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Abstract— The block-matching 3-D (BM3D) algorithm, based
on the nonlocal approach, is one of the most effective methods to
date for additive white Gaussian noise image denoising. Likewise,
its extension to synthetic aperture radar (SAR) amplitude images,
SAR-BM3D, is a state-of-the-art SAR despeckling algorithm.
In this paper, we further extend BM3D to address the restoration
of SAR interferometric phase images. While keeping the general
structure of BM3D, its processing steps are modified to take
into account the peculiarities of the SAR interferometry signal.
Experiments on simulated and real-world Tandem-X SAR inter-
ferometric pairs prove the effectiveness of the proposed method.

Index Terms— Nonlocal filtering, synthetic aperture radar
(SAR), SAR interferometry (InSAR).

I. INTRODUCTION

SYNTHETIC aperture radar interferometry (InSAR) is one
of the most successful and widespread applications of

active microwave remote sensing. By unwrapping the inter-
ferometric phase, one can generate a digital elevation map
of the surface which, depending on the system parameters,
may have extremely high precision. However, because of the
strong speckle noise affecting SAR images, the interferometric
phase may be quite noisy itself, calling for the use of some
phase restoration methods before unwrapping. A straightfor-
ward solution, still widespread among practitioners, consists in
performing a simple moving average on a rectangular window
(boxcar filtering). Indeed, Seymour and Cumming [1] have
shown that, when all involved processes are wide-sense sta-
tionarity, the sample average is the maximum-likelihood (ML)
estimator for interferometric phase and coherence. However,
these images are inherently nonstationary, due to the topogra-
phy variations or line-of-sight displacements of the observed
scenes which, on the other hand, represent the most valuable
information for InSAR systems. Boxcar filtering, with its
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strong smoothing action, causes a marked loss of spatial
resolution, with large phase and coherence estimation errors
near signal discontinuities and, ultimately, inconsistent results.

The first attempts to face the problem of signal nonstation-
arity in phase estimation date back to the filters proposed by
Lee et al. [2] and by Goldstein and Werner [3], working in
the spatial and frequency domains, respectively. Both filters
estimate the local fringe morphology, and take advantage of
it, as also done explicitly in [4]. The Lee filter adapts the shape
of the estimation window to the local fringe direction in order
to average similar phase values. Likewise, the Goldstein filter
estimates the local power spectrum of the signal and keeps
only the dominant component, corresponding again to adapting
to the local direction of fringes. Moreover, if we consider the
modified Goldstein filter of Baran et al. [5], both methods
adapt to the local noise intensity, preserving the signal in case
of areas that show high coherence (i.e., low noise level).

In the last 20 years, on the wake of these pioneering
papers, a large number of filters have been proposed, following
the main approaches in image restoration. Several papers
propose improvements to the basic Lee filter, such as the
local adaptive filter [6], or directional filters [7]–[9] which
adapt shape and size of the filtering window to better fol-
low the fringe morphology. Other researchers, instead, refine
the Goldstein and Baran filters through a better estimate
of the coherence which prevents underfiltering incoherent
areas [10], [11]. Besides the frequency domain, also the
wavelet domain has been considered for phase noise filtering.
Lopez-Martinez and Fabregas [12] propose a wavelet filter
based on the suitable modeling of the interferometric phase
noise in the complex domain. Undecimated wavelet transform
and wavelet packets have also been used in [13] and [14],
respectively. In general, wavelet-domain filters guarantee a
good preservation of spatial resolution.

Other approaches rely on suitable local models, such as [15],
based on polynomial approximation, or [16], relying on sparse
coding. In [17], SAR phase filtering is recast as a Bayesian
estimation problem where the image prior is modeled as
a Markov random field (MRF) and the filtered phase field
is obtained as the configuration with maximum posterior
probability. Through a suitable choice of the image prior,
one can force the solution to possess some desired prop-
erties, such as a small number of residues or a smooth
phase field. However, this requires modeling the prior dis-
tribution, which is still an open problem. MRFs have also
been used in [18] to perform joint SAR phase and amplitude
filtering.
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In recent years, nonlocal filtering has gained huge pop-
ularity for image restoration, including SAR data filtering.
Nonlocal (NL) filtering, proposed originally [19] for natural
image denoising, has been readily applied to the restora-
tion of all kinds of SAR imagery [20], from amplitude
images [21]–[23] to interferometric phase fields [24]–[28],
to polarimetric images [28]–[30], and multitemporal stacks
[31], [32], always with state-of-the-art results. Like previous
approaches, nonlocal filtering deals with image nonstation-
arities by adapting estimation to the local signal behavior.
However, it looks for estimator pixels not only in a local
neighborhood of the target pixel but in the whole image (in
practice, a large search area), relying on a suitable measure
of patch similarity to select the best ones. This ensures that a
large number of candidate estimators are considered. Among
them, for the self-similarity property of images, it is very likely
to find good estimators, even for uncommon signals.

The nonlocal approach was first applied to interferometric
phase filtering by Deledalle et al. [24]. An iterative version of
the nonlocal means algorithm was proposed, with estimator
pixels selected through a probabilistic criterion based on both
image intensities and interferometric phase values. Further
improvements were then proposed in [25], where a pyramidal
representation is used in order to better preserve textural
details, and in [27], where nonlocal filtering is based on higher
order singular value decomposition. In [28], instead, a unified
framework is proposed where an adaptive procedure is carried
out to select the best nonlocal estimation, ensuring a good
preservation of radar structures and discontinuities.

In this paper, we propose a new filter for SAR interfer-
ometric phase, inspired to the nonlocal block-matching 3-D
(BM3D) algorithm [33]. BM3D was proposed originally for
the restoration of images corrupted by additive white Gaussian
noise (AWGN). It combines nonlocal patch-based estimation
with other powerful tools, such as wavelet transforms and
Wiener filtering, thereby exploiting effectively both local and
nonlocal redundancies. It grants major improvements with
respect to its predecessors, and provides a still unsurpassed
performance for AWGN denoising. Its adaptation to multi-
plicative noise, the SAR-BM3D algorithm [22], follows the
same general principles and architecture, but uses models and
tools more fit to SAR amplitude images. Like BM3D for
AWGN denoising, it is arguably the state-of-the-art for SAR
despeckling.

These success stories motivated us to propose, here, a non-
local filter for SAR interferometric phase restoration, called
InSAR-BM3D in the following, based on the same architecture
as BM3D, but relying on suitable phase-oriented solutions.
More in detail, we keep the two-pass strategy of BM3D, with
the second pass driven by the pilot image generated in the
first pass, and keep the grouping, collaborative filtering, and
aggregation steps. However, to adapt to the peculiar statistics
of interferometric signal and noise, a new ad hoc similar-
ity measure is defined. Moreover, for each stack of similar
blocks collected from the complex interferogram, filtering is
carried out separately on the real and imaginary parts after a
local decorrelating transform, using wavelet thresholding and
empirical Wiener filtering. The usual aggregation of results is

Fig. 1. Two-pass filtering procedure of BM3D.

then applied before inverting all steps to recover the filtered
phase.

Experiments on both simulated and real-world interfero-
metric phase images prove the effectiveness of the proposed
method in terms of both objective distortion measures and
perceived image quality.

In the following, we recall briefly the structure of the
BM3D algorithm (see Section II) then describe in detail the
proposed InSAR-BM3D algorithm (see Section III), present
the results of a number of experiments to assess performance
(see Section IV), and finally draw conclusions (see Section V).

II. BM3D ALGORITHM

The BM3D denoising algorithm, originally proposed for
AWGN [33], combines the nonlocal approach with wavelet-
domain shrinkage and Wiener filtering. The algorithm com-
prises two passes, as shown in Fig. 1. In the first pass, the noisy
image z is filtered to produce a basic estimate x̂1. Then,
the very same image is filtered again, but this second filtering
process is driven by the first-pass estimate, leading to a
largely improved result, x̂2. Both passes consist of three steps:
grouping, collaborative filtering, and aggregation, described
graphically in Fig. 2.

In the grouping step, for each image block, a number of
similar blocks are singled out all over the image and collected
in a 3-D stack. The selection is based on a block-similarity
measure, which takes into account the statistics of noise. By
filtering jointly all blocks in the stack, both local (intrablock)
and nonlocal (interblock) dependences are considered.

These dependences are exploited in the collaborative filter-
ing step to produce a denoised version of the whole stack.
As the name suggests, each block of the stack collaborates
to the restoration of all the others. Filtering is performed by
transform-domain shrinkage as follows.

1) A separable 3-D wavelet transform is applied to the
stack.

2) Shrinkage is applied to the transform coefficients to
attenuate the noise component.

3) Inverse transform produces the denoised stack.
All filtered blocks in the stack are then returned to their

original positions in the image. Since several blocks are filtered
in each stack, a large number of overlapping filtered blocks are
eventually generated. As a consequence, multiple estimates are
available for each image pixel, which are all taken into account
in the final aggregation step through a weighted average.

Although both passes of BM3D perform the same three
steps, the second pass can exploit some precious information
provided by the first one. In particular, the partially denoised
pilot image can be used to improve the selection of similar
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Fig. 2. Main conceptual steps of BM3D filtering.

blocks in the grouping step. Moreover, while in the first
pass, a simple hard thresholding (HT) is used to perform
collaborative filtering, in the second pass, a more accurate
empirical Wiener filtering can be carried out, based on the
statistics estimated on the pilot image. These modifications
significantly improve the quality of the final denoised image
with respect to the basic estimate.

III. INSAR-BM3D

In this section, we describe in detail the proposed method.
Since our aim is to extend the successful ideas and tools of
BM3D to the case of interferometric phase, we retain as far
as possible the filtering structure of the original algorithm,
introducing only the modifications necessary to adapt the
filtering process to the new domain. Therefore, we keep
BM3D’s two-pass strategy, with the second pass driven by the
pilot image output in the first pass, as well as its grouping,
collaborative filtering, and aggregation steps. However, rather
than working on the phase signal, which exhibits a large
number of annoying 2π phase jumps, we filter (after a suitable
decorrelating transform) the real and imaginary components
of the interferogram, and reconstruct the denoised phase from
these filtered versions.

In the following, we formalize our signal model, and then
describe in detail all the steps of the algorithm.

A. Signal Model

We adopt the model proposed in [24] wherein the inter-
ferometric pair (u1, u2)

T is expressed1 as the product of two
standard circular Gaussian random variables (v1, v2)

T with a
suitable matrix T (

u1

u2

)
= T

(
v1

v2

)
(1)

where

T =
(

A1 0
A2ρe− jψ A2

√
1 − ρ2

)
(2)

is the Cholesky decomposition of the desired covariance
matrix, depending only on the true amplitudes, A1 and A2,

1For notational simplicity, here and in the following, we drop spatial
dependences unless necessary.

interferometric phase ψ , and coherence ρ. As a consequence,
the complex interferogram

I = u1u∗
2 = I0 + n (3)

can be regarded as the sum of its true value

I0 = A1 A2ρe jψ (4)

and a zero-mean signal-dependent noise term

n = A1 A2ρe jψ(|v|2 − 1)+ A1 A2

√
1 − ρ2v1v

∗
2 (5)

with covariance matrix

Cn = 1

2
A2

1 A2
2

(
1 + ρ2 cos(2ψ) ρ2 sin(2ψ)
ρ2 sin(2ψ) 1 − ρ2 cos(2ψ)

)
. (6)

The terms on the main diagonal are the variances of the
real and imaginary parts of the noise. Note that, in case
of multilooked data, the covariance matrix becomes simply
Cn/L, with L the number of looks.

B. Grouping

The selection of the blocks, which are most similar to
the target block, is based on a suitable similarity measure.
In general, this measure could take into account not only
the observed phase but also the observed amplitudes and
coherence, as done, for example, in [24]. However, here we
are only interested in estimating the true phase. The possible
improvements deriving from the use of other quantities are
arguably balanced by the uncertainty in their estimation and
by the increased complexity. Hence, we resort to a phase-only
similarity measure defined as the cosine of the phase difference

S(ψ1, ψ2) = cos(ψ1 − ψ2). (7)

The similarity is maximum when the two phases coincide
(obviously, mod 2π , here and in all subsequent developments),
while it is minimum when they are opposite. In addition, near
the origin, 1− S(ψ1, ψ2) approximates the Euclidean distance
between the phases.

Let � p = {ψp1 , . . . , ψpN } be the size-N interferometric
phase block centered on the target pixel p, and �q =
{ψq1, . . . , ψqN } be the candidate estimator block centered on
pixel q . The similarity between these blocks computes as

S(� p,�q) = 1

N

N∑

i=1

cos(ψpi − ψqi ) (8)
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varying from a maximum of 1, when the phase blocks coin-
cide, to a minimum of −1, when all phases are pairwise
opposite.

In the first pass of the algorithm, lacking any side infor-
mation, this basic similarity measure is used to assess the
suitability of the block centered on q as a predictor for the
target block

S1(p, q) = S(� p,�q). (9)

In the second pass, however, a basic estimate of the inter-
ferometric phase field is already available, and can be used
to improve grouping accuracy. Replacing altogether the noisy
phases ψp with their first-pass estimates ψ̂p is not advisable,
as this would reinforce the artifacts introduced in the first pass.
Instead, following [33] and all subsequent multipass nonlocal
filters, in the second pass, we use a weighted average of the
similarity measures computed over the original noisy phases
and over first-pass estimates:

S2(p, q) = τ S(�̂ p, �̂q)+ (1 − τ )S(� p,�q ). (10)

The weight τ ∈ [0, 1], which establishes the relative impor-
tance of the two contributions, can be set based on theoretical
considerations, when possible, or on preliminary experiments.

C. Stack-Based Parameter Estimation

Assuming that the grouping process succeeds in finding
similar signal patches, the stack formed by these blocks can be
loosely regarded as a collection of independent observations of
the same signal patch, corrupted by different noise realizations.
This is the central idea on the nonlocal approach and the
ultimate reason for its success. Although only approximately
true, this multilook interpretation justifies the use of nonlocal
estimates, performed over the stack, which are usually much
more accurate than local averages, since more samples are
used. In particular, with this approach, we can easily compute
the ML estimates of coherence and phase through stackwise
averages.

Let U1 and U2 be a couple of paired stacks formed by blocks
drawn from images u1 and u2, respectively. Each paired stack
collects the target block and the M − 1 most similar blocks
drawn from the corresponding image and selected according
to the phase similarity measures. Since we collect blocks with
similar phase patterns, and of small size, we can assume the
phase to be stationary over the whole stack, namely, both in
space and across the blocks. Amplitude patterns, instead, are
not required to be similar to one another, so we assume the
amplitude to be only spatially stationary, but variable across
the blocks. Accordingly, we estimate phase and coherence over
the whole stack, but compute a separate amplitude estimate for
each block. In detail, assuming the same amplitude over the
two images, A1 = A2 = A, the ML estimate of the (square)
amplitude is

Â2
ML(m) = 1

N

N∑
i=1

|U1(m, i)|2 + |U2(m, i)|2
2

(11)

where m and i span the M blocks of the stack and the N
pixels of a block, respectively.

Then, the quantity

�̂ = 1

M

M∑
m=1

1
N

∑N
i=1 U1(m, i)U∗

2 (m, i)

Â2
ML(m)

(12)

gives us the ML estimates of coherence

ρ̂ML = |�̂| (13)

and phase

ψ̂ML = arg(�̂). (14)

Note that by performing stackwise estimates, we renounce
some resolution in favor of reliability, but this makes perfect
sense considering that in the following developments, we will
perform stackwise denoising.

D. Noise Decorrelating Transform

As said before, the proposed algorithm filters the real
and imaginary parts of the interferogram to recover the
interferometric phase only afterward. Since these components
are affected by correlated noise, as shown by (6), they
should be filtered jointly, taking into account noise correla-
tion. As an alternative, one can decorrelate the components
through an appropriate rotation, and then filter them separately.
While joint processing is theoretically superior, we follow the
approach based on decorrelating transforms, which is much
simpler and provides excellent results in a large number of
image processing problems.

For element (m, i) of the stack, the covariance matrix
between the real and imaginary parts is

1

2
A4(m)

(
1 + ρ2 cos(2ψ) ρ2 sin(2ψ)
ρ2 sin(2ψ) 1 − ρ2 cos(2ψ)

)
(15)

with ρ and ψ stationary over the whole stack but A depend-
ing on the block index m. Therefore, to remove this latter
dependence, we consider the normalized interferogram

U1(m, i)U∗
2 (m, i)

A2(m)
= IR + iII (16)

with covariance matrix

C ′
n = 1

2

(
1 + ρ2 cos(2ψ) ρ2 sin(2ψ)
ρ2 sin(2ψ) 1 − ρ2 cos(2ψ).

)
. (17)

The latter can be written as

C ′
n = QT CwQ (18)

(T indicates transpose) with Q a unitary matrix whose
columns are the eigenvectors of C ′

n , and Cw a diagonal matrix
whose entries are the eigenvalues of C ′

n . Hence, to decorrelate
the data, we must only premultiply them by Q (Karhunen–
Loève transform)

z = x +w =
(

z′

z′′

)
= Q

(
IR

II

)
(19)

so that z′ and z′′ (no more real and imaginary parts of the
data) have diagonal covariance matrix

Cz = Cw = QC ′
n QT = 1

2

(
1 + ρ2 0

0 1 − ρ2

)
(20)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SICA et al.: INSAR-BM3D: A NONLOCAL FILTER FOR SAR INTERFEROMETRIC PHASE RESTORATION 5

with unequal variances depending on the local
coherence.

The rotation matrix

Q =
(

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

)
(21)

can be computed exactly given the true phase value ψ , namely,
the very same quantity we want to estimate. However, for our
needs, we do not need perfect decorrelation in this preliminary
step, and can resort to the ML estimates of Section III-C.

E. Collaborative Filtering

We can now proceed with the actual filtering step, which is
performed by wavelet-domain shrinkage applied separately to
both components

z′ = x ′ + w′ and z′′ = x ′′ +w′′ (22)

of each rotated stack. Let us indicate with capital letters the
corresponding transforms

Z ′ = X ′ + W ′ and Z ′′ = X ′′ + W ′′. (23)

Since the two components are filtered exactly in the same way,
in the following, we will discard the apexes.

In the first pass of the algorithm, we use a 2-D biorthogonal
wavelet for spatial transform and a 1-D Haar wavelet along
the blocks. Then, a simple HT is applied, as in BM3D [33].
Accordingly, the first-pass estimate of the signal coefficient is

X̂1 =
{

Z if |Z | > Z th

0 otherwise.
(24)

The threshold is given by the noise standard deviation σW

multiplied by a constant λ

Z th = λσW . (25)

The standard deviation σW , instead, can be derived by the
blockwise estimates of coherence

σ̂W =
√
(1 ± ρ̂2)/2 (26)

with the plus[minus] sign used for the first[second] component.
In BM3D, the λ parameter is fixed to 2.7 through preliminary
experiments, and we found this value satisfactory for our case.

In the second pass, instead, discrete cosine transform (DCT)
and Haar wavelet transform are used for 2-D and 1-D trans-
forms, respectively. The clean coefficient X̂2 is estimated
through Wiener shrinkage as

X̂2 = max

(
0,

X̂2
1 − σ 2

W

X̂2
1

)
· Z . (27)

In this case, since an estimate of the true signal is already
available, this can be used to estimate the noise variance based
on the difference between the noisy quantity and its basic
estimate.

F. Aggregation

In this phase, the algorithm follows closely the original
BM3D, except for the need to work in parallel on two images.
All patches of a filtered stack are returned to their original
location, as shown in Fig. 2. Since for each pixel, multiple
estimates are obtained, due to overlapping patches, they are
all averaged, with suitable weights based on the estimate
reliability, to produce the final filtered image.

IV. EXPERIMENTAL ANALYSIS

In this section, we describe the results of a number of exper-
iments carried out to assess the performance of the proposed
method. Experiments are performed on both simulated and
real SAR interferometric data, and results are compared with
those of several widespread reference methods.

Simulated data allow us to investigate the performance in
controlled conditions by objective measures and to study the
dependence on the main signal features, especially coherence.
On the other hand, simulation methods cannot replicate the
complex features of real SAR data; Hence, we will also
conduct visual inspection on the output of the filters applied
to some real-world images.

As reference methods, we will consider the following:

1) boxcar filter with a 5 × 5 window;
2) Lee filter [2] with 16 25/27-pixel directional windows;
3) Goldstein filter [3] with dimWindow = 21 and α = 0.9;
4) NL-SAR [28] with dimWindowMax = 25 and dimPatch-

Max = 11;
5) NL-InSAR [24] with dimPatch = 7 and

dimWindow = 21.

Note that all parameters are set, when applicable, as suggested
by the authors of the original papers, or else chosen to optimize
the performance. Turning to the proposed method, all parame-
ters are fixed in advance, with no need of user intervention.
Most of them are inherited from BM3D, where an extensive
experimental analysis has been carried out to optimize them.
Others, more critical and task-specific, have been set only after
some preliminary experiments. In particular, we studied how
the performance depends on the threshold used for shrinkage λ
and on the spatial and stackwise transforms. Overall, the per-
formance appears to depend only weakly on these choices,
so we eventually used the original setting, since it has been
field-tested on a much wider set of sources, providing good
guarantees of robustness. In the grouping phase, the image is
scanned with subsampling step 3. For each 8 × 8 pixel target
patch, the 64 most similar patches in a 21 × 21 pixel search
window are collected, using the distances of (9) and (10),
respectively, in the two passes. The stack is then transformed
along spatial and stackwise coordinates for the collaborative
filtering. Spatial transforms are wavelet with bior1.5 basis
(three levels) in the first pass and DCT in the second pass,
while the Haar wavelet (four levels) is always used along the
stack. Finally, in the aggregation phase, a Kaiser window with
β = 0 is used.

To ensure reproducibility of results, the executable
code of the proposed method and the simulated
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images used in the experiments are available online at
http://www.grip.unina.it/web-download.html.

A. Experiments on Simulated Data

We generated four 256 × 256 pixel images of interest
for typical interferometric application: a Cone with circular
symmetry and constant phase gradient along the radius, a
richer image, Peaks, obtained by summing some Gaussian
profiles, which simulates a more complex scenery with a
varied geometry, a straight Ramp with variable phase gradient,
with fringe separation going from 28 to 8 pixels, and finally
an image, Squares, with a large number of phase jumps as
might occur in some urban scenarios. Data are simulated by
generating two circular complex standard Gaussian processes
and correlating them through the matrix T in (2). In order
to gain insight into the dependence of filtering quality on
phase noise intensity, coherence grows linearly from left to
right, from a minimum of 0.1 (very noisy) to a maximum
of 0.9 (almost clean). The amplitude does not impact on
noise intensity, but enters the similarity measure of NL-InSAR
and NL-SAR and therefore might affect their performance.
Therefore, in the first two images, the amplitude grows from
21 to 255 digital numbers along the y-axis, allowing us to
study its effect on the output independently of the coherence.
In the third image, it is kept constant in order not to interfere
with fringe frequency variations. In the fourth image, it follows
the clean phase (plus an offset to keep positive values) to
account for amplitude-phase correlations in urban scenarios.
Fig. 3 shows, for each of these images, the noisy original
phase image (left) and the noiseless reference (right) with the
usual false-color representation in [−π, π] as shown by the
color bar on the right.

On these images, we will compute two objective measures
of performance, the root mean square error (RMSE) between
the filtered phase image and the corresponding clean reference
and the number of residues [34] remaining after filtering.

Figs. 4–7 show, for all simulated scenes, the filtered
images (top) and the corresponding error images (bottom) for
both the proposed and the reference techniques. Numerical
results, RMSE and number of residues, are instead collected
in Tables I and II, respectively, where we report the average
over ten repetitions of the experiment (standard deviations,
always quite low, are not shown for the sake of clarity).
Moreover, in order to gain insight into the dependence on
coherence, in Fig. 8, we also show curves obtained by comput-
ing RMSE and number of residues in sliding-window modality
over vertical strips of width 32 pixels. No similar figures are
devoted to explore the dependence on amplitude, which seems
very limited.

All methods work fairly well on the right of the images
(high coherence) although the boxcar filter shows a clear loss
of resolution and the Lee filter produces some sparse residues
on the flat-phase region of Peaks. On the contrary, moving
toward the medium- and low-coherence areas, in the center and
left of the images, large differences in performance emerge.
In the absence of phase jumps, InSAR-BM3D provides by far
the best results, preserving the structure of the original phase

Fig. 3. (Left) Noisy simulated images used in the experiments and (Right)
corresponding noiseless references. (From top to bottom) Cone, Peaks, Ramp,
and Squares. In all images, the coherence increases from 0.1 to 0.9 going from
left to right.

fringes and giving rise to very few residues. NL-InSAR also
performs generally well, except in regions characterized by
low coherence and rapid phase variations, like the center of
Peaks or the left of Ramp. In these regions, in fact, only a small
number of patches similar to the target fall in the search area,
and these have low quality. This interpretation is confirmed by
the fact that the results improve again when fringe frequency
increases beyond a critical level (image top) because multiple
fringes now fit in the search area, increasing the number of
patches similar to the target. The other reference methods,
and especially the Goldstein filter, work rather poorly in low-
coherence areas, which is clear from visual inspection and
confirmed by the sliding-window performance curves. Note
that the amplitude variations in Cone and Peaks do not produce
appreciable effects on any filter. In the presence of phase
jumps, that is, in the Squares image, all methods work rather
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Fig. 4. (Top) Filtered images and (Bottom) error images generated by reference methods and InSAR-BM3D for the Cone noisy image. The error images of
NL-InSAR and InSAR-BM3D, with patches oriented along phase fringes, prove these filters’ ability to restore the general structure of the clean phase image.

Fig. 5. (Top) Filtered images and (Bottom) error images generated by reference methods and InSAR-BM3D for the Peak noisy image. NL-InSAR outputs
a very smooth phase image but does not recover well high-frequency phase fringes. In this case, InSAR-BM3D outperforms all reference methods.

Fig. 6. (Top) Filtered images and (Bottom) error images generated by reference methods and InSAR-BM3D for the Ramp noisy image. (Right) All methods
work well on the high coherence, (Left) but only InSAR-BM3D provides satisfactory results also on the low coherence. The behavior of NL-InSAR and
NL-SAR at low coherence also depends on the local fringe frequency, which impacts on the number of good patches available for filtering.

poorly, with a sharp quality impairment especially, but not
exclusively, in the low-coherence left region. On this image,
NL-InSAR and NL-SAR could be expected to outperform the

other methods since they use a similarity measure that takes
into account jointly phase and amplitude, strongly correlated
by construction. However, this does not seem to be the case.
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Fig. 7. (Top) Filtered images and (Bottom) error images generated by reference methods and InSAR-BM3D for the Squares noisy image. This is a very
challenging case and all methods perform rather poorly, even in the high-coherence region, due to the large number of phase jumps. InSAR-BM3D provides
the lowest RMSE, while Boxcar and Lee guarantee the least residuals, due to their strong smoothing.

Fig. 8. Sliding-window performance indicators. (Top) RMSE and (Bottom) number of residues for all simulated images. The indicators are computed on a
vertical slice of width 32 pixels sliding over the image. Performance improves going from left (low coherence) to right (high coherence). At low coherence,
InSAR-BM3D provides consistently the lowest RMSE, while at high coherence, all methods have a similar performance. A similar behavior is observed for
the number of residues, with InSAR-BM3D generating a very small number of residues even in low-coherence areas, in the absence of phase jumps. The
performance of NL-InSAR, otherwise competitive, is clearly impaired by the scarcity of good patches at some phase slopes (see Ramp). Note also the bimodal
behavior of the Goldstein filter, which is almost useless at low coherence, and among the best methods at medium-to-high coherence. On Squares, all methods
exhibit a much worse performance, with no large differences among one another.

All these observations find further confirmation in the
synthetic results of Tables I and II. In particular, InSAR-BM3D
is characterized by the smallest RMSE (followed closely by
NL-InSAR only for Cone) and only a few occasional residues,
except for Squares.

The phase error images, obtained as the difference between
filtered images and clean reference2 besides confirming the
above observations, provide some more information on the
noise-rejection behavior of the algorithms. Patch-based non-
local methods generate errors that are structured in patches
as well, generally aligned with the phase fringes of the

2It is worth underlining that these error images are not “method noise”
images. The former are computed with respect to the noiseless original and,
ideally, should be as smooth as possible, the latter are computed with respect
to the noisy original and, ideally, should contain all and only the image noise.

TABLE I

RMSE FOR PROPOSED AND REFERENCE METHODS

clean reference. This indicates the ability to correctly repro-
duce the correct phase structures, accounting for noise spikes
through small coherent spatial shifts of the fringes themselves.
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Fig. 9. Phase and amplitude of real images used in the experiments. (From left to right) Weihai, Java Surabaya, and Euskirchen (crop highlighted by black
box).

Fig. 10. (Top) Filtered images and (Bottom) method noise images generated by reference methods and InSAR-BM3D for the Weihai image. Several reference
methods (Goldstein, NL-InSAR, and NL-SAR) provide smoother and more pleasant images than InSAR-BM3D. This may come at the cost of detail loss (not
measurable without a ground truth) and staircase artifacts (NL-InSAR and NL-SAR). Ideally, the method noise should be a white-noise field. NL-InSAR and
NL-SAR depart markedly from this behavior, indicating possible artifacts.

TABLE II

RESIDUES FOR PROPOSED AND REFERENCE METHODS

For other methods, instead, phase errors have a fine-grain and
even white-noise structure (especially in the more noisy right
part) showing a tendency of the filtered images to “follow”
the local noise pattern rather then recovering the large-scale
structure of the noiseless reference.

B. Experiments on Real-World SAR Data

To assess the performance of the proposed method on
real-world SAR images, a set of three Tandem-X pairs has
been used. The noisy phase images are shown in Fig. 9,
together with the corresponding amplitude images, limited to
the 256 × 256 pixel section used in the experiments. In the
following, they will be referred to as Weihai, Java Surabaja,

and Euskirchen, after the regions of acquisition, in China,
Indonesia, and Germany, respectively. All images have the
same spatial resolution while showing different phase patterns
and noise levels. Figs. 10–12 show, for each of these scenes,
the filtered images (top) and the corresponding method noise
images (bottom) for both the proposed and the reference
techniques. Since for real-world images, there is no clean
reference, we cannot compute phase error images. However,
the method noise image, obtained as the difference between
the filtered image and the noisy original (rather than clean
reference), also provides some valuable information on a
method behavior. In the ideal case of perfect filtering, signal
and noise are perfectly separated; hence, the filtered image
corresponds to the ideal noise-free phase image, and the
method noise image contains only the noise component. On
the contrary, with imperfect filtering, some residual noise will
affect the filtered image, while some signal components leak
in the method noise image. Therefore, method noise images
showing traces of signal structures or departing from the
expected noiselike behavior are good indicators of filtering
imperfections.

The visual inspection of filtered images confirms, in general,
the observations made for the synthetic data. The boxcar
filter generates basically a low-pass version of the noisy
interferogram, showing blurred fringe edges as it is reasonable
to expect. By adapting the shape of the estimation window
to the fringe direction, the Lee filter preserves the details
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Fig. 11. (Top) Filtered images and (Bottom) method noise images generated by reference methods and InSAR-BM3D for the Java image.

Fig. 12. (Top) Filtered images and (Bottom) method noise images generated by reference methods and InSAR-BM3D for the Euskirchen image. NL-InSAR
apparently loses some details due to oversmoothing (see also Fig. 13). NL-SAR does not filter at all some high-activity areas, as obvious from the flat areas
in the method noise image. Boxcar, Goldstein, and InSAR-BM3D produce similar results that are semantically similar but with increasing spatial resolution.

much better than the boxcar filter while keeping the same
denoising capability. On the down side, this mechanism can
also lead to underfiltered areas with residual noise that appears
as isolated spikes over the image. Turning to the Goldstein
filter, this provides quite a good performance in terms of both
detail preservation and noise suppression, which is somewhat
surprising given the poor results observed on synthetic data.
However, remember that the Goldstein filter did work already
well on the right of the simulated images, those at high
coherence, which is the case of our real images, characterized
by a relatively high signal-to-noise ratio. In fact, this filter
relies on the estimation of a few frequency components of the
signal in the target pixel neighborhood. When data are not
reliable enough, these estimates impair rapidly, leading to the
poor results observed on the left of the simulated images.

As for the nonlocal methods, they all guarantee a strong
noise suppression. NL-SAR, as already observed on synthetic
data, seems to oversmooth the image, in general, losing
some details. This can also be observed in the method noise
images, where traces of the signal are visible. NL-InSAR,
instead, offers both strong noise suppression and good detail
preservation, providing filtered images that are very sharp and
visually appealing, like in the case of Euskirchen where large

smooth areas are obtained. In some cases, however, there
seems to be a conflict between sharpness and fidelity to the
original image structures. With reference again to Euskirchen,
for example, some “yellow” spots in the bottom of the image
are emphasized, while some more, quite similar to the former,
are removed. In the center of the image, instead, a whole
region characterized by small phase structures is reduced to
a uniform region (see also the enlarged crop of Fig. 13).
Lacking a ground truth, we cannot speak of errors, but results
are dubious in these cases. In addition, in areas characterized
by a linearly varying phase, NL-InSAR tends to produce a
staircase output signal, with sharp transitions that may be
visually appealing but hardly correct. This problem, common
to most filters based on nonlocal means, becomes relevant
in interferogram filtering, where regions with linear phase
variations occur frequently due to constant slope terrains.
The staircase effect of NL-InSAR is even more evident in
the unwrapped phase image of Fig. 14 (center) while it is
absent when boxcar (left) or InSAR-BM3D (right) is used
for filtering. Finally, the proposed InSAR-BM3D seems being
able to remove a great deal of noise, ensuring also good detail
preservation. The output phase fringes are less sharp than
those of NL-InSAR, but all details of interest survive, and
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Fig. 13. Some filtering results for a crop (see Fig. 9) of the Euskirchen image.
At a visual inspection, InSAR-BM3D looks more faithful to the original than
NL-InSAR.

Fig. 14. Some unwrapping results for the Weihai image. InSAR-BM3D
and NL-InSAR provide a smoother result than boxcar. NL-InSAR, however,
introduces some staircase effects.

no staircase effect is observed. Indeed, the structure of the
filtered phase is very similar to that of boxcar or Lee filtering,
only less noisy. If the boxcar filtered image is regarded simply
as a low-pass version of the original, this observation supports
our claim about the fidelity of InSAR-BM3D filtering.

An analysis of the method noise images provides further
support to the above observations. The method noise images
produced by InSAR-BM3D and boxcar filtering are the most
similar to white-noise fields, expected with perfect filtering.
Accordingly, signal structures are well preserved. For the
other techniques, method noise images appear generally more
grainy. This holds especially for NL-InSAR and NL-SAR,
the latter showing on Euskirchen both a leakage of signal
structures (oversmoothing) and a flat area (no filtering).

V. CONCLUSION

We have proposed InSAR-BM3D, a new nonlocal filter for
SAR interferometric phase images, which keeps the algorith-
mic structure of BM3D, but adapts the individual processing
steps to the peculiarities of InSAR data. Experiments on
simulated images show the proposed filter to outperform all
references in terms of objective quality measures, mean square
error, and number of residues. The performance gain is espe-
cially relevant in areas characterized by low-coherence or rapid
phase variations. These observations are mostly confirmed
by the visual inspection of filtering results on several real-
world high-coherence InSAR images. Clearly, a much larger
experimental basis is necessary to draw solid conclusions
about the merits of the proposed filter. To this end, and also
to guarantee the full reproducibility of research, both the
proposed filter and the simulated InSAR images are made
available online.

Experiments on real InSAR images show that several fil-
ters, and in particular, the Goldstein filter, NL-InSAR, and
InSAR-BM3D, provide valuable results, although with very
different features. This suggests a path for future research,

which may focus on the development of a new method which
keeps the best features of these different approaches, or some
form of postfiltering fusion, as proposed in [35]. A further
topic of interest for future work is the development and testing
of methods based on the joint processing of all data, rather than
on the use of decorrelating transforms.
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