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PREFACE

Tr1s book has various aims, closely connected with each other. In the
first place, this book intends to serve students and teachers of mathematics
in an important but usually neglected way. Yet in a sense the book is also
a philosophical essay. It is also a continuation and requires a continuation.
I shall touch upon these points, one after the other.

1. Strictly speaking, all our knowledge outside mathematics and
demonstrative logic (which is, in fact, a branch of mathematics) consists of
conjectures. There are, of course, conjectures and conjectures. There are
highly respectable and reliable conjectures as those expressed in certain
general laws of physical science. There are other conjectures, neither
reliable nor respectable, some of which may make you angry when you read
them in a newspaper. And in between there are all sorts of conjectures,
hunches, and guesses.

We secure our mathematical knowledge by demonsirative reasoning, but we
support our conjectures by plausible reasoning. A mathematical proof is
demonstrative reasoning, but the inductive evidence of the physicist, the
circumstantial evidence of the lawyer, the documentary evidence of the
historian, and the statistical evidence of the economist belong to plausible
reasoning.

The difference between the two kinds of reasoning is great and manifold.
Demonstrative reasoning is safe, beyond controversy, and final. Plausible
reasoning is hazardous, controversial, and provisional. Demonstrative
reasoning penetrates the sciences just as far as mathematics does, but it is in
itself (as mathematics is in itself) incapable of yielding essentially new
knowledge about the world around us. Anything new that we learn about
the world involves plausible reasoning, which is the only kind of reasoning,
for which we care in everyday affairs. Demonstrative reasoning has rigid
standards, codified and clarified by logic (formal or demonstrative logic),
which is the theory of demonstrative reasoning. The standards of plausible
reasoning are fluid, and there is no theory of such reasoning that could be
compared to demonstrative logic in clarity or would command comparable
consensus.

2. Another point concerning the two kinds of reasoning deserves our
attention. Everyone knows that mathematics offers an excellent opportunity
to learn demonstrative reasoning, but I contend also that there is no subject
in the usual curricula of the schools that affords a comparable opportunity
to learn plausible reasoning. I address myself to all interested students of
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mathematics of all grades and I say: Certainly, let us learn proving, but
also let us learn guessing.

This sounds a little paradoxical and I must emphasize a few points to
avoid possible misunderstandings.

Mathematics is regarded as a demonstrative science. ~ Yet this is only one
of its aspects. Finished mathematics presented in a finished form appears
as purely demonstrative, consisting of proofs only. Yet mathematics in the
making resembles any other human knowledge in the making. You have
to guess a mathematical theorem before you prove it; you have to guess
the idea of the proof before you carry through the details. You have to
combine observations and follow analogies; you have to try and try again.
The result of the mathematician’s creative work is demonstrative reasoning,
a proof; but the proof is discovered by plausible reasoning, by guessing.
If the learning of mathematics reflects to any degree the invention of
mathematics, it must have a place for guessing, for plausible inference.

There are two kinds of reasoning, as we said: demonstrative reasoning
and plausible reasoning. Let me observe that they do not contradict each
other; on the contrary, they complete each other. In strict reasoning the
principal thing is to distinguish a proof from a guess, a valid demonstration
from an invalid attempt. In plausible reasoning the principal thing is to
distinguish a guess from a guess, a2 more reasonable guess from a less reason-
able guess. If you direct your attention to both distinctions, both may
become clearer.

A serious student of mathematics, intending to make it his life’s work,
must learn demonstrative reasoning; it is his profession and the distinctive
mark of his science. Yet for real success he must also learn plausible
reasoning; this is the kind of reasoning on which his creative work will
depend. The general or amateur student should also get a taste of demon-
strative reasoning: he may have little opportunity to use it directly, but he
should acquire a standard with which he can compare alleged evidence of
all sorts aimed at him in modern life. But in all his endeavors he will need
plausible reasoning. At any rate, an ambitious student of mathematics,
whatever his further interests may be, should try to learn both kinds of
reasoning, demonstrative and plausible.

3. I do not believe that there is a foolproof method to learn guessing. At
any rate, if there is such a method, I do not know it, and quite certainly I
do not pretend to offer it on the followmg pagcs The efficient use of
plauSLble reasoning is a practical skill and it is learned, as any other practical
skill, by imitation and practice. I shall try to do my best for the reader who
is anxious to learn plausible reasoning, but what I can offer are only examples
for imitation and opportunity for practice.

In what follows, T shall often’ discuss mathematical discoveries, great and
smizll: ¥ cadinot tell the true story how the discovery did happen, because
ﬁobddy really knows that. Yet I shall try to make up a likely story how the
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discovery could have happened. I shall try to emphasize the motives
underlying the discovery, the plausible inferences that led to it, in short,
everything that deserves imitation. Of course, I shall try to impress the
reader; this is my duty as teacher and author. Yet I shall be perfectly
honest with the reader in the point that really matters: I shall try to impress
him only with things which seem genuine and helpful to me.

Each chapter will be followed by examples and comments. The
comments deal with points too technical or too subtle for the text of the
chapter, or with points somewhat aside of the main line of argument. Some
of the exercises give an opportunity to the reader to reconsider details only
sketched in the text. Yet the majority of the exercises give an opportunity
to the reader to draw plausible conclusions of his own. Before attacking
a more difficult problem proposed at the end of a chapter, the reader should
carefully read the relevant parts of the chapter and should also glance at the
neighboring problems; one or the other may contain a clue. In order to
provide (or hide) such clues with the greatest benefit to the instruction of the
reader, much care has been expended not only on the contents and the form
of the proposed problems, but also on their disposition. In fact, much more
time and care went into the arrangement of these problems than an outsider
could imagine or would think necessary.

In order to reach a wide circle of readers I tried to illustrate each important
point by an example as elementary as possible. Yet in several cases I was
obliged to take a not too elementary example to support the poirt impressively
enough. Infact, I felt that I should present also examples of historic interest,
examples of real mathematical beauty, and examples illustrating the
parallelism of the procedures in other sciences, or in everyday life.

I should add that for many of the stories told the final form resulted from
a sort of informal psychological experiment. I discussed the subject with
several different classes, interrupting my exposition frequently with such
questions as: ‘“Well, what would you do in such a situation?”’ Several
passages incorporated in the following text have been suggested by the
answers of my students, or my original version has been modified in some
other manner by the reaction of my audience.

In short, I tried to use all my experience in research and teaching to give
an appropriate opportunity to the reader for intelligent imitation and for
doing things by himself.

4. The examples of plausible reasoning collected in this book may be put
to another use: they may throw some light upon a much agitated philo-
sophical problem: the problem of induction. The crucial question is:
Are there rules for induction? Some philosophers say Yes, most scientists
think No. In order to be discussed profitably, the question should be put
differently. It should be treated differently, too, with less reliance on
traditional verbalisms, or on new-fangled formalisms, but ih closer touch
with the practice of scientists. Now, observe that inductive reasoning is a
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particular case of plausible reasoning. Observe also (what modern writers
almost forgot, but some older writers, such as Euler and Laplace, clearly
perceived) that the role of inductive evidence in mathematical investigation
is similar to its role in physical research. Then you may notice the possibility
of obtaining some information about inductive reasoning by observing and
comparing examples of plausible reasoning in mathematical matters. And
so the door opens to investigating induction inductively.

When a biologist attempts to investigate some general problem, let us say,
of genetics, it is very important that he should choose some particular species
of plants or animals that lends itself well to an experimental study of his
problem. When a chemist intends to investigate some general problem
about, let us say, the velocity of chemical reactions, it is very important
that he should choose some particular substances on which experiments
relevant to his problem can be conveniently made. The choice of appro-
priate experimental material is of great importance in the inductive investi-
gation of any problem. It seems to me that mathematics is, in several
respects, the most appropriate experimental material for the study of
inductive reasoning. This study involves psychological experiments of a
sort: you have to experience how your confidence in a conjecture is swayed
by various kinds of evidence. Thanks to their inherent simplicity and
clarity, mathematical subjects lend themselves to this sort of psychological
experiment much better than subjects in any other field. On the following
pages the reader may find ample opportunity to convince himself of this.

It is more philosophical, I think, to consider the more general idea of
plausible reasoning instead of the particular case of inductive reasoning.
It seems to me that the examples collected in this book lead up to a definite
and fairly satisfactory aspect of plausible reasoning. Yet I do not wish to
force my views upon the reader. In fact, I do not even state them in Vol. I;
I want the examples to speak for themselves. The first four chapters of
Vol.II, however, are devoted to a more explicit general discussion of plausible
reasoning. There I state formally the patterns of plausible inference
suggested by the foregoing examples, try to systematize these patterns, and
survey some of their relations to each other and to the idea of probability.

I do not know whether the contents of these four chapters deserve to be.
called philosophy. If this is philosophy, it is certainly a pretty low-brow
kind of philosophy, more concerned with understanding concrete examples
and the concrete behavior of people than with expounding generalities. I
know still less, of course, how the final judgement on my views will turn out.
Yet I feel pretty confident that my examples can be useful to any reasonably
unprejudiced student of induction or of plausible reasoning, who wishes to
form his views in close touch with the observable facts.

5. This work on Mathematics and Plausible Reasoning, which I have always
regarded as a unit, falls naturally into two parts: Induction and Analogy
in Mathematics (Vol. 1), and Patterns of Plausible Inference (Vol. II). For the
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convenience of the student they have been issued as separate volumes. Vol.
I is entirely independent of Vol. II, and I think many students will want to
go through it carefully before reading Vol. II. Ithasmore of the mathematical
“meat” of the work, and it supplies ““data’ for the inductive investigation of
induction in Vol. II. Some readers, who should be fairly sophisticated and
experienced in mathematics, will want to go directly to Vol. II, and for
these it will be a convenience to have it separately. For ease of reference
the chapter numbering is continuous through both volumes. I have not
provided an index, since an index would tend to render the terminology
more rigid than it is desirable in this kind of work. I believe ‘the table of
contents will provide a satisfactory guide to the book.

The present work is a continuation of my earlier book How to Solve It.
The reader interested in the subject should read both, but the order does not
matter much. The present text is so arranged that it can be read indepen-
dently of the former work. In fact, there are only few direct references in
the present book to the former and they can be disregarded in a first reading.
Yet there are indirect references to the former book on almost every page,
and in almost every sentence on some pages. In fact, the present work
provides numerous exercises and some more advanced illustrations to the
former which, in view of its size and its elementary character, had no space
for them. _

The present book is also related to a collection of problems in Analysis
by G. Szegoé and the author (see Bibliography). The problems in that
collection are carefully arranged in series so that they support each other
mutually, provide cues to each other, cover a certain subject-matter jointly,
and give the reader an opportunity to practice various moves important in
problem-solving. In the treatment of problems the present book follows
the method of presentation initiated by that former work, and this link is
not unimportant.

Two chapters in Vol. II of the present book deal with the theory of
probability. The first of these chapters is somewhat related to an elementary
exposition of the calculus of probability written by the author several years
ago (see the Bibliography). The underlying views on probability and the
starting points are the same, but otherwise there is little contact.

Some of the views offered in this book have been expressed before in my
papers quoted in the Bibliography. Extensive passages of papers no. 4, 6,
8,9, and 10 have been incorporated in the following text. Acknowledgment
and my best thanks are due to the editors of the American Mathematical
Monthly, Etudes de Philosophie des Sciences en Hommage & Ferdinand Gonseth, and
Proceedings of the International Congress of Mathematicians 1950, who kindly
gave permission to reprint these passages.

Most parts of this book have been presented in my lectures, some parts
several times. In some parts and in some respects, I preserved the tone of
oral presentation. I do not think that such a tone is advisable in printed
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presentation of mathematics in general, but in the present case it may be
appropriate, or at least excusable.

6. The last chapter of Vol. II of the present book, dealing with Invention
and Teaching, links the contents more explicitly to the former work of the
author and points to a possible sequel.

The efficient use of plausible reasoning plays an essential role in problem-
solving. The present book tries to illustrate this role by many examples,
but there remain other aspects of problem-solving that need similar
illustration.

Many points touched upon here need further work. My views on
plausible reasoning should be confronted with the views of other authors,
the historical examples should be more thoroughly explored, the views on
invention and teaching should be investigated as far as possible with the
methods of experimental psychology,® and so on. Several such tasks
remain, but some of them may be thankless.

The present book is not a textbook. Yet I hope that in time it will
influence the usual presentation of the textbooks and the choice of their
problems. The task of rewriting the textbooks of the more usual subjects
along these lines need not be thankless.

7. 1 wish to express my thanks to the Princeton University Press for the
careful printing, and especially to Mr. Herbert S. Bailey, Jr., Director of the
Press, for understanding help in several points. I am much indebted also
to Mrs, Priscilla Feigen for the preparation of the typescript, and to Dr.
Julius G. Baron for his kind help in reading the proofs.

GeorGE PoLva
Stanford University
May 1953

1 Exploratory work in this direction has been undertaken in the Department of Psychology
of Stanford University, within the framework of a project directed by E. R. Hilgard, under
O.N.R. sponsorship.



HINTS TO THE READER

Tre section 2 of chapter VII is quoted as sect. 2 in chapter VII, but as sect.
7.2 in any other chapter. The subsection (3) of section 5 of chapter XIV
is quoted as sect. 5 (3) in chapter XIV, but as sect. 14.5 (3) in any other
chapter. We refer to example 26 of chapter XIV as ex. 26 in the same
chapter, but as ex. 14.26 in any other chapter.

Some knowledge of elementary algebra and geometry may be enough to
read substantial parts of the text. Thorough knowledge of elementary
algebra and geometry and some knowledge of analytic geometry and
calculus, including limits and infinite series, is sufficient for almost the whole
text and the majority of the examples and comments. Yet more advanced
knowledge is supposed in a few incidental remarks of the text, in some pro-
posed problems, and in several comments. Usually some warning is given
when more advanced knowledge is assumed.

The advanced reader who skips parts that appear to him too elementary
may miss more than the less advanced reader who skips parts that appear
to him too complex.

Some details of (not very difficult) demonstrations are often omitted
without warning. Duly prepared for this eventuality, a reader with good
critical habits need not spoil them.

Some of the problems proposed for solution are very easy, but a few are
pretty hard. Hints that may facilitate the solution are enclosed in square
brackets [ ]. The surrounding problems may provide hints. Especial
attention should be paid to the introductory lines prefixed to the examples
in some chapters, or prefixed to the First Part, or Second Part, of such
examples.

The solutions are sometimes very short: they suppose that the reader
has earnestly tried to solve the problem by his own means before looking
at the printed solution.

A reader who spent serious effort on a problem may profit by it even if
he does not succeed in solving it. For example, he may look at the solution,
try to isolate what appears to him the key idea, put the book aside, and then
try to work out the solution.

At some places, this book is lavish of figures or in giving small inter-
mediate steps of a derivation. The aim is to render visible the evolution of a
figure or a formula; see, for instance, Fig. 16.1-16.5. Yet no book can have
enough figures or formulas. A reader may want to read a passage “‘in
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INDUCTION

It will seem not a little paradoxical to ascribe a great importance to observa-
tions even in that part of the mathematical sciences which is usually called
Pure Mathematics, since the current opinion is that observations are resiricted
to physical objects that make impression on the senses. As we must refer the
numbers to the pure intellect alone, we can hardly understand how observations
and quasi-experiments can be of use in investigating the nature of the numbers.
Yet, in fact, as I shall show here with very good reasons, the properties of the
numbers known today have been mostly discovered by observation, and dis-
covered long before their truth has been confirmed by rigid demonstrations.
There are even many properties of the numbers with which we are well
acquainted, but which we are not et able to prove; only observations have led
us to their knowledge. Hence we see that in the theory of numbers, which is
still very imperfect, we can place our highest hopes in observations; they will
lead us continually to new properties which we shall endeavor to prove after-
wards.  The kind of knowledge which is supported only by observations and
is not yet proved must be carefully distinguished from the truth; it is gained
by induction, as we usually say. Yet we have seen cases in which mere
induction led to error. “Therefore, we should take great care not to accept as
true such properties of the numbers which we have discovered by observation
and which are supported by induction alone. Indeed, we should use such a
discovery as an opportunity to investigate more exactly the properties discovered
and to prove or disprove them; in both cases we may learn something
useful —EULER!

1. Experience and belief. Experience modifies human beliefs. We
learn from experience or, rather, we ought to learn from experience. To
make the best possible use of experience is one of the great human tasks and

to work for this task is the proper vocation of scientists.

A scientist deserving this name endeavors to extract the most correct
belief from a given experience and to gather the most appropriate experience
in order to establish the correct belief regarding a given question. The

1 Euler, Opera Omnia, ser. 1, vol. 2, p. 459, Specimen de usu observationum in mathesi
pura.

"3



4 INDUCTION

scientist’s procedure to deal with experience is usually called induction.
Particularly clear examples of the inductive procedure can be found in
mathematical research. We start discussing a simple example in the next
section.

2. Suggestive contacts. Induction often begins with observation. A
naturalist may observe bird life, a crystallographer the shapes of crystals.
A mathematician, interested in the Theory of Numbers, observes the
properties of the integers 1, 2,3,4,5,....

If you wish to observe bird life with some chance of obtaining interest-
ing results, you should be somewhat familiar with birds, interested in
birds, perhaps you should even like birds. Similarly, if you wish to observe
the numbers, you should be interested in, and somewhat familiar with,
them. You should distinguish even and odd numbers, you should know
the squares 1, 4, 9, 16, 25, . . . and the primes 2, 3, 5, 7, 11, 13, 17, 19, 23,
29,.... (Itis better to keep 1 apart as “unity” and not to classify it as
a prime.) Even with so modest a knowledge you may be able to observe
something interesting.

. By some chance, you come across the relations

347=10, 3+4+17=20, 13+ 17 =30

and notice some resemblance between them. It strikes you that the numbers
3,7, 13, and 17 are odd'primes. The sum of two odd primes is necessarily
an even number; in fact, 10, 20, and 30 are even. What about the other
even numbers? Do they behave similarly? The first even number which
is 2 sum of two odd primes is, of course,

6=3-+3.
Looking beyond 6, we find that

8=34+5
10=3+7=5+5
12=547

14=3+11=7+7
16 =3 413 =5+ 11.

Will it go on like this forever? At any rate, the particular cases observed
suggest a general statement: Any even number greater than 4 is the sum of two
odd primes. Reflecting upon the exceptional cases, 2 and 4, which cannot
be split into a sum of two odd primes, we may prefer the following more
sophisticated statement: Any even number that is neither a prime nor the square
of a prime, is the sum of two odd primes.
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We arrived so at formulating a conjecture. 'We found this conjecture by
induction. 'That is, it was suggested by observation, indicated by particular
instances.

. These indications are rather flimsy; we have only very weak grounds to
believe in our conjecture. We may find, however, some consolation in the
fact that the mathematician who discovered this conjecture a little more than
two hundred years ago, Goldbach, did not possess much stronger
grounds for it.

Is Goldbach’s conjecture true? Nobody can answer this question today.
In spite of the great effort spent on it by some great mathematicians,
Goldbach’s conjecture is today, as it was in the days of Euler, one of those
“many properties of the numbers with which we are well acquainted, but
which we are not yet able to prove” or disprove.

Now, let us look back and try to perceive such steps in the foregoing
reasoning as might be typical of the inductive procedure.

First, we noticed some similarity. We recognized that 3, 7, 13, and 17 are
primes, 10, 20, and 30 even numbers, and that the three equations
3+7=10,3+ 17 =20, 13 + 17 = 30 are analogous to each other.

Then there was a step of generalization. From the examples 3, 7, 13, and
17 we passed to all odd primes, from .10, 20, and 30 to all even numbers,
and then on to a possibly general relation

even number = prime -} prime.

We arrived so at a clearly formulated general statement, which, however,
is merely a conjecture, merely ientative. Thatis, the statement is by no means
proved, it cannot have any pretension to be true, it is merely an attempt
to get at the truth.

This conjecture has, however, some suggestive points of contact with
experience, with “the facts,” with “reality.”” It is true for the particular
even numbers 10, 20, 30, also for 6, 8, 12, 14, 16.

With these remarks, we outlined roughly a first stage of the inductive
"‘process.

3. Supporting contacts. You should not put too much trust in any
unproved conjecture, even if it has been propounded by a great authority,
even if it has been propounded by yourself. You should try to prove it or
to disprove it; you should test it.

We test Goldbach’s conjecture if we examine some new even number
and decide whether it is or is not a sum of two odd primes. Let us examine,
for instance, the number 60. Let us perform a ‘“‘quasi-experiment,” as
Euler expressed himself. The number 60 is even, but is it the sum of two
primes? Is it true that

60 = 3 4 prime?
No, 57 is not a prime. Is
60 = 5 + prime?
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The answer is again “No”: 55 is not a prime. If it goes on in this way,
the conjecture will be exploded. Yet the next trial yields

60 =7 + 53

and 53 is a prime. The conjecture has been verified in one more case.

The contrary outcome would have settled the fate of Goldbach’s con-
jecture once and for all. If, trying all primes under a given even number,
such as 60, you never arrive at a decomposition into a sum of two primes,
you thereby explode the conjecture irrevocably. Having verified the
conjecture in the case of the even number 60, you cannot reach such a
definite conclusion. You certainly do not prove the theorem by a single
verification. It is natural, however, to interpret such a verification as a
Javorable sign, speaking for the conjecture, rendering it more credible, although,
of course, it is left to your personal judgement how much weight you attach
to this favorable sign. ‘

Let us return, for a moment, to the number 60. After having tried the
primes 3, 5, and 7, we can try the remaining primes under 30. (Obviously,
it is unnecessary to go further than 30 which equals 60/2, since one of the
two primes, the sum of which should be 60, must be less than 30.) We
obtain so all the decompositions of 60 into a sum of two primes:

T 60=7-4+53=13+47 =17 + 43 =19 + 41 = 23 + 37 = 29 4 31.
We can proceed systematically and examine the even numbers one after

the other, as we have just examined the even number 60. We can tabulate
the results as follows: :

6=3+3
8=3+45
100=3+4+7=5+5
12=5+4+7 '

14=3+4+11=7+7
16 =3+ 13 =5+ 11
18=5413=7+411
20=34+17=7+13
22=3+4+19=5+ 17 =11+ 11
4 =5+4+19=7+17=11-413
26=3+4+23=7+19=13+413
28=5423 =114+ 17
30=74+23=11+19=13+4+17.
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The conjecture is verified in all cases that we have examined here. Each
verification that lengthens the table strengthens the conjecture, renders it
more credible, adds to its plausibility. Of course, no amount of such
verifications could prove the conjecture.

We should examine our collected observations, we should compare
and combine them, we should look for some clue that may be hidden
behind them. In our case, it is very hard to discover some essential clue
in the table. Still examining the table, we may realize more clearly the
meaning of the conjecture. The table shows how often the even numbers
listed in it can be represented as a sum of two primes (6 just once, 30 three
times). The number of such representations of the even number 2n seems
to “increase irregularly” with n. Goldbach’s conjecture expresses the hope
that the number of representations will never fall down to 0, however far
we may extend the table.

Among the particular cases that we have examined we could distinguish
two groups: those which preceded the formulation' of the conjecture and
those which came afterwards. The former suggested the conjecture, the
latter supported it. Both kinds of cases provide some sort of contact between
the conjecture and ‘“‘the facts.”” The table does not distinguish between
“suggestive” and “‘supporting® points of contact.

Now, let us look back at the foregoing reasoning and try to see in it traits
typical of the inductive process.

Having conceived a conjecture, we tried to find out whether it is true or
false. Our conjecture was a general statement suggested by certain par-
ticular instances in which we have found it true. We examined further
particular instances. As it turned out that the conjecture is true in all
instances examined, our confidence in it increased.

We did, it seems to me, only things that reasonable people usually do.
In so doing, we seem to accept a principle: A conjectural general statement
becomes more credible if it is verified in a new particular case.

Is this the principle underlying the process of induction?

4. The inductive attitude. In our personal life we often cling to
illusions. That is, we do not dare to examine certain beliefs which could
be easily contradicted by experience, because we are afraid of upsetting our
emotional balance. There may be circumstances in which it is not unwise
to cling to illusions, but in science we need a very different attitude, the
inductive attitude. This attitude aims at adapting our beliefs to our experience
as efficiently as possible. It requires a certain preference for what is matter
of fact. It requires a ready ascent from observations to generalizations, and
a ready descent from the highest generalizations to the most concrete
observations. It requires saying “maybe” and “perhaps” in a thousand
different shades. It requires many other things, especially the following
three.



8 INDUCTION

First, we should be ready to revise any one of our beliefs.

Second, we should change a belief when there is a compelling reason
to change it.

Third, we should not change a belief wantonly, without some good reason.

These points sound pretty trivial. Yet one needs rather unusual qualities
to live up to them.

The first point needs “intellectual courage.” You need courage to revise
your beliefs. Galileo, challenging the prejudice of his contemporaries and
the authority of Aristotle, is a great example of intellectual courage.

The second point needs “intellectual honesty.” To stick to my conjecture
that has been clearly contradicted by experience just because it is my con-
jecture would be dishonest.

The third point needs ‘“wise restraint.” To change a belief without
serious examination, just for the sake of fashion, for example, would be
foolish. Yet we have neither the time nor the strength to examine seriously
all our beliefs. Therefore it is wise to reserve the day’s work, our questions,
and our active doubts for such beliefs as we can reasonably expect to amend.
“Do not believe anything, but question only what is worth questioning.”

Intellectual courage, intellectual honesty, and wise restraint are the
moral qualities of the scientist.

EXAMPLES AND COMMENTS ON CHAPTER L

1. Guess the rule according to which the successive terms of the following
sequence are chosen:

11, 31, 41, 61, 71, 101, 131, . . .

2. Consider the table:

1 = 041
2 +3 +4 = 148
5 +6 +7 +8 +9 = 8427

10 4+ 11 4+ 12 -+ 13 -+ 14 -+ 15 + 16 = 27 + 64

Guess the general law suggested by these examples, express it in suitable
mathematical notation, and prove it.

3. Observe the values of the successive sums

1, 1+38, 14345 14+3-+L5+7,

Is there a simple rule?
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4. Observe the values of the consecutive sums

I, 1+8 14+8+27, 1+8+4 274 64,
Is there a simple rule?
5. The three sides of a triangle are of lengths /, m, and =, respectively.
The numbers /, m, and n are positive integers, < m < n. Find the number
of different triangles of the described kind for a given.n. [Taken =1, 2, 3,

4,5,... .] Find a general law governing the dependence of the number
of triangles on 7.

6. The first three terms of the sequence 5, 15, 25, . . . (numbers ending
in 5) are divisible by 5. Are also the following terms divisible by 5?
The first three terms of the sequence 3, 13, 23, . . . (numbers ending in 3)
. are prime numbers. Are also the following terms prime numbers?

7- By formal computation we find
(1 4+ Tle 4 21x2 4 313 - 4162 + 515 4+ 61286 + ... )2
=1—x—2%— 313 — 1344 — 71a% — 4618 . ..

This suggests two conjectures about the following coefficients of the right
hand power series: (1) they are all negative; (2) they are all primes. Are
these two conjectures equally trustworthy?

8. Set
We find that for
n=0 12 3 4 5 6 7 8 9
4,=1 11 2 4 14 38 216 600 6240.
State a conjecture. ' .
9. The great French mathematician Fermat considered the sequence
5,17, 257, 65537, . . .,

the general term of which is 22" 4 1. He observed that the first four terms
(here given), corresponding to n =1, 2, 3, and 4, are primes. He con-
jectured that the following terms are also primes. Although he did not
prove it, he felt so sure of his conjecture that he challenged Wallis and
other English mathematicians to prove it. Yet Euler found that the very
next term, 232 - 1, corresponding to n = 5, is not a prime: it is divisible
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by 641.2 See the passage of Euler at the head of this chapter: “Yet we
have seen cases in which mere induction led to error.”

10. In verifying Goldbach’s conjecture for 2n = 60 we tried successively
the primes p under n = 30. We could have also tried, however, the
primes p’ between n = 30 and 2n = 60. Which procedure is likely to be
more advantageous for greater n?

11, In a dictionary, you will find among the explanations for the words
“induction,” “experiment,” and ‘“‘observation’ sentences like the following.

“Induction is inferring a general law from particular instances, or a
production of facts to prove a general statement.”

‘“Experiment is a procedure for testing hypotheses.”

“Observation is an accurate watching and noting of phenomena as they
occur in nature with regard to cause and effect or mutual relations.”

Do these descriptions apply to our example discussed in sect. 2 and 3?

12. Yes and No. The mathematician as the naturalist, in testing some
consequence of a conjectural general law by a new observation, addresses a
question to Nature: “I suspect that this law is true. Is it true?” If the
consequence is clearly refuted, the law cannot be true. If the consequence
is clearly verified, there is some indication that the law may be true. Nature
may answer Yes or No, but it whispers one answer and thunders the other,
its Yes is provisional, its No is definitive.

13. Experience and behavior. Experience modifies human behavior. And
experience modifies human beliefs. These two things are not independent
of each other. Behavior often results from beliefs, beliefs are potential
behavior. Yet you can see the other fellow’s behavior, you cannot see his
beliefs. Behavior is more easily observed than belief. Everybody knows
that “a burnt child dreads the fire,”” which expresses just what we said:
experience modifies human behavior.

Yes, and it modifies animal behavior, too.

In my neighborhood there is a mean dog that barks and jumps at people
without provocation. But I have found that I can protect myself rather
easily. IfI stoop and pretend to pick up a stone, the dog runs away howling.
All dogs do not behave so, and it is easy to guess what kind of experience
gave this dog this behavior.

The bear in the zoo “begs for food.” That is, when there is an onlooker
around, it strikes a ridiculous posture which quite frequently prompts the
onlooker to throw a lump of sugar into the cage. Bears not in captivity
probably never assume such a preposterous posture and it is easy to irmagine
what kind of experience led to the zoo bear’s begging.

A thorough investigation of induction should include, perhaps, the study
of animal behavior.

e aad

* Euler, Opera Omnia, ser, 1, vol. 2, p. 1-5. Hardy and Wright, The Theory of Numbers,
p. 14-15. ° aE
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14. The logician, the mathematician, the physicist, and the engincer. “‘Look at
this mathematician,” said the logician. ‘“He observes that the first ninety-
nine numbers are less than hundred and infers hence, by what he calls
induction, that all numbers are less than a2 hundred.”

“A physicist believes,”” said the mathematician, “that 60 is divisible by
all numbers. He observes that 60 is divisible by 1, 2, 3, 4, 5, and 6. He
examines a few more cases, as 10, 20, and 30, taken at random as he says.
Since 60 is divisible also by these, he considers the experimental evidence
sufficient.”

“Yes, but look at the engineers,” said the physicist. ‘“An engineer
suspected that all odd numbers are prime numbers. At any rate, 1 can be
considered as a prime number, he argued. Then there come 3, 5, and 7,
all indubitably primes. Then there comes 9; an awkward case, it does not
seem to be a prime number. Yet 11 and 13 are certainly primes. ‘Coming
back to 9,” he said, ‘I conclude that 9 must be an experimental error.” ”

It is only too obvious that induction can lead to error. Yet it is remark-
able that induction sometimes leads to truth, since the chances of error appear
so overwhelming. Should we begin with the study of the obvious cases in
which induction fails, or with the study of those remarkable cases in which
induction succeeds? The study of precious stones is understandably more
attractive than that of ordinary pebbles and, moreover, it was much more
the precious stones than the pebbles that led the mineralogists to the
wonderful science of crystallography.



II

GENERALIZATION, SPECIALIZATION,
ANALOGY

And I cherish more than anything else the Analogies, my most trustworthy
masters. They know all the secrets of Nature, and they ought to be least
neglected in Geometry.—KEPLER

1. Generalization, Specialization, Analogy, and Induction. Let us
Jook again at the example of inductive reasoning that we have discussed in
some detail (sect. 1.2, 1.3). We started from observing the analogy of the
three relations

347=10, 34+17=20, 13+ 17 = 30,

we generalized in ascending from 3, 7, 13, and 17 to all primes, from 10, 20,
and 30 to all even numbers, and then we specialized again, came down to test
particular even numbers such as 6 or 8 or 60.

This first example is extremely simple. It illustrates quite correctly the
role of generalization, specialization, and analogy in inductive reasoning.
Yet we should examine less meager, more colorful illustrations and, before
that, we should discuss generalization, specialization, and analogy, these
great sources of discovery, for their own sake.

2. Generalization is passing from the consideration of a given set of
objects to that of a larger set, containing the given one. For example, we
generalize when we pass from the consideration of triangles to that of
polygons with an arbitrary number of sides. We generalize also when we
pass from the study of the trigonometric functions of an acute angle to the
trigonometric functions of an unrestricted angle.

It may be observed that in these two examples the generalization was
effected in two characteristically different ways. In the first example, in
passing from triangles to polygons with » sides, we replace a constant by a
variable, the fixed integer 3 by the arbitrary integer n (restricted only by the
inequality n 2 3). In the second example, in passing from acute angles to

12
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arbitrary angles «, we remove a restriction, namely the restriction that
0° < a < 90°.

We often generalize in passing from just one object to a whole class
containing that object.

3. Specialization is passing from the consideration of a given set of
objects to that of a smaller set, contained in the given one. For example,
we specialize when we pass from the consideration of polygons to that of
regular polygons, and we specialize still further when we pass from regular
polygons with n sides to the regular, that is, equilateral, triangle.

These two subsequent passages were effected in two characteristically
different ways. In the first passage, from polygons to regular polygons, we
introduced a restriction, namely that all sides and all angles of the polygon
be equal. In the second passage we substituted a special object for a
variable, we put 3 for the variable integer n.

Very often we specialize in passing from a whole class of objects to just
one object contained in the class. For example, when we wish to check
some general assertion about prime numbers we pick out some prime number,
say 17, and we examine whether that general assertion is true or not for
Jjust this prime 17.

4. Analogy. There is nothing vague or questionable in the concepts of
generalization and specialization. Yet as we start discussing analogy we
tread on a less solid ground.

Analogy is a sort of similarity. It is, we could say, similarity on a more
definite and more conceptual level. Yet we can express ourselves a little
more accurately. The essential difference between analogy and other
kinds of similarity lies, it seems to me, in the intentions of the thinker.
Similar objects agree with each other in some aspect. If you intend to
reduce the aspect in which they agree to definite concepts, you regard those
similar objects as analogout. If you succeed in getting down to clear concepts,
you have clarified the analogy.

Comparing a young woman to a flower, poets feel some similarity, I
hope, but usually they do not contemplate analogy. In fact, they scarcely
intend to leave the emotional level or reduce that comparison to something
measurable or conceptually definable.

Looking in a natural history museum at the skeletons of various mammals,
you may find them all frightening. If this is all the similarity you can find
between them, you do not see much analogy. Yet you may perceive a
wonderfully suggestive analogy if you consider the hand of a man, the paw
of a cat, the foreleg of a horse, the fin of a whale, and the wing of a bat,
these organs so differently used, as composed of similar parts similarly
related to each other.

The last example illustrates the most typical case of clarified analogy;
two systems are analogous, if they agree in cléarly definable relations of their
respective parts.
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For instance, a triangle in a plane is analogous to a tetrahedron in space.
In the plane, 2 straight lines cannot include a finite figure, but 3 may include
atriangle. Inspace, 3 planes cannot include a finite figure but 4 may include
a tetrahedron. The relation of the triangle to the plane is the same as that
of the tetrahedron to space in so far as both the triangle and the tetrahedron
are bounded by the minimum number of simple bounding elements.
Hence the analogy.

NV G

Fig. 2.1. Analogous relations in plane and space.

One of the meanings of the Greek word ‘“‘analogia,” from which the
word “‘analogy” originates, is ‘“‘proportion.” In fact, the system of the
two numbers 6 and 9 is “analogous” to the system of the two numbers 10
and 15 in so far as the two systems agree in the ratio of their corresponding
terms,

6:9=10:15.

Proportionality, or agreement in the ratios of corresponding parts, which
we may see intuitively in geometrically similar figures, is a very suggestive
case of analogy.

Here is another example. We may regard a triangle and a pyramid as
analogous figures. On the one hand take a segment of a straight line, and
on the other hand a polygon. Connect all points of the segment with a
point outside the line of the segment, and you obtain a triangle. Connect
all points of the polygon with a peint outside the plane of the polygon, and
you obtain a pyramid. In the same manner, we may regard a parallelo-
gram and a prism as analogous figures. In fact, move a segment or a poly-
gon parallel to itself, across the direction of its line or plane, and the one
will describe a parallelogram, the other a prism. We may be tempted to
express these corresponding relations bewween plane and solid figures by a
sort of proportion and if, for once, we do not resist temptation, we arrive at
fig. 2.1. This figure modifies the usual meaning of certain symbols (: and =)
in the same way as the meaning of the word ““analogia” was modified in the
course of linguistic history: from “proportion” to ‘“‘analogy.”

The last example is instructive .in still another respect. Analogy,
especially . incompletely clarified analogy, may be ambiguous. Thus,
comparing plane and solid geometry, we found first that a triangle in a
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plane is analogous to a tetrahedron in space and then that a triangle is
analogous to a pyramid. Now, both analogies are reasonable, each is
valuable at its place. There are several analogies between plane and solid
geometry and not just one privileged analogy.

Fig. 2.2 exhibits how, starting from a triangle, we may ascend to a polygon
by generalization, descend to an equilateral triangle by specialization, or
pass to different solid figures by analogy—there are analogies on all sides.

more general

|
A\

analogous
ana/ogoas 4

more specia/

Fig. 2.2. Generalization, specialization, analogy.

And, remember, do not neglect vague analogies. Yet, if you wish them
respectable, try to clarify them.

5. Generalization, Specialization, and Analogy often concur in
solving mathematical problems.! Let us take as an example the proof of
the best known theorem of elementary geometry, the theorem of Pythagoras.
The proof that we shall discuss is not new; it is due to Euclid himself
(Euclid VI, 31).

(1) We consider a right triangle with sides a, b, and ¢, of which the first,
a, is the hypotenuse. We wish to show that

(A) a® = b - 2

e e e

! This section reproduces with slight changes a Note of the author in the American Mathe-
matical Monthly, v. 55 (1948), p. 241-243.
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This aim suggests that we describe squares on the three sides of our right
triangle. And so we arrive at the not unfamiliar part I of our compound
figure, fig. 2.3. (The reader should draw the parts of this figure as they
arise, in order to see it in the making.)

(2) Discoveries, even very modest discoveries, need some remark, the
recognition of some relation. We can discover the following proof by
observing the analogy between the familiar part I of our compound figure

\ ©
& %
&& E__o-

I anarogy I j

Fig. 2.3.

and the scarcely less familiar part II: the same right triangle that arises in
I is divided in II into two parts by the altitude perpendicular to the
hypotenuse.

(3) Perhaps, you fail to perceive the analogy between I and II. This
analogy, however, can be made explicit by a common generalization of 1
and II which is expressed in III. There we find again the same right
triangle, and on its three sides three polygons are described which are similar
to each other but arbitrary otherwise.

(4) The area of the square described on the hypotenuse in I is % The
area of the irregular polygon described on the hypotenuse in III can be put
equal to Aa?; the factor A is determined as the ratio of two given areas.
Yet then, it follows from the similarity of the three polygons described on
the sides g, b, and ¢ of the triangle in III that their areas are equal to Ad?,
Ab%, and Ac?, respectively.

Now, if the equation (A) should be true (as stated by the theorem that
we wish to prove), then also the following would be true:

(B) Aa® = A + A%,
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In fact, very little algebra is needed to derive (B) from (A). Now, (B)
represents a generalization of the original theorem of Pythagoras: If three
similar polygons are described on three sides of a right triangle, the one described on
the hypotenuse is equal in area to the sum of the two others.

It is instructive to observe that this generalization is equivalent to the
special case from which we started. In fact, we can derive the equations
(A) and (B) from each other, by multiplying or dividing by A (which is, as
the ratio of two areas, different from 0).

(5) The general theorem expressed by (B) 'is equivalent not only to the
special case (A), but to any other special case. Therefore, if any such
special case should turn out to be obvious, the general case would be
demonstrated.

Now, trying to specialize usefully, we look around for a suitable special
case. Indeed II representssuch a case. In fact, the right triangle described
on its own hypotenuse is similar to the two other triangles described on the
two legs, as is well known and easy to see. And, obviously, the area of the
whole triangle is equal to the sum of its two parts. And so, the theorem of
Pythagoras has been proved.

The foregoing reasoning is eminently instructive. A case is instructive
if we can learn from it something applicable to other cases, and the more
instructive the wider the range of possible applications. Now, from the
foregoing example we can learn the use of such fundamental mental opera-
tions as generalization, specialization, and the perception of analogies.
There is perhaps no discovery either in elementary or in advanced mathe-
matics or, for that matter, in any other subject that could do without these
operations, especially without analogy.

The foregoing example shows how we can ascend by generalization from
a special case, as from the one represented by I, to a more general situation
as to that of III, and redescend hence by specialization to an analogous case,
as to that of II. It shows also the fact, so usual in mathematics and still so
surprising to the beginner, or to the philosopher who takes himself for
advanced, that the general case can be logically equivalent to a special
case. Our example shows, naively and suggestively, how generalization,
specialization, and analogy are naturally combined in the effort to attain
the desired solution. Observe that only a minimum of preliminary
knowledge is needed to understand fully the foregoing reasoning.

" 6. Discovery by analogy. Analogy seems to have a share in all
discoveries, but in some it has the lion’s shate. I wish to illustrate this
by an example which is not quite elementary, but is of historic interest
and far more impressive than any quite elementary example of which
I can think.

Jacques Bernoulli, a Swiss mathematician (1654-1705), a contem-
porary of Newton and Leibnitz, discovered the sum of several infinite
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series, but did not succeed in finding the sum of the reciprocals of the
squares, Sy
R A1
TatoTas
“If somebody should succeed,” wrote Bernoulli, “in finding what till now
withstood our efforts and communicate it to us, we shall be much obliged
to him.”

The problem came to the attention of another Swiss mathematician,
Leonhard Euler (1707-1783), who was born at Basle as was Jacques
Bernoulli and was a pupil of Jacques’ brother, Jean Bernoulli (1667-1748).
He found various expressions for the desired sum (definite integrals, other
series), none of which satisfied him. He used one of these expressions to com-
pute the sum numerically to seven places (1.644934). Yet this is only an
approximate value and his goal was to find the exact value. He dis-
covered it, eventually. Analogy led him to an extremely daring conjecture.

(1) We begin by reviewing a few elementary algebraic facts essential to
Euler’s discovery. If the equation of degree n

gy +ax+ax®4+ ... +ax"=0

1 1
T T T

has n different roots
(ll, az, s e e a”

the polynomial on its left hand side can be represented as a product of n
linear factors,

G+ ayx +apx® + ...+ g " =
a,(x — °fl) (x — acz) coo(x— ).
By comparing the terms with the same power of x on both sides of this
identity, we derive the well known relations between the roots and the
coefficients of an equation, the simplest of which is

Gy = —a,(0y + g+ ... + %) ;
we find this by comparing the terms with x™-1.
' There is another way of presenting the decomposition in linear factors.
If none of the roots a, ay, . . . @, is equal to 0, or (which is the same) if
@y is different from 0, we have also

G+ o+ a4
=a°(1—££1-)(1—£)...(l—£)

1 1 1
a1=—a0(a—1+;—2+...+“—").

and
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There is still another variant. Suppose that the equation is of degree
2n, has the form

by — byx® + bt — . .\ 4 (— 1) A% =0

and 2n different roots

131’ ‘—/31: ﬂZ’ "'/32’ s ﬂm _ﬂn'
by — byx® 4 byt — ... + (—1)"b, a2

=bo(1_%)(1—%)...(1—%)

R

(2) Euler considers the equation

Then

and

sinx =0
or .
x «8 P e
1 123772545 1.2.3.-7
The left hand side has an infinity of terms, is of “infinite degree.”” Therefore,
it is no wonder, says Euler, that there is an infinity of roots

+...=0.

0, m —m, 27, —2m, 3w, —3m,

Euler discards the root 0. He divides the left hand side of the equation by

x, the linear factor corresponding to the root 0, and obtains so the equation
| _ 12_ n x4 %8

2.3 2.3.4-5 2-3-4:5.6-7

with the roots
T, —m, 2w, —2mw, 3w, —3m,

+...=0.

We have seen an analogous situation before, under (1), as we discussed the
last variant of the decomposmon in linear factors. Euler concludes, by
analogy, that

sin x x4 . x8
- ! 3+2345 537"
x2
=( )( )( ~3m) o
1 1
2—.§=ﬂ—2+ + + .
1 1 1 e
i tstT =%
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This is the series that withstood the efforts of Jacques Bernoulli—but it
was a daring conclusion.

(3) Euler knew very well that his conclusion was daring. “The method
was new and never used yet for such a purpose,” he wrote ten years later.
He saw some objections himself and many objections were raised by his
mathematical friends when they recovered from their first admiring surprise.

Yet Euler had his reasons to trust his discovery. First of all, the numerical
value for the sum of the series which he has computed before, agreed to the
last place with #%/6. Comparing further coefficients in his expression of
sin x as a product, he found the sum of other remarkable series, as that of the
reciprocals of the fourth powers,

1 1 1 l 1 ot
Tttt tent T
Again, he examined the numerical value and again he found agreement.
(4) Euler also tested his method on other examples. Doing so he
succeeded in rederiving the sum 7?/6 for Jacques Bernoulli’s series by various
modifications of his first approach. He succeeded also in rediscovering by
his method the sum of an important series due to Leibnitz.
Let us discuss the last point. Let us consider, following Euler, the
equation
1 —sinx=0.
It has the roots

T 3m 5w I 97 17
2’ 2’ 27 2’ 2’ 27’ 7

Each of these roots is, however, a double root. (The curve y = sin x does
not intersect the line y = 1 at these abscissas, but is tangent to it. The
derivative of the left hand side vanishes for the same values of x, but not the

second derivative.) Therefore, the equation

x Pl x5

titrea Tt =0
has the roots ¢a
T ow K7 37 5w 5# T Tm
2: 2: 2’ 2> 2: _2', "—?’ —"2—’ LR

and Euler’s analogical conclusion leads to the decomposition in linear factors
% %3 x8
l—sinx=1—" — e
s i T3 T s e T

1
2x\2 2x\2 2x\2 2x\2
-(1-2%) (1+2) (-2) (1+3)---
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Comparing the coefficient of x on both sides, we obtain

This is Leibnitz’s celebrated series; Euler’s daring procedure led to a known
result. “For our method,” says Euler, “which may appear to some as not
reliable enough, a great confirmation comes here to light. Therefore, we
should not doubt at all of the other things which are derived by the same
method.” '
(5) Yet Euler kept on doubting. He continued the numerical verifica-
tions described above under (3), examined more series and more decimal
places, and found agreement in all cases examined. He tried other
approaches, too, and, finally, he succeeded in verifying not only numerically,
but exactly, the value 7?6 for Jacques Bernoulli’s series. He found a new
proof. This proof, although hidden and ingenious, was based on more
usual considerations and was accepted as completely rigorous. Thus, the
most conspicuous consequence of Euler’s discovery was satisfactorily verified.
These arguments, it seems, convinced Euler that his result was correct.?

7. Analogy and induction. We wish to learn something about the
nature of inventive and inductive reasoning. What can we learn from the
foregoing story?

(1) Euler’s decisive step was daring. In strict logic, it was an outright
fallacy: he applied a rule to a case for which the rule was not made, a rule’
about algebraic equations to an equation which is not algebraic. In strict
logic, Euler’s step was not justified. Yet it was justified by analogy, by the
analogy of the most successful achievements of a rising science that he called
himself a few years later the “Analysis of the Infinite.” Other mathe-
maticians, before Euler, passed from finite differences to infinitely small
differences, from sums with a finite number of terms to sums with an infinity
of terms, from finite products to infinite products. And so Euler passed
from equations of finite degree (algebraic equations) to equations of infinite
degree, applying the rules made for the finite to the infinite.

This analogy, this passage from the finite to the infinite, is beset with
pitfalls. How did Euler avoid them? He was a genius, some people will
answer, and of course that is no explanation at all. Euler had shrewd

2 Much later, almost ten years after his first discovery, Euler returned to the subject,
answered the objections, completed to some extent his original heuristic approach, and gave
a new, essentially different proof. See L. Euler, Opera Omnia, ser. 1, vol. 14, p. 73-86,
138-155, 177-186, and also p. 156-176, containing a note by Paul Stackel on the history
of the problem.
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reasons for trusting his discovery. We can understand his reasons with a
little common sense, without any miraculous insight specific to genius.

(2) Euler’s reasons for trusting his discovery, summarized in the fore-
going,® are not demonstrative. Euler does not reexamine the grounds for
his conjecture,¢ for his daring passage from the finite to the infinite; he
examines only its consequences. He regards the verification of any such
consequence as an argument in favor of his conjecture. He accepts both
approximative and exact verifications, but seems to attach more weight to
the latter. He examines also the consequences of closely related analogous
conjectures® and he regards the verification of such a consequence as an
argument for his conjecture.

Euler’s reasons are, in fact, inductive. It is a typical inductive procedure
to examine the consequences of a conjecture and to judge it on the basis of
such an examination. In scientific research as in ordinary life, we believe,
or ought to believe, a conjecture more or less according as its observable
consequences agree more or less with the facts.

In short, Euler seems to think the same way as reasonable people,
scientists or non-scientists, usually think. He seems to accept certain
principles: A conjecture becomes more credible by the verification of any new conse-
quence. And: A conjecture becomes more credible if an analogous conjecture becomes
more credible.

Are the principles underlying the process of induction of this kind ?

EXAMPLES AND COMMENTS ON CHAPTER II
First Part
x. The right generalization.
A. Find three numbers , y, and z satisfying the following system of equations:
9x — 6y — 10z =1,
—6x +4y+ 72=0,
24524+ 2 =0

If you have to solve A, which one of the following three generalizations
does give you a more helpful suggestion, B or C or D?

B. Find three unknowns from a system of three equations.

C. Find three unknowns from a system of three equations the first two
of which are linear and the third quadratic.

3 Under sect. 6 (3), (4), (5). For Euler’s own summary see Opera Omnia, ser. 1, vol. 14,
p- 140.
* ¢ The representation of sin x as an infinite product.

5 Especially the product for 1 — sin x.



GENERALIZATION, SPECIALIZATION, ANALOGY 23

D. Find n unknowns from a system of n equations the first » — 1 of
which are linear.

2. A point and a “regular” pyramid with hexagonal base are given in
position. (A pyramid is termed “regular’ if its base is a regular polygon
the center of which is the foot of the altitude of the pyramid.) Find a plane
that passes through the given point and bisects the volume of the given
pyramid.

In order to help you, I ask you a question: What is the right
generalization ?

3. A. Three straight lines which are not in the same plane pass through
the same point O. Pass a plane through O that is equally inclined to the
three lines.

B. Three straight lines which are not in the same plane pass through the
same point. The point P is on one of the lines; pass a_plane through P
that is equally inclined to the three lines. h

Compare the problems A and B. Could you use the solution of one in
solving the other? What is their logical connection?

4. A. Compute the integral

f (1 4 x2)8 dx.

B. Compute the integral
[0+ aea

where p is a given positive number.
Compare the problems A and B. Could you use the solution of one in
solving the other? What is their logical connection?

5. An extreme special case. Two men are seated at a table of usual
rectangular shape. One places a penny on the table, then the other does
the same, and so on, alternately. It is understood that each penny lies
flat on the table and not on any penny previously placed. The player who
puts the last coin on the table takes the money. Which player should win,
provided that each plays the best possible game?

This is a time-honored but excellent puzzle. I once had the opportunity
to watch a really distinguished mathematician when the puzzle was pro-
posed to him. He started by saying, “Suppose that the table is so small
that it is covered by one penny. Then, obviously, the first player must
win.”” That is, he started by picking out an extreme special case in which the
solution is obvious.
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From this special case, you can reach the full solution when you imagine
the table gradually extending to leave place to more and more pennies.
It may be still better to generalize the problem and to think of tables of
various shapes and sizes. If you observe that the table has a center of
symmetry and that the right generalization might be to consider tables with a
center of symmetry, then you have got the solution, or you are at least very
near to it.

6. Construct a common tangent to two given circles.
In order to help you, I ask you a question: Is there a more accessible
extreme special case?

7. A leading special case. The area of a polygon is 4, its plane includes
with a second plane the angle «. The polygon is projected orthogonally
onto the second plane. Find the area of the projection.

Observe that the shape of the polygon is not given. Yet there is an endless
variety of possible shapes. Which shape should we discuss? Which
shape should we discuss first?

There is a particular shape especially easy to handle: a rectangle, the base
of which is parallel to the line /, intersection of the plane of the projected
figure with the plane of the projection. If the base of such a rectangle is
a, its height b, and therefore its area is ab, the corresponding quantities for
the projection are a, b cos «, and ab cos «. If the area of such a rectangle
is 4, the area of its projection is 4 cos «.

This special case of the rectangle with base parallel to [ is not only par-
ticularly accessible; it is a leading special case. The other cases follow; the
solution of the problem in the leading special case involves the solution in the general
case. In fact, starting from the rectangle with base parallel to /, we can
extend the rule “area of the projection equals 4 cos «” successively to all
other figures. First to right triangles with a leg parallel to [ (by bisecting
the rectangle we start from); then to any triangle with a side parallel to !
(by combining two right triangles) ; finally to a general polygon (by dissect-
ing it into triangles of the kind just mentioned). We could even pass to
figures with curvilinear boundaries (by considering them as limits of
polygons). ‘

8. The angle at the center of a circle is double the angle at the circum-
ference on the same base, that is, on the same arc. (Euclid III, 20.)

If the angle at the center is given, the angle at the circumference is not
yet determined, but can have various positions. In the usual proof of the
theorem (Euclid’s proof), which is the “leading special position”?

9. Cauchy’s theorem, fundamental in the theory of analytic functions,
asserts that the integral of such a function vanishes along an arbitrary
closed curve in the interior of which the function is regular. We may
consider the special case of Cauchy’s theorem in \?/ﬁ:h the closed curve is a
triangle as a leading special case: having proved the theorem for a triangle,
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we can easily extend it successively to polygons (by combining triangles)
and to curves (by considering them as limits of polygons). Observe the
analogy with ex. 7 and 8.

x0. A representative special case. You have to solve some problem about
polygons with n sides. You draw a pentagon, solve the problem for it,
study your solution, and notice that it works just as well in the general case,
for any n, as in the special case n = 5. Then you may call n = 5 a represen-
tative special case: it represents to you the general case. Of course, in order
to be really representative, the case n =25 should have no particular
simplification that could mislead you. The representative special case should
not be simpler than the general case. '

Representative special cases are often convenient in teaching. We may
prove a theorem on determinants with n rows in discussing carefully a
determinant with just 3 rows.

1X. An analogous case. The problem is to design airplanes so that the
danger of skull fractures in case of accident is minimized. A medical
doctor, studying this problem, experiments with eggs which he smashes
under various conditions. What is he doing? He has modified the original
problem, and is studying now an auxiliary problem, the smashing of eggs
instead of the smashing of skulls. The link between the two problems, the
original and the auxiliary, is analogy. From a mechanical viewpoint, a
man’s head and a hen’s egg are roughly analogous: each consists of a rigid,
fragile shell containing gelatinous material.

12. If two straight lines in space are cut by three parallcl planes, the
corresponding segments are proportional.

In order to help you to find a proof, I ask you a question: Is there a simpler
analogous theorem?

13. The four diagonals of a parallelepiped have a common point which is
the midpoint of each.
Is there a simpler analogous theorem?

14. The sum of any two face angles of a trihedral angle is greater than the
third face angle.
Is there a simpler analogous theorem?

15. Consider a tetrahedron as the solid that is analogous to a triangle.
List the concepts of solid geometry that are analogous to the following
concepts of plane geometry: parallelogram, rectangle, square, bisector of an
angle. State a theorem of solid geometry that is analogous to the following
theorem of plane geometry: The bisectors of the three angles of a tnangle meet in
one point which is the center of the circle inscribed in the triangle.

16. Consider a pyramid as the solid that is analogous to a triangle. List
the solids that are analogous to the following plane figures: parallelogram,
rectangle, circle. State a theorem of solid geometry that is analogous to the
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following theorem of plane geometry: The area of a circle is equal to the area
of a triangle the base of which has the same length as the perimeter of the circle and
the altitude of which is the radius.

17. Invent a theorem of solid geometry that is analogous to the following
theorem of plane geometry: The altitude of an isosceles triangle passes
through the midpoint of the base.

What solid figure do you consider as analogous to an isosceles triangle?

18. Great analogies. (1) The foregoing ex. 12-17 insisted on the analogy
between plane geomeiry and solid geometry. This analogy has many aspects
and is therefore often ambiguous and not always clearcut, but it is an
inexhaustible source of new suggestions and new discoveries.

(2) Numbers and figures are not the only objects of mathematics. Mathe-
matics is basically inseparable from logic, and it deals with all objects which
may be objects of an exact theory. Numbers and figures are, however, the
most usual objects of mathematics, and the mathematician likes to illustrate
facts about numbers by properties of figures and facts about figures by
properties of numbers. Hence, there are countless aspects of the analogy
between numbers and figures. Some of these aspects are very clear. Thus,
in analytic geometry we study well-defined correspondences between
algebraic and geometric objects and relations. Yet the variety of geometric
figures is inexhaustible, and so is the variety of possible operations on
numbers, and so are the possible correspondences between these varieties.

(3) The study of limits and limiting processes introduces another kind
of analogy which we may call the analogy between the infinite and the finite.
Thus, infinite series and integrals are in various ways analogous to the finite
sums whose limits they are; the differential calculus is analogous to the
calculus of finite differences; differential equations, especially linear and
homogeneous differential equations, are somewhat analogous to algebraic
equations, and so forth. An important, relatively recent, branch of mathe-
matics is the theory of integral equations; it gives a surprising and beautiful
answer to the question: What is the analogue, in the integral calculus, of
a system of n linear equations with n unknowns? The analogy between the
infinite and the finite is particularly challenging because it has charac-
teristic difficulties and pitfalls. It may lead to discovery or error; see ex. 46.

(4) Galileo, who discovered the parabolic path of projectiles and the
quantitative laws of their motion, was also a great discoverer in astronomy.
With his newly invented telescope, he discovered the satellites of Jupiter.
He noticed that these satellites circling the planet Jupiter are analogous to
the moon circling the earth and also analogous to the planets circling the
sun. He also discovered the phases of the planet Venus and noticed their
similarity with the phases of the moon. These discoveries were received
as a great confirmation of Copernicus’s heliocentric theory, hotly debated at
that time. It is strange that Galileo failed to consider the analogy between

-
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the motion of heavenly bodies and the motion of projectiles, which can be
seen quite intuitively. The path of a projectile turns its concave side
towards the earth, and so does the path of the moon. Newton insisted on
this analogy: ““... a stone that is projected is by the pressure of its own
weight forced out of the rectilinear path, which by the initial projection
alone it should have pursued, and made to describe a curved line in the
air, and ... at last brought down to the ground; and the greater the

Fig. 2.4. From the path of the stone to the path of the moon. From Newton’s Principia

velocity is with which it is projected, the farther it goes before it falls to the
earth. We may therefore suppose the velocity to be so increased, that it
would describe an arc of 1, 2, 5, 10, 100, 1000 miles before it arrived at the
earth, till at last, exceeding the limits of the earth, it should pass into space
without touching it.”’¢ See fig. 2.4.

Varying continuously, the path of the stone goes over into the path of
the moon. And as the stone and the moon are to the earth, so are the
satellites to Jupiter, or Venus and the other planets to the sun. Without
visualizing this analogy, we can only very imperfectly understand Newton’s
discovery of universal gravitation, which we may still regard as the greatest
scientific discovery ever made.

¢ Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World.
Translated by Motte, revised by Cajori. Berkeley, 1946; see p. 551.
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19. Clarified analogies. Analogy is often vague. The answer to the
question, what is analogous to what, is often ambiguous. The vagueness
of analogy need not diminish its interest and usefulness; those cases, however,
in which the concept of analogy attains the clarity of logical or mathematical
concepts deserve special consideration.

(1) Analogy is similarity of relations. The similarity has a clear meaning
if the relations are governed by the same laws. In this sense, the addition of
numbers is analogous to the multiplication of numbers, in so far as addition
and multiplication are subject to the same rules. Both addition and
multiplication are commutative and associative,

at+b=0b-+a, ab = ba,
(@+8) +e=a+ G +0), (ab)e=a(be).
Both admit an inverse operation; the equations
a+x=25b, ax =b

are similar, in so far as each admits a solution, and no more than one solution.
(In order to be able to state the last rule without exceptions we must admit
negative numbers when we consider addition, and we must exclude the
case a =0 when we consider multiplication.) In this connection sub-
traction is analogous to division; in fact, the solutions of the above equations
are

x=b—a, x =

respectively. Then, the number 0 is analogous to the number 1; in fact,
the addition of 0 to any number, as the multiplication by 1 of any number,
does not change that number,

a+0=a, a-1=a.

These laws are the same for various classes of numbers; we may consider
here rational numbers, or real numbers, or complex numbers. In general,
systems of objects subject to the same fundamental laws (or axioms) may be con-
sidered as analogous to each other, and this kind of analogy has a completely
clear meaning.

(2) The addition of real numbers is analogous to the multiplication of
positive numbers in still another sense. Any real number r is the logarithm
of some positive number g,

r = log p.
(If we consider ordinary logarithms, r = —2 if p = 0.01.) By virtue of

this relation, to each positive number corresponds a perfectly determined
real number, and to each real number a perfectly determined positive
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number. In this correspondence the addition of real numbers corresponds
to the multiplication of positive numbers. If 4

r=logp, 7 =logp’, r"=logp

then any of the following two relations implies the other:
r+r=r1", pp'=p".

The formula on the left and that on the right tell the same story in two
different languages. Let us call one of the coordinated numbers the
translation of the other; for example, let us call the real number r (the
logarithm of p) the translation of p, and p the original of r. (We could have
interchanged the words “translation” and “original,”” but we had to choose,
and having chosen, we stick to our choice.) In this terminology addition
appears as the translation of multiplication, subtraction as the translation
of division, 0 as the translation of 1, the commutative law and associative
law for the addition of real numbers are conceived as translations of these
laws for the multiplication of positive numbers. The translation is, of
course, different from the original, but it is a correct translation in the
following sense: from any relation between the original elements, we can
conclude with certainty the corresponding relation between the corres-
ponding elements of the translation, and vice versa. Such a correct trans-
lation, that is a one-to-one correspondence that preserves the laws of certain relations,
is called isomorphism in the technical language of the mathematician.
Isomorphism is a fully clarified sort of analogy.

(3) A third sort of fully clarified analogy is what the mathematicians call
in technical language homomorphism (or merohedral isomorphism). It would
take too much time to discuss an example sufficiently, or to give an exact
description, but we may try to understand the following approximate
description. Homomorphism is a kind of systematically abridged translation.
The original is not only translated into another language, but also abridged
so that what results finally from translation and abbreviation is uniformly,
systematically condensed into one-half or one-third or some other fraction
of the original extension. Subtleties may be lost by such abridgement but
everything that is in the original is represented by something in the trans-
lation, and, on a reduced scale, the relations are preserved.

L4
3

20. Quotations.

“Let us see whether we could, by chance, conceive some other general
problem that contains the original problem and is easier to solve. Thus,
when we are seeking the tangent at a given point, we conceive that we are
just seeking a straight line which intersects the given curve in the given point
and in another point that has a given distance from the given point. After
having solved this problem, which is always easy to solve by algebra, we
find the case of the tangent as a special case, namely, the special case in
which the given distance is minimal, reduces to a point, vanishes.”
(LEmNITZ)
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““As it often happens, the general problem turns out to be easier than the
special problem would be if we had attacked it directly.” (P. G. Lejeune-
DiricHLET, R. DEDEKIND)

“[It may be useful] to reduce the genus to its several species, also to a few
species. Yet the most useful is to reduce the genus to just one minimal
species.”  (LEIBNITZ)

“It is proper in philosophy to consider the similar, even in things far
distant from each other.” (ARISTOTLE)

““Comparisons are of great value in so far as they reduce unknown relations
to known relations.

“Proper understanding is, finally, a grasping of relations (un saisir de
rapports). But we understand a relation more distinctly and more purely
when we recognize it as the same in widely different cases and between
completely heterogeneous objects.” (ARTHUR SCHOPENHAUER)

You should not forget, however, that there are two kinds of generalizations.
One is cheap and the other is valuable. It is easy to generalize by diluting;
it is important to generalize by condensing. To dilute a little wine with a
lot of water is cheap and easy. To prephre a refined and condensed extract
from several good ingredients is much more difficult, but valuable. General-
ization by condensing compresses into one concept of wide scope several
ideas which appeared widely scattered before. Thus, the Theory of
Groups reduces to a common expression ideas which were dispersed before
in Algebra, Theory of Numbers, Analysis, Geometry, Crystallography, and
other domains. The other sort of generalization is more fashionable
nowadays than it was formerly. It dilutes a little idea with a big ter ai-
nology. The author usually prefers to take even that little idea from
somebody else, refrains from adding any original observation, and avoids
solving any problem except a few problems arising from the difficulties of
his own terminology. It would be very easy to quote examples, but I
don’t want to antagonize people.?

Second Part

The examples and comments of this second part are all connected with
sect. 6 and each other. Many of them refer directly or indirectly to ex. 21,
which should be read first.

2x. The conjecture E. 'We regard the equation

s 1-2)(-2)(1-2) -

as a conjecture; we call it the “conjecture E.” Following Euler, we wish
to investigate this conjecture inductively.

" Cf. G. Pélya and G. Szegs, Aufgaben und Lehrstd ze aus der Analysis, vol. 1, p. VIL.
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Inductive investigation of a conjecture involves confronting its conse-
quences with the facts. We shall often “predict from E and verify.”
“Predicting from E’’ means deriving under the assumption that E is true,
“verifying” means deriving without this assumption. A fact “agrees with
E” if it can be (easily) derived from the assumption that E is true.

In the following we take for granted the elements of the calculus (which,
from the formal side, were completely known to Euler at the time of his
discovery) including the rigorous concept of limits (about which Euler
never attained full clarity). We shall use only limiting processes which can
be justified (most of them quite easily) but we shall not enter into detailed
justifications.

22. We know that sin (—x) = — sinx. Does this fact agree with E?
23. Predict from E and verify the value of the infinite product

(== =2) (=2

24. Predict from E and verify the value of the infinite product

(=Y o-2)i-2) o (-2)

25. Compare ex. 23 and 24, and generalize.

26. Predict from E the value of the infinite product
24 4-6 6-8 8-10

27. Show that the conjecture E is equivalent to the statement
sinmz . (kR4n...(e+Dz2z—1)...(z—n)
= lim .
T oamw (=1)*(n})?
28. We know that sin (x + 7) = —sinx. Does this fact agree with E?
29. The method of sect. 6 (2) leads to the conjecture

_(1 4-x2)(1 4x2)(1 4x2)
cosx=|l—— o 2502)
Show that this is not only analogous to, but a consequence of, the conjec-

ture E.
30. We know that

sin x = 2 sin (x/2) cos (%/2).
Does this fact agree with E?
31. Predict from E and verify the value of the infinite product

(6022
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32. Predict from E and verify the value of the infinite product

(=F)-)(-%)(-5) -

33. Compare ex. 31 and 32, and generalize.
34- We know that cos (—x) = cos x. Does this fact agree with E?
35. We know that cos (x 4 7) = — cos x. Does this fact agree with E?
36. Derive from E the product for 1 — sin x conjectured in sect. 6 (4).
37. Derive from E that
1 1 1 1 1

COtx='“+x—|—21r+x—|-1r

38. Derive from E that

1 2x
cotx=;_.._( _|_ _|_ + _|_ + )

2x3( 1 )
+ g T+ +62~3+...

2"5(+ + 55+ - )

and find the sum of the 1nﬁn1te series appearing as coefficients on the right
hand side.

39. Derive from E that
cosx (77 x)
1 —sinx 4 2

1 1 1
=—2( et + +)
x ka

—f(l 1,1 1 1 )

B A A

8x 1 1 1 1

+?(1+§+§5+1‘9+§T"')
1

lod(, 1, )

_2_7+—]E_J_'éz'3+uo-
3248 1 1

+“(1+§T+6§3+---)

and find the sum of the infinite series appearing as coefficients in the last
CXPI'CSSIOI!
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40. Show that
1+l+l+_1_+1 _4(1 r o1 1 )
iteTetat -~ Tette™

which yields a second derivation for the sum of the series on the left.

41 (continued). Try to find a third derivation, knowing that

arcsin x = x -+

and that, forn=0,1,2, ...,

/2

1
f (1— x2) L2041 gy =f (sin )2+ gt = 2 -4.-.9n
0 0

3-5.-- 20+ 1)
42 (continued). Try to find a fourth derivation, knowing that

2xt 2445 24648

377353735747

(arcsin x)2 = 2 4

and that, forn=20,1,2,...

1 w2

13 2n — 1
J(l —-xz)“llzxz”dx=f (sint)mdt =7 2. "2n 4
0 0

43. Euler (Opera Omnia, ser. 1, vol. 14, p. 40—41) used the formula

I
4 9+16

=log x - log (1 — %) + {c_+_(l—j.:c_) + £+ (11— x)? + ’_‘_3 + (1 — x)3
1 4 9
ey
valid for 0 < x < 1, to compute numerically the sum of the series on the
left hand side.

(a) Prove the formula.

(b) Which value of x is the most advantageous in computing the sum
on the left?

44. An objection and a first approach to a proof. There is no reason to admit
a priori that sin x can be decomposed into linear factors corresponding to
the roots of the equation
sin x = 0.

Yet even if we should admit this, there remains an objection: Euler did not
prove that

0, m —m, 2w, —2m, 3m, —3m,
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are all the roots of this equation. We can satisfy ourselves (by discussing
the curve y = sin x) that there are no other real roots, yet Euler did by no
means exclude the existence of complex roots.

This objection was raised by Daniel Bernoulli (a son of Jean, 1700-1788).
Euler answered it by considering

sin x = (6% — %) [(27)
= lim P, (x)

where o

rir =4[+ (-]

is a polynomial (of degree = if n is odd).
Show that P,(x) has no complex roots.

45. A second approach to a progf. Assuming that n is odd in ex. 44, factorize
P, (x)/x so that its k-th factor approaches

x2
ke

as n tends to oo, for any fixed £ (k=1,2,3,...).

1

46. Dangers of analogy. In short, the analogy between the finite and the
infinite led Euler to a great discovery. Yet he skirted a fallacy. Here is
an example showing the danger on a smaller scale.

The series 1 1+1 1+1 1+1 1+ _,
273 475 67T 8 T
converges. Its sum [ can be roughly estimated by the first two terms:
12<i<l.
Now
2 1 2 1 2 1 2 1
#=iitsTats Tty et

In this series, there is just one term with a given even denominator (it is
negative), but two terms with a given odd denominator (one positive, and
the other negative). Let us bring together the terms with the same odd
denominator:

2 1 2 1 2
17aT3~gts—
1 1 |
1 3 5
I 1 1 1
=]l—cFo— s —
2+3 4+5
= [,

Yet 2/ # I, since ! % 0. Where is the mistake and how can you protect
yourself from repeating it?
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INDUCTION IN SOLID GEOMETRY

Even in the mathematical sciences, our principal instruments to discover
the truth are induction and analogy.—LAPLACE!

1. Polyhedra. ‘A complicated polyhedron has many faces, corners,
and edges.” Some vague remark of this sort comes easily to almost anybody
who has had some contact with solid geometry. Not so many people will,
however, make a serious effort to deepen this remark and seek some more
precise information behind it. The right thing to do is to distinguish’
clearly the quantities involved and to ask some definite question. Let us
denote, therefore, the number of faces, the number of vertices and the
number of edges of the polyhedron by F, V, and E, respectively (correspond-
ing initials), and let us ask a clear question as: “Is it generally true that
the number of faces increases when the number of vertices increases? Does
F necessarily increase with ¥?”

To begin with, we can scarcely do anything better than examine examples,
particular polyhedra. Thus, for a cube (the solid I in fig. 3.1)

F=6, V=8, E=12.
Or, for a prism with triangular base (the solid II in fig. 3.1)
F=5 V=6, E=09.

Once launched in this direction, we naturally examine and compare various
solids, for example, those exhibited in fig. 3.1 which are, besides No. I and
No. IT already mentioned, the following: a prism with pentagonal base
(No. III), pyramids with square, triangular, or pentagonal base (Nos.
1V, V, VI), an octahedron (No. VII), a “tower with roof” (No. VIII;
a pyramid is placed upon the upper face of a cube as base), and a “truncated
cube” (No. IX). Let us make a little effort of imagination and represent
4 vk
1 Essai philosophique sur les probabilités; see Oeuvres complétes de Laplace, vol. 7, p. V.
35
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these solids, one after the other, clearly enough to count faces, vertices, and
edges. The numbers found are listed in the following table.

Polyhedron F vV E

I. cube . 6 8 12

II. triangular prism 5 6 9
III. pentagonal prism 7 10 15
IV. square pyramid . 5 5 8
V. triangular pyramid 4 4 6
VI. pentagonal pyramid 6 6 10
VII. octahedron 8 6 12
VIIL. “tower” . 9 9 16
IX. “truncated cube’” 7 10 15

Our fig. 3.1 has some superficial similarity with a mineralogical display,
and the above table is somewhat similar to the notebook in which the
physicist enters the results of his experiments. We examine and compare
our figures and the numbers in our table as the mineralogist or the physicist
would examine and compare their more laboriously collected specimens
and data. We now have something in hand that could answer our original
question: “Does Vincrease with F'?” In fact, the answer is “No”; compar-
ing the cube and the octahedron (Nos. I and VII) we see, that one has more
vertices and the other more faces. Thus, our first attempt at establishing
a thoroughgoing regularity failed.

We can, however, try something else. Does E increase with F? Or
with V?  To answer these questions systematically, we rearrange our table.
We dispose our polyhedra so that E increases when we read down the
successive items:

Polyhedron F vV E
triangular pyramid . 4 4 6
square pyramid 5 5 8
triangular prism 5 6 9
pentagonal pyramid 6 6 10
cube 6 8 12
octahedron 8 6 12
pentagonal prism 7 10 15
“truncated cube” 7 10 15
“tower” 9 9 16

Looking at our more conveniently arranged data, we can casily observe
that no regularity of the suspected kind exists. As E increases from 15 to
16, V drops from 10 to 9. Again, as we pass from the octahedron to the
pentagonal prism, E increases from 12 to 15 but F drops from 8 to 7. Neither
F nor V increases steadily with E.
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We again failed in finding a generally valid regularity. Yet we do not
like to admit that our original idea was completely wrong. Some modi-

fication of our idea may still be right. Neither F nor V increases with E,
it is true, but they appear to increase “on the whole.” Examining our
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Fig. 3.1. Polyhedra.

well-arranged data, we may observe that F and V¥ increase “jointly™:
F - V increases as we read down the lines. And then a more precise
regularity may strike us: throughout the table

F+V=E+2.

This relation is verified in all nine cases listed in our table. It seems
unlikely that such a persistent regularity should be mere coincidence.
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Thus, we are led to the conjecture that, not only in the observed cases, but in
any polyhedron the number of faces increased by the number of vertices is equal to
the number of edges increased by two.

2. First supporting contacts. A well-trained naturalist does not
easily admit a conjecture. Even if the conjecture appears plausible and
has been verified in some cases, he will question it and collect new observa-
tions or design new experiments to test it. 'We may do the very same thing.
We are going to examine still other polyhedra, count their faces, vertices,
and edges, and compare F + V to E + 2. These numbers may be equal
or not. It will be interesting to find out which is the case.

Looking at fig. 3.1, we may observe that we have already examined
three of the regular solids, the cube, the tetrahedron, and the octahedron
(I, V, and VII). Let us examine the remaining two, the icosahedron
and the dodecahedron.

The icosahedron has 20 faces, all triangles, and so F = 20. The 20
triangles have together 3 X 20 = 60 sides of which 2 coincide in the same
edge of the icosahedron. Therefore, the number of edges is 60/2
= 30 = E. We can find V analogously. We know that 5 faces of the
icosahedron are grouped around each of its vertices. The 20 triangles
have together 3 X 20 = 60 angles, of which 5 belong to the same vertex.
Therefore, the number of vertices is 60/5 = 12 = V.

The dodecahedron has 12 faces, all pentagons, of which 3 are grouped
around each vertex. We conclude hence, similarly as before, that

Fe12, V= 1—2-331—5 = 20, E=£2>53=30.

We can now add to our list on p. 36 two more lines:

Polyhedron F vV E
icosahedron . .2 12 30
dodecahedron . . 12 20 30

Our conjecture, that F 4 V = E 4 2, is verified in both cases.

3. More supporting contacts. Thanks to the foregoing verifications,
our conjecture became perceptibly more plausible; but is it proved now?
By no means. In a similar situation, a conscientious naturalist would feel
satisfaction over the success of his experiments, but would go on devising
further experiments. Which polyhedron should we test now?

The point is that our conjecture is so well verified by now that verification
in just one more instance would add only little to our confidence, so little
perhaps that it would be scarcely worth the trouble of choosing a polyhedron
and counting its parts. Could we find some more worthwhile way of
testing our conjecture?
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Looking at fig. 3.1, we may observe that all solids in the first line are of
the same nature; they are prisms. Again, all solids in the second line are
pyramids. Our conjecture is certainly true of the three prisms and the
three pyramids shown in fig. 3.1; but is it true of 4l prisms and pyramids?

If a prism has 7 lateral faces, it has n 4 2 faces in all, 2n vertices and 3z
edges. A pyramid with =z lateral faces has n 4 1 faces in all, n 4 1 vertices
and 2n edges. Thus, we may add two more lines to our list on p. 36:

Polyhedron F vV E
Prism with n lateral faces . . n+2 2n 3n
Pyramid with n lateral faces . n+1 n41 2n

Our conjecture asserting that F 4+ V= E 4 2 turned out to be true not
only for one or two more polyhedra but for two unlimited series of polyhedra.

4. A severe test. The last remark adds considerably to our confidence
in our conjecture, but does not prove it, of course. What should we do?
Should we go on testing further particular cases? Our conjecture seems to
withstand simple tests fairly well. Therefore we should submit it to some
severe, searching test that stands a good chance to refute it.

Let us look again at our collection of polyhedra (fig. 3.1). There are
prisms (I, II, III), pyramids (IV, V, VI), regular solids (I, V, VII); yet
we have already considered all these kinds of solids exhaustively. What
else is there? Fig. 3.1 contains also the “tower” (No. VIII) which is
obtained by placing a “roof™ on the top of a cube. Here we may perceive
the possibility of a generalization. We take any polyhedron instead of the
cube, choose any face of the polyhedron, and place a “roof” on it. Let the
original polyhedron have F faces, V vertices, and E edges, and let its face
chosen have n sides. We place on this face a pyramid with # lateral faces
and so obtain a new polyhedron. How many faces, vertices, and edges has
the new ‘“‘roofed” polyhedron? One face (the chosen one) is lost in the
process, and n new ones are won (the n lateral faces of the pyramid) so that
the new polyhedron has F — 1 4 n faces. All vertices of the polyhedron
belong also to the new one, but one vertex is added (the summit of the
pyramid) and so the new polyhedron has V' + 1 vertices. Again, all edges

- of the old polyhedron belong also to the new one, but n edges are added
(the lateral edges of the pyramid) and so the new polyhedron has E 4 n
edges.

Let us summarize. The original polyhedron had F, V, and E faces,
vertices, and edges, respectively, whereas the new “roofed” polyhedron has

F4+n—1, V+1, and E+4n
parts of the corresponding kind. Are these facts consistent with our

conjecture ?
If the relation F + V = E + 2 holds, then, obviously,

(Ftn—1)4+F+1)=(E+n) +2
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holds also. That is, if our conjecture happens to be verified in the case of
the original polyhedron, it must be verified also in the case of the new
“roofed” polyhedron. Our conjecture survives the “roofing,” and so it
has passed a very severe test, indeed. There is such an inexhaustible variety
of polyhedra which we can derive from those already examined by repeated
“roofing,” and we have proved that our conjecture is true for all of them.

By the way, the last solid of our fig. 3.1, the “truncated cube” (IX),
opens the way to a similar consideration. Instead of the cube, let us
“truncate’ any polyhedron, cutting off an arbitrarily chosen vertex. Let
the original polyhedron have

F, V,and E

faces, vertices, and edges, respectively, and let # be the number of the edges
radiating from the vertex we have chosen. Cutting off this vertex we
introduce | new face (which has n sides), n new edges, and also n new
vertices, but we lose 1 vertex. To sum up, the new “truncated’ polyhedron
has

F4+1, V4n—1, and E-+4n

faces, vertices, and edges, respectively. Now, from

F4+V=E+2
follows

F+1)+ (V4n—1)=(E4n) +2

That is, our conjecture is tenacious enough to survive the “truncating.”
It has passed another severe test.

It is natural to regard the foregoing remarks as a very strong argument
for our conjecture. We can perceive in them even something else: the
first hint of a proof. Starting from some simple polyhedron, as the tetra-
hedron or the cube, for which the conjecture holds, we can derive by roofing
and truncating a vast variety of other polyhedra for which the conjecture
also holds. Could we derive all polyhedra? Then we would have a proof!
Besides, there may be other operations which, like truncating and roofing,
preserve the conjectural relation.

5. Verifications and verifications. The mental procedures of the
trained naturalist are not essentially different from those of the common
man, but they are more thorough. Both the common man and the scientist
are led to conjectures by a few observations and they are both paying
attention to later cases which could be in agreement or not with the con-
jecture. A case in agreement makes the conjecture more likely, a conflict-
ing case disproves it, and here the difference begins: Ordinary people are
usually more apt to look for the first kind of cases, but the scientist looks
for the second kind. The reason is that everybody has a little vanity, the
common man as the scientist, but different people take pride in different
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things. Mr. Anybody does not like to confess, even to himself, that he was
mistaken and so he does not like conflicting cases, he avoids them, he is even
inclined to explain them away when they present themselves. The scientist,
on the contrary, is ready enough to recognize a mistaken conjecture, but
he does not like to leave questions undecided. Now, a case in agreement
does not settle the question definitively, but a conflicting case does. The
scientist, seeking a definitive decision, looks for cases which have a chance
to upset the conjecture, and the more chance they have, the more they are
welcome. Thereis an important point to observe. Ifa case which threatens
to upset the conjecture turns out, after all, to be in agreement with it, the
conjecture emerges greatly strengthened from the test. The more danger,
the more honor; passing the most threateming examination grants the
highest recognition, the strongest experimental evidence to the conjecture.
There are instances and instances, verifications and verifications. An
instance which is more likely to be conflicting brings the conjecture in any case
nearer to decision than an instance which is less so, and this explains the
preference of the scientist.

Now, we may get down to our own particular problem and see how the
foregoing remarks apply to the “experimental research on polyhedra™ that
we have undertaken. Each new case in which the relation F 4+ V = E + 2
is verified adds to the confidence that this relation is generally true. Yet
we soon get tired of a monotonous sequence of verifications. A case little
different from the previously examined cases, if it agrees with the conjecture,
adds to our confidence, of course, but it adds little. In fact we easily believe,
before the test, that the case at hand will behave as the previous cases from
which it differs but little. We desire not only another verification, but
a verification of another kind. In fact, looking back at the various phases of
our research (sect. 2, 3, and 4), we may observe that each one yielded a kind
of verification that surpassed essentially those obtained in the foregoing.
Each phase verified the conjecture for a more extensive variety of cases than the
Soregoing.

6. A very different case. Variety being important, let us look for
some polyhedron very different from those heretofore examined. Thus, we
may hit upon the idea of regarding a picture frame as a polyhedron. We
take a very long triangular rod, we cut four pieces of it, we adjust these
pieces at the ends, and fit them together to a framelike polybedron. Fig.
3.2 suggests that the frame is placed on a table so that the edges which have
already been on the uncut rod all lie horizontally. There are 4 times 3,
that is, 12, horizontal edges, and also 4 times 3 non-horizontal edges, so
that the total number of edges is E = 12 4 12 = 24. Counting the faces
and vertices, we find that F=4 X 3=12,and V=4 X 3 = 12. Now,
F 4 V = 24 is different from E + 2 = 26. Our conjecture, taken in full
generality, turned out.to be false!

We can say, of course, that we have never intended to state the proposition
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in such generality, that we meant all the time polyhedra which are convex
or, so to say, “sphere-shaped” and not polyhedra which are “doughnut-
shaped” as the picture frame. But these are excuses. In fact, we have to
shift our position and modify our original statement. It is quite possible
that the blow that we received will be beneficial in the end and lead us
eventually to an amended and more precise statement of our conjecture.
Yet it was a blow to our confidence, anyway.

Fig. 3.2. A doughnut-shaped polyhedron.

7. Analogy. The example of the “picture frame” killed our conjecture
in its original form but it can be promptly revived in a revised (and, let
us hope, improved) form, with an important restriction.

The tetrahedron is convex, and so is the cube, and so are the other poly-
hedra in our collection (fig. 3.1), and so are all the polyhedra that we can
derive from them by truncating and by “moderate” roofing (by placing
sufficiently flat roofs on their various faces). At any rate, there is no danger
that these operations could lead from a convex or “sphere-shaped” poly-
hedron to a “doughnut-shaped” solid.

Observing this, we introduce some much-needed precision. We con-
jecture that in any convex polyhedron the relation F + ¥V = E <+ 2 holds
between the numbers of faces, vertices, and edges. (The restriction to
“sphere-shaped” polyhedra may be even preferable, but we do not wish
to stop to define here the meaning of the term.)

This conjecture has some chance to be true. Nevertheless, our confidence
was shaken and we look around for some new support for our conjecture.
We cannot hope for much help from further verifications. It seems that
we have exhausted the most obvious sources. Yet we may still hope for
some help from analogy. Is there any simpler analogous case that could
be instructive?
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Polygons are analogous to polyhedra. A polygon is a part of a plane as a
polyhedron is a part of space. A polygon has a certain number, V, of
vertices (the vertices of its angles) and a certain number, E, of edges (or
sides). Obviously

V =E.

Yet this relation, valid for convex polygons, appears too simple and throws
little light on the more intricate relation

F+V=E-+2

which we suspect to be valid for all convex polyhedra.

If we are genuinely concerned in the question, we naturally try to bring
these two relations nearer to each other. There is an ingenious way of
doing so. 'We have to bring first the various numbers into a natural order.
The polyhedron is 3-dimensional; its faces (polygons) are 2-dimensional,

. its edges l-dimensional, and its vertices (points) O-dimensional, of course.
We may now rewrite our equations, arranging the quantities in the order of
increasing dimensions. The relation for polygons, written in the form

V—E+1=1,
becomes comparable to the relation for polyhedra, written in the form
V—E+F—1=1.

The 1, on the left hand side of the equation for polygons, stands for the only
two-dimensional element concerned, the interior of the polygon. The 1,
on the left hand side of the equation for polyhedra, stands for the only three-
dimensional element concerned, the interior of the polyhedron. The
numbers, on the left hand side, counting elements of 0, 1, 2, and 3 dimensions,
respectively, are disposed in this natural order, and have alternating signs.
The right hand side is the same in both cases; the analogy seems complete.
As the first equation, for polygons, is obviously true, the analogy adds to
our confidence in the second equation, for polyhedra, which we have
conjectured.

8. The partition of space. We pass now to another example of inductive
research in solid geometry. In our foregoing example, we started from a
general, somewhat vague remark. Our point of departure now is a par-
ticular clear-cut problem. We consider a simple but not too familiar
problem of solid geometry: Into how many parts is space divided by 5 planes?

This question is easily answered if the five given planes are all parallel to
each other, in which case space is visibly divided into 6 parts. This case,
however, is too particular. If our planes are in a “general position,” no
two among them will be parallel and there will be considerably more parts
than 6. We have to restate our problem more precisely, adding an essential
clause: Into how many parts is space divided by 5 planes, provided that these planes
are in a general position?
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The idea of a “general position” is quite intuitive; planes are in such a
position when they are not linked by any particular relation, when they are
given independently, chosen at random. It would not be difficult to clear
up the term completely by a technical definition but we shall not do so,
for two reasoms. First, this presentation should not be too technical.
Second, leaving the notion somewhat hazy, we come nearer to the mental
attitude of the naturalist who is often obliged to start with somewhat hazy
notions, but clears them up as he goes ahead.

g. Modifying the problem. Let us concentrate upon our problem.
We are given 5 planes in general position. They cut space into a certain
number of partitions. (We may think of a cheese sliced into pieces by 5
straight cuts with a sharp knife.) We have to find the number of these
partitions. (Into how many pieces is the cheese cut?)

It seems difficult to see at once all the partitions effected by the 5 planes.
(It may be impossible to “see’ them. At any rate, do not overstrain your
geometric imagination; rather, try to think. Your reason may carry you
farther than your imagination.) But why just 5 planes? Why not any
number of planes? In how many parts is space divided by 4 planes? By
3 planes? Or by 2 planes? Or by just 1 plane?

We reach here cases which are accessible to our geometric intuition.
One plane divides space obviously into 2 parts. Two planes divide space
into 3 parts if they are parallel. We have to discard, however, this particular
position; 2 planes in a general position intersect, and divide space into 4
parts. Three planes in a general position divide space into 8 parts. In
order to realize this last, more difficult, case, we may think of 2 vertical
walls inside a building, crossing each other, and of a horizontal layer,
supported by beams, crossing both walls and forming around the point
where it crosses both the ceiling of 4 rooms and the floor of 4 other rooms.

10. Generalization, specialization, analogy. Our problem is con-
cerned with 5 planes but, instead of considering 5 planes, we first playea
with 1, 2, and 3 planes. Have we squandered our time? Notatall. We
have prepared ourselves for our problem by examining simpler analogous
cases. We have tried our hand at these simpler cases; we have clarified
the intervening concepts and familiarized ourselves with the kind of problem
we have to face.

Even the way that led us to those simpler analogous problems is typical
and deserves our attention. First, we passed from the case of 5 planes to the
case of any number of planes, let us say, to n planes: we generalized. Then,
from n planes, we passed back to 4 planes, to 3 planes, to 2 planes, to just
1 plane, that is, we put n = 4, 3, 2, 1 in the general problem: we specialized.
But the problem about dividing space by, let us say, 3 planes is analogous to
our original question involving 5 planes. Thus, we have reached analogy
in a typical manner, by introductory generalization and subsequent specialization.
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11. An analogous problem. What about the next case of 4 planes?

Four planes, in general position, determine various portions of space, one
of which is limited, contained by four triangular faces, and is called a tetra-
hedron (see fig. 3.3). This configuration reminds us of three straight lines
in a plane, in general position, which determine various portions of the
plane, one of which is limited, contained by three line-segments, and is a
triangle (see fig. 3.4). We have to ascertain the number of portions of
space determined by the four planes. Let us try our hand at the simpler
analogous problem: Into howmany portionsis the plane divided by three lines ?

Fig. 3.3. Space divided by four planes.

Many of us will see the answer immediately, even without drawing a
figure, and anybody may see it, by using a rough sketch (see fig. 3.4). The
required number of parts is 7.

We have found the solution of the simpler analogous problem; but can
we use this solution for our original problem? Yes, we can, if we handle
the analogy of the two configurations intelligently. We ought to consider
the dissection of the plane by 3 straight lines so that we may apply afterwards
the same consideration to the dissection of space by 4 planes.

Thus, let us look again at the dissection of the plane by 3 lines, bounding
a triangle. One division is finite, it is the interior of the triangle. And
the infinite divisions have either a common side with the triangle (there are
3 such divisions), or a common vertex (there are also 3 of this kind). Thus
the number of all divisionsis 1 + 3 4+ 3 = 7.

Now, we consider the dissection of space by 4 planes bounding a tetra-
hedron. One division is finite, it is the interior of the tetrahedron. An
infinite division may have a common face (a 2-dimensional part of the
boundary) with the tetrahedron (there are 4 such divisions), or 2 common
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edge (1-dimensional part of the boundary; there are 6 divisions of this kind)
or a common vertex (0-dimensional part of the boundary; there are 4
divisions of this kind, emphasized in fig. 3.3). Thus the number of all
divisions is 1 4+ 4 4+ 6 4+ 4 = 15.

We have reached this result by analogy, and we have used analogy in a
typical, important way. First, we devised an easier analogous problem
and we solved it. Then, in order to solve the original, more difficult
problem (about the tetrahedron), we used the new easier analogous problem

Fig. 3.4. Plane divided by three lines.

(about the triangle) as a model; in solving the more difficult problem we
followed the pattern of the solution of the easier problem. But before
doing this, we had to reconsider the solution of the easier problem. We
rearranged it, remade it into a new pattern fit for imitation.

Ta single out an analogous easier problem, to solve it, to remake its solution
so that it may serve as a model and, at last, to reach the solution of the
original problem by following the model just created—this method may seem
roundabout to the uninitiated, but is frequently used in mathematical and
non-mathematical scientific research.

12. An array of analogous problems. Yet our original problem is
still unsolved. It is concerned with the dissection of space by 5 planes.
What is the analogous problem in two dimensions? Dissection by 5
straight lines? Or by 4 straight lines? It may be better for us to consider
these problems in full generality, the dissection of space by n planes, and
the dissection of a plane by n straight lines. These dissecting straight lines
must be, of course, in general position (no 2 are parallel and no 3 meet in
the same point). :
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If we are accustomed to use geometrical analogy, we may go one step
further and consider also the division of the straight line by » different
points. Although this problem seems to be rather trivial, it may be
instructive. We easily see that a straight line is divided by 1 point into 2
parts, by 2 points into 3, by 3 points into 4, and, generally, by n points into
n -+ 1 different parts.

Again, if we are accustomed to pay attention to, extreme cases, we may
consider the undivided space, plane or line, and regard it as a “division
effected by 0 dividing elements.”

Let us set up the following table that exhibits all our results obtained
hitherto. '

Number of divisions of
Number of
dividing
elements space by plane by line by
planes straight lines points
0 1 1 1
1 2 2 2
2 4 4 3
3 8 7 4
4 15 5
n n + 1

13. Many problems may be easier than just one. We started out
to solve a problem, that about the dissection of space by 5 planes. We
have not yet solved it, but we set up many new problems. Each unfilled
case of our table corresponds to an open question.

This procedure of heaping up new problems may seem foolish to the
uninitiated. But some experience in solving problems may teach us that
many problems together may be easier to solve than just one of them—if
the many problems are well coordinated, and the one problem by itself is
isolated. Our original problem appears now as one in an array of unsolved
problems. But the point is that all these unsolved problems form an array:
they are well disposed, grouped together, in close analogy with each other
and with a few problems solved already. If we compare the present
position of our question, well inserted into an array of analogous questions,
with its original position, as it was still completely isolated, we are naturally
inclined to believe that some progress has been made.

14. A conjecture. We look at the results displayed in our table as a
naturalist looks at the collection of his specimens. This table is a challenge
to our inventive ability, to our faculties of observation. Can we discover
any connection, any regularity ?

1
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Looking at the second column (division of space by planes) we may notice
the sequence 1, 2, 4, 8—there is a clear regularity; we see here the successive
powers of 2. Yet, what a disappointment! The next term in the column is
15, and not 16 as we have expected. Our first guess was not so good; we
must look for something else.

Eventually, we may chance upon adding two juxtaposed numbers and
observe that their sum is in the table. We recognize a peculiar connection;
we obtain a number of the table by adding two others, the number above
it and the number to the right of the latter. For example,

8 7
15
are linked by the relation
8+ 7=15.

This is a remarkable connection, a striking clue. It seems unlikely that
this connection which we can observe throughout the whole table so far
calculated should result from mere chance.

Thus, the situation suggests that the regularity observed extends beyond
the limits of our observation, that the numbers of the table not yet calculated
are connected in the same way as those already calculated, and so we are
led to conjecture that the law we chanced upon is generally valid.

If this is so, however, we can solve our original problem. By adding
juxtaposed numbers we can extend our table till we reach the number we
wished to obtain:

0 1 1 1

1 2 2 2

2 4 4 3

3 8 7 4 !
4 15 11 5

5 26

In the table as it is reprinted here two new numbers appear in heavy
type, computed by addition, 11 = 7 + 4, 26 = 15 4~ 11. If our guess is
correct, 26 should be the number of portions into which space is dissected
by 5 planes in general position. We have solved the proposed problem, it
seems. Or, at least, we have succeeded in hitting on a plausible conjecture
supported by all the evidence heretofore collected.



INDUCTION IN SOLID GEOMETRY 49

15. Prediction and verification. In the foregoing we have followed
exactly the typical procedure of the naturalist. If a naturalist observes a
striking regularity, which cannot be reasonably attributed to mere chance,
he conjectures that the regularity extends beyond the limits of his actual
observations. Making such a conjecture is often the decisive step in
inductive research.

The following step may be prediction. On the basis of his former observa-
tions and their concordance with conjectural law, the naturalist predicts
the result of his next observation. Much depends on the outcome of that
next observation. Will the prediction turn out to be true or not? We are
very much in the same position. We have found, or, rather, guessed or

/ VN

Fig. 3.5. Plane divided by four lines. Fig. 3.6. Transition from three lines to four.

predicted that 11 should be the number of regions into which a plane is
dissected by 4 straight lines in general position. Is that so? Is our
prediction correct?

Examining a rough sketch (see fig. 3.5) we can convince ourselves that
our guess was good, that 11 is actually the correct number. This confirma-
tion of our prediction yields inductive evidence in favor of the rule on the
basis of which we made our prediction. Having passed the test successfully,
our conjecture comes out strengthened.

16. Again and better. We have verified that number Il by looking
at the figure and counting. Yes, 4 lines in general position seem to divide
the plane into 11 portions. But let us do it again and do it better. We
have counted those portions in some way. Let us count them again and
count them so that we should be certain of avoiding confusion and miscounts
and traps set by special positions.

Let us start from the fact that 3 lines determine exactly 7 portions of the
plane. We have some reasons to believe that 4 lines determine 11 portions.
Why just 4 portions more? Why does the number 4 intervene in this
connection? Why does the introduction of a new line increase the number
of portions just by 4?
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We emphasize one line in fig. 3.5, we redraw it in short strokes (see fig.
3.6). The new figure does not look very different but it expresses a very
different conception. We regard the emphasized line as new and the three
otherlinesasold. The old lines cut the planeinto 7 portions. What happens
when a new line is added?

The new line, drawn at random, must intersect each old line and each
one in a different point. That makes 3 points. These 3 points divide the
new line into 4 segments. Now each segment bisects an old division of the
plane, makes two new divisions out of an old one. Taken together, the
4 segments of the new line create 8 new divisions and abolish 4 old divisions
—the number of divisions increases by just 4. This is the reason that the
number of divisions now is just 4 more than it was before: 7 + 4 = 11.

This way of arriving at the number 11 is convincing and illuminating.
We may begin now to see a reason for the regularity which we have observed
and on which we have based our prediction of that number 11. We begin
to suspect an explanation behind the facts and our confidence in the general
validity of the observed regularity is greatly strengthened.

17. Induction suggests deduction; the particular case suggests
the general proof. We have been careful all along to point out the
parallelism between our reasoning and the procedures of the naturalist.
We started from a special problem as the naturalist may start from a
puzzling observation. We advanced by tentative generalizations, by
noticing accessible special cases, by observing instructive analogies. We
tried to guess some regularity and failed, we tried again and did better.
We succeeded in conjecturing a general law which is supported by all
experimental evidence at our disposal. We put one more special case to
the test and found concordance with the conjectured law, the authority
of which gained by such verification. At last, we began to see a reason for
that general law, a sort of explanation, and our confidence was greatly
strengthened. A naturalist’s research may pass through exactly the same
phases.

There is, however, a parting of the ways at which the mathematician
turns sharply away from the naturalist. Observation is the highest authority
for the naturalist, but not for the mathematician. Verification in many
well-chosen instances is the only way of confirming a conjectural law in the
natural sciences. Verification in many well-chosen instances may be very
helpful as an encouragement, but can never prove a conjectural law in the
mathematical sciences. Let us consider our own concrete case. By
examining various special cases and comparing them, we have been led
to conjecturing a general rule from which it would follow that the solution
of our originally proposed problem is 26. Are all our observations and
verifications sufficient to prove the general rule? Or can they prove the
special result that the solution of our problem is actually 267 Not in the
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least. For a mathematician with rigid standards, the number 26 is just a
clever guess and no amount of experimental verification could demonstrate
the suspected general rule. Induction renders its results probable, it
never proves them.

It may be observed, however, that inductive research may be useful in
mathematics in another respect that we have not yet mentioned. The
careful observation of special cases that leads us to a general mathematical
result may also suggest its progf. From the intent examination of a particular
case a general insight may emerge.

In fact, this actually happened to us already in the foregoing section.
The general rule that we have discovered by induction is concerned with
two juxtaposed numbers in our table, such as 7 and 4, and with their sum,
which is 11 in the case at hand. Now, in the foregoing section we have
visualized the geometrical significance of 7, 4, and 11 in our problem and,
in doing so, we have understood why the relation 7 4 4 = 11 arises there.
We dealt, in fact, with the passage from 3 lines dividing the plane to 4 such
lines. Yet there is no particular virtue in the numbers 3 and 4; we could
pass just as well from any number to the following, from n to n + 1. The
special case discussed may represent to us the general situation (ex. 2.10).
I leave to the reader the pleasure of fully extracting the general idea from the
particular observation of the foregoing section. In doing so; he may give
a formal proof for the rule discovered inductively, at least as far as the last
two columns are concerned.

Yet, in order to complete the proof, we have to consider not only the
dissection of a plane by straight lines, but also the dissection of space
by planes. We may hope, however, that if we are able to clear up the
dissection of a plane, analogy will help us to clear up the dissection of space.
Again, I leave to the reader the pleasure of profiting from the advice of
analogy.

18. More conjectures. We have not yet exhausted the subject of
plane and space partitions. There are a few more little discoveries to
make and they are well accessible to inductive reasoning. We may be
easily led to them by careful observation and understanding combination
of particular instances.

We may wish to find a formula for the number of divisions of a plane by n
lines in general position. In fact, we have already a formula in a simpler
analogous case: n different points divide a straight line into n 4 1 segments.
This analogous formula, the particular cases listed in our table, our induc-
tively discovered general rule (which we have almost proved), all our results
hitherto obtained may help us to solve this new problem. I do not enter
into details. I just note the solution which we may find, following the fore-
going hints, in various manners.

1 + n is the number of portions into which a straight line is divided by
n different points.
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n(n — 1)

1 +a+4 5

by n straight lines in general position.

is the number of portions into which a plane is divided

The reader may derive the latter formula or at least he can check it in
the simplest cases, forn =0, 1,2, 3,4. Ileave also to the reader the pleasure
of discovering a third formula of the same kind, for the number of space
partitions. In making this little discovery, the reader may broaden his
experience of inductive reasoning in mathematical matters and enjoy the
help that analogy lends us in the solution of problems little or great.

EXAMPLES AND COMMENTS ON CHAPTER II

The formula F 4 V = E 4 2, conjectured in sect. 1, is due to Leonhard
Euler. We call it “Euler’s formula,” regard it as a conjecture, and examine
it in various ways, sometimes inductively and sometimes with a view to
finding a proof; in ex. 1-10. We return to it in ex. 21-30 and ex. 31-41.
Before attempting any example in these two divisions, read ex. 21 and ex.
31, respectively.

1. Two pytdmids, standing on opposite sides of their common base, form
Jjointly a “double pyramid.” An octahedron is a particular double pyramid;
the common base is a square. Does Euler’s formula hold for the general
double pyramid ?

2. Take a convex polyhedron with F faces, V vertices, and E edges,
choose a poirit P in its interior (its centroid, for example), describe a sphere
with center P 4nd project the polyhedron from the center P onto the surface
of the sphere. This projection transforms the F faces into F regions or
“‘countries” on the surface of the sphere, it transforms any of the E edges into
a boundary line separating two neighboring countries and any of the ¥
vertices into a “corner” or a common boundary point of three or more
countries (a “three-country corner” or a ‘“four-country corner,” etc.).
‘This projection yields boundary lines of particularly simple nature (arcs of
great circles) but, obviously, the validity of Euler’s formula for such a
subdivision of the surface of the sphere into countries is independent of the precise
form of the boundary lines; the numbers F, V, and E ate not influenced by
continuous deformation of these lines.

(1) A meridian is one half of a great circle connecting the two poles,
South and North. A parallel circle is the intersection of the globe’s surface
with a plane paralle] to the equator. The earth’s surface is divided by m
meridians and p parallel circles into F countries. Compute F, ¥, and E.
Does Euler’s formula hold ?

(2) The projection of the octahedron from its center P onto the surface
of the sphere is a special case of the situation described in (1). For which
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3. Chance plays a réle in discovery. Inductive ‘discovery obviously
depends on the observational material. In sect. 1 we came across certain
polyhedra, but we could have chanced upon others. Probably we would
not have missed the regular solids, but our list could have come out thus:

Polyhedron F V E
tetrahedron 4 4 ‘6
cube 6 8 12
octahedron 8 6 12
pentagonal prism 7 10 15
pentagonal double pyramid 10 7 15
dodecahedron 12 20 30
icosahedron 20 12 30

Do you observe some regularity? Can you explain it? What is the
connection with Euler’s formula?

4. Try to generalize the relation between two polyhedra observed in
the table of ex. 3. [The relation described in the solution of ex. 3 under
(2) is too ‘“narrow,” too ‘“‘detailed.” Take, however, the cube and the
octahedron in the situation there described, color the edges of one in red,
those of the other in blue, and project them from their common center P
onto a sphere as described in ex. 2. Then generalize.]

5. It would be sufficient to prove Euler’s formula in a particular case:
for convex polyhedra that have only triangular faces. Why? [Sect. 4.]

6. It would be sufficient to prove Euler’s formula in a particular case:
for convex polyhedra that have only three-edged vertices. Why?
" [Sect. 4.]

7. In proving Euler’s formula we can restrict ourselves to figures in a
plane. In fact, imagine that F — | faces of the polyhedron are made of
cardboard, but one face is made of glass; we call this face the “window.”
You look through the window into the interior of the polyhedron, holding
your eyes so close to the window that you see the whole interior. (This
may be impossible if the polyhedron is not convex.) You can interpret
what you see as a plane figure drawn on the window pane: you see a
subdivision of the window into smaller polygons.

In this subdivision there are N, polygons, N, straight boundary lines
(some outer, some inner) and N, vertices.

(1) Express Ng, Ny, N, in terms of F, V, E.

(2) If Euler’s formula holds for F, ¥, and E, which formula holds for
Ny, Ny, and N,?

8. A rectangle is [ inches long and m inches wide; / and m are integers.
The rectangle is subdivided into /m equal squares by straight lines parallel
to its sides.
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14+ n+ 1@—;2——1—) is the number of portions into which a plane is divided

by n straight lines in general position.

The reader may derive the latter formula or at least he can check it in
the simplest cases, forn = 0,1,2,3,4. Ileave also to the reader the pleasure
of discovering a third formula of the same kind, for the number of space
partitions. In making this little discovery, the reader may broaden his
experience of inductive reasoning in mathematical matters and enjoy the
help that analogy lends us in the solution of problems little or great.

EXAMPLES AND COMMENTS ON CHAPTER IIX

The formula F + V = E 4 2, conjectured in sect. 1, is due to Leonhard
Euler. We tall it “Euler’s formula,” regard it as a conjecture, and examine
it in various ways, sometimes inductively and sometimes with a view to
finding a proof] in ex. 1-10. We return to it in ex. 21-30 and ex. 31-41.
Before attempting any example in these two divisions, read ex. 21 and ex.
31, respectively.

1. Two pytdmids, standing on opposite sides of their common base, form
jointly a “double pyramid.” An octabedron is a particular double pyramid;
the common base is a square. Does Euler’s formula hold for the general
double pyramid?

2. Take a convex polyhedron with F faces, V vertices, and E edges,
choose a poirit P in its interior (its centroid, for example), describe a sphere
with center P 4nd project the polyhedron from the center P onto the surface
of the sphere. This projection transforms the F faces into F regions or
“countries’ on the surface of the sphere, it transforms any of the E edges into
a boundary line separating two neighboring countries and any of the V
vertices into a ‘“corner” or a common boundary point of three or more
countries (a “‘three-country corner” or a ‘“four-country corner,” etc.).
This projection yields boundary lines of particularly simple nature (arcs of
great circles) but, obviously, the validity of Euler’s formula for such a
subdivision of the surface of the sphere into countries is independent of the precise
form of the boundary lines; the numbers F, ¥, and E are not influenced by
continuous deformation of these lines.

(1) A meridian is one half of a great circle connecting the two poles,
South and North. A parallel circle is the intersection of the globe’s surface
with a plane parallel to the equator. The earth’s surface is divided by m
meridians and p parallel circles into F countries. Compute F, V, and E.
Does Euler’s formula hold ?

(2) The projection of the octahedron from its center P onto the surface
of the sphere is a special case of the situation described in (1). For which
values of m and p?
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3. Chance plays a réle in discovery. Inductive ‘discovery obviously
depends on the observational material. In sect. 1 we came across certain
polyhedra, but we could have chanced upon others. Probably we would
not have missed the regular solids, but our list could have come out thus:

Polyhedron F |4 E
tetrahedron 4 4 "6
cube 6 8 12
octahedron 8 6 12
pentagonal prism 7 10 15
pentagonal double pyramid 10 7 15
dodecahedron 12 20 30
icosahedron 20 12 30

Do you observe some regularity? Can you explain it? What is the
connection with Euler’s formula?

4. Try to generalize the relation between two polyhedra observed in
the table of ex. 3. [The relation described in the solution of ex. 3 under
(2) is too ““narrow,” too “detailed.” Take, however, the cube and the
octahedron in the situation there described, color the edges of one in red,
those of the other in blue, and project them from their common center P
onto a sphere as described in ex. 2. Then generalize.]

5. It would be sufficient to prove Euler’s formula in a particular case:
for convex polyhedra that have only triangular faces. Why? [Sect. 4.]

6. It would be sufficient to prove Euler’s formula in a particular case:
for convex polyhedra that have only three-edged vertices. Why?
[Sect. 4.]

7. In proving Euler’s formula we can restrict ourselves to figures in a
plane. In fact, imagine that F — 1 faces of the polyhedron are made of
cardboard, but one face is made of glass; we call this face the “window.”
You look through the window into the interior of the polyhedron, holding
your eyes so close to the window that you see the whole interior. (This
may be impossible if the polyhedron is not convex.) You can interpret
what you see as a plane figure drawn on the window pane: you see a
subdivision of the window into smaller polygons.

In this subdivision there are N, polygons, N, straight boundary lines
(some outer, some inner) and N, vertices.

(1) Express Ny, Ny, N, in terms of F, V, E.

(2) If Euler’s formula holds for F, ¥, and E, which formula holds for
Ny, Ny, and N,?

8. A rectangle is [ inches long and m inches wide; [ and m are integers.
The rectangle is subdivided into /m equal squares by straight lines parallel
to its sides.
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(1) Express No, Ny, and N, (defined in ex. 7) in terms of [ and m.
(2) Is the relation ex. 7 (2) valid in the present case?

9- Ex. 5 and 7 suggest that we should examine the subdivision of a
triangle into N, triangles with N, — 3 vertices in the interior of the sub-
divided triangle. In computing the sum of all the angles in those N,
triangles in two different ways, you may prove Euler’s formula.

10. Sect. 7 suggests the extension of Euler’s formula to four and more
dimensions. How can we make such an extension tangible? How can
we visualize it?

Ex. 7 shows that the case of polyhedra can be reduced to the subdivision
of a plane polygon. Analogy suggests that the case of four dimensions
may be reduced to the subdivision of a polyhedron in our visible three-
dimensional space. If we wish to proceed inductively, we have to examine
some example of such a subdivision. By analogy, ex. 8 suggests the
following.

A box (that is, a rectangular parallelepiped) has the dimensions /, m,
and n; these three numbers are integers. The box is subdivided into /mn
equal cubes by planes parallel to its faces. Let Ny, Ny, Ny, and N, denote
the number of vertices, edges, faces, and polyhedra (cubes) forming the
subdivision, respectively.

(1) Express Ny, N,, N,, and N, in terms of /, m, and z.
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