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We apply an understanding of what computers do to study how computerization
alters job skill demands. We argue that computer capital (1) substitutes for workers
in performing cognitive and manual tasks that can be accomplished by following
explicit rules; and (2) complements workers in performing nonroutine problem-
solving and complex communications tasks. Provided that these tasks are imperfect
substitutes, our model implies measurable changes in the composition of job tasks,
which we explore using representative data on task input for 1960 to 1998. We �nd
that within industries, occupations, and education groups, computerization is asso-
ciated with reduced labor input of routine manual and routine cognitive tasks and
increased labor input of nonroutine cognitive tasks. Translating task shifts into
education demand, the model can explain 60 percent of the estimated relative de-
mand shift favoring college labor during 1970 to 1998. Task changes within nomi-
nally identical occupations account for almost half of this impact.

INTRODUCTION

A wealth of quantitative and case-study evidence documents
a striking correlation between the adoption of computer-based
technologies and the increased use of college-educated labor
within detailed industries, within �rms, and across plants within
industries.1 This robust correlation is frequently interpreted as
evidence of skill-biased technical change. Yet, as critics point out,
this interpretation merely labels the correlation without explain-
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1. Berman, Bound, and Griliches [1994], Autor, Katz, and Krueger [1998],
Machin and Van Reenen[1998], Berman, Bound, and Machin [1998, 2000], and Gera,
Gu, and Lin [2001] present evidence on industry level demand shifts from the United
States, OECD, Canada, and other developed and developing countries. Levy and
Murnane [1996], Doms, Dunne, and Troske [1997], and Bresnahan, Brynjolfsson,and
Hitt [2002] provide evidence on �rm and plant level shifts. Katz and Autor [1999]
summarize this literature. Card and DiNardo [2002] offer a critique.
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ing its cause. It fails to answer the question of what it is that
computers do— or what it is that people do with computers—that
causes educated workers to be relatively more in demand.

This paper proposes an answer to this question. We formalize
and test a simple theory of how the rapid adoption of computer
technology—spurred by precipitous real price declines— changes
the tasks performed by workers at their jobs and ultimately the
demand for human skills. Our approach builds on an intuitive set
of observations offered by organizational theorists, computer sci-
entists, and most recently economists about what computers do—
that is, the tasks they are best suited to accomplish—and how
these capabilities complement or substitute for human skills in
workplace settings.2 The simple observations that undergird our
analysis are (1) that computer capital substitutes for workers in
carrying out a limited and well-de�ned set of cognitive and man-
ual activities, those that can be accomplished by following explicit
rules (what we term “routine tasks”); and (2) that computer
capital complements workers in carrying out problem-solving and
complex communication activities (“nonroutine” tasks). (See Ta-
ble I for examples.) Provided that routine and nonroutine tasks
are imperfect substitutes, these observations imply measurable
changes in the task composition of jobs, which we test below.

To answer the core questions of our paper, the ideal experi-
ment would provide two identical autarkic economies, one facing
a dramatic decline in the price of computing power and the other
not. By contrasting these economies, it would be straightforward
to assess how computerization reshapes the task composition of
work and hence the structure of labor demand. Because this
experiment is not available, we develop a simple economic model
to predict how demand for workplace tasks responds to an econ-
omywide decline in the price of computer capital. The model predicts
that industries and occupations that are initially intensive in labor
input of routine tasks will make relatively larger investments in
computer capital as its price declines. These industries and occupa-
tions will reduce labor input of routine tasks, for which computer

2. Simon [1960] provides the �rst treatment of this question with which we are
familiar, and his essay introduces many of the ideas explored here. Other early works
include Drucker [1954] and Nelson and Winter [1982]. Adler [1986], Orr [1996], and
Zuboff [1988] discuss what computers and related technology do in the workplace, but
do not consider economic implications. Acemoglu [1998], Goldin and Katz [1998],
Bresnahan [1999], Bartel, Ichniowski, and Shaw [2000], Lindbeck and Snower
[2000], Lang [2002], and Bresnahan, Brynjolfsson, and Hitt [2002] provide economic
analyses of why technology and human capital are complementary.
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capital substitutes, and increase demand for nonroutine task input,
which computer capital complements. In net, these forces will raise
relative demand for highly educated workers, who hold comparative
advantage in nonroutine versus routine tasks.

To test these predictions, we pair representative data on job
task requirements from the Dictionary of Occupational Titles
(DOT) with samples of employed workers from the Census and
Current Population Survey to form a consistent panel of industry
and occupational task input over the four-decade period from
1960 to 1998. A unique virtue of this database is that it permits
us to analyze changes in task input within industries, education
groups, and occupations—phenomena that are normally unob-
servable. By measuring the tasks performed in jobs rather than
the educational credentials of workers performing those jobs, we
believe our study supplies a missing conceptual and empirical
link in the economic literature on technical change and skill
demand.

Our analysis provides four main pieces of evidence support-
ing our model.

1) Commencing in the 1970s, labor input of routine cognitive
and manual tasks in the U. S. economy declined, and labor
input of nonroutine analytic and interactive tasks rose.

2) Shifts in labor input favoring nonroutine and against rou-
tine tasks were concentrated in rapidly computerizing
industries. These shifts were small and insigni�cant in
the precomputer decade of the 1960s, and accelerated in
each subsequent decade.

3) The substitution away from routine and toward nonrou-
tine labor input was not primarily accounted for by edu-
cational upgrading; rather, task shifts are pervasive at all
educational levels.

4) Paralleling the within-industry task shifts, occupations
undergoing rapid computerization reduced input of rou-
tine cognitive tasks and increased input of nonroutine
cognitive tasks.

We consider a number of economic and purely mechanical
alternative explanations for our results. Two supply side factors
that we study in particular are the rising educational attainment
of the workforce and the rising human capital and labor force
attachment of women—both of which could potentially generate
shifts in job task composition independent of demand shifts. As
we show below, the task shifts that we document—and their
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associations with the adoption of computer technology—are as
pervasive within gender, education, and occupation groups as
between, indicating that these supply side forces are not the
primary explanation for our results.

We begin by presenting our informal “task model” describing
how computerization affects the tasks that workers and machines
perform. We next formalize this model in a production framework
to develop empirical implications for task demand at the industry
and occupation level. Subsequent sections describe our data
sources and test the model’s main implications. Drawing together
the empirical strands, we �nally assess the extent to which
changes in the task composition can account for recent demand
shifts favoring more educated workers. This exercise shows that
estimated task shifts are economically large, underscoring the
potential of the conceptual model to reconcile key facts.

I. THE TASK MODEL

We begin by conceptualizing work from a “machine’s-eye”
view as a series of tasks to be performed, such as moving an
object, performing a calculation, communicating a piece of infor-
mation, or resolving a discrepancy. Our model asks: which of
these tasks can be performed by a computer? A general answer is
found by examining what is arguably the �rst digital computer,
the Jacquard Loom of 1801. Jacquard’s invention was a machine
for weaving fabrics with inlaid patterns speci�ed by a program
punched onto cards and fed into the loom. Some programs were
quite sophisticated; one surviving example uses more than 10,000
cards to weave a black and white silk portrait of Jacquard him-
self.3 Two centuries later, the electronic descendants of Jacquard’s
loom share with it two intrinsic traits. First, they rapidly and accu-
rately perform repetitive tasks that are deterministically speci�ed
by stored instructions (programs) that designate unambiguously
what actions the machine will perform at each contingency to
achieve the desired result. Second, computers are “symbolic proces-
sors,” acting upon abstract representations of information such as
binary numbers or, in the loom’s case, punched cards.

Spurred by a more than trillionfold decline in the real price of

3. The Jacquard loom was also the inspiration for Charles Babbage’s analyti-
cal engine and Herman Hollerith’s punch card reader, used to process the 1910
United States Census.
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computing power [Nordhaus 2001], engineers have become vastly
more pro�cient at applying the loom’s basic capabilities—rapid
execution of stored instructions—to a panoply of tasks. How does
this advance affect the task composition of human work? The
answer depends both upon how computers substitute for or com-
plement workers in carrying out speci�c tasks, and how these
tasks substitute for one another. We illustrate these cases by
considering the application of computers to routine and nonrou-
tine cognitive and manual tasks.

In our usage, a task is “routine” if it can be accomplished by
machines following explicit programmed rules. Many manual
tasks that workers used to perform, such as monitoring the tem-
perature of a steel �nishing line or moving a windshield into place
on an assembly line, �t this description. Because these tasks
require methodical repetition of an unwavering procedure, they
can be exhaustively speci�ed with programmed instructions and
performed by machines.

A problem that arises with many commonplace manual and
cognitive tasks, however, is that the procedures for accomplishing
them are not well understood. As Polanyi [1966] observed, “We
can know more than we can tell [p. 4] . . . The skill of a driver
cannot be replaced by a thorough schooling in the theory of the
motorcar; the knowledge I have of my own body differs altogether
from the knowledge of its physiology; and the rules of rhyming
and prosody do not tell me what a poem told me, without any
knowledge of its rules [p. 20].” We refer to tasks �tting Polanyi’s
description as “nonroutine,” that is, tasks for which the rules are
not suf�ciently well understood to be speci�ed in computer code
and executed by machines. Navigating a car through city traf�c
or deciphering the scrawled handwriting on a personal check—
minor undertakings for most adults—are not routine tasks by our
de�nition (see Beamish, Levy, and Murnane [1999] and Autor,
Levy and Murnane [2002] for examples). The reason is that these
tasks require visual and motor processing capabilities that can-
not at present be described in terms of a set of programmable
rules [Pinker 1997].4

Our conceptual model suggests that, because of its declining
cost, computer-controlled machinery should have substantially

4. If a manual task is performed in a well-controlled environment, however,
it can often be automated despite the seeming need for adaptive visual or manual
processing. As Simon [1960] observed, environmental control is a substitute for
�exibility.
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substituted for workers in performing routine manual tasks. This
phenomenon is not novel. Substitution of machinery for repetitive
human labor has been a thrust of technological change through-
out the Industrial Revolution [Hounshell 1985; Mokyr 1990; Gol-
din and Katz 1998]. By increasing the feasibility of machine
substitution for repetitive human tasks, computerization fur-
thers—and perhaps accelerates—this long-prevailing trend.

The advent of computerization also marks a qualitative en-
largement in the set of tasks that machines can perform. Because
computers can perform symbolic processing—storing, retrieving,
and acting upon information—they augment or supplant human
cognition in a large set of information-processing tasks that his-
torically were not amenable to mechanization. Over the last three
decades, computers have substituted for the calculating, coordi-
nating, and communicating functions of bookkeepers, cashiers,
telephone operators, and other handlers of repetitive informa-
tion-processing tasks [Bresnahan 1999].

This substitution marks an important reversal. Previous
generations of high technology capital sharply increased demand
for human input of routine information-processing tasks, as seen
in the rapid rise of the clerking occupation in the nineteenth
century [Chandler 1977; Goldin and Katz 1995]. Like these tech-
nologies, computerization augments demand for clerical and in-
formation-processing tasks. But in contrast to its nineteenth cen-
tury predecessors, it permits these tasks to be automated.

The capability of computers to substitute for workers in carry-
ing out cognitive tasks is limited, however. Tasks demanding �exi-
bility, creativity, generalized problem-solving, and complex commu-
nications—what we call nonroutine cognitive tasks—do not (yet)
lend themselves to computerization [Bresnahan 1999]. At present,
the need for explicit programmed instructions appears a binding
constraint. There are very few computer-based technologies that can
draw inferences from models, solve novel problems, or form persua-
sive arguments.5 In the words of computer scientist Patrick Winston

5. It is, however, a fallacy to assume that a computer must reproduce all of the
functions of a human to perform a task traditionally done by workers. For example,
Automatic Teller Machines have supplanted many bank teller functions, although
they cannot verify signatures or make polite conversation while tallying change.
Closely related, computer capital may substitute for the routine components of
predominantly nonroutine tasks, e.g., on-board computers that direct taxi cabs. What
is required for our conceptual model is that the routine and nonroutine tasks embod-
ied in a job are imperfect substitutes. Consequently, a decline in the price of accom-
plishing routine tasks does not eliminate demand for nonroutine tasks.
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[1999]: “The goal of understanding intelligence, from a computa-
tional point of view, remains elusive. Reasoning programs still ex-
hibit little or no common sense. Today’s language programs trans-
late simple sentences into database queries, but those language
programs are derailed by idioms, metaphors, convoluted syntax, or
ungrammatical expressions.”6

The implication of our discussion is that because present
computer technology is more substitutable for workers in carry-
ing out routine tasks than nonroutine tasks, it is a relative
complement to workers in carrying out nonroutine tasks. From a
production function standpoint, outward shifts in the supply of
routine informational inputs, both in quantity and quality, in-
crease the marginal productivity of workers performing nonrou-
tine tasks that demand these inputs. For example, comprehen-
sive bibliographic searches increase the quality of legal research
and timely market information improves the ef�ciency of mana-
gerial decision-making. More tangibly, because repetitive, pre-
dictable tasks are readily automated, computerization of the
workplace raises demand for problem-solving and communica-
tions tasks such as responding to discrepancies, improving pro-
duction processes, and coordinating and managing the activities
of others. This changing allocation of tasks was anticipated by
Drucker [1954] in the 1950s: “The technological changes now
occurring will carry [the Industrial Revolution] a big step further.
They will not make human labor super�uous. On the contrary,
they will require tremendous numbers of highly skilled and
highly trained men—managers to think through and plan, highly
trained technicians and workers to design the new tools, to pro-
duce them, to maintain them, to direct them” [p. 22, brackets
added].

Table I provides examples of tasks in each cell of our two-by-
two matrix of workplace tasks (routine versus nonroutine, man-
ual versus information processing) and states our hypothesis
about the impact of computerization for each cell. The next sec-
tion formalizes these ideas and derives empirical implications.7

6. Software that recognizes patterns (e.g., neural networks) or solves prob-
lems based upon inductive reasoning from well-speci�ed models is under devel-
opment. But these technologies have had little role in the “computer revolution” of
the last several decades. As one example, current speech recognition software
based on pattern recognition can recognize words and short phrases but can only
process rudimentary conversational speech [Zue and Glass 2000].

7. Our focus on task shifts in the process of production within given jobs
overlooks two other potentially complementary avenues by which technical

1285SKILL CONTENT OF TECHNICAL CHANGE



I.A. The Demand for Routine and Nonroutine Tasks

The informal task framework above implies three postulates
about how computer capital interacts with human labor input.

A1. Computer capital is more substitutable for human labor
in carrying out routine tasks than nonroutine tasks.

A2. Routine and nonroutine tasks are themselves imperfect
substitutes.

A3. Greater intensity of routine inputs increases the mar-
ginal productivity of nonroutine inputs.

To develop the formal implications of these assumptions, we
write a simple, general equilibrium production model with two

change impacts job task demands. First, innovations in the organization of pro-
duction reinforce the task-level shifts that we describe above. See Adler [1986],
Zuboff [1988], Levy and Murnane [1996], Acemoglu [1999], Bresnahan [1999],
Bartel, Ichniowski, and Shaw [2000], Brynjolfsson and Hitt [2000], Lindbeck and
Snower [2000], Mobius [2000], Thesmar and Thoenig [2000], Caroli and Van
Reenen [2001], Fernandez [2001], Autor, Levy, and Murnane [2002], and Bresna-
han, Brynjolfsson, and Hitt [2002] for examples. Second, distinct from our focus on
process innovations, Xiang [2002] presents evidence that product innovations over
the past 25 years have also raised skill demands.

TABLE I
PREDICTIONS OF TASK MODEL FOR THE IMPACT OF COMPUTERIZATION ON FOUR

CATEGORIES OF WORKPLACE TASKS

Routine tasks Nonroutine tasks

Analytic and interactive tasks

Examples � Record-keeping � Forming/testing hypotheses
� Calculation � Medical diagnosis
� Repetitive customer service

(e.g., bank teller)
� Legal writing
� Persuading/selling
� Managing others

Computer impact � Substantial substitution � Strong complementarities

Manual tasks

Examples � Picking or sorting � Janitorial services
� Repetitive assembly � Truck driving

Computer impact � Substantial substitution � Limited opportunities for
substitution or
complementarity
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task inputs, routine and nonroutine, that are used to produce
output Q, which sells at price one. Because our discussion
stresses that computers neither strongly substitute nor strongly
complement nonroutine manual tasks, we consider this model to
pertain primarily to routine cognitive and routine manual tasks,
and nonroutine analytic and nonroutine interactive tasks.

We assume for tractability an aggregate, constant returns to
scale Cobb-Douglas production function of the form,

(1) Q 5 ~LR 1 C!12bLN
b , b [ ~0,1!,

where LR and LN are routine and nonroutine labor inputs and C
is computer capital, all measured in ef�ciency units. Computer
capital is supplied perfectly elastically at market price r per
ef�ciency unit, where r is falling exogenously with time due to
technical advances. The declining price of computer capital is the
causal force in our model.8

We assume that computer capital and labor are perfect sub-
stitutes in carrying out routine tasks. Cobb-Douglas technology
further implies that the elasticity of substitution between routine
and nonroutine tasks is one, and hence computer capital and
nonroutine task inputs are relative complements. While the as-
sumption of perfect substitutability between computer capital
and routine task input places assumptions A1 and A2 in bold
relief, the only substantive requirement for our model is that
computer capital is more substitutable for routine than nonrou-
tine tasks. Observe that routine and nonroutine tasks are q-
complements; the marginal productivity of nonroutine tasks rises
with the quantity of routine task input, consistent with assump-
tion A3.9

We assume a large number of income-maximizing workers,
each of whom inelastically supplies one unit of labor. Workers
have heterogeneous productivity endowments in both routine and
nonroutine tasks, with Ei 5 [ri,ni] and 1 $ r i, ni . 0 @ i. A given
worker can choose to supply ri ef�ciency units of routine task
input, n i ef�ciency units of nonroutine task input, or any convex

8. Borghans and ter Weel [2002] offer a related model exploring how the
declining price of computer capital affects the diffusion of computers and the
distribution of wages. A key difference is that the tasks performed by computers
and workers are inseparable in the Borghans-ter Weel model. Accordingly, com-
puterization alters wage levels but does not directly change the allocation of
human labor input across task types. This latter point is the focus of our model
and empirical analysis.

9. Speci�cally, ]2Q/]LN](LR 1 C) 5 b(1 2 b) LN
b2 1 /(LR 1 C)b . 0.
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combination of the two. Hence, Li 5 [lir i, (1 2 l i)ni], where 0 #
li # 1. These assumptions imply that workers will choose tasks
according to comparative advantage as in Roy [1951]. We adopt
the Roy framework because it implies that relative task supply
will respond elastically to relative wage levels. If, instead, work-
ers were bound to given tasks, the implications of our model for
task productivity would be unchanged, but technical progress,
re�ected by a decline in r, would not generate re-sorting of work-
ers across jobs.

Two main conditions govern market equilibrium in this
model. First, given the perfect substitutability of routine tasks
and computer capital, the wage per ef�ciency unit of routine task
input is pinned down by the price of computer capital:10

(2) wR 5 r.

Second, worker self-selection among occupations—routine versus
nonroutine—clears the labor market.

De�ne the relative ef�ciency of individual i at nonroutine
versus routine tasks as h i 5 ni/r1. Our assumptions above imply
that h i [ (0,`). At the labor market equilibrium, the marginal
worker with relative ef�ciency units h* is indifferent between
performing routine and nonroutine tasks when

(3) h* 5 wR/wN.

Individual i supplies routine labor (l i 5 1) if hi , h*, and
supplies nonroutine labor otherwise (li 5 0).

To quantify labor supply, write the functions g(h), h(h),
which sum population endowments in ef�ciency units of routine
and nonroutine tasks, respectively, at each value of h. Hence,
g(h) 5 ¥ir i z I[hi , h] and h(h) 5 ¥in i z I[h i $ h], where I[ z ]
is the indicator function. We further assume that h i has nonzero
support at all h i [ (0,`), so that that h(h) is continuously
upward sloping in h, and g(h) is continuously downward sloping.

Assuming that the economy operates on the demand curve,
productive ef�ciency requires

(4) wR 5
]Q
]LR

5 ~1 2 b!u2b and wN 5
]Q
]LN

5 bu12b,

10. We implicitly assume that the shadow price of nonroutine tasks absent
computer capital exceeds r and hence equation (2) holds with equality. In the
precomputer era it is likely that wR , r.
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where u in this expression is the ratio of routine to nonroutine
task input in production:

(5) u ; ~C 1 g~h*!!/h~h*!.

These equations provide equilibrium conditions for the mod-
el’s �ve endogenous variables (wR ,wN ,u,C,h). We use them to
analyze how a decline in the price of computer capital affects task
input, wages, and labor supply, beginning with the wage paid to
routine task input.

It is immediate from (2) that a decline in the price of com-
puter capital reduces wR one-for-one, ](ln wR)/](ln r) 5 1, and
hence demand for routine task input rises:

(6)
] ln u

] ln r
5 2

1
b

.

From the perspective of producers, the rise in routine task
demand could be met by either an increase in C or an increase in
LR (or both). Only the �rst of these will occur, however. Because
routine and nonroutine tasks are productive complements (spe-
ci�cally q-complements), the relative wage paid to nonroutine
tasks rises as r declines:

(7)
] ln~wN/wR!

] ln r
5 2

1
b

and
] ln h*
] ln r

5
1
b

.

Consequently, marginal workers will reallocate their labor input
from routine to nonroutine tasks. Increased demand for routine
tasks must be met entirely by an in�ux of computer capital.

Hence, an exogenous decline in the price of computer capital
raises the marginal productivity of nonroutine tasks, causing
workers to reallocate labor supply from routine to nonroutine
task input. Although routine labor input declines, an in�ow of
computer capital more than compensates, yielding a net increase
in the intensity of routine task input in production.

I.B. Industry Level Implications

Does this model have testable microeconomic implications?
Because the causal force in the model is the price of computer
capital, in one sense we have only a single macroeconomic time
series available. However, additional leverage may be gained by
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considering equation (1) as representing the production function
of a single industry, with distinct industries j producing outputs
qj that demand different mixes of routine and nonroutine tasks.
We write industry j ’s production function as

(8) q j 5 rj
12bjn j

bj, b j [ ~0,1!,

where bj is the industry-speci�c factor share of nonroutine tasks,
and rj, nj denote the industry’s task inputs. All industries use
Cobb-Douglas technology, but industries with smaller bj are more
routine task intensive.

We assume that consumer preferences in this economy may
be represented with a Dixit-Stiglitz [1977] utility function,

(9) U~q1,q2, . . . , qj! 5 ~O
j

qj
12v!1/~12v!,

where 0 , v , 1. The elasticity of demand for each good is
2(1/v), with the market clearing price inversely proportional to
the quantity produced, pj(qj) } qj

2 v .
Industry pro�t maximization yields the following �rst-order

conditions for wages:

(10) r 5 nj
bjrj

2bj~1 2 b j!~1 2 v!~nj
bjrj

12bj!2v and

wN 5 nbj21r12bjbj~1 2 v!~n j
bjr j

12bj!2v.

Rearranging to obtain factor demands gives

(11) nj 5 wN
21/v~bj ~1 2 v!!1/v SwN

r
z

~1 2 bj!

bj
D ~~12b j!~12v!!/v

and

rj 5 r21/v~~1 2 b j!~1 2 v!!1/vS wN

r
z

~1 2 b j!

bj
D ~bj~v21!!/v

.

Using these equations, we obtain the following three proposi-
tions, which we test empirically below.

P1. Although all industries face the same price of computer
capital, r, the degree to which industries adopt this
capital as its price declines depends upon bj. For a given
price decline, the proportionate increase in demand for
routine task input is larger in routine-task-intensive (bj

small) industries, as may be seen by taking the cross-
partial derivative of routine task demand with respect to
r and b j:
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d ln rj

dr
5

bj~1 2 v! 2 1
vr

, 0 and
d2 ln rj

drdbj
5

1 2 v
vr

. 0.

Although we cannot observe b j, a logical proxy for it is
the observed industry level of routine task input in the
precomputerization era. We therefore test whether in-
dustries that were historically (i.e., precomputer era)
intensive in routine tasks adopted computer capital to a
greater extent than industries that were not.

P2. Due to the complementarity between routine and non-
routine inputs, a decline in the price of computer capital
also raises demand for nonroutine task input. This de-
mand increase is proportionately larger in routine-task-
intensive industries:

d ln nj

dr
5

~bj 2 1!~1 2 v!

vr
, 0,

d2 ln n
drdb 5

1 2 v
vr

. 0.

Recall, however, that labor supply to routine tasks de-
clines with r. Rising routine task demand must therefore
be satis�ed with computer capital. Hence, sectors that
invest relatively more in computer capital will show a
larger rise in nonroutine labor input and a larger decline
in routine labor input.

P3. The previous propositions refer to industry demands.
Analogously, we expect that occupations that make rela-
tively larger investments in computer capital will show
larger increases in labor input of nonroutine tasks and
larger decreases in labor input of routine tasks.

II. EMPIRICAL IMPLEMENTATION

Our analysis requires measures of tasks performed in par-
ticular jobs and their changes over time. We draw on information
from the Fourth [1977] Edition and Revised Fourth [1991] edition
of the U. S. Department of Labor’s Dictionary of Occupational
Titles (DOT). Many of the details of our data construction are
provided in the Data Appendix. Here we discuss the most salient
features. The U. S. Department of Labor released the �rst edition
of the DOT in 1939 to “furnish public employment of�ces . . . with
information and techniques [to] facilitate proper classi�cation
and placement of work seekers” [U. S. Department of Labor
1939;xi, as quoted in Miller et al. 1980]. Although the DOT was
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updated four times in the ensuing 60 years [1949, 1965, 1977, and
1991], its structure was little altered. Based upon �rst-hand
observations of workplaces, Department of Labor examiners—
using guidelines supplied by the Handbook for Analyzing Jobs
[U. S. Department of Labor 1972]—evaluate more than 12,000
highly detailed occupations along 44 objective and subjective
dimensions, including training times, physical demands and re-
quired worker aptitudes, temperaments, and interests.11

Our DOT data are based on an aggregation of these detailed
occupations into three-digit Census Occupation Codes (COC), of
which there are approximately 450. We append DOT occupation
characteristics to the Census Integrated Public Micro Samples
[IPUMS, Ruggles and Sobeck 1997] one percent extracts for 1960,
1970, 1980, and 1990, and to CPS Merged Outgoing Rotation
Group (MORG) �les for 1980, 1990, and 1998. We use all obser-
vations for noninstitutionalized, employed workers, ages 18 to 64.
For the industry analysis, these individual worker observations
are aggregated to the level of 140 consistent Census industries
spanning all sectors of the economy in each year of the sample. All
analyses are performed using full-time equivalent hours (FTEs)
of labor supply as weights. The latter is the product of the indi-
vidual Census or CPS sampling weight, times hours of work in
the sample reference week and, for Census samples, weeks of
work in the previous year.

We exploit two sources of variation for measuring changing
job task requirements. The �rst consists of changes over time in
the occupational distribution of employment, holding constant
task content within occupations at the DOT 1977 level. We refer
to cross-occupation employment changes as “extensive” margin
shifts, which we can measure consistently over the period 1960 to
1998. This variation does not, however, account for changes in
task content within occupations [Levy and Murnane 1996], which
we label the “intensive” margin. To measure intensive margin
shifts, we analyze changes in task content measures within oc-
cupations over the period 1977 to 1991, using occupations
matched between the Fourth Edition and Revised Fourth Edition
of the DOT.

Although the DOT contains the best time-series on job task

11. The Department of Labor’s recent successor to the DOT, O*NET, provides
potentially more up-to-date information but is not suitable for time-series
analysis.
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requirements for detailed occupations in the United States, it also
has well-known limitations [Miller et al. 1980]. These include
limited sampling of occupations (particularly in the service sec-
tor), imprecise de�nitions of measured constructs, and omission
of important job skills. These shortcomings are likely to reduce
the precision of our analysis.12

II.A. Selecting Measures of Routine and Nonroutine Tasks

To identify variables that best approximate our task con-
structs, we reduced the DOT variables to a relevant subset using
DOT textual de�nitions, means of DOT measures by occupation
from 1970, and detailed examples of DOT evaluations from the
Handbook for Analyzing Jobs. We selected two variables to mea-
sure nonroutine cognitive tasks, one to capture interactive, com-
munication, and managerial skills and the other to capture ana-
lytic reasoning skills. The �rst codes the extent to which occupa-
tions involve Direction, Control, and Planning of activities (DCP).
It takes on consistently high values in occupations requiring
managerial and interpersonal tasks. The second variable, GED-
MATH, measures quantitative reasoning requirements. For rou-
tine cognitive tasks, we employ the variable STS, which measures
adaptability to work requiring Set limits, Tolerances, or Stan-
dards. As a measure of routine manual activity, we selected the
variable FINGDEX, an abbreviation for Finger Dexterity. To
measure nonroutine manual task requirements, we employ the
variable EYEHAND, an abbreviation for Eye-Hand-Foot coordi-
nation. De�nitions and example tasks from the Handbook for
Analyzing Jobs are provided in Appendix 1.

A limitation of the DOT variables is that they do not have a
natural scale and, moreover, cannot con�dently be treated as
cardinal. To address this limitation, we transformed the DOT
measures into percentile values corresponding to their rank in
the 1960 distribution of task input. We choose 1960 as the base
period for this standardization because it should primarily re�ect
the distribution of tasks prior to the computer era. Consequently,
all of our outcome measures may be interpreted as levels or

12. Researchers who have used the DOT to analyze changing job skill re-
quirements include Rumberger [1981], Spenner [1983, 1990], Howell and Wolff
[1991], Wolff [1996, 2002], Handel [2000], and Ingram and Neumann [2000]. What
is unique to our work is the focus on routine and nonroutine tasks, and the joint
analyses of the effect of computerization on task changes between and within
occupations.
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changes in task input relative to the 1960 task distribution,
measured in “centiles.”13

II.B. A Predictive Test

As an initial check on our data and conceptual framework, we
test the �rst proposition of our theoretical model: industries his-
torically intensive in routine tasks should have adopted computer
capital relatively rapidly as its price fell. To operationalize this
test, we form an index of industry-level routine task intensity
during the precomputer era. Using the 1960 Census data paired
to our selected DOT task measures, we calculate the percentage
share of routine task input in industry j’s total task input as,
Routine Task Sharej ,1960 5 100 3 rj ,1960 /(r j ,1960 1 n j ,1960),
where all task measures are standardized with equal mean and
variance. The numerator of this index is the sum of industry
routine cognitive and routine manual task inputs, while the de-
nominator is the sum of all �ve task inputs: routine cognitive and
manual; nonroutine analytic, interactive, and manual. This in-
dex, which has mean 40.0 and standard deviation 5.0, should
roughly correspond to (1 2 b j) in our model.

To proxy computer adoption after 1960, we use the Current
Population Survey to calculate industries’ percentile rank of com-
puter use in 1997. Although we do not have a measure of industry
computer use in 1960, this was likely close to zero in all cases.
Consequently, the 1997 measure should closely re�ect post-1960
computer adoption.

We �t the following equation:

(12) Computer adoptionj,1960–1997 5

224.56
~19.18!

1 1.85
~0.48!

3 Routine Task Sharej,1960

~n 5 140, R2 5 0.10!.

The point estimate of 1.85 (standard error 0.48) for the routine
task share variable con�rms that an industry’s routine task in-
tensity in 1960 is strongly predictive of its subsequent computer
adoption. Comparing two industries that in 1960 were 10 per-
centage points (2 standard deviations) apart in routine task in-
put, the model predicts that by 1997, these industries would be 19
percentage points apart in the distribution of computer adop-

13. An earlier version of this paper [Autor, Levy, and Murnane 2001] em-
ployed raw DOT scores rather than the percentile measures used here. Results
were qualitatively identical.
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tion—approximately 13 percentage points apart in on-the-job
computer use.

We have estimated many variations of this basic model to
verify its robustness, including specifying the dependent variable
as the level or percentile rank of industry computer use in 1984,
1997, or the average of both; scaling the routine task share
measure in percentiles of the 1960 task distribution; calculating
the routine task share index using task percentiles rather than
task levels; and replacing the routine task index with its loga-
rithm. These many tests provide robust support for the �rst
proposition of our theoretical model: demand for computer capital
is greatest in industries that were historically routine task
intensive.

III. TRENDS IN JOB TASK INPUT, 1960 –1998

Our model implies that the rapidly declining price of com-
puter capital should have reduced aggregate demand for labor
input of routine tasks and increased demand for labor input of
nonroutine cognitive tasks. This section analyzes the evidence for
such shifts.

III.A. Aggregate Trends

Figure I illustrates the extent to which changes in the occu-
pational distribution over the period 1960 to 1998 resulted in
changes in the tasks performed by the U. S. labor force. This
�gure is constructed by pairing the selected DOT 1977 task
measures with Census and CPS employment data for each de-
cade. By construction, each task variable has a mean of 50 cen-
tiles in 1960. Subsequent points depict the employment-weighted
mean of each assigned percentile over each decade.14

As is evident in the �gure, the share of the labor force
employed in occupations that made intensive use of nonroutine
analytic and nonroutine interactive tasks increased substantially
during the last four decades. Although both of these measures of
nonroutine tasks increased in the 1960s—that is, during the

14. We do not impose an adding-up constraint across task measures—
whereby total task allocation must sum to one within jobs or time periods—since
this structure is not intrinsic to the DOT. It is therefore possible for the econ-
omywide average of total task input to either rise or fall. This over-time variation
is modest in practice. The mean of all �ve task measures, equal to 50 by construc-
tion in 1960, rose slightly to 52.5 in 1980, and fell to 51.2 in 1998.
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precomputer era—the upward trend in each accelerated thereaf-
ter. By 1998, nonroutine analytic task input averaged 6.8 centiles
above its 1970 level and nonroutine interactive input averaged
11.5 centiles above its 1970 level.

By contrast, the share of the labor force employed in occupa-
tions intensive in routine cognitive and routine manual tasks
declined substantially. Between 1970 and 1998, routine cognitive
tasks declined 8.7 centiles and routine manual tasks declined by
4.3 centiles. Notably, these declines reversed an upward trend in
both forms of routine task input during the 1960s. For routine
cognitive tasks, this trend reversed in the 1970s, and for routine
manual tasks, the trend halted in the 1970s and reversed in the
1980s.

FIGURE I
Trends in Routine and Nonroutine Task Input, 1960 to 1998

Figure I is constructed using Dictionary of Occupational Titles [1977] task
measures by gender and occupation paired to employment data for 1960 and 1970
Census and 1980, 1990, and 1998 Current Population Survey (CPS) samples.
Data are aggregated to 1120 industry-gender-education cells by year, and each
cell is assigned a value corresponding to its rank in the 1960 distribution of task
input (calculated across the 1120, 1960 task cells). Plotted values depict the
employment-weighted mean of each assigned percentile in the indicated year. See
Table I and Appendix 1 for de�nitions and examples of task variables.
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Finally, the share of the labor force employed in occupations
intensive in nonroutine manual tasks showed a secular decline
across all decades. This decline was most rapid in the 1960s, and
slowed considerably in subsequent decades.

Panel A of Table II provides the corresponding means of task
input by decade, both in aggregate and by gender. For both males
and females, there are pronounced shifts against routine cogni-
tive, routine manual, and nonroutine manual task inputs, and
pronounced shifts favoring nonroutine analytic and interactive
inputs. These shifts, however, are numerically larger for females.
Given the rapid entry of women into the labor force in recent
decades, it appears plausible that demand shifts for workplace
tasks would impact the stock of job tasks more rapidly for females
than males [Goldin 1990; Weinberg 2000; Blau, Ferber, and Wink-
ler 2002, Chapter 4]. To assess the importance of these gender
differences, we estimated all of our main results separately for
males and females. Because we found quite similar results for
both genders, we focus below on the pooled gender samples.

To complete the picture provided by the decadal means,
Figure II depicts smoothed changes in the density of the two
routine and two nonroutine cognitive task measures between
1960 and subsequent decades. Three series are plotted for each
task measure. Two depict extensive margin task shifts at approxi-
mately twenty-year intervals. These are measured using the 1977
DOT task measures paired to the 1960, 1980, and 1998 employ-
ment data. The third series adds intensive margin task shifts by
pairing the 1991 DOT task measures with the 1998 employment
data. By construction, task input is uniformly distributed across
all percentiles in 1960. Hence, the height of each line in the �gure
represents the difference in the share of overall employment in
1980 or 1998 at each centile of 1960 task input.15 To conserve
space, we do not provide a plot of the nonroutine manual mea-
sure, since it is not the subject of subsequent analysis.

As shown in panels A and B of the �gure, the distribution of
nonroutine analytic and nonroutine interactive task input shifted
markedly rightward after 1960. In particular, there was substan-
tial growth in the share of employment requiring nonroutine task
input above the 1960 median and a corresponding decline below

15. We apply an Epanechnikov kernel with bandwidth h 5 0.90sn2 1 /5 ,
where n is the number of observations and s is the standard deviation. For our
samples, this yields bandwidths between 5 and 7 centiles.
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the 1960 median. These shifts are visible from 1960 to 1980 and
become even more pronounced by 1998. Adding variation along
the intensive margin augments the rightward shift, particularly
for the nonroutine interactive measure.

Panels C and D of Figure II plot the corresponding densities
for routine cognitive and routine manual task input. Consistent
with the theoretical model, the distribution of labor input of both
routine cognitive and routine manual tasks shifted sharply left-
ward after 1960 —opposite to the case for nonroutine tasks. The
shift is particularly pronounced for the routine cognitive task
measure, and becomes even more apparent when the intensive
margin is added. As suggested by Figure I, the decline in the
input of routine manual tasks is less dramatic, though still
visible.

In sum, the evidence in Figures I and II supports our model’s
primary macroeconomic implications. Between 1970 and 1998
there were secular declines in labor input of routine cognitive and
routine manual tasks and corresponding increases in labor input
of nonroutine analytic and interactive tasks. We next analyze the
sources of these task shifts at the industry level.

III.B. Task Changes within and between Industries

The changes in economywide labor input of routine and non-
routine tasks documented in Figure I and Table II could stem
from substitution of computer capital for routine labor inputs
within detailed industries, as our model suggests. Alternatively,
they could stem from changes in the composition of �nal demand.
Since much of our detailed analysis focuses on changes in task
input at the industry level, we explore brie�y the extent to which
changes in job content are due to within-industry task shifts.

Panel B of Table II presents a standard decomposition of task
changes into within- and between-industry components.16 This
decomposition shows quite consistent patterns of task change.

16. We decompose the use of task k in aggregate employment between years t
and t (DTkt 5 Tkt 2 Tkt) into a term re�ecting the reallocation of employment across
sectors and a term re�ecting changes in task j input within industries using
the equation DTkt 5 ¥j(DEjtgjk) 1 ¥j(Dg jktE j) 5 DTkt

b 1 DTkt
w , where j indexes

industries, Ejkt is the employment of workers in task k in industry j in
year t as a share of aggregate employment in year t, Ejt is total employment
(in FTEs) in industry j in year t, gjkt is the mean of task k in industry j in
year t, gj k 5 (gjkt 1 g jk t)/ 2, and E j 5 (Ejt 1 E jt)/ 2. The �rst term (DTkt

b ) re�ects
the change in aggregate employment of task k attributable to changes
in employment shares between industries that utilize different intensities of
task k. The second term (DTkt

w ) re�ects within-industry task change.
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FIGURE II
Smoothed Differences between the Density of Nonroutine Task Input

in 1960 and Subsequent Years
Figure II is constructed using Dictionary of Occupational Titles (DOT) task

measures by gender and occupation paired to employment data from 1960, 1980,
and 1998 Census and Current Population Survey samples. Plots depict the change
in the share of employment between 1960 and the indicated year at each 1960
percentile of task input. All series use DOT 1977 data paired to employment data
for the indicated year except for series marked “1991 task measures,” which use
task data from 1991 DOT. See Table I and Appendix 1 for de�nitions and
examples of task variables.
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Both the nonroutine analytic and nonroutine interactive task
measures show strong within-industry growth in each decade
following the 1960s. Moreover, the rate of within-industry growth
of each input increases in each subsequent decade. Although, as
noted above, nonroutine analytic input also increased during the
1960s, Table II shows that this was primarily a cross-industry
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phenomenon—i.e., due to sectoral shifts. After the 1960s, by
contrast, the growth in nonroutine task input was dominated by
within-industry task shifts.

Trends in both routine cognitive and routine manual tasks
show a similarly striking pattern. Both types of routine task
input increased during the 1960s, due to a combination of be-
tween- and within-industry shifts. In the decades following, how-
ever, input of both routine cognitive and routine manual tasks
sharply declined, and the bulk of these declines was due to with-
in-industry shifts. Moreover, the rate of within-industry decline
increased in each subsequent decade.

As distinct from the other four task measures, we observe
steady within- and between-industry shifts against nonroutine
manual tasks for the entire four decades of our sample. Since our
conceptual framework indicates that nonroutine manual tasks
are largely orthogonal to computerization, we view this pattern as
neither supportive nor at odds with our model.

In summary, the trends against routine cognitive and man-
ual tasks and favoring nonroutine cognitive tasks that we seek to
analyze are dominated by within-industry shifts, particularly
from the 1970s forward. We next analyze whether computeriza-
tion can explain these task shifts.17 Because our model makes no
prediction for how computerizing industries will adjust demand
for nonroutine manual tasks, we do not include this variable in
our industry-level analysis below (see Autor, Levy, and Murnane
[2001] for detailed analysis).

IV. COMPUTERIZATION AND TASK CHANGE:
INDUSTRY LEVEL RELATIONSHIPS

As industries adopt computer technology, our model predicts
that they will simultaneously reduce labor input of routine cog-
nitive and manual tasks and increase labor input of nonroutine
cognitive tasks. We test these hypotheses below.

17. Our model also implies that the expenditure shares of routine-task-
intensive industries should have increased as r declined. By contrast, the predic-
tion for the employment share of routine-task-intensive industries is ambiguous
since these industries should have differentially substituted computer capital for
labor input. Because our data measure employment, not expenditures, we are
unable to test the implication for expenditure shares. Closely related, computer-
intensive industries should have experienced relatively larger gains in labor
productivity as r declined. Stiroh [2002] presents evidence that this occurred in
the 1990s.
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IV.A. Industry Computerization and Task Trends
over Four Decades

We begin by estimating a model for the within-industry re-
lationship between computer adoption and task change over four
decades. Speci�cally, we �t the equation

(13) DT jkt 5 a 1 fDC j 1 ejkt,

where DTjk t 5 Tjk t 2 Tjk t is the change in industry j’s input of
task k between years t and t and DCj is the annual change in the
percentage of industry workers using a computer at their jobs
between 1984 and 1997 (estimated from the October Current
Population Survey supplements). While our model predicts that
computer adoption should be highly correlated with industry task
change during the computer era, we would not anticipate a simi-
lar relationship for the precomputer era of the 1960s. Accord-
ingly, we estimate equation (13) separately for each of the four
decades in our sample. This allows us to con�rm that the rela-
tionship between computerization and industry task change in
the 1970s–1990s does not re�ect trends that predate the com-
puter era.18

Estimates of equation (13) for each of the four task measures
are given in Table III. The �rst two panels show that during the
1970s, 1980s, and 1990s, rapidly computerizing industries raised
their input of nonroutine analytic and interactive tasks signi�-
cantly more than others. For example, the point estimate of 12.04
(standard error of 4.74) in column 1 of panel A indicates that
between 1990 and 1998, a 10 percentage point increase in com-
puter use was associated with a 1.2 centile annualized increase in
labor input of nonroutine analytic tasks. To evaluate the magni-
tude of this relationship, note that the mean annualized industry
level rise in nonroutine analytic task input during 1990 –1998,
tabulated immediately below the regression estimate, was 2.5
percentiles. By comparison, the intercept of the bivariate regres-
sion for this period is 0.1. Hence, almost the entirety of the
observed within-industry change in nonroutine analytic input is
“explained” by the computerization measure. Similar compari-
sons con�rm that the relationship between industry computer-
ization and rising input of nonroutine interactive and analytic

18. As noted by Autor, Katz, and Krueger [1998] and Bresnahan [1999], the
era of rapid computer investment began in the 1970s. Desktop computing became
widespread in the 1980s and 1990s.
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tasks is economically large and statistically signi�cant at conven-
tional levels in each of the three most recent decades.

Panels C and D of the table provide analogous estimates for
the two routine task measures. As predicted by the conceptual
model, the relationships between industry computerization and
changes in routine task input are uniformly negative in the
1970s, 1980s, and 1990s. These relationships are also economi-

TABLE III
COMPUTERIZATION AND INDUSTRY TASK INPUT, 1960–1998

DEPENDENT VARIABLE: 10 3 ANNUAL WITHIN-INDUSTRY CHANGE IN TASK INPUT,
MEASURED IN PERCENTILES OF 1960 TASK DISTRIBUTION

1. 1990–
1998

2. 1980–
1990

3. 1970–
1980

4. 1960–
1970

A. D Nonroutine
analytic

D Computer use 12.04 14.02 9.11 7.49
1984–1997 (4.74) (4.97) (4.17) (5.28)
Intercept 0.07 20.66 20.26 20.55

(1.00) (1.03) (0.86) (1.05)
R2 0.04 0.05 0.03 0.01
Weighted mean D 2.45 2.05 1.48 0.83

B. D Nonroutine
interactive

D Computer use 14.78 17.21 10.81 7.55
1984–1997 (5.48) (6.32) (5.71) (6.64)
Intercept 1.02 1.46 2.35 0.10

(1.15) (1.31) (1.17) (1.32)
R2 0.05 0.05 0.03 0.01
Weighted mean D 3.94 4.79 4.42 1.49

C. D Routine
cognitive

D Computer use 217.57 213.94 211.00 23.90
1984–1997 (5.54) (5.72) (5.40) (4.48)
Intercept 20.11 0.63 1.63 1.78

(1.17) (1.19) (1.11) (0.89)
R2 0.07 0.04 0.03 0.01
Weighted mean D 23.57 22.07 20.47 1.06

D. D Routine
manual

D Computer use 224.72 25.94 26.56 4.15
1984–1997 (5.77) (5.64) (4.84) (3.50)
Intercept 1.38 20.16 2.09 0.85

(1.22) (1.17) (0.99) (0.70)
R2 0.12 0.01 0.01 0.01
Weighted mean D 23.50 21.31 0.84 1.62

n is 140 consistent CIC industries. Standard errors are in parentheses. Each column of panels A–D
presents a separate OLS regression of ten times the annual change in industry-level task input between the
endpoints of the indicated time interval (measured in centiles of the 1960 task distribution) on the annual
percentage point change in industry computer use during 1984–1997 (mean 0.193) and a constant. Computer
use is the fraction of industry workers using a computer at their jobs, estimated from the October 1984 and
1997 CPS samples. Estimates are weighted by mean industry share of total employment in FTEs over the
endpoints of the years used to form the dependent variable. Samples used are Census 1960, 1970, and 1980
and CPS MORG 1980, 1990, and 1998. See Table I and Appendix 1 for de�nitions and examples of task
variables.
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cally large and in most cases statistically signi�cant. For exam-
ple, the computerization measure explains the entirety of the
within-industry decline in routine task input during the 1990s,
and more than explains this decline in the 1980s and 1970s.

A notable pattern for all four task measures is that the
relationship between computerization and industry task change
tends to become larger in absolute magnitude with each passing
decade. This suggests a secularly rising relationship between
computerization and task change. The �nal column of Table III
tests for this rise by estimating equation (13) for the 1960s, a
decade during which computerization is unlikely to have strongly
in�uenced task demands. Reassuringly, there are no signi�cant
relationships between computerization and task change in this
decade. And in one case, the coef�cient is of the opposite sign as
in later decades. Hence, these estimates suggest that the rela-
tionship between industry task shifts and computer adoption
either commenced or substantially accelerated during the com-
puter era, and not before.19

IV.B. Using Composite DOT Variables

Though we view the selected task measures as the most
appropriate available from the DOT, we are sensitive to the
concern that the choice of variables could be viewed as arbitrary.
One way to test their appropriateness is to use alternative com-
posite variables. We used principal components analyses (PCA) to
pool variation from each selected DOT task measure with several
other plausible alternatives and estimated equation (13) using
these composites.20 The details of our compositing exercise are
provided in the Data Appendix, and the results of the composite
estimation are found in Appendix 2. A limitation of this exercise
is that the variables used in the composites do not in our view

19. We also estimated the models in Table III separately by gender and for
manufacturing and nonmanufacturing sectors. The pattern of results is similar in
all cases. For both genders, computer investment is a signi�cant predictor of
reductions in routine labor input of cognitive and manual tasks and increases in
nonroutine analytic input. For females the relationship between computerization
and nonroutine interactive tasks is positive but insigni�cant. The magnitude of
the relationship between computerization and nonroutine tasks is somewhat
larger in manufacturing than nonmanufacturing, and the reverse is true for
routine tasks. Further details are available from the authors.

20. The PCA extracts eigenvectors that maximize common variation among
selected measures, each of which is standardized with mean zero and variance
one, subject to the constraint that the sum of squared weights in the eigenvector
equals one. It can be shown that if measurement error in the selected variables is
classical (i.e., white noise), the PCA extracts maximal nonerror variation.
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correspond as closely to the intended construct as our primary
measures.

As visible in the table, the qualitative trends in the composite
relationships are comparable to those using our preferred mea-
sures in Table III. In particular, industry computerization is
associated with sharp declines in routine cognitive and manual
labor inputs and growth in nonroutine analytic and interactive
labor inputs. Moreover, these relationships typically become
stronger in successive decades. Contrary to expectations, how-
ever, the composite measure for routine cognitive input is only
signi�cant in the most recent decade and the composite measure
for nonroutine interactive input is statistically signi�cant in the
1960s. Thus, while our results are generally robust to variable
choice, this exercise underscores that variable choice does matter.
A data source speci�cally designed to measure changes in work-
place input of routine and nonroutine cognitive tasks over a long
time horizon would clearly provide a more complete test of the
model. Given the absence of such a data source for the United
States, we view the evidence provided by the DOT as uniquely
informative.21

IV.C. Employing Contemporaneous Measures of Computer
and Capital Investment

A limitation of the CPS computer measure used so far is that
it is only available for the 1980s and 1990s. To provide more
comprehensive measures of computer and capital investment
available for the entire 1959 –1998 period, we draw on the Na-
tional Income and Product Accounts (NIPA), which provides de-
tailed data on capital stocks across 42 major industries excluding
government [U. S. Department of Commerce 2002a, 2002b]. As a
measure of industry computerization, we calculated the log of real
investment in computer hardware, software and peripherals per
full-time equivalent employee (FTE) over the course of each de-
cade. To distinguish the relationship between task change and
computerization from overall capital-skill complementarity
[Griliches 1969], we construct two variables to control for capital

21. Spitz [2003] studies the predictions of our task model using German data
from 1979–1999, which contains far more detailed and precise information on
workplace tasks than is available from the DOT. Consistent with the predictions
of the model, Spitz reports that computer capital substitutes for repetitive manual
and repetitive cognitive skills and complements analytical and interactive skills.
See also Bartel, Ichniowski, and Shaw [2000] and Ichniowski and Shaw [2003] for
quantitative and case study evidence.
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deepening: the log of capital investment �ow per worker and the
log capital to labor ratio.

Using these data, we �t stacked �rst-difference industry task
shift models of the form,

(14) DT jkt 5 a 1 d70–80 1 d80–90 1 d90–98 1 wCI jt 1 uKIjt 1 ejkt,

where CI jt is industry j’s real log investment in computer capital
per FTE over the contemporaneous decade in industry, KIjt is the
analogous measure for real capital investment, the d’s are time
dummies equal to one in each of the decades post-1960 corre-
sponding to their subscripts, and a is a common intercept. In this
equation, the d’s measure the trend change in industry task input
in the 1970s, 1980s, and 1990s relative to the base period of the
1960s.

Estimates of equation (14) are found in Table IV. Two sets of
Huber-White standard errors are tabulated for each model. Those
in parentheses account for the fact that the NIPA capital mea-
sures are observed at a more aggregate level than the dependent
variables measured from the CPS and Census (42 sectors versus
123 sectors for this exercise). The standard errors in brackets
additionally account for potential serial correlation in industry
task changes over succeeding decades (cf. Bertrand, Du�o, and
Mullainathan [2004]).

As is visible in the table, the NIPA measure of computer
investment consistently predicts relative declines in industry in-
put of both routine cognitive and manual tasks and growth in
input of nonroutine analytic and interactive tasks. How large are
these relationships? We can gauge the model’s explanatory power
by comparing the magnitude of the estimated d’s conditional on
computer investment with the unconditional within-industry
trends in task input observed for each decade. To facilitate this
comparison, the bottom panel of Table IV tabulates the uncondi-
tional decadal trends. As with the Table III estimates, we �nd
that industries making relatively greater investments in com-
puter capital are responsible for the bulk of the observed substi-
tution away from routine cognitive and manual tasks and toward
nonroutine analytic and interactive tasks. Holding computer in-
vestment constant, we can explain more than 100 percent of the
overall trend increase in nonroutine cognitive/analytic task input,
a substantial part of the trend increase in nonroutine cognitive/
interactive input, and substantial parts of the trend decreases in
routine cognitive and routine manual inputs.
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TABLE IV
COMPUTER INVESTMENT, CAPITAL INTENSITY, AND TASK INPUT IN THREE-DIGIT

INDUSTRIES 1960–1998: STACKED FIRST-DIFFERENCE ESTIMATES

DEPENDENT VARIABLE: 10 3 ANNUAL CHANGE IN QUANTILES OF TASK MEASURE,
MEASURED IN PERCENTILES OF 1960 TASK DISTRIBUTION

A. D
Nonroutine

analytic

B. D
Nonroutine
interactive

C. D
Routine
cognitive

D. D
Routine
manual

(1) (2) (1) (2) (1) (2) (1) (2)

Log(Cl/L) 6.65 6.76 11.59 10.03 28.27 28.30 29.11 28.20
(4.13) (3.97) (3.21) (3.31) (3.63) (3.26) (2.57) (2.29)
[6.36] [5.90] [3.97] [4.50] [4.74] [3.76] [3.27] [2.86]

Log(Kl/L) 1.22 23.41 22.93 22.42
(4.36) (4.58) (4.76) (3.95)
[6.36] [4.45] [7.31] [5.87]

D Log(K/L) 0.24 3.01 21.32 23.89
(2.35) (2.24) (2.12) (1.92)
[2.36] [2.19] [2.18] [2.38]

1970–1980 dummy 20.64 20.54 1.38 2.49 20.32 20.84 0.68 20.80
(1.08) (1.29) (1.50) (1.62) (1.31) (1.58) (0.96) (1.17)
[1.02] [1.23] [2.07] [2.12] [1.13] [0.93] [0.94] [1.03]

1980–1990 dummy 20.34 20.25 0.58 1.83 21.62 22.14 21.32 22.90
(1.57) (1.60) (1.81) (1.70) (1.56) (1.86) (1.11) (1.38)
[1.43] [1.67] [1.58] [1.46] [1.33] [1.35] [0.86] [1.07]

1990–1998 dummy 21.19 21.13 21.91 20.90 21.33 21.71 21.15 22.36
(1.55) (1.62) (1.83) (1.70) (1.66) (1.64) (1.32) (1.47)
[1.77] [1.93] [1.85] [1.88] [1.93] [1.63] [0.95] [1.13]

Intercept 8.89 8.23 12.40 11.30 29.29 27.09 29.62 25.55
(4.08) (4.42) (4.25) (3.59) (4.12) (3.63) (3.14) (2.67)
[5.45] [6.38] [4.76] [4.80] [4.48] [4.36] [3.75] [3.30]

R2 0.06 0.06 0.11 0.12 0.14 0.14 0.20 0.21

Weighted mean of dependent variable

1960–1970 1.16 1.74 1.30 1.63
1970–1980 1.23 4.59 20.20 0.98
1980–1990 2.07 4.69 22.05 21.74
1990–1998 2.15 3.76 23.03 22.82

n 5 492. Robust standard errors in parentheses are heteroskedasticity consistent and account for
clustering of errors within 42 consistent NIPA sectors in each decade (168 clusters). Standard errors in
brackets additionally account for potential serial correlation within sectors (42 clusters). Each column
presents a separate OLS regression of ten times annual industry changes in task input on the indicated
covariates. Sample is 123 consistent CIC industries, with four observations per industry. 1960–1970 and
1970–1980 changes use Census IPUMS samples, and 1980–1990 and 1990–1998 use CPS MORG samples.
Estimates are weighted by mean industry share of total employment (in FTEs) over the endpoints of the years
used to form the dependent variable. All capital measures are in millions of real 1996 dollars.

Log(Cl/L) and Log(Kl/L) are, respectively, one-tenth the log of annual computer investment per FTE and
total capital investment per FTE between the two end years used to form the dependent variable. Means of
Log(Cl/L) are 21.08, 20.95, 20.87, and 20.73 in 1960–1970, 1970–1980, 1980–1990, and 1990–1998,
respectively. Means of Log(Kl /L) are 20.57, 20.54, 20.54, and 20.52 in the corresponding years.

D Log(K/L) is ten times the annual change in log capital/FTE over the two end years used to form the
dependent variable. Means are 0.43, 0.10, 0.10, and 0.24 in the corresponding years.
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A notable pattern in Table IV is that the coef�cients on the
capital investment and capital intensity variables are economi-
cally small and in most cases insigni�cant. This indicates that
aggregate capital deepening—apart from computer investment—
explains little of the observed change in task input.22 We have
also explored a large number of variations of these models includ-
ing estimating separate models for manufacturing and nonmanu-
facturing industries and for male and female task input; subdi-
viding capital investment into equipment and structures invest-
ment; subdividing computer investment into hardware and
software investment; and controlling for industries’ log output,
capital-output ratios, and import and export penetration. These
tests con�rm the overall robustness of our results.

V. TASK CHANGE WITHIN EDUCATION GROUPS AND OCCUPATIONS

The analyses above establish that industries undergoing
rapid computerization reduced labor input of routine cognitive
and manual tasks and increased labor input of nonroutine inter-
active and analytic tasks. Since better educated workers are
likely to hold a comparative advantage in nonroutine versus
routine tasks, one interpretation of these results is that they
con�rm the established pattern of increasing relative educational
intensity in computerizing industries over the past several de-
cades. While we do not disagree with this interpretation, our task
framework makes a broader claim, namely that changes in the
demand for workplace tasks, stemming from technological
change, are an underlying cause—not merely a re�ection— of
relative demand shifts favoring educated labor. To test this
broader implication, we exploit the unique features of the DOT to
analyze two novel margins of task change: changes within edu-
cation groups and changes within occupations.

V.A. Within-Industry Task Shifts by Education Group:
1980 –1998

We showed in Tables III and IV that increased industry
computerization predicts increased nonroutine cognitive activity
and reduced routine cognitive and manual activities. Why does

22. This pattern echoes the �ndings of Berman, Bound, and Griliches [1994],
Autor, Katz, and Krueger [1998], and Bresnahan, Brynjolfsson, and Hitt [2002]
for skill upgrading.
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this occur? One possibility is that as industries purchase com-
puter capital, they hire better educated workers who specialize in
these tasks. Alternatively, industries may change the task as-
signments of workers with given educational attainments, reduc-
ing their allocation to routine tasks and raising it to nonroutine
tasks. We explore the relative importance of these two channels
by estimating a variant of equation (13) for within-industry task
upgrading by education group. Speci�cally, we estimate the
model,

(15) DT ijkt 5 a i 1 f iDC j 1 eijkt,

where the dependent variable is the within-industry change in
the mean of each DOT task, measured in centiles of the 1960
distribution, among workers of the same educational attainment.
In this equation, i indexes each of four education groups—high
school dropouts, high school graduates, some-college completers,
and college graduates—and subscripts j, k, and t refer to indus-
tries, tasks and time periods as above. We estimate this model
using industry task data for 1980 –1998 to exploit the (almost)
contemporaneous industry computer use data for 1984 –1997.

To establish a baseline for comparison, we initially estimate
equation (15) for aggregate within-industry task changes over
1980 –1998 (i.e., incorporating both between- and within-educa-
tion group task shifts). Consistent with earlier �ndings, these
estimates in panel A of Table V show striking correlations be-
tween industry computerization, rising labor input of routine
cognitive and manual tasks, and declining labor input of nonrou-
tine interactive and analytic tasks.

Panels B through E of Table V present analogous models
estimated separately for the four education groups. Here, mea-
sured changes in task input stem solely from within-education
group shifts in occupational distributions within industries.
These estimates reveal that industry-level computerization is
strongly predictive of shifts toward nonroutine and against rou-
tine tasks within essentially all education groups. For the two
groups at the middle of the education distribution— high school
graduates and those with some college—changing employment
patterns within rapidly computerizing sectors entirely account
for observed task shifts. More precisely, holding computer adop-
tion �xed, our estimates would not predict any signi�cant within-
industry task change for either education group.

For the education groups at the bottom and top of the distri-
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TABLE V
COMPUTERIZATION AND INDUSTRY TASK INPUT 1980–1998:

OVERALL AND BY EDUCATION GROUP

DEPENDENT VARIABLE: 10 3 ANNUAL CHANGE IN QUANTILES OF TASK MEASURE,
MEASURED IN PERCENTILES OF 1960 TASK DISTRIBUTION

1. D Nonroutine
analytic

2. D Nonroutine
interactive

3. D Routine
cognitive

4. D Routine
manual

A. Aggregate within-industry change

D Computer use 12.95 15.97 215.84 214.32
1984–1997 (3.68) (4.32) (4.73) (4.73)
Intercept 20.33 1.27 0.38 0.54

(0.77) (0.90) (0.99) (0.99)
Weighted mean task D 2.20 4.39 22.71 22.25

B. Within industry: High school dropouts

D Computer use 4.64 11.92 22.64 28.85
1984–1997 (6.07) (8.73) (7.95) (6.76)
Intercept 22.51 24.39 0.02 1.11

(1.26) (1.82) (1.66) (1.41)
Weighted mean task D 21.61 22.07 20.49 20.62

C. Within industry: High school graduates

D Computer use 0.04 13.49 228.18 225.50
1984–1997 (4.17) (5.40) (6.13) (6.05)
Intercept 21.49 1.07 1.55 0.48

(0.87) (1.13) (1.28) (1.26)
Weighted mean task D 21.48 3.70 23.95 24.49

D. Within industry: Some college

D Computer use 7.95 18.14 215.68 217.77
1984–1997 (5.03) (5.54) (5.27) (5.61)
Intercept 21.88 20.58 0.35 1.39

(1.05) (1.15) (1.10) (1.17)
Weighted mean task D 20.33 2.96 22.71 22.08

E. Within industry: College graduates

D Computer use 1.61 5.57 20.78 24.46
1984–1997 (3.42) (3.35) (4.85) (5.70)
Intercept 0.25 0.10 20.96 20.12

(0.71) (0.70) (1.01) (1.19)
Weighted mean task D 0.57 2.22 21.48 21.98

F. Decomposition into within and between education group components

Explained task D 2.52 3.11 23.09 22.79
Within educ groups (%) 23.7 77.9 91.7 111.1
Between educ groups (%) 76.3 22.1 8.3 211.1

n in panels A–E is 140, 139, 140, 140, and 139 consistent CIC industries. Standard errors are in parentheses.
Each column of panels A–E presents a separate OLS regression of ten times the annual change in industry-level
task input for the relevant education group (measured in centiles of the 1960 task distribution) during 1980–1998
on the annual percentage point change in industry computer use during 1984–1997 (weighted mean 0.198) and
a constant. Estimates are weighted by mean industry share of total employment (in FTEs) in 1980 and 1988.
Industries with no employment in the relevant educational category in either 1980 or 1998 are excluded. Data
sources are CPS MORG 1980 and 1998 and DOT 77 job task measures. The “explained” component in Panel F is
the within-industry change in the task measure predicted by computerizationin regression models in Panel A. See
Table I and Appendix 1 for de�nitions and examples of task variables.
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bution—college graduates and high school dropouts—similar
patterns prevail, but they are less precisely estimated. In all
cases, the estimates are of the expected sign, but none is statis-
tically signi�cant. For college graduates, this is likely to re�ect
“topping out,” since this education group was already at the
extreme of the distribution for all tasks. We are less certain why
the relationships are weaker for high school dropouts, but one
possibility is that this group has insuf�cient human capital to be
effectively redeployed to alternative job tasks.

To assess whether these within-education group shifts are a
quantitatively important component of the overall change in in-
dustry task content, panel F of Table V presents a decomposition
of industry task changes into within and between education
group components. This exercise shows that in every case, within-
education group task upgrading explains a substantial share, 24
to 111 percent, of total task upgrading over these two decades.
For example, the annual within-industry change in nonroutine
interactive tasks over the period 1980 –1998 is 4.4 centiles per
decade, of which 3.1 centiles (71 percent) is accounted for by
contemporaneous industry computerization. Within-education
group task changes explain the bulk of these shifts: 78 percent of
the explained component and 55 percent of the total. Subdividing
the explained within-education group component further, 59 per-
cent is due to changes in task assignment among high school
graduates and those with some college, and the rest is equally
accounted for by task shifts among college graduates and high
school dropouts.

This exercise demonstrates that within-education group
shifts in task content are the primary channel through which the
structure of workplace tasks has shifted over the past two de-
cades. Furthermore, a large portion of the within-education group
changes are accounted for by cross-industry patterns of computer
adoption. This suggests to us that task change is antecedent to
educational upgrading, rather than merely a re�ection of it.

V.B. Task Shifts within Occupations

The analyses above exploit shifts in occupational composi-
tion—the extensive margin—to quantify changes in task input.
This approach is imperfect since it assumes that the tasks per-
formed within occupations are static, which is unlikely to be
accurate over long time intervals. Moreover, our task framework
implies that this assumption should be violated in a speci�c
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manner: occupations undergoing rapid computerization should
differentially reduce labor input of routine cognitive and manual
tasks and increase labor input of nonroutine cognitive tasks. To
provide one example, the 1976 edition of the Department of
Labor’s Occupation Outlook Handbook described the job of Sec-
retary as: “. . . Secretaries relieve their employers of routine du-
ties so they can work on more important matters. Although most
secretaries type, take shorthand, and deal with callers, the time
spent on these duties varies in different types of organizations”
[U. S. Department of Labor 1976, p. 94]. In 2000 the entry for
Secretary reads: “As technology continues to expand in of�ces
across the Nation, the role of the secretary has greatly evolved.
Of�ce automation and organizational restructuring have led sec-
retaries to assume a wide range of new responsibilities once
reserved for managerial and professional staff. Many secretaries
now provide training and orientation to new staff, conduct re-
search on the Internet, and learn to operate new of�ce technolo-
gies” [U. S. Department of Labor 2000, p. 324].

To test whether this example captures a pervasive phenome-
non, we match occupations from the 1977 and 1991 revisions of
the DOT to estimate the following equation:

(16) DTmkt 5 a 1 jDCm 1 emkt.

Here, DTm k t is the change in occupational input of task k between
1977 and 1991 in three-digit COC occupation m, and DCm is the
change in occupational computer penetration measured by the
CPS. To provide a clean test, our data set is constructed using
only the subset of occupations appearing in the 1977 DOT, which
was used to create our original occupation crosswalk. Accord-
ingly, the variation used to estimate equation (16) stems exclu-
sively from DOT examiners’ reevaluation of the task content of
individual occupations between 1977 and 1991.23

Table VI presents three estimates for each task measure. The
�rst column of each panel presents a bivariate regression of the
within-occupation change in task content on occupational com-
puterization and a constant. These estimates provide striking

23. The weighted fraction of employment reevaluated between 1978 and 1990
in our data is 73 percent. Occupations were chosen for reevaluation by DOT
examiners partly on the expectation that their content had changed. Hence, this
is not a random sample. We assume that occupations that were not revised
between the 1977 and 1991 DOT experienced no task change. Provided that these
occupations did not experience offsetting shifts, our approach will provide a lower
bound on the extent of task change.
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con�rmation of the predicted relationships between computeriza-
tion and task change. Occupations making relatively large in-
creases in computer use saw relatively greater increases in labor
input of nonroutine cognitive analytic and interactive tasks and
larger declines in labor input of routine cognitive skills. Each of
these relationships is signi�cant at the 10 percent level or
greater, and is of sizable magnitude: for all three cognitive task
measures, the computerization variable more than fully accounts
for the observed change in occupational task input. Only in the
case of routine manual tasks, where the point estimate is close to
zero, do we fail to �nd the expected relationship.

To examine whether intra-occupational task changes are im-
plicitly captured by shifts in the educational and gender distri-
bution of employees within an occupation, we add controls for the
contemporaneous change in the percentage of workers in an
occupation who are college graduates, high school graduates, and
females.24 As is visible in speci�cations 2 and 3, the relationship
between computerization and within-occupation task change is
surprisingly insensitive to these controls. In fact, standard mea-
sures of educational and gender composition are poor proxies for
changes in job tasks observed by DOT examiners. In net, these
�ndings demonstrate that shifts in job content away from routine
tasks and toward nonroutine cognitive tasks are a pervasive
feature of the data and are concentrated in industries and occu-
pations that adopted computer technology most rapidly.

VI. QUANTIFYING THE MAGNITUDE OF TASK STRUCTURE CHANGES

What is the economic signi�cance of the change in the tasks
performed by the U. S. labor force during the last three decades?
The answer is not immediately apparent since units of task input
do not have a familiar scale. To quantify task shifts in concrete
economic terms, we draw together task changes within indus-
tries, education groups, and occupations to calculate their poten-
tial contribution to the demand for college-educated labor during
1970 to 1998. This analysis proceeds in three steps.

We begin by estimating a “�xed coef�cients” model of educa-

24. For consistency of measurement, we employ CPS computerization, edu-
cation, and gender means by occupation for 1984 to 1997. We cannot perform an
analogous exercise using the NIPA investment measures since they are not
available for occupations.
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tion requirements in industries and occupations as a function of
their task inputs:

(17) College Sharej 5 a 1 O
k51

4

pk z T j
k 1 ej.

In this equation, College Sharej is the college-equivalent share of
employment (in FTEs) in industry or occupation j at the midpoint
of our samples, and the T j

k ’s measure industry or occupation task
input in centiles during the same period.25 The coef�cients, p̂k ,
obtained from (17) provide an estimate of college-equivalent labor
demand as a function of industry or occupation task inputs. We
estimate this model separately for industry and occupation task
demands, using employment data from our CPS samples from
1980 and 1984 paired to the 1977 DOT job task measures.26

We refer to equation (17) as a �xed coef�cients model because
it neglects the impact of task prices on task demands— or equiva-
lently, assumes that the elasticity of substitution between college
and noncollege equivalent workers is zero. This is an imperfect
approximation: if the market price of nonroutine relative to rou-
tine tasks has risen, this calculation will understate demand
shifts favoring nonroutine tasks and, by implication, college
graduate employment.

The second step of our methodology is to translate task
shifts into predicted changes in college employment. We �rst
assemble changes in our four key task measures over 1970 to
1998, DT1970–1998

k . We then apply these task shift measures to
the “�xed coef�cients” estimated from equation (17) to calculate

(18) D̃College Share1970–1998 5 O
k51

4

p̃k z DT 1970–1998
k .

Here, D̃College Share1970 –1998 is the change in the college share of
aggregate employment predicted by task shifts over 1970 –1998.

25. We follow Autor, Katz, and Krueger [1998] and Murphy, Romer, and
Riddell [1998] in de�ning college equivalent workers as all those with a college
degree or greater plus half of those with some college. Results using exclusively
college graduates are quite similar.

26. The industry task demand model is estimated using the 1980 MORG
employment data, which is at the midpoint of our sample. The occupation task
demand model is estimated using the 1984 CPS sample, which is at the midpoint
of our occupation sample. For completeness, estimates of equation (17) also control
for input of nonroutine manual tasks. Inclusion or exclusion of this covariate has
no substantive impact.
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The intuition for this calculation is that industries and occupa-
tions that are high in nonroutine cognitive task input, and low in
routine manual and routine cognitive task input, employ college
graduates relatively intensively. Consequently, secular increase
in nonroutine cognitive task input and declines in nonroutine
cognitive and manual task input over 1970 –1998 will cause equa-
tion (18) to predict corresponding growth in the college graduate
share of aggregate employment.

Table VII summarizes the changes in job task input due to
cross-occupation (extensive margin) and within-occupation (inten-
sive margin) shifts documented by our earlier analyses. Panel A
presents observed economywide shifts in task input during the pe-
riod 1970 to 1998. Panel B presents analogous numbers where in
place of observed task changes, we tabulate changes in task input
predicted by computerization. Speci�cally, we use estimates of equa-
tions (14)–(16), corresponding to the models in Tables IV–VI, to
calculate the predicted mean change in each task measure due to
contemporaneous industry or occupation computerization. A limita-
tion of this approach is that it treats computerization as an exoge-
nous determinant of industry and occupation task change. Since, as
stressed above, we view computer adoption and task change as
simultaneously determined, we view this exercise as primarily
illustrative.

We implement these calculations in panels C and D. Panel C
uses equation (18) to estimate the extent to which rising input of
nonroutine tasks and declining input of routine tasks raised the
college share of aggregate employment over 1970 –1998. As seen
in columns 1–4, observed cross-occupation (extensive margin)
task changes raised college employment by 2.1 percentage points
per decade between 1970 and 1998. Three-quarters of this con-
tribution (1.5 percentage points) is due to shifts favoring nonrou-
tine cognitive tasks. The remainder is explained by shifts against
routine cognitive and manual tasks.

Columns 5–7 perform analogous calculations for 1980 to 1998.
Here we add within-occupation (intensive) margin task change for
1977 to 1991. In net, shifts favoring nonroutine over routine tasks
contributed 2.5 percentage points growth per decade to college-
equivalent employment over these eighteen years.27

27. Observed intensive margin shifts did not contribute to this demand
growth, however, due to the offsetting effects of routine cognitive and nonroutine
analytic tasks. This stands in contrast to within-occupation task changes pre-
dicted by computerization, where intensive margin shifts are economically large.
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TABLE VII
SHIFTS IN COLLEGE-EQUIVALENT LABOR DEMAND IMPLIED

BY CHANGES IN JOB TASKS, 1970–1998

1. 1970–
1980

extensive
margin

2. 1980–
1990

extensive
margin

3. 1990–
1998

extensive
margin

4. 1970–
1998

extensive
margin

5. 1980–
1998

extensive
margin

6. 1980–
1998

intensive
margin

7. 1980–
1998

extensive 1
intensive

A. 10 3 observed annual changes in DOT task measures (percentile changes
relative to 1960 task distribution)

Nonroutine
analytic

3.02 2.97 3.12 3.04 3.05 20.39 2.67

Nonroutine
interactive

4.68 5.31 4.48 4.84 4.85 0.58 5.43

Routine
cognitive

20.14 23.48 24.88 23.03 24.26 22.76 27.02

Routine
manual

1.63 21.47 23.88 21.44 22.81 0.74 22.07

B. 10 3 predicted annual changes in DOT task measures
(percentile changes relative to 1960 task distribution)

NIPA computer input measure CPS computer use measure

Nonroutine
analytic

0.84 1.35 2.30 1.55 2.56 0.54 3.10

Nonroutine
interactive

1.47 2.36 4.01 2.70 3.16 1.04 4.20

Routine
cognitive

21.05 21.68 22.86 21.92 23.14 23.32 26.46

Routine
manual

21.15 21.86 23.15 22.12 22.84 0.32 22.52

C. 10 3 predicted annual changes in college-equivalent share of employment
in percentage points, due to observed task shifts (panel A)

Nonroutine
tasks

1.53 1.40 1.63 1.51 1.53 20.36 0.83

Routine
tasks

20.20 0.66 1.17 0.50 0.97 0.27 0.87

All tasks 1.33 2.06 2.80 2.01 2.49 20.09 2.40

Panel A: Observed extensive margin task shifts are de�ned as the change in economywide input of each
task (in percentiles of the 1960 task distribution) estimated using DOT 1977 occupational task measures
applied to Census and CPS samples for 1970 to 1998 and summarized in Table II. Intensive margin shifts are
measured as change in mean of DOT occupational task input (measured in centiles of the 1977 task
distribution) between 1977 and 1991 DOT revisions, using the 1980 and 1998 occupational distributions of
employment from the CPS MORG samples. See Table I and Appendix 1 for de�nitions and examples of task
variables.

Panel B: Predicted task changes are calculated as the weighted mean of the NIPA computer investment
measure or CPS computer use measure (as noted) multiplied by the coef�cient from a regression of changes
in industry or occupation task input on the relevant computer measure. NIPA coef�cient estimates corre-
spond to speci�cation (1) of Table IV. CPS extensive margin computer task estimates correspond to Panel A
of Table V. CPS intensive margin computer task estimates correspond to speci�cation (1) of Table VI. (A
negligible interaction term is ignored.)
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TABLE VII
(CONTINUED)

1. 1970–
1980

extensive
margin

2. 1980–
1990

extensive
margin

3. 1990–
1998

extensive
margin

4. 1970–
1998

extensive
margin

5. 1980–
1998

extensive
margin

6. 1980–
1998

intensive
margin

7. 1980–
1998

extensive 1
intensive

D. 103 annual changes in college-equivalent share of employment in percentage
points, predicted by impact of computerization on task input (panel B)

NIPA computer investment measure CPS computer use measure

Nonroutine
tasks

0.40 0.65 1.10 0.69 1.41 0.40 1.81

Routine
tasks

0.29 0.48 0.81 0.51 0.80 1.04 1.84

All tasks 0.70 1.12 1.91 1.19 2.21 1.44 3.65

E. Estimated log demand shifts for college-equivalent/noncollege-equivalent
labor 1970–1998 (100 3 annual log changes)

Using constant-elasticity of substitution model to estimate changes in college
demand

s 5 0.0 4.99 2.53 2.25 3.33 2.41
s 5 1.4 3.95 4.65 2.76 3.86 3.81
s 5 2.0 3.50 5.56 2.98 4.09 4.41

Using task model to predict changes in college demand

Total task D
(panel C)

1.23 1.29 1.43 1.31 1.56 20.06 1.51

Predicted by
computer-
ization
(panel D)

0.64 0.70 0.98 0.76 1.39 0.91 2.29

Panels C and D: Implied employment share changes for college-equivalent labor (in percentage points)
are calculated as the inner product of observed or predicted changes in task input from panels A and B and
the coef�cient vector from a �xed coef�cient model of educational input. For extensive margin task shifts, this
coef�cient vector is estimated from a regression of college equivalent employment (in FTEs) in 140 consistent
CIC industries on the �ve DOT measures of industry task input (in centiles) and a constant using the 1980
MORG sample. For intensive margin task shifts, the coef�cient vector is estimated from a regression of
college equivalent employment in 470 COC occupations on the �ve DOT measures of occupational task input
(in centiles) and a constant using the 1984 CPS sample. College-equivalents labor is de�ned as all workers
with college or greater education plus half of those with some college.

Panel E: Fixed coef�cients log relative demand shifts are calculated as the change in the log ratio of
college-equivalent/noncollege-equivalent employment using the initial (1970, 1980, or 1990) college-equiva-
lent/equivalent employment share in full-time equivalents and the implied percentage point change in this
share from Panels C and D.

Constant Elasticity of Substitution (CES) implied relative demand shifts for college-equivalentlabor are
calculated following Autor, Katz, and Krueger [1998] using a CES aggregate production function with two
inputs, college and high school equivalents, and an elasticity of substitution denoted by s. See Table II of
Autor, Katz, and Krueger for details.
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We next estimate the contribution of task changes attribut-
able to computerization to growth in college graduate employ-
ment. These estimates, shown in panel D, implement equation
(18) using the within-industry and within-occupation task shifts
predicted by computerization (panel B). The estimates of the
“computer-induced” changes in college employment are compara-
ble in magnitude to, and in some cases larger than, the analogous
estimates based on observed task inputs. We �nd, for example,
that computer-induced task changes along the extensive margin
contributed 1.2 percentage points per decade to growth in college
employment during 1970 to 1998, and 2.2 percentage points dur-
ing 1980 to 1998. Adding intensive margin task changes raises
this estimate considerably. In net, we estimate that task shifts
attributable to computerization increased college employment by
3.7 percentage points per decade from 1980 to 1998.

The �nal step of our estimation is to benchmark employment
changes induced by shifting task demands against conventional
estimates of demand for college labor calculated for the same
period. For this benchmarking exercise, we use the familiar con-
stant elasticity of substitution (CES) framework with two factors
of production— college equivalent and high school equivalent la-
bor—to estimate log relative demand shifts favoring college labor
during 1970 to 1998. Under the assumptions that the economy
operates on the demand curve and that factors are paid their
marginal products, the CES model calculates the implied shift in
college/noncollege relative demand consistent with observed
shifts in relative employment and earnings of college versus
noncollege workers.28 This procedure also requires us to assume
an elasticity of substitution, s, between college and high school
equivalent workers. Following a large literature, we use values of
s, ranging from 0 to 2, with a consensus estimate of s 5 1.4.

Panel E of the table presents the benchmark CES estimates
for the period 1970 to 1998. We calculate that relative demand for

28. The demand model is Q t 5 [at(atNc t)r 1 (1 2 at)(btNh t)r]1 /r, where Q is
aggregate output, Nct, Nht are quantities of employed college and high school
equivalent labor, at , b t are factor-augmenting technological parameters, a is an
index of the share of work activities allocated to college versus high school labor,
and the elasticity of substitution is given by s 5 1/(1 2 r). The demand index is
Dt 5 s ln(at/[1 2 at]) 1 (s 2 1)ln(at /bt). Katz and Murphy [1992], Johnson
[1997], Murphy, Romer, and Riddell [1999], and Acemoglu [2002] implement
similar models. Our estimates are based on Table II of Autor, Katz, and Krueger
[1998] and updated in 1998 (from 1996) for this analysis. Unlike these authors, we
also include estimates for s 5 0 since our �xed coef�cients model incorporates this
assumption.
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college-educated labor grew rapidly between 1970 and 1998. Us-
ing the consensus value of s 5 1.4, we estimate that demand for
college labor rose by 3.9 log points annually. If we instead assume
that s 5 0, we obtain a smaller—though still quite rapid—
demand shift of 3.3 log points annually.29

In the bottom of panel E we �nally compare our task-based
demand estimates with the CES-based numbers. To facilitate
comparison, we convert predicted changes in the college employ-
ment level (panels C and D) into changes in log relative college-
equivalent/noncollege employment. As noted above, this task-
based calculation ignores wage changes and hence corresponds to
an elasticity of substitution of s 5 0. It is therefore useful to
compare the task-based demand estimates to the corresponding
CES numbers using both the consensus elasticity of s 5 1.4 and
the more comparable, albeit less realistic, value of s 5 0.

As is visible in panel E, the task model explains a sizable
share—25 to 65 percent— of the estimated growth in college-
equivalent/noncollege-equivalent demand in each decade. Consis-
tent with the accelerating rate of task change shown in Figure I,
the smallest share of the overall demand shift is explained by
task shifts in the 1970s and the largest share in the 1990s.

Comparing task changes potentially attributable to comput-
erization to the CES demand index for these three decades, we
�nd that these extensive margin task changes explain 20 to 25
percent of the estimated demand shift for college versus noncol-
lege labor during 1970 to 1998. If we focus on only the two most
recent decades and include both intensive and extensive margin
changes, the task model can explain a large fraction— 60 to 90
percent—of the estimated increase in relative demand for college
employment. Notably, almost 40 percent of the computer contri-
bution to rising educational demand in the last two decades is due
to shifts in task composition within nominally unchanging
occupations.

In net, these illustrative calculations demonstrate that
changes in task demands accompanying workplace computeriza-
tion are economically large and—with caveats noted—could have
contributed substantially to relative demand shifts favoring edu-
cated labor in the United States since 1970.

29. The estimated demand shift is smaller in the latter calculation because a
higher value of s places greater weight on relative wage changes, and the relative
earnings of college graduates rose rapidly after 1980.
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VII. CONCLUSION

What is it that computers do— or what is it that people do
with computers—that appears to increase demand for educated
workers? This paper formalizes and tests an intuitive answer to
this question that has been informally articulated by scholars in
a number of disciplines over several decades. Computer technol-
ogy substitutes for workers in performing routine tasks that can
be readily described with programmed rules, while complement-
ing workers in executing nonroutine tasks demanding �exibility,
creativity, generalized problem-solving capabilities, and complex
communications. As the price of computer capital fell precipi-
tously in recent decades, these two mechanisms—substitution
and complementarity— have raised relative demand for workers
who hold a comparative advantage in nonroutine tasks, typically
college-educated workers.

Our task framework emphasizes that the causal force by
which advancing computer technology affects skill demand is the
declining price of computer capital—an economywide phenome-
non. We developed a simple model to explore how this price
decline alters task demand within industries and occupations.
This model predicts that industries that were intensive in labor
input of routine tasks in the precomputer era would make rela-
tively larger investments in computer capital. Simultaneously,
they would reduce labor input of routine tasks, for which com-
puter capital substitutes, and increase demand for nonroutine
task input, which computer capital complements.

Employing consistent, representative, time series observa-
tions on the task composition of jobs from the Dictionary of
Occupational Titles, we af�rm these predictions across several
margins of task change and estimate that they may have contrib-
uted substantially to demand shifts favoring educated labor over
the past three decades. We also considered several alternative
explanations for our �ndings, most signi�cantly the rising human
capital and labor force attachment of women. We �nd that the
documented task shifts, and their associations with the adoption
of computer technology, are as evident within gender, education,
and occupation groups as between them. The pervasiveness of
these shifts suggests to us that changes in job task content—
spurred by technological change—may plausibly be viewed as an
underlying factor contributing to recent demand shifts favoring
educated labor.
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DATA APPENDIX

A.1. Samples Used from Current Population Survey and Census
of Populations

To calculate occupational and education distributions econo-
mywide and within industries for 1960 to 1998, we used obser-
vations on all noninstitutionalized, employed workers ages

APPENDIX 2: COMPUTERIZATION AND INDUSTRY TASK INPUT, 1960–1998:
USING COMPOSITE TASK MEASURES

DEPENDENT VARIABLE: 10 3 ANNUAL WITHIN-INDUSTRY CHANGE IN TASK INPUT,
MEASURED IN PERCENTILES OF 1960 TASK DISTRIBUTION

1. 1990–
1998

2. 1980–
1990

3. 1970–
1980

4. 1960–
1970

A. D Nonroutine
analytic

D Computer use 8.21 12.09 6.50 8.57
1984–1997 (4.55) (4.55) (4.21) (5.74)
Intercept 0.64 20.67 0.07 20.07

(0.96) (0.94) (0.86) (1.14)
R2 0.02 0.05 0.02 0.02
Weighted mean D 2.26 1.67 1.32 1.51

B. D Nonroutine
interactive

D Computer use 9.83 9.93 5.67 10.45
1984–1997 (4.39) (4.74) (3.47) (5.00)
Intercept 0.54 0.53 1.42 0.00

(0.92) (0.98) (0.71) (1.00)
R2 0.04 0.03 0.02 0.03
Weighted mean D 2.48 2.45 2.51 1.93

C. D Routine
cognitive

D Computer use 213.40 24.59 24.76 27.02
1984–1997 (4.44) (5.58) (3.70) (4.75)
Intercept 0.23 20.39 0.56 20.05

(0.94) (1.16) (0.76) (0.95)
R2 0.06 0.00 0.01 0.02
Weighted mean D 22.41 21.28 20.35 21.35

D. D Routine
manual

D Computer use 223.17 215.27 213.25 3.98
1984–1997 (6.99) (6.86) (5.34) (4.13)
Intercept 20.52 20.80 1.97 1.35

(1.47) (1.42) (1.09) (0.82)
R2 0.07 0.03 0.04 0.01
Weighted mean D 25.09 23.76 20.56 2.09

n is 140 consistent CIC industries. Standard errors are in parentheses. Each column of panels A–D
presents a separate OLS regression of ten times the annual change in industry-level task input between the
endpoints of the indicated time interval (measured in centiles of the 1960 task distribution) on the annual
percentage point change in industry computer use during 1984–1997 (mean 0.193) and a constant. Computer
use is the fraction of industry workers using a computer at their jobs, estimated from the October 1984 and
1997 CPS samples. Estimates are weighted by mean industry share of total employment in FTEs over the
endpoints of the years used to form the dependent variable. Samples used are Census 1960, 1970, and 1980
and CPS MORG 1980, 1990, and 1998. See the Data Appendix for details on construction of the composite
task variables. See Table I for de�nitions and examples of task variables.
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18–64 from the Census PUMS one percent samples for 1960,
1970, 1980, and 1990 [Ruggles and Sobek, 1997] and the Merged
Outgoing Rotation Groups of the Current Population Survey for
the years 1980, 1990, and 1998. All individual and industry level
analyses are performed using as weights full-time equivalent
hours of labor supply, which is the product of the individual
Census or CPS sampling weight times hours of work in the
sample reference week divided by 35 and, for Census samples,
weeks of work in the previous year. Because hours are not re-
ported for the self-employed in the CPS prior to 1994, we assigned
self-employed workers in all CPS samples the average labor
hours in their industry-education-year cell. In cases where indus-
try hours supplied by education category were unavailable (due to
an empty industry-education-year cell), we assigned weekly
hours as the mean of workers’ education-year cells.

To attain comparable educational categories across the re-
de�nition of Census Bureau’s education variable introduced in
1990 in the Census and in 1992 in the CPS, we use the method
proposed by Jaeger [1997]. In data coded with the pre-1992 edu-
cation question (Census PUMS 1960, 1970, and 1980, and CPS
MORG �les 1980 and 1990), we de�ned high school dropouts as
those with fewer than twelve years of completed schooling; high
school graduates as those having twelve years of completed
schooling; some college attendees as those with any schooling
beyond twelve years (completed or not) and fewer than sixteen
completed years; and college plus graduates as those with sixteen
or more years of completed schooling. In data coded with the
revised education question (1990 Census PUMS and 1998 CPS
MORG �le), we de�ne high school dropouts as those with fewer
than twelve years of completed schooling, high school graduates
as those with either twelve completed years of schooling or a high
school diploma or G.E.D.; some college as those with some college
or holding an Associate’s Degree; and college plus as those with a
B.A. or higher.

A.2. Computing DOT Task Means for Census Occupation
Categories (COCs)

To compute DOT Task Means for 1970 CIC Occupations, we
used the April 1971 CPS Monthly File issued by the National
Academy of Sciences [1981] in which experts assigned individual
DOT occupation codes and associated DOT measures to each of
60,441 workers. Because Census occupation categories are sig-
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ni�cantly coarser than DOT occupation categories, the 411 1970
census occupation codes represented in the 1971 CPS were as-
signed a total of 3886 unique 1977 DOT occupations. We used the
CPS sampling weights to calculate means of each DOT task
measure by occupation. Because the gender distribution of DOT
occupations differs substantially within COC occupation cells, we
performed this exercise separately by gender. In cases where a
COC cell contained exclusively males or females, we assigned the
cell mean to both genders. This provided a set of 822 DOT occu-
pation means by 1970 COC and gender.

To generate DOT means for 1960 occupations, we developed
a crosswalk from the 1970 to 1960 COC occupational classi�ca-
tion schemes using information in Priebe and Greene [1972]. Our
crosswalk (available on request) provides a set of 211 consistent
1960 –1970 occupations representing the lowest common level of
aggregation needed to obtain a consistent series. We applied the
1970 COC means to our 1970 Census sample by occupation and
gender and calculated weighted gender-occupation means across
the 211 consistent 1960 –1970 occupational categories.

It was not possible to develop a bridging crosswalk between
1970 and 1980 COC occupations due to the substantial differ-
ences between these classi�cations. Instead, we employed a Cen-
sus sample prepared for the Committee on Occupational Classi-
�cation and Analysis chaired by Donald Treiman and provided to
us by Michael Handel. This �le contains 122,141 observations
from the 1980 Census that are individually dual coded with both
1970 and 1980 COC occupation codes based on occupational and
other demographic information supplied by Census respondents.
To calculate DOT means by 1980 occupation, we merged the 1970
COC-DOT means (above) to the Treiman �le by gender and 1970
COC occupation, achieving a 97 percent match rate. We appended
to the Treiman �le consistent occupation codes for the years 1980
to 1998 developed by Autor, Katz, and Krueger [1998], and cal-
culated weighted means of each DOT measure within occupation-
gender categories. This yielded DOT means by gender for each of
485 DOT occupations.

A.3. Computing DOT Task Means by Consistent
1960 –1998 Industry

To compute DOT task means overall, by industry, and by
industry-education cell for 1960 –1998, we assigned the consis-
tent DOT occupational task means for 1960 –1998 by gender and
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occupation to each observation in our Census and CPS samples
for 1960 –1998. Using labor supply in FTEs as weights, we calcu-
lated means of each DOT measure for each occupation-industry-
education-year cell. These means provide the primary outcome
measures for our analysis. To attain compatibility between
changing Census Industry Codes for 1960 –1998, we use a cross-
walk developed by Autor, Katz, and Krueger [1998] providing 140
consistent CIC industries spanning all sectors of the economy.
This crosswalk includes all CIC industries and attains consis-
tency by aggregating where necessary to the lowest common level
of consistent industry de�nition among 1970, 1980, and 1990 CIC
standards.

A.4. Composite Task Indicators from the DOT

To verify that our results are robust to plausible alternative
selections of DOT variables, we formed composite indicators of
our intended constructs using Principal Components Analysis.
We chose a short list of alternative DOT variables that appeared
relevant to each of our conceptual categories. These choices are
Nonroutine Analytic Tasks: GED-MATH, GED-REASON, NUM-
BER, MVC; Nonroutine Interactive Tasks: DCP, GED-LAN-
GUAGE, DEPL, VARCH; Routine Cognitive Tasks: STS, COL-
ORDIS, REPCON, VOCPREP; Routine Manual Tasks: FING-
DEX, MOTOR, FORM, MANUAL. De�nitions and representative
examples of these variables are found in U. S. Department of
Labor [1972]. Using 1980 employment as weights, we performed
principal components analysis for each set of variables to identify
the linear combinations that maximized common variation sub-
ject to the constraint that the sum of squared vector weights is
equal to one. In each case, we used the �rst principal component.

A.5. Calculating DOT Quantiles

To convert DOT measures into percentiles of the 1960 task
distribution, we used DOT 1977 task measures paired to the 1960
Census to form an employment-weighted empirical cumulative
distribution function of task input for each task measure across
1120 industry-education-gender cells: 140 industries, two gender,
and four education levels (high school dropout, high school grad-
uate, some college, and college graduate). We applied a small
amount of interpolation to remove �at spots in the distribution.
We inverted this empirical distribution and applied it to all DOT
task measures in subsequent years by industry-education-gender
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and year. These centile values are the unit of measure for all later
analyses. A limitation of this methodology is that DOT values
after 1960 may potentially lie outside the support of the 1960
distribution, leading to truncation. In practice, this issue affects
at most 4 percent of the distribution of each task in any year. An
earlier version of this paper [Autor, Levy, and Murnane, 2001]
employed raw DOT scores rather than the percentile measures
used here. Results were qualitatively identical.

A.6. Calculating within-Occupation Changes in DOT Task
Measures: 1977–1991

To measure within-occupation changes in task content, we
employed the 1991 Revised Fourth Edition of the Dictionary of
Occupational Titles, available in electronic form from the Na-
tional Academy of Sciences [1981]. Based on a study of select
industries to determine which jobs had undergone the most sig-
ni�cant occupational changes since the 1977 publication of the
DOT fourth edition, DOT analysts introduced, revised, and elimi-
nated occupational de�nitions for occupations that were observed
to have most substantively changed between 1977 and 1991. A
total of 2452 occupations were reviewed, updated, or were added;
646 nominal titles were revised; 136 titles were combined; and 75
were deleted. To provide a conservative measure of total task
change, we assume that any occupation that was not revised in
the 1991 DOT experienced no task change.

We used documentation from the North Carolina Employ-
ment Security Commission [1992a, 1992b] to construct a cross-
walk between the 1991 DOT and 1997 DOT occupation codes.
With this crosswalk, we applied DOT 1991 task variables to our
1971 CPS �le, yielding a match rate of 99.9 percent. Of these
matched occupations, 73 percent (weighted by employment) had
been updated between 1977 and 1991 by DOT examiners. We
then calculated DOT means by 1970 and 1980 COC occupations
and gender using a procedure identical to that described in A.3, to
obtain 1991 DOT task means for the 1977 occupations. The with-
in-occupation variation that we exploit over 1977–1991 stems
exclusively from reevaluation of occupational content by DOT
examiners, rather than from changes in the relative size of DOT
suboccupations within CIC occupations.

We assigned the 1977 DOT and 1991 DOT task measures to
470 consistent COC occupations in the 1984 and 1998 CPS sam-
ples (corresponding to the years of our CPS computer measure).
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As with the industry data, we transformed the DOT task mea-
sures into percentiles of the base year distribution, in this case
using occupational employment shares from 1984 to form employ-
ment weights.

A.7. Computer Usage Data from the Current Population Survey

Industry computer use frequencies were calculated from the
October 1984 and 1997 School Enrollment Supplements to the
Current Population Survey (CPS) as the weighted fraction of
currently employed workers ages 18– 65 who answered yes to the
question, “Do you use a computer directly at work?” within con-
sistent CIC industries. A computer is de�ned as a desktop termi-
nal or PC with keyboard and monitor and does not include an
electronic cash register or a handheld data device. To calculate
these frequencies in 1984 and 1997, 61,712 and 56,247 observa-
tions were used, respectively.

A.8. Computer and Capital Investment Measures from the
National Income and Products Accounts

We used data on industry capital stocks and �ows of equip-
ment, structures, and computers from the National Income and
Product Accounts [U. S. Department of Commerce, 2002a, 2002b]
for the years 1950 –1998. All NIPA stock and investment vari-
ables are measured in real 1996 dollars. Investment variables
measure cumulated real investment in the relevant asset over the
prior ten years, except in 1998 where we use 1.25 times cumu-
lated investment over the previous eight years. De�ation of NIPA
measures is performed by the Bureau of Economic Analysis using
primarily Producer Price Indexes (PPIs). PPIs for computer in-
vestment are based on quality adjustment, price linking, and
hedonic regression methods. As denominators for capital/FTE
and computer investment/FTE variables, we used Census and
CPS samples to calculate FTEs by industry by year. Computer
investment is calculated as the sum of investment in mainframe
computers, personal computers, packaged and custom software,
printers, terminals, storage devices, and other integrated devices.
Structures and equipment variables are de�ned in the NIPA.

To match CPS and Census data to the NIPA, we used a
crosswalk developed by Autor, Katz, and Krueger [1998] and
revised for this analysis to accommodate small changes in the
NIPA sector scheme made during the recent NIPA revision. The
resulting aggregation of NIPA and CIC data contains 47 consis-
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tent industries covering all industrial sectors excluding Govern-
ment and Private Households, spanning 1960 –1998. Of these 47,
we exclude from our analysis agriculture and government domi-
nated services (5 NIPA industries).
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