-
pressed as a function of v, 1, and § given its projection onto the
h- and v-axes from (7). It is assumed that the distance between
the sensor and the volume of particles is very large such that, r
[see (7)] can be considered constant for all particles within the
resolution cell. The scattering matrix is then

S S
Sdipole(% ,(/)’ 6) = [Ssi S\Ij://] (8)

where
Stn = cos?(v) cos® (1))
Syv = (sinv cos ¢ sin § + sin 1 cos §)*
Suv =Svu

= cos v cos Y (sin v cossin § + sin ) cos d).

Except for a scaling factor, the backscatter response from a
single deterministic particle is completely described by S in
(8). To determine the superposition of responses from a distri-
bution of particles within the volume, the covariance matrix is
computed.

Assuming v and 1 to be independent variables with proba-
bility density functions (pdfs) p(v) and p(v)), respectively, the
expected value for each element mn of the volume covariance
matrix can be determined through integration of the pdfs over
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Fig. 2. Normalized covariance matrix elements for simulations of an oriented
volume versus distribution width for g = 0° and fixed ¢» = 0°. Results at
both nadir (solid) and 6, = 40° (dashed) are given. The | Sy |? response at
both incidence angles coincides.

all possible orientation angles and for each linear polarization
combination 7j

271‘71'/2

(Co o) = Fon / / 5:51 cos b p(e)p(v) dpdy  (9)

0—m/2

where the cos v term is required for a uniform spatial distribu-
tion of scatterers and F},,, is the factor of 1, 2 or v/2 for each
element from (2) required to conserve total power.

Various distribution functions p() and p(v) are possible.
Results from simulations in which 1 is fixed to zero and v is
modeled as a uniform distribution centered at vy with width
2Av, with Av varied from 0° to 90°, are shown in Fig. 2. After
[25], pdf p(v) is

1 1
- = 2A0)
p(v) { 0,
To obtain Fig. 2, the integrals from (9) were evaluated and C,,
components were determined as a function of Av for vy = 0.
Results are plotted for both nadir (6;,. = 0°) and an incidence
angle of 40°. Results at 6;,. = 0° are identical to those using
the model given in [25] for zero tilt, such that scatterers are
assumed to be distributed in the plane perpendicular to the
LOS. However, as incidence angle is increased, it is seen that
backscatter at VV and HV differs significantly from that pre-
dicted using the conventional 2-D model. For this reason, a 3-D
model is required for accurate modeling. As mentioned earlier,
many possibilities exist in choosing p(¢) and p(v). Other pdfs
such as truncated Gaussian or circular normal distributions [26]
are also possible and may provide a better match to the actual
scattering physics, although they are more mathematically in-
volved and display deviations of <20% from results assuming
a truncated uniform distribution [27]. It is seen in Fig. 2 that the
model predicts larger |Syp|? than [Syv|? except at Av = 90°
which represents completely random scattering for a nadir-
looking system. Variation in Av can be used to model a wide
range of |Sun|?/|Svv|? polarization ratios, which is necessary
to reconstruct the polarimetric properties seen in experimen-
tal data.

forvg — Av <v <iyy+ Av

10
otherwise. (10)

In the simplifying case of a completely random volume
such that p(v) = 1/(27) and p(¢)) = 1/7 in (9), the volume
covariance matrix reduces to the reflection symmetric form
given in [4]

chlv =y, (11)

W= O =
Qwv O
= O wl-

2) Oriented Volume With Propagation Effects: In order to
model a more realistic scenario, extinction and refraction ef-
fects are introduced. As a wave propagates through the volume,
it is attenuated due to absorption and scattering and refracted
due to the dielectric constant. If attenuation and refraction are
isotropic, i.e., polarization independent, their effects may be
absorbed into the f, power coefficient. However, in the case
of oriented volumes (due to, e.g., oriented ice inclusions or
ice crystals oriented to conform to the prevailing stress or
elongated in the direction of a thermal gradient [28]), differen-
tial extinction and refractivity must be considered. Extinction
consists of both scattering and absorption contributions, and
polarization dependences can be attributed to scattering from
oriented features and/or to polarization-dependent absorption
due to an orientation dependence of the imaginary part of the
ice dielectric constant [29]. Differential refractivity (i.e., direc-
tional dependence of the real part of the dielectric constant) can
arise from anisotropy in the dielectric constant of oriented ice
crystals [30], [31] or from density variations at shallow depths
if oriented scatterers such as sastrugi and dunes are preserved
within the ice [32].

A wave incident at an arbitrary polarization will change its
polarization as it propagates through the volume except at the
eigenpolarizations a and b, and thus, computations involving
orientation propagation effects will be carried out in this ba-
sis. The eigenpolarizations are given by the eigenvectors of
the average forward-scattering matrix which is assumed to be
symmetric such that the eigenvectors are orthogonal [33].

We begin with a general scenario in which the h and v
polarization axes (measured by the radar) do not necessarily
correspond to the eigenpolarizations. Let us define { as the
angle between the h-axis in the radar geometry and the mean
orientation unit vector of the volume ((6) divided by its norm)
projected to the plane perpendicular to the LOS. From (7)

¢ = tan~! (sm Vg €0s g sin & + sin g cosé) . (12)

COS Iy COS g

To transform between the HV polarization basis and the eigen-
polarization AB basis, unitary rotation matrix R is defined [34]

1+cos(2¢)  V2sin(2¢) 1 — cos(2¢)
R(20) = = | —v/2sin(2¢)  2cos(2¢)  V2sin(2()
1—cos(2¢) —v2sin(2¢) 1+ cos(2§)(13)

The total volume covariance matrix in the AB basis is then
Cy" = R(2()CV R(2¢)" (14)

where the polarization basis is given by the superscript.
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Assuming a homogeneous exponentially lossy and infinite
volume (appropriate for microwave frequencies over glacier
ice), the covariance matrix in the AB basis can be described by

0
(ka+rp)z ot
CAB — /e cosar PAB(Z)C:BPABT(Z)dZ'

—00

15)

In the aforementioned equation, PAE (z) is the propagation
matrix in the eigenbasis AB

0
PAB(z =10 1 0 (16)
0

where PAB () has been transformed from [33] into its co-
variance matrix form. In (16), 7 is the complex differential
propagation constant given by [33] which has been modified
here for a volume under ground (z < 0) to be

_[_(Fa—"Hhe ; _ —z
T—( ( 5 )+Jk(xa Xb))cosﬂr

where k, and k; are the extinction coefficients, k = 27/ is the
wavenumber, and , and Y, are the refractivities of the eigen-
polarizations. Let Ay = (xa — X») represent the difference in
refractivity between the eigenpolarizations.

A7)

Matrix C’f B in (15) accounts for the geometric projection
of the distribution of scatterer orientations onto the a- and b-
axes. This matrix is determined by evaluating elements of the
volume covariance matrix from (9) and projecting them into the
AB basis using (14). Evaluating the integral in (15), one can

determine C2® as a function of C,

AB AB AB
Cvll Cv12 C’u 13

CoP =1, iy CXAQB% Crs (18)
Cvl?;* C('1123* Cv33
where
cosf,
Cot =il
A ~ap C€osO,
CUQBQ = Ov2%m
A ~Ap COs O,
01)31133 = C?)SBS 2k
~ cos
Cx3 =0 —
o B ((ka + Kb) — j2kAX)
~ 2cos b
CAB _ CAB T :
vl2 vl2 ((3’%@ + fib) . ]QkAX)
2 cos 6,

CAB _ GAB )
v23 1)23((Ka +3fib> _]QkAX)

In the instance of an infinite volume, the copolar phase differ-

ence in the AB basis (phase of element Cﬁ% ) reduces to

2kAx )

19
Py 19)

¢aa-BB = tan " (

where —90° < ¢aa_BB < 90°.
Assuming a uniform angular distribution of equally sized
scatterers in the Earth xy-plane (Fig. 1) results (in general)
in a nonuniform scatterer distribution when projected to the
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plane perpendicular to the LOS, violating reflection symmetry.
However, CfB becomes reflection symmetric for certain com-
binations of v, 1, and 4, including as follows: a nadir incidence
angle (0 = 90°), for vy = 90°, for vy = 0° and ¥y = 0°, for
fixed ¢ and v (i.e., Av = 0 and Ay = 0), or for a completely
random particle distribution (i.e., Av = Ay = 90°) as in (11).

Lastly, the volume covariance matrix is transformed back

into the HV basis through inversion of (14) to yield
Cy'Y = R(20)" CPR(2(). (20)

3) Transmissivities: Transmissivities are integrated into the
aforementioned model, as is required for dielectric media such
as ice and snow. In this paper, the relative dielectric constant ¢,
was computed from an empirical relation to firn density [35],
where firn is defined as dense snow which has survived at least
one summer. Approximate firn and snow densities obtained
from in situ data of 0.8 and 0.4 g/cm?, respectively, yield rela-
tive permittivities €,y = 2.8 and €,4n0w = 1.7. For simplicity
and due to a lack of depth—density profiling, homogeneous
snow and firn media are assumed.

Negligible reflection at the air—snow boundary [23] and
no scattering within the snowpack are presumed, which are
reasonable for dry snow at L- and P-band. At the snow—firn
interface, it is assumed that the surface is relatively smooth with
respect to the wavelength and transmissivities are approximated
using the Fresnel equations, where transmission coefficients 7},
(for horizontal polarization) and 7;, (for vertical polarization)
are given in [36]. Accounting for transmission yields a slightly
modified version of the volume covariance matrix

7 Y Tho1 Ty ThTy
Cft‘r;ns = CuHV o ThTthT’z)Ql ThT'v Th21Tvl2Tv
TpY, Tho1Ty12Ys T2
where

Th=Thi2Thor Yo =Tp12Ty21 (21
and where o represents element-wise multiplication (Hadamard
product), C,I;I V' represents the volume covariance matrix from
(20), and subscripts 1 and 2 represent the snow and firn media,

respectively.

C. Oriented Sastrugi Field

In addition to surface and volume scattering, a third relevant
scattering mechanism is expected which arises from an oriented
sastrugi field. As will be shown for the experimental data in
Section IV-B, surface and volume scattering alone are insuffi-
cient to explain temporal variations in the copolar ratio in the
absence of melt, necessitating a third component. Sastrugi are
snow dunes formed by wind deposition and erosion of the snow
surface [37] and are widespread across ice sheets with high
winter accumulation rates and strong winds. These streamlined
ridges of densely packed snow are generally oriented parallel
to the prevailing wind direction [1], although the exact position
and shape of single sastrugi are random. The dimensions of
single sastrugi are typically a meter to a few meters in the
horizontal direction and a few tens of centimeters in the vertical,
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Fig. 3. Sastrugi on the Austfonna ice cap from the spring 2007 field season
(photograph courtesy of Thorben Dunse, University of Oslo).

depending on wind strength, temperature, and snow hardness
[37]. Sastrugi form rapidly in hours to days and, once hardened,
can persist for months [2]. An example of sastrugi for the test
site of interest (see Section IV-A) is given in Fig. 3.

Because of their orientation, sastrugi can have a strong
impact on radar backscatter. Over Antarctica and Greenland,
azimuth modulations of up to £5 dB in scatterometer data due
to snow surface structure have been reported [2]. It is thus
important to consider these features in modeling the return from
glacier ice, particularly since sastrugi are of the same order as
the L- and P-band wavelengths under consideration.

An oriented sastrugi field can be seen as a simplified form
of the volume modeled in Section II-B1, where all scatterers
are contained within a plane on the air—snow surface, and
thus, there are no propagation effects. Assuming a truncated
uniform distribution in v and integrating (9) for fixed ¢ =0
yield sastrugi covariance matrix

f fir  fiz fis
cHV = A_j/ fi2 2fi13 fa3 (22)
fiz fos fs3

where

f11 =12Av + 8 cos(2vy) sin(2Av) + cos(4vy) sin(4Av)
fr2 =4V2 (cos*(Av — vg) — cos*(Av + vg)) sin(5)
fi3 = (4Av — cos(4wvp) sin(4Av)) sin?(0)
fas =4V2 (—sin®(Av — vp) + sin® (Av + vp) ) sin®(8)
faz = (12Av — 8 cos(vp) sin(2Av)

+ cos(4uyg) sin(4Av)) sin(8)

and where f; is a scaling factor. Reflection symmetry about
the plane containing the mean sastrugi orientation vy and the
surface normal vector is assumed, but not with respect to the
plane perpendicular to the LOS, such that C' f V' is not reflec-
tion symmetric. Accordingly, for the general case, the Cf v
matrix is fully populated, although for vy = 0° or vy = 90°,
or random v (i.e., Av = 90°), the terms representing cocross

correlations [e.g., (SuuSiy) and (SuySyy,) from (2)] vanish,
yielding a reflection symmetric sastrugi matrix of

v £ fiu 0 fiz
Cs refl sym — E 0 2f13 0 (23)
fis 0 fa3

III. DECOMPOSITION APPROACH
A. Three-Component Decomposition for Glacier Ice

Applying the results from the previous section, a polarimet-
ric decomposition consisting of a surface (described by the
SPM), a (possibly) oriented volume, and an oriented sastrugi
field is proposed. Assuming that surface, volume, and sastrugi
components are uncorrelated, the combined covariance matrix,
expressed in (24), is a sum of the matrices for the individual
mechanisms plus a diagonal noise matrix /N. This additive
(e.g., thermal) noise is modeled as a zero-mean Gaussian white
noise process with noise power n which is independent of the
polarization state. It can be estimated using the decorrelation of
the crosspolar channels as described in [38], and it is not treated
as an unknown in the following analysis. In (24), the superscript
c denotes complex variables, and g is ground (i.e., surface), v is
volume, and s is sastrugi whose representations were given in
(3), (21), and (22), respectively. Scattering power components
of the ground P, volume P,, and sastrugi P, are given by the
trace of the corresponding covariance matrices.

Hv g1 0 g3 v Uiy Vi3
Ciotar=1] 0 0 0 |+ |vi5 va v5
973 0 ¢33 vi3 53 Us3
$11 S12 S13 n 0 0
+ | 812 s22 sa3 |+ |0 n O 24
S13  S23  S33 0 0 n
cHV N

Each scattering mechanism in (24) contributes to different
elements of the combined covariance matrix. Surface scattering
contributes to HH and VV powers and to the complex copolar
correlation. An oriented volume contributes to all components
(powers and complex correlations), although for a random
volume, Cffl V" assumes its simplified reflection symmetric form
from (11) in which case cocross components vanish and all
elements are real numbers. Sastrugi can account for an ampli-
tude contribution to all elements although with no phases. The
proposed model is able to interpret a nonreflection symmetric
covariance matrix in the HV basis as the presence of either
oriented volume and/or oriented sastrugi scattering.

Considering the most general situation in which all three
scattering mechanisms are present, there are 13 unknowns,
which are listed in Table II in the Appendix. To distinguish
volume orientations from sastrugi orientations, the subscript s
has been used for sastrugi. It is assumed that pdfs p(v), p(),
and p(v,) are described by truncated uniform distributions,
although the same number of unknowns would result for a
Gaussian distribution, for instance. Incidence angle inc, |3,
and transmissivities are assumed to be known quantities.
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The covariance matrix from (2) contains nine independent
parameters. However, many natural media display reflection
symmetry [39] for which the cocross correlations vanish and the
covariance matrix contains only five nonzero elements, further
reducing the number of radar observables. With 13 unknowns,
(24) thus leads to an underdetermined inversion problem, and
further simplifications and approximations are required.

First, we consider a scenario in which the sastrugi component
is assumed to be negligible, reducing the number of unknowns
to ten. However, parameters v and 1)y are not well separated,
and various combinations lead to the same ¢ in (12). To avoid
this ambiguity and as glacier ice is dominated by a horizontal
layering due to melt patterns and buried wind-induced struc-
tures, a fixed ¢ = 0 is assumed such that all scatterers lie
within the planes parallel to the Earth’s surface. Eliminating
1o and A, only eight unknowns remain, and with a fully
populated covariance matrix (nine independent observables),
it is possible to solve the system of equations. However, in
the case of reflection symmetry (five observables), the problem
remains underdetermined.

A second scenario is considered in which the volume parti-
cles are sufficiently randomly distributed such that Cf V' can
be approximated by (11) (although transmissivities should be
accounted for according to (21)). In this case, the only unknown
parameter describing the volume component is f,, and six
unknowns remain. Because there are no propagation effects,
cocross phase elements should be zero, and the covariance
matrix contains seven independent parameters. Thus, there are
sufficient degrees of freedom to solve. Reflection symmetry
will arise if vy 3 = 0° or vy s = 90°; using a priori knowledge
or copolar ratios, one could fix vy s to one of these two
values, and the problem is still invertible for the reflection sym-
metric case.

The system of equations in (24) is solved numerically, where
the solutions are constrained to be physically plausible, requir-
ing positive powers, extinctions, and distribution widths. The
optimization (cost) function was chosen to be the L, norm (sum
of square residuals) of the set of nonzero covariance matrix
elements.

B. Simulation Results

Simulated data are used to evaluate and validate the presented
models and parameter retrieval techniques using the Monte
Carlo method; correlations between polarizations are taken into
account (see procedure in [22]), and fully developed speckle
is assumed. For each scenario, polarimetric decomposition was
performed on 512 x 512 independent realizations, and covari-
ance matrices with 100 independent looks were used, balancing
the need for spatial resolution while ensuring sufficient samples
for a robust estimate.

Realistic values of snow and firn dielectric constants and
surface roughness parameters were used from the literature.
Volume scattering power coefficients f,’s were determined
using HV magnitudes from the experimental data (Section IV).
For oriented volumes, extinctions were set to k, = 0.25 dB/m
and x;, = 0.2 dB/m, and differential refractivity Ay was set to
20% of its maximum possible value when all ice crystals are in
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perfect alignment. A maximum Ay of 0.01 was derived from
the dielectric anisotropy of a single ice crystal in [30].

As described in Section III-A, not all model configurations
can be inverted from a single covariance matrix, but the two
cases discussed in Section III-A are applied to several scenar-
ios.

1) Simulation of an oriented volume under ground (no
sastrugi).

2) Simulation of a random volume under ground with
sastrugi.

3) Consideration of the inversion of a random volume under
ground with sastrugi exhibiting near-reflection symme-
try. Scenario 3a inverts for all parameters, and 3b assumes
fixed vy s = 0.

4) Simulation of a random volume under ground with sas-
trugi exhibiting perfect reflection symmetry (fix vg ).

5) Simulation of an oriented volume under ground with
sastrugi. Examining the impact of assuming a random
volume in the presence of an oriented one.

For a given observed covariance matrix, the inverted param-
eters will be critically dependent upon the choice of scattering
mechanisms included in the decomposition model.

To assess the stability of the inversion, simulations using both
a priori knowledge to initialize parameters to their true values
and without a priori knowledge were carried out. Tables III and
IV in the Appendix list the modeling parameters and parameter
retrieval performance, respectively, for the various scenarios at
L-band at an incidence angle of 40°. By convention, power ex-
tinction coefficients are expressed in decibels per meter which
may be converted to Nepers per meter through division by
10log,, e. Normalized powers are quoted where the sum of all
contributions is unity (Pg* + P,' + P = 1). The percentage
of pixels not meeting convergence criteria for each scenario
is given in Table V, also in the Appendix. For simulations
at P-band, the relative amount of surface scattering P" was
higher, and the normalized volume scattering contribution P}
was lower than at L-band due to low HV magnitudes; smaller
extinctions were used in the simulations in accordance with
scattering physics. However, parameter estimation accuracies
were very similar to those at L-band, and thus, for conciseness,
they are omitted here.

Scenario 1 (oriented volume under ground):

1) If a priori values of the unknowns are given as initial
parameters for the optimization, powers and volume ori-
entation properties could be reliably estimated. However,
Ka» Kb, and Ay estimates have increased variances, i.e.,
display high sensitivity to speckle, suggesting ill condi-
tioning. In addition, Ay estimates are strongly biased.

2) When no a priori knowledge is available, the percent-
age of pixels for which no convergence is achieved in-
creases substantially (Table V), and the bias in nearly
all estimated parameters is significantly larger, indicating
instability of the optimization and its sensitivity to local
minima.

Scenario 2: If a random volume under ground is considered
in the presence of sastrugi, inversion results are fairly accurate,
and there is negligible sensitivity to the initial parameters.
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Scenario 3 (for which vy s = 5° generates a nearly reflection
symmetric covariance matrix):

1) The power coefficients and distribution width are well
estimated for 3a, although there is a large bias in esti-
mated vy 5, even with a priori information. A smaller true
1 s value leads to smaller cocross covariance elements in
(22) and, thus, to increased speckle noise power for these
elements which is mistaken for a large nonzero mean
sastrugi orientation.

2) The inversion from 3a suggests that if cocross correlation
elements have low magnitudes, it may be preferable to fix
g s as in 3b, with more favorable inversion results.

Scenario 4: This scenario reveals the robust performance of
the inversion algorithm in decomposing a random volume under
ground if reflection symmetric sastrugi may be assumed.

Scenario 5: Because a single covariance matrix does not
allow separation of ground, oriented volume, and oriented
sastrugi components simultaneously, it is of interest to de-
termine the decomposition performance when a random vol-
ume is assumed despite the presence of a certain degree of
orientation.

1) The volume is characterized by a random distribution of
orientation angles in v (Av = 90°), although 1) is fixed
to zero.

2) In Table IV, scenario 5 shows reasonable accuracies in
estimating the power coefficients, although the distribu-
tion width Avy is severely biased toward lower (more
oriented) values to compensate for the assumption of a
random volume. Thus, if an oriented volume is suspected
to exist and the three-component decomposition with a
random volume is applied, caution should be used in
interpretation of the sastrugi orientation parameters.

A visual representation of parameter estimation using the
simulated data without a priori information is shown in Fig. 4.
It is seen that scenario 1 has high uncertainties in extinction
and Ay parameters and that scenario 3a has a strongly biased
Vg s estimate. Common to all scenarios are low biases in power
estimates, although variances in volume and sastrugi powers
and sastrugi orientation are somewhat large. The best accura-
cies are obtained assuming reflection symmetry in scenarios
3b and 4. As expected, for all scenarios, inversion rates are
higher when initial values lie close to the true parameters
(Table V), although in all cases other than scenario 1, there
is a high rate of inversion (> 95%) without requiring a priori
information and comparable accuracies to the a priori case.
In summary, results indicate that inversion of the full-oriented
volume can be unstable with large uncertainties, but that mod-
eled powers and orientation characteristics can be reliably re-
trieved from the data in some cases, particularly when reflection
symmetry can be assumed. Further performance improvements
could be achieved by increasing the number of looks used for
covariance matrix estimation (in simulations, standard devia-
tions were roughly halved using 500 compared to 100 looks);
this is accompanied by a significant loss in spatial resolu-
tion, which may, however, be acceptable over homogeneous
ice sheets.

IV. EXPERIMENTAL DATA
A. Test Sites

The test sites are located on the Austfonna ice cap, situ-
ated on the island of Nordaustlandet in northeastern Svalbard,
Norway (79.7° N, 24.0° E). Two sites were overflown, one in
the firn zone near the summit of the ice cap (referred to as
“Summit”) and one in the superimposed ice (SI) zone near the
Etonbreen outlet glacier (“Eton”).

The sites have differing near-surface structure due to
variation in summer melt. In the firn zone, meltwater percolates
downward before refreezing into horizontally distributed ice
layers or ice lenses and vertically distributed ice pipes, which
can appear extremely bright in SAR imagery [8]. In the SI
zone, meltwater freezes onto the cold glacier ice at the base of
the snowpack, forming more homogeneous SI. Topography is
very gentle with surface slopes of less than a few degrees at
both sites.

B. SAR Data and Ground Measurements

The airborne SAR data were acquired as part of the ICESAR
campaign in spring 2007, which was a joint project between
the Microwaves and Radar Systems Institute of DLR and
the Alfred-Wegener Institute, and supported by the European
Space Agency. Fully polarized L-band (1.3 GHz) and P-band
(350 MHz) data were collected using DLR’s E-SAR system.
Incidence angles varied from 25° to 50°, and the data have a
resolution of 2.1 m x 1.0 m in slant range and azimuth, respec-
tively. Data were acquired in March and April to investigate the
temporal evolution of the polarimetric signatures.

Ground measurements were collected by a team from the
University of Oslo and the Norwegian Polar Institute as part
of CryoSat validation activities. Meteorological, snow stratig-
raphy, ground penetrating radar, and neutron probe data (from
which density estimates were derived for Section II-B-3) were
acquired during a two-week period in 2007, spanning the end
of April and beginning of May prior to spring melt.

1) Polarimetric Signatures: In the following, a brief review
of the polarimetric properties at the Summit and Etonbreen sites
at both L- and P-band frequencies is given. A spatial averaging
window of 100 effective looks was used to generate covariance
matrices, corresponding to an approximately square window
of 20 m x 20 m in ground range. Calibration accuracies are
estimated to be =1 dB for backscattering coefficients and £10°
for copolar phase imbalances.

Interpretation of SAR data over ice can be challenging as
backscatter sources from the surface to the depth of penetration
are integrated within one pixel. Fig. 5 shows composite Pauli
RGB images which roughly indicate the presence of vari-
ous scattering mechanisms, where blue (HH+VV) represents
surface scattering, green (2HV) represents volume scattering,
and red (HH-VV) represents dihedral scattering or a large
copolar difference. The Summit L-band image [Fig. 5(a)] is
relatively homogeneous with stronger surface scattering (blue)
in near range. P-band Summit [Fig. 5(b)], with deeper pene-
tration depths and less scattering from firn crystals, reveals the
presence of multiple ice features, including volume scattering
(green) from a well-defined area of possible melt features in
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Fig. 4. Simulation results for polarimetric decomposition scenarios without
a priori information. True parameter values are shown with a cross (x), and
estimated values (including standard deviation error bars) are shown with a
diamond (¢).

near range and a long ridgelike feature in far range. For the
Etonbreen test site, both L- and P-band [Fig. 5(c) and (d)] show
similar features, with areas of increased volume scattering and,
particularly in near range, areas of increased HH-VV backscat-
ter (red), potentially due to horizontally oriented features.

Fig. 6 shows backscatter coefficients (o) averaged through
azimuth to reveal trends with incidence angle for the March
data; trends in April are similar and are therefore not shown.
Decreasing trends in ¢ with incidence angle are seen for both
test sites, particularly for the copolarized channels which are
expected to experience significant surface scatter at the snow—
ice interface. Summit backscattering coefficients are approxi-
mately 15 dB larger than those at Etonbreen for L-band and
7 dB larger for P-band, which could be attributed to increased
volume scattering at Summit as well as to smoother ice layers at
Etonbreen, thus decreasing the amount of backscattered energy.

As the decomposition approach described in Section Il relies
on the presence (or lack) of reflection symmetry, correlations
in the experimental data are examined. Coherence magnitude
histograms of the three linear polarization combinations are
shown for the March acquisitions in Fig. 7 (April values are
similar and are thus not shown). Copolar coherences are high
for both test sites and frequencies, suggesting strong surface
scattering. At Summit, cocross correlations are quite low in
Fig. 7(a) and (b), with mean values of ~0.25 or less. At
Etonbreen [Fig. 7(c) and (d)], cocross correlations are slightly
elevated compared to Summit and have longer tails, implying
that, in certain areas, reflection symmetry may not apply. Alter-
natively, the degree of reflection symmetry can be determined
by comparing the determinant of the observed covariance ma-
trix det(CHY") with the determinant of the covariance matrix
obtained using the five nonzero covariance elements in the
reflection symmetric case, as suggested in [40]. Fig. 8 shows
the det(CHY)/ det(Cgf}gym) ratio for the March data; values
close to one indicate the presence of reflection symmetry.
Again, Summit displays strong reflection symmetry at both

(a) Summit, L-band

(b) Summit, P-band

(c) Eton, L-band

(d) Eton, P-band

Fig. 5. Pauli RGB decomposition of March PolSAR data in slant-range
geometry of the Austfonna ice cap. Flight (azimuth) direction is from bottom
to top, and range direction is from left to right. L- and P-band images represent
approximately the same area.
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versus incidence angle (data have been averaged through azimuth) for the
March acquisition. Mean standard deviation (the average of standard deviations
taken for each azimuth line) is also plotted.
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frequencies, and Etonbreen is largely reflection symmetric,
although there are patches where it does not apply which could
indicate areas of scattering from a potential oriented volume or
oriented sastrugi (with vy s # 0°,90°). Considered as a whole,
however, cocross correlations are fairly low over both test sites
(and the reflection symmetry metric is close to one), and inver-
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Fig. 8. Degree of reflection symmetry evaluated using a ratio of covariance
matrix determinants [40] for the March acquisitions. A value close to one
(white) represents strong reflection symmetry. (a) Summit, L-band. (b) Summit,
P-band. (¢) Eton, L-band. (d) Eton, P-band.

sion stability is improved under assumption of reflection sym-
metry even in the presence of small deviations from true sym-
metry (Section III-B, scenario 3) such that reflection symmetry
will be assumed for decomposition purposes in this paper.

The copolarization ratio |[HH|? /|[VV|? is also of interest as it
is an indicator of dominant scattering characteristics. In terms
of (24), values of <1 can indicate SPM surface scattering or
the presence of vertically oriented features, ~1 is evidence
of a rough surface or random volume scattering, and >1 is
consistent with scattering from horizontally oriented features.
It is seen in Fig. 6 that ol > oV, for L-band at both test
sites, whereas for P-band in March, the copolar o9’s are more
similar. Fig. 9 shows the copolar ratios for both March and
April acquisitions. The temporal differences are discussed in
the subsequent section, but it is seen that in April, the ratio is
greater than unity nearly everywhere. This is not an isolated
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reference, a solid black line at a phase difference of zero and observed values
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result as larger HH than VV backscattering coefficients have
also been reported for glacier ice at L- and P-band using the
AIRSAR sensor of the NASA Jet Propulsion Laboratory over
Greenland in [9] and for SIR-C L-band data over certain high-
elevation areas in Tibet in [13], although it was not attempted to
explain the origin of these differences. The combination of high
circular polarization ratios (o, /oy, > 1) and high linear po-
larization ratios (o{}y, /0%y > 1/3) as observed in [8] and [9]
was, however, not seen in the Svalbard data used in this work.
A further polarimetric quantity of interest is the copolar
phase difference ¢up_vv due to its relatively large values
for glacier ice. Fig. 10 shows ¢up_vv for both March and
April. The clearly nonzero values suggest the presence of an
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oriented volume. As shown in (19), for an infinite volume, even
a very small Ay (corresponding to a slight orientation) can
lead to a large copolar phase difference. For instance, using
the parameters from Table III yields ¢aa-pp =~ 50° in the
volume component. The phase differences in Fig. 10 show a
wide variation between —40° and 90°, dependent on both fre-
quency and test site, although an increasing trend in the phase
with incidence angle is observed for all passes. An infinite
oriented volume alone is not able to explain such large phase
variations with incidence angle; (19) has no incidence angle
dependence on the copolar phase in the eigenbasis and therefore
displays only minimal changes with 6;,. upon projection to
the HV basis. The incidence angle trend is instead attributed
to a decreased ground contribution (for which ¢g ~ 0°) with
increasing 6y, resulting in a larger relative oriented volume
contribution and larger phase differences at higher ;..

Only a few copolar phase results are quoted in the literature
as most research has been conducted with backscattering power
coefficients, but for #i,. > 40°, dyp_vv = —29° and —1°
were reported for L- and P-band over Greenland [9], while the
study in [12] cites values of 18° (L-band) and 7° (P-band) in
the Alps using the same sensor. Although an accurate modeling
of the copolar phase for glacier ice is not yet available and
will perhaps require fully phase-coherent models, taking into
account multiple scattering and coupling between scattering
mechanisms, a combined oriented volume and surface response
can explain some of the observed properties.

2) Temporal PolSAR Signatures: Comparisons are made be-
tween the two temporal acquisitions to examine the evolution
and transformation of SAR ice signatures in the intervening
time period of one month. Fig. 9 shows the copolar ratios for
March and April, where the ratio for a 1.5-m corner reflector
(CR) in each scene is also given to confirm that the differences
are not due to a calibration error. Fig. 10 shows the copolar
phase differences for both acquisitions. Theoretically, a CR has
|[HH|?/|VV|? = 1 and copolar phase difference ¢yp_yvv = 0°,
although these values may be biased by the background ice
corrupting the CR signal. Particularly large variations are seen
in the CR copolar phase differences at P-band in Fig. 10(b) and
(d), which are attributed to a low signal-to-clutter ratio, since
the 1.5-m CRs are suboptimal for P-band.

Although the copolar phase differences between acquisitions
in Fig. 10 are minimal, the changes in the polarimetric ratios be-
tween March and April in Fig. 9 are of interest. No melt events
are suspected to have occurred between the two acquisitions
as automatic weather stations (AWSs) positioned close to both
sites confirmed that temperatures remained below zero. In the
absence of melt, it is postulated that changes could only have
occurred at the glacier surface, likely due to sastrugi formation.
The AWSs recorded a major storm in early April with peak
wind speeds exceeding 20 m/s and significant precipitation
which could have led to large changes in the surface structure.
As no significant variations were observed in the copolar phase
difference, it is assumed that the underlying volume remained
unchanged, whereas the sastrugi component (shown in (24)
to influence the backscattered powers) is able to account for
changes in the copolar ratio without introducing an additional
phase component.
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(b) P’ (L-band) (c) Pj* (L-band)

(a) P; (L-band)

Fig. 11.
ground, volume, and sastrugi powers, respectively.

V. RESULTS

Polarimetric decomposition as described in Section III-A
was applied to the experimental data. Based on the polarimetric
signatures of the SAR data, it was determined that the sastrugi
component is necessary to account for temporal differences
in backscatter, and thus, the three-component surface, random
volume, and sastrugi decomposition is chosen for inversion.
Although the data display potential oriented volume effects, a
random volume is used since a combined model with surface,
oriented volume, and oriented sastrugi has too many unknowns
to invert using a single covariance matrix. It is recognized that
this may lead to possible errors in the inversion, the conse-
quences of which were simulated in Section III-B (scenario 5).
Decorrelation of the crosspolar channels was used to estimate
the noise power in (24) using the method described in [38].
Signal-to-noise ratios were above 25 dB for all passes except
Etonbreen, P-band, for which the additive noise correction
becomes necessary.

At both test sites, cocross covariance elements had low mag-
nitudes, and thus, reflection symmetry is assumed. The system
of equations is balanced, consisting of four radar observables
(three magnitudes |Spn|?, |Svv|? |Suv|? and complex value
(Suu Sy )) and five real unknowns fy, fy. fs, ¢, and Avg,
where v  is fixed to zero due to the strong HH response. vy s
could have been chosen on a pixel-by-pixel basis depending
on the value of [HH|?/|VV|?, but such small-scale fluctua-
tions of mean sastrugi orientation are inconsistent with reality.
However, in the presence of more complex topography, longer
and wider scenes from spaceborne sensors, or larger absolute
powers of the cocross covariance elements, a different value of
Vo s should be used or estimated from the data.

Mlustrations of the normalized power components for L- and
P-band March acquisitions at both Summit and Etonbreen are
shown in Figs. 11 and 12. Fig. 13 shows inverted sastrugi
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(d) Py (P-band)

(e) P} (P-band) (f) P (P-band)

Polarimetric decomposition of Summit, March PolSAR data for (a)-(c) L-band and (d)—(f) P-band, where Pj', P, and P represent normalized

S

distribution widths for March L-band. Apart from the relative
sastrugi and volume powers, results for April are comparable
to those for March and are not displayed. Table I shows the
mean normalized power levels and distribution widths averaged
over each image as well as inversion rates for both March
and April acquisitions. This gives an overview of the rela-
tive scattering contributions, although values can be mislead-
ing due to inhomogeneities within the scene, particularly at
Etonbreen.

VI. DISCUSSION
A. Decomposition Parameters

All passes exhibit trends of decreasing surface power with
increasing incidence angle as expected from scattering the-
ory. At Summit L-band [Fig. 11(a)-(c)], the scene is very
homogeneous, and few ice features are discernible. At P-band
[Fig. 11(d)—(f)], more ice structure is visible, with increased
volume scatter P in an irregularly shaped area in the upper left
and along a ridge-type feature in far range [Fig. 11(e)]. Since
these features are not visible at L-band, this suggests that these
areas are indeed volume-type scatter and have been correctly
identified as such by the decomposition. As Summit lies in the
firn zone, these regions of volume scattering could correspond
to areas of enhanced melt features such as ice pipes and lenses.
Relative volume contributions P;'’s were larger for Summit
than for Etonbreen at both frequencies. This is expected as
Summit is in the firn zone with many high-backscatter ice
inclusions, whereas Etonbreen has fewer volume scatterers on
the order of the wavelength.

Sastrugi power P!' is greater at L-band than at P-band,
perhaps because continuous sastrugi segments are more preva-
lent at L-band as the wavelength (0.23 m) is nearly four
times smaller than at P-band (0.86 m) and because P-band
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(a) Py (L-band) (b) P} (L-band) (c) P (L-band)

(d) Py (P-band)

(e) P} (P-band)

(f) P (P-band)

Fig. 12. Polarimetric decomposition of Etonbreen, March PolSAR data for (a)-(c) L-band and (d)-(f) P-band, where P7', P’, and P}' represent normalized

ground, volume, and sastrugi powers, respectively.

90

72

54

36

(a) Summit, L-band

(b) Eton, L-band

Fig. 13. Distribution widths Av; [°] from decomposition of L-band March
PolSAR data.

penetrates deeper into the ice. Sastrugi distributions widths
Avg’s (Fig. 13) are fairly wide with means of ~60° for
L-band Summit and Etonbreen. As shown in the simulations
of Section III-B (scenario 5), these widths may be significantly
underestimated in the presence of an oriented volume. At Eton-
breen L-band, sastrugi powers are large in far range [Fig. 12(c)],

TABLE 1
NORMALIZED POWERS FROM THREE-COMPONENT DECOMPOSITION OF
THE EXPERIMENTAL DATA AVERAGED ACROSS THE ENTIRE IMAGE

P} P} P! Avs % non-
invertible
Summit L Mar 050 020 029 643 12
Apr 041 003 056 631 08
P Mar 062 032 007 237 02
Apr  0.61 0.14 025 419 1.4
Eton L Mar 056 008 036 548 13
Apr 056 008 036 568 08
P Mar 079 019 002 105 02
Apr 074 015 0.10 223 05

although these areas also possess large distribution widths
[Fig. 13(b)], such that the decomposition could be mistaking
a slight orientation in the volume for the presence of sastrugi.
In near range, where large (HH-VV) powers were seen in the
Pauli image of Fig. 5(c), the orientation distribution widths
are narrower and the sastrugi powers are lower, which is more
realistic. At P-band, sastrugi powers are very low, such that no
meaningful information on the sastrugi widths can be inferred.

B. Temporal Change

A temporal comparison between March and April shows
a clear difference between all passes except Eton L-band
(Table I). Both test sites show similar ground responses for
March and April, but the higher HH levels present in April
are attributed to elevated sastrugi contributions. The relative
volume contribution has thereby decreased, perhaps being
masked by the overlying sastrugi. The three-component model
is thus able to offer a plausible explanation for fluctuations in
polarimetric signatures over winter scenes.
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Fig. 14. Plot of selected wind vectors at an AWS near Etonbreen. Wind
intensity is given by the radial distance in meters per second, wind direction
is given by the angle from the positive y-axis (north). SAR heading is the thick
arrow. (a) Intensity of > 8 m/s. (b) Relative humidity of > 95%.

C. Validation

Validation of the decomposition results is made difficult due
to a lack of ground measurements. However, some support for
the use of 1y s =0 in the decomposition is given by mete-
orological data. In Fig. 14, the wind intensity and direction
recorded hourly during the intervening time period between
SAR acquisitions are shown on a polar plot. Vectors are plotted
for wind magnitudes of > 8 m/s (the minimal threshold for
blowing snow [1]) in Fig. 14(a) and for periods with relative
humidity of > 95% (signifying precipitation) in Fig. 14(b),
conditions under which sastrugi formation is enhanced. The
SAR along-track heading is given in red. Fig. 14(a) and (b)
show trends to the southwest which roughly agree with the
along-track direction of the SAR. As sastrugi tend to form
parallel to the prevailing winds, it is thus expected that sastrugi
center orientations lie approximately parallel to the SAR h-axis,
i.e., aligned along vy s >~ 0.

It is recommended that ground measurements of sastrugi
size, orientation, and extent, as well as snow—ice roughness
characteristics, be made simultaneous to SAR acquisitions to
aid in the validation of future campaigns.

VII. CONCLUSION

In this paper, decomposition of PolSAR observables over
glacier ice into their constituent scattering mechanisms has
been addressed. A model of the polarimetric covariance matrix
is used to separate the backscattered signal into surface, vol-
ume, and sastrugi components. The novel sastrugi component
offers a plausible explanation for changes in the copolar ratio
in the absence of melt. Both random and oriented versions of
the volumetric scattering model were presented, incorporating
polarimetric-dependent transmissivities as well as differential
extinction and refractivity effects. The proposed model has the
advantage of a direct relation of the angles v and ¢ to an Earth-
based reference system, aiding in physical interpretation. The
model has been evaluated and validated on simple forward-
modeling simulations and was applied to L- and P-band polar-
imetric airborne data over two glacier test sites with varying
near-surface structure. Decomposition results conform to
known melt characteristics and prevailing winds at the test sites.

The presented decomposition model is not intended and
cannot represent the full complexity of the scattering process
within glacier ice, but it provides a rationale of the scattering

mechanisms involved and is consistent with basic scattering
properties such as observed incidence angle trends, polarimetric
ratios, and temporal variations in backscatter. The greatest
limitation of the decomposition process lies in the model as-
sumptions, the most critical being as follows.

1) Presumption of a random volume which does not account
for differential extinction and refractivity. These charac-
teristics are required to reconstruct some of the properties
of the observed data, including copolar phases and their
behavior with incidence angle.

2) Assumption of reflection symmetry in the decomposition
of the experimental data. No precise criteria have been
derived to determine when cocross covariance elements
become significant.

3) Assumption of a dipole shape for all particles (no variable
shape, multishape distributions, shape dependence on
depth, etc., are considered).

4) Terrain slope is assumed to be constant over the averaging
window, which may not always be applicable to alpine
glaciers with steep terrain. In such a scenario, surface
range and azimuth slopes must be separated from sastrugi
and volume orientations, which is nontrivial.

The assumption of a simplified (random) volume component
was necessary because a combined model with surface, oriented
volume, and oriented sastrugi has too many unknowns to invert
using a single PolSAR image. To distinguish between oriented
volume and sastrugi elements, the observation space could be
extended using other means such as introducing multiangular
acquisitions or interferometric measurements. The use of a
multiparameter interferometric approach such as Pol-InSAR
offers additional observables to allow a characterization of the
vertical distribution of scatterers in ice. This enables parameter
estimation with more realistic and less constrained models [41],
although the challenge remains in finding a valid model that
is consistent with all observables. Further model refinements
could also be considered such as a variable particle shape
and air—snow transmission coefficients due to the polarization-
dependent sastrugi response. Perhaps more complex scattering
models must be considered for a dense medium such as ice to
account for multiple scattering between particles and coherent
scattering between mechanisms, although a lack of ground
measurements will continue to hamper such modeling efforts.

Nevertheless, this work is—in our opinion—an important
step in separating the highly variable surface and sas-
trugi components from the underlying volume. Both cur-
rent (ALOS/PALSAR) and future (e.g., Tandem-L [42] and
BIOMASS [43]) satellite missions at L- and P-band benefit
from an increased understanding of SAR observables over
glacier ice at long wavelengths. Further investigations, includ-
ing estimation of ice extinctions [44], [45], crystal sizes, and
absorption and scattering properties, could be carried out with
the isolated volume component. Validation remains challenging
due to the lack of in situ measurements, but the increasing avail-
ability of fully polarized SAR data over glacial regions has the
potential to provide additional insight into their characteristics
and their changes over time.
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TABLE II
MODEL PARAMETERS FOR THREE-COMPONENT
DECOMPOSITION OF GLACIER ICE

Scattering Parameter
Mechanism
Ground fq power coefficient
P8 ground phase component [°]
Oriented volume o power coefficient
0 mean orientation, || Earth’s surface [°]
Av distribution width of v [°]
Yo mean orientation, L Earth’s surface [°]
Aty distribution width of v [°]
Ka extinction along @ [Np/m]
Kp extinction along b [Np/m]
Ayx  differential refractivity (xa« — Xb»)
Sastrugi fs power coefficient

vos  mean orientation, || Earth’s surface [°]
Avs  distribution width of vs [°]

TABLE III
SIMULATION PARAMETERS FOR POLARIMETRIC DECOMPOSITION
SCENARIOS AT L-BAND. FOR THE SPM, [ Is THE CORRELATION
LENGTH AND s IS THE STANDARD DEVIATION
OF VERTICAL SURFACE ROUGHNESS [23]

Scenario

Parameter 1 2 3 4 5

e renow 17 . » » .

e 1t 28 » » » »

1 m] 025 » » »

s [m] 00l ” » » .
65 [°) 0 . » » .
Py 056 047 047 047 047
pr 044 034 033 033 033
pr 0.00 0.19 020 020 0.0
P [°] 0 AN N N 0
vo [°] 20 N AN AN 0
Av [°] 60 \ N\ . 90
Kq [dB/m] 025 U . . 0.25
Ky [dB/m] 020 U . . 0.20
Ax[x1073] 22 N0 N\ N\ 22
vos [°] N2 S 0 0
Avs [°] N 60 60 60 60

APPENDIX

SIMULATION PARAMETERS AND RESULTS

This section presents an overview of the unknown model pa-
rameters for the three-component decomposition in Table II as
well tables summarizing the simulation parameters (Table III),
simulation results (Table 1V), and inversion rates (Table V)
described in Section III-B.
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TABLE 1V
SIMULATION RESULTS FOR POLARIMETRIC DECOMPOSITION SCENARIOS
LISTED IN TABLE III. ERRORS (A) ARE COMPUTED
AS Az = & — x, I.E., ESTIMATED MINUS TRUE VALUES

With a priori Without a priori

Parameter True Estimated A Estimated A
Scenario 1
Pg” 0.56 0.5510.05 -0.01  0.51+0.08 -0.05
Pl 0.44 0.461+0.06 -0.02  0.50+0.09 +0.06
vo [°] 20.0 19.941.5 -0.1 12.7+6.7 -7.3
Av [°] 60.0 59.74£2.0 -0.3 65.3+8.6 +5.3
Kq [dB/m] 0.25 0.31+0.13 +0.06  0.47+0.55 +0.22
Ky [dB/m] 0.20 0.23+0.09 +0.03  0.29+0.46 +0.09
Ax [x1073] 22 3.943.2 +1.7 1.542.9 -0.7
Scenario 2
Pg? 0.47 0.461+0.04 -0.01  0.46+0.04 -0.01
P} 0.34 0.28+0.10 -0.06  0.29+0.10 -0.05
Pr 0.19 0.284+0.10 +0.09  0.26+0.11 -0.07
vos [°] 20.0 23.947.8 +3.9 25.5+10.5 +3.5
Avg [°] 60.0 57.0+11.5 -3.0 53.7+17.1 -6.3
Scenario 3a
Py 0.47 0.461+0.04 -0.01  0.46+0.04 -0.01
P} 0.33 0.21+0.10 -0.02  0.32+0.10 -0.01
Py 0.20 0.2540.10 +0.05  0.24+0.10 +0.04
vos [°] 5.0 21.0+7.9 +16.0 22.1+9.9 +17.1
Avg [°] 60.0 53.8+12.5 -6.2 52.3+16.1 =717
Scenario 3b
Pg? 0.47 0.461+0.04 -0.01  0.47+0.04 0.00
Pl 0.33 0.33+0.09 0.00  0.3240.09 -0.01
P 0.20 0.2140.08 +0.01  0.21£0.07 +0.01
v s [°] 5.0 FIX . FIX N
Avs [°] 60.0 58.7+14.6 -1.3 60.2+14.0 0.2
Scenario 4
Py 0.47 0.47140.04 0.00 0.4740.04 0.00
Pl 0.33 0.3340.09 0.00  0.3340.09 0.00
pPr 0.20 0.211+0.08 +0.01  0.21+0.07 +0.01
105 [°] 0.0 FIX N FIX N
Avs [°] 60.0 58.61+14.8 -1.4 60.8+13.8 +0.8
Scenario 5
Py 0.47 0.431+0.05 -0.04  0.43£0.05 -0.04
P} 0.33 0.3940.09 0.06  0.3840.09 +0.05
P} 0.20 0.184+0.07 -0.02  0.19+0.07 -0.01
106 [°] 0.0 FIX N FIX N
Avg [°] 60.0 42.4+17.1 -17.6 442+16.9 -15.8
TABLE V

PERCENTAGE NONINVERTIBLE PIXELS
FOR EACH DECOMPOSITION SCENARIO

% Non-invertible

Scenario L. L.
W a priori w/o a priori

1 0.9 11.5

2 0.3 2.1

3a 0.3 1.7

3b 0.7 1.0

4 0.5 1.1

5 2.8 4.3

campaign and preliminary data analysis and also the review-
ers for their constructive comments and recommendations for
this paper.
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