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ABSTRACT
We propose VarFA, a variational inference factor analysis
framework that extends existing factor analysis models for
educational data mining to efficiently output uncertainty es-
timation in the model’s estimated factors. Such uncertainty
information is useful, for example, for an adaptive testing
scenario, where additional tests can be administered if the
model is not quite certain about a students’ skill level esti-
mation. Traditional Bayesian inference methods that pro-
duce such uncertainty information are computationally ex-
pensive and do not scale to large data sets. VarFA utilizes
variational inference which makes it possible to efficiently
perform Bayesian inference even on very large data sets.
We use the sparse factor analysis model as a case study and
demonstrate the efficacy of VarFA on both synthetic and real
data sets. VarFA is also very general and can be applied to a
wide array of factor analysis models. Code and instructions
to reproduce results in this paper are available at https:

//tinyurl.com/tvm4332. An extended version of this pa-
per is available at https://arxiv.org/abs/2005.13107.

1. INTRODUCTION
A core task for many practical educational systems is stu-
dent modeling, i.e., estimating students’ mastery level on a
set of skills or knowledge components (KC) [14, 6]. Such es-
timates allow in-depth understanding of students’ learning
status and form the foundation for automatic, intelligent
learning interventions. A fruitful line of research for stu-
dent modeling follows the factor analysis (FA) approach. FA
models usually assume that an unknown, potentially multi-
dimensional student parameter, in which each dimension is
associated with a certain skill, explains how a student an-
swers questions and is to be estimated.

Most of the aforementioned FA models compute a single
point estimate of skill levels for each student [13, 1, 3, 9, 5,
15]. Often, however, it is not enough to obtain mere point
estimates of students’ skill levels; knowing the model’s un-
certainty in its estimation is crucial because it potentially

helps improve the model’s performance and improve both
students’ and instructors’ experience with educational sys-
tems. For example, in adaptive testing systems [4, 16],
knowing the uncertainty in model’s estimation could help
the model intelligently pick the next test items to most effec-
tively reduce its uncertainty about estimated students’ skill
levels. This will help to potentially reduce the number of
items needed to have a confident, accurate estimation of the
students’ skill mastery level, saving time for both students
to take the test and instructors to have a good assessment
of the student’s skills.

In this work, we propose VarFA, a novel framework based
on variational inference (VI) to perform efficient, scalable
Bayesian inference for FA models. The key idea is to ap-
proximate the true posterior distribution, whose costly com-
putation slows down Bayesian inference, with a variational
distribution. In addition, this variational distribution is very
flexible and we have full control specifying it, allowing us to
freely use the latest development in machine learning, e.g.,
deep neural networks (DNNs), to design the variational dis-
tribution that closely approximates the true posterior. Thus,
we also regard our work as a first step in applying DNNs to
FA models for student modeling, achieving efficient Bayesian
inference (enabled by DNNs) without losing interpretability
(brough by FA models). We demonstrate the efficacy of our
framework on three real data sets, showcasing that VarFA
substantially accelerates classic Bayesian inference for FA
models with no compromise on performance.

2. BACKGROUND
We first set up the problem and review related work. As-
sume we have a data set Y ∈ RN×Q organized in matrix
format where N is the total number of students and Q is
the number of questions. This is a binary students’ an-
swer record matrix where each entry yij represents whether
student i correctly answered question j. Usually, not all
students answer all questions. Thus, Y contains missing
values. We use {i, j} ∈ Ωobs to denote entries in Y , i.e., the
i-th student’s answer record to the j-th question, that are
observed.

We are interested in models capable of inferring each i-th
student’s skill mastery level that can accurately predict the
student’s answers given the above data. These models are
often evaluated on the prediction accuracy and whether the
inferred student skill mastery levels are easily interpretable
and educationally meaningful. We now review factor anal-

Zichao Wang, Yi Gu, Andrew Lan and Richard Baraniuk
"VarFA: A Variational Factor Analysis Framework For Efficient
Bayesian Learning Analytics" In: Proceedings of The 13th
International Conference on Educational Data Mining (EDM
2020), Anna N. Rafferty, Jacob Whitehill, Violetta
Cavalli-Sforza, and Cristobal Romero (eds.) 2020, pp. 696 - 699

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 696

https://tinyurl.com/tvm4332
https://tinyurl.com/tvm4332
https://arxiv.org/abs/2005.13107


ysis models (FA), one of the most widely adopted and suc-
cessful methodologies for the student modeling task.

Many FA models, despite differences in their respective math-
ematical formulae, modeling assumptions and the available
auxiliary data used, can be unified into a canonical formu-
lation below

P(yij = 1) = σ(c>i mj + µj) , (1)

where ci ∈ RK , mj ∈ RK and µj ∈ R are factors whose
dimension, interpretations and subscript indices depend on
the specific instantiations of the FA model. We will use
this general formulation in the rest of this paper. Usually,
FA models obtains a point estimate of ci, mj and µj . We
will show next how to obtain uncertainty estimation of these
variables of interest.

3. VARFA: A VARIATIONAL INFERENCE
FACTOR ANALYSIS FRAMEWORK

The core idea of VarFA follows the variational principle, i.e.,
we use a parametric variational distribution to approximate
the true posterior distribution. VarFA is highly flexible and
efficient, making it suitable for large scale Bayesian inference
for FA models in the context of educational data mining. In
this current work, we focus on obtaining credible interval
for the student skill mastery factor ci’s as a first step of
VarFA. Extension to VarFA to full Bayesian inference for
all unknown factors is part of an ongoing research; see 5 for
more discussions.

Now, we explain in detail how to apply variational inference
for FA models for efficient Bayesian inference. Because the
posterior distribution is intractable to compute, we approxi-
mate the true posterior distribution for ci’s with a paramet-
ric variational distribution

p(C|Y ,M,µ) ≈ qφ(C|Y ) =

N∏
i=1

qφ(ci|yi) , (2)

where φ is a collection of learnable parameters that
parametrize the variational distribution and yi is all the
answer records by student i. Notably, we have removed the
dependency of the variational distribution on ψ and θ so
that the variational distribution is solely controlled by the
variational parameter φ. Thus, the design of the variational
distribution is highly flexible. All we need to do is to specify
a class of distributions and design a function parametrized
by φ to output the parameters of qφ. Common in prior lit-
erature is to use a Gaussian with diagonal covariance for
qφ:

qφ(ci|yi) = N (ui, diag(vi)) , (3)

where its mean and variance [u>j ,v
>
j ]> = fφ(yi). We can

use arbitrarily complex functions such as a deep neural net-
work for fφ as long as they are differentiable. With the
above approximation, Bayesian inference turns into an opti-
mization problem under the variational principle, where we
now optimize a lower bound, known as the evidence lower
bound (ELBO) [2], of the marginal data log likelihood.

We form the following optimization objective to estimate φ

Table 1: Student answer prediction erformance comapring
VarFA to SPARFA-M on Assistment, Algebra and Bridge
data sets. ↑ and ↓ denote higher and lower is better, respec-
tively.

(a) Assistment

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.7074±0.0044 0.7101±0.0048
AUC ↑ 0.756±0.048 0.7635±0.0036
F1 ↑ 0.7746±0.0029 0.7765±0.0014
Run time (s) ↓ 5.3319±0.2774 6.9167±0.1074

(b) Algebra

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.7735±0.0037 0.7774±0.0031
AUC ↑ 0.8137±0.003 0.8245±0.002
F1 ↑ 0.8465±0.0021 0.8486±0.001
Run time (s) ↓ 8.464±0.4568 10.3335±0.4435

(c) Bridge

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.8492±0.0016 0.8468±0.0016
AUC ↑ 0.837±0.0024 0.8419±0.0028
F1 ↑ 0.9121±0.0005 0.912±0.0009
Run time (s) ↓ 15.6048±0.7314 15.8558±1.046

and θ:

θ̂, φ̂ = argmin
θ,φ

− LELBO(φ, θ) + λR(θ) , (4)

where θ = {m1, ...,mQ, µ1, ..., µQ} and R(θ) is a regulariza-
tion term. That is, we perform VI on the student factor ci’s
and MLE inference on the remaining factors denoted as θ.

4. EXPERIMENTS
We demonstrate the efficacy of VarFA variational inference
framework using the sparse factor analysis model (SPARFA-
M) as the underlying FA model. On three real-world data
sets, we demonstrate that 1) VarFA predicts students’ an-
swers more accurately than SPARFA-M; 2) VarFA can out-
put the same insights as SPARFA-M, including point es-
timate of students’ skill levels and questions’ associations
with skill tags; 3) VarFA can additionally output meaning-
ful uncertainty quantification for student skill levels, which
SPARFA-M is incapable of, without sacrifice to computa-
tional efficiency. Note that SPARFA-B can also compute
uncertainty for small data sets but fails for large data sets
due to scalability issues and thus we do not compare to
SPARFA-B for real data sets. The code along with in-
structions to reproduce our experiments can be downloaded
from https://tinyurl.com/tvm4332.

Data sets. We perform experiments on three large-scale,
publicly available, real educational data sets including AS-
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(a) 3rd latent concept (b) 4th latent concept (c) 7th latent concept

Figure 1: Violin plot showing the mean and standard deviation of the estimated skill mastery levels on 10 selected students on
the 3rd, 4th and 7th latent skills that VarFA computes. In each sub-figure, bottom and top axises respectively shows student
IDs and top axis shows the number of questions each student answered.

SISTments 2009-2010 (Assistment) [7], Algebra I 2006-2007
(algebra) [10] and Bridge to Algebra 2006-2007 (bridge) [11,
12]. The details of the data sets, including data format and
data collection procedure can be found in the preceding ref-
erences.

Results: Performance Comparison. Table 1 shows the
average performance on the test set of each data set com-
paring VarFA and SPARFA-M for all three data sets and ad-
ditionally run time. We can see that VarFA achieves slightly
better student answer prediction on most data sets and on
most metrics. Table 1 also shows the run time comparison
between VarFA and SPARFA-M; see the last row in each
sub-table. We see that both inference algorithms have very
similar run time, showing that VarFA is applicable for very
large data sets. Notably, VarFA achieves this efficiency while
also performing Bayesian inference on the student knowledge
level factor.

Results: Bayesian Inference With VarFA. We now illus-
trate VarFA’s capability of outputting credible intervals us-
ing the Assistment data set. Fig. 1 presents violin plots
that show the sampled student latent skill levels for a ran-
dom subset of 10 students. Plots 1a, 1b and 1c shows the
inferred students ability for the 3rd, 4th and 7th latent skill
dimension. In each plot, the bottom axis shows the student
ID and the top axis shows the total number of questions
answered by the corresponding student. For each student,
the horizontal width of the violin represents the density of
the samples; the skinnier the violin, the more widespread
the samples are, implying the model’s less certainty on its
estimations.

Results in Fig. 1 confirms our intuition that the more ques-
tions a student answers, the more certain the model is about
its estimation. For example, students with ID 106, 110
and 389 answered 222, 181 and 149 questions, respectively,
and the credible intervals of their ability estimation is quite
small. In contrast, students with ID 27, 49 and 65 answered
far less questions and the credible intervals of their ability
estimation is quite large. This result implies that VarFA
outputs sensible and interpretable credible intervals.

Results: Post-Processing for Improved Interpretability.
SPARFA assumes that each student factor ci identifies a
multi-dimensional skill level on a number of “latent” skills
(recall that we use 8 latent skills in our experiments). As
mentioned earlier, these latent skills are not interpretable
without the aid of additional information. To improve in-
terpretability, [8] proposed that, when the skill tags for each
question is available in the data set, we can associate each
latent skill with skill tags via a simple matrix factorization.
Then, we can compute each students’ mastery levels on the
actual skill tags.

We again use the Assistment data set for illustration. We
compute the association of skill tags in the data set with each
of the latent skills and show 4 of the latent skills with their
top 3 most strongly associated skill tags. We can see that
each latent skill roughly identify the same group of skill tags.
For example, latent skill 4 clusters skill tags on statistics and
probability while latent skill 7 clusters skill tags on geometry.
Thus, by simple post-processing, we obtain an interpretation
of the latent skills by associating them with known skill tags
in the data.

We can similarly obtain VarFA’s estimations of the students’
mastery levels on each skill tags through the above process.
In Fig. 2, we compare the predicted mastery level for each
skill tag (only for the questions this student answered) with
the percent of correct answers for that skill tag. Blue curve
shows the empirical student’s mastery level on a skill tag
by computing the percentage of correctly answered ques-
tions belonging to a particular skill tag. Orange curve shows
VarFA’s estimated student mastery level on a skill tag, nor-
malized to range [0, 1]. Even though the two curves show
different numeric values, they nevertheless demonstrate sim-
ilar trends, showing that the predictions reasonably match
our intuition about student’s skill mastery levels.

5. CONCLUSIONS AND FUTURE WORK
We have presented VarFA, a variational inference factor
analysis framework to perform efficient Bayesian inference
for learning analytics. VarFA is general and can be applied
to a wide array of FA models. We have demonstrated the
effectiveness of our VarFA using the sparse factor analysis
(SPARFA) model as a case study. We have shown that
VarFA can very efficiently output interpretable, education-
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Table 2: Illustration of the estimated latent skills with the their top 3 most strongly associated skill tags in the Assistment
data set. The percentage in the parenthesis shows the association probability (summed to 1 for each latent skill). We see that
the tagged skills associated with each estimated latent skill form intuitive and interpretable groups.

Latent Skill 1 Latent Skill 3

Division Fractions (29.1%)
Least Common Multiple (18.1%)
Write Linear Equation from Ordered Pairs (17.8%)

Conversion of Fraction Decimals Percents (7.3%)
Addition and Subtraction Positive Decimals (6.8%)
Probability of a Single Event (5.7%)

Latent Skill 4 Latent Skill 7

Pattern Finding (17.4%)
Histogram as Table or Graph (11.3%)
Percent Of (10.5%)

Volume Sphere (13.4%)
Volume Cylinder (10.4%)
Surface Area Rectangular Prism (10.2%)

Figure 2: Comparison between the estimated skill mastery
levels using VarFA’s predictions and using empirical obser-
vations for student with ID 110.

ally meaningful information, in particular credible intervals,
much faster than classic Bayesian inference methods. Thus,
VarFA has potential application in many educational data
mining scenarios where efficient credible interval computa-
tion is desired, i.e., in adaptive testing and adaptive learning
systems. We have also provided open-source code to repro-
duce our results and facilitate further research efforts.
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