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In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic 

Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of pro- 

cedures for a single provider, where each procedure has a known type and associated probability distri- 

bution of random duration. Our objective is to minimize the expectation of a weighted sum of patient 

waiting time, provider idling, and clinic overtime. We present computational results to show the size 

and characteristics of problem instances that can be solved with our model. We also compare this model 

to other formulations in the literature and analyze them both empirically and theoretically, demonstrat- 

ing where significant improvements in performance can be gained with our proposed model. This work 

is motivated by our research on developing scheduling templates for endoscopic procedures at a major 

medical center. More broadly, however, the SOPSP is a stochastic single-resource sequencing and schedul- 

ing problem and therefore has applications both within and outside of healthcare operations. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper, we address the Stochastic Outpatient Procedure

cheduling Problem (SOPSP), which arises in outpatient procedure

enters (OPCs). In this problem, we consider the perspective of an

PC manager who must schedule the start times for a day’s worth

f procedures for a single provider, where each procedure has a

nown type and a random (non-negative) duration that follows a

nown probability distribution associated with the procedure type.

iven the uncertainty in procedure durations, the goal is to min-

mize the expectation of a weighted sum of total patient waiting

ime (the time from the scheduled start of a procedure to its ac-

ual start), total provider idle time (the time from the end of one

rocedure to the start of the next), and clinic overtime (the time

rom the scheduled closing time of the clinic to the end of the last

rocedure of the day). 

This research is motivated by our work with the University of

ichigan Medical Procedures Unit, an OPC that performs a variety

f endoscopic procedures such as colonoscopies. The ultimate goal

f this project is to optimize daily schedule templates and poli-

ies for filling these templates, to best account for variability in

atient procedure times. By building higher-quality schedules that

ncorporate the variability in procedure durations, it is possible to
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mprove patient and provider satisfaction, reduce costs, and even

chieve better clinical outcomes. A valuable tool in creating such

emplates is the ability to solve the simpler (and yet still challeng-

ng) SOPSP as an embedded sub-problem. 

In addition to the value that the ability to solve the SOPSP pro-

ides to our work, it also has relevance for many other applica-

ions, including scheduling of surgeries in an operating room, ships

n a port, exams in an examination facility, and more ( Ahmadi-

avid, Jalali, & Klassen, 2017; Begen & Queyranne, 2011; Mancilla

 Storer, 2012; Robinson & Chen, 2003; Sabria & Daganzo, 1989 ).

or example, it is a common practice for surgeries to initially be

ssigned to a surgeon, date, and operating room several weeks

r even months before their scheduled date. The actual scheduled

tart times for these surgeries, however, are typically not set until

 few days in advance. It is at this point when the SOPSP can be

olved to construct the final surgical schedule and notify the pa-

ients when to report to the hospital (see Denton, Miller, Balasub-

amanian, & Huschka, 2010; Mancilla & Storer, 2012 , and references

herein for more details). 

The SOPSP is also computationally challenging to solve, for a

umber of reasons. First, it is a complex combinatorial optimiza-

ion problem, given the inherent implied sequencing problem that

nderlies assigning appointment times to each patient ( Ahmadi-

avid et al., 2017; Berg, Denton, Erdogan, Rohleder, & Huschka,

014; Mancilla & Storer, 2012 ). Second, the problem is inherently

tochastic due to the uncertainty in procedure durations. Finally, it

s also a multi-criteria optimization problem, in which we must

https://doi.org/10.1016/j.ejor.2019.06.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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make trade-offs between longer spacing between appointments,

which leads to reduced patient delays, and shorter spacing, which

leads to less provider idling and overtime ( Ahmadi-Javid et al.,

2017; Antunes, Alves, & Clímaco, 2016; Cayirli & Veral, 2003; Den-

ton et al., 2010; Gupta & Denton, 2008; Mancilla & Storer, 2012;

Marler & Arora, 2004; T’kindt & Billaut, 2006 ). More broadly, the

SOPSP is a single-server stochastic appointment sequencing and

scheduling (SASS) problem, the underlying complexity of which

has been studied by several previous authors beginning with the

seminal work of Welch and Bailey (1952) and Weiss (1990) (see

Ahmadi-Javid et al., 2017; Berg et al., 2014; Denton et al., 2010;

Gupta, 2007; Gupta & Denton, 2008; Mancilla & Storer, 2012 , and

references therein). 

In this paper, we present a new Stochastic Mixed-Integer Lin-

ear Program (SMILP) using Sample Average Approximation (SAA)

for solving the SOPSP, with a focus both on tractability (i.e., being

able to solve problem instances of realistic sizes in an acceptable

amount of time) and implementability (i.e., proposing a model that

can be easily translated into standard optimization software pack-

ages, not requiring customized algorithmic development or tun-

ing). To provide context within the literature, we compare our

model with those of Berg et al. (2014) (an enhancement of Denton,

Viapiano, & Vogl, 2007 ) and Mancilla and Storer (2012) , which are,

to the best of our knowledge, the only SMIPs for SASS with wait-

ing, idling, and overtime costs. We discuss the relative strengths

and weaknesses of the three models and then compare them com-

putationally under a common, straightforward software implemen-

tation. 

The remainder of the paper is structured as follows. In

Section 2 , we present the relevant literature. In Section 3 , we in-

troduce and analyze three mathematical models of the SOPSP: two

based on prior literature ( Berg et al., 2014 and Mancilla & Storer,

2012 ), and a new model. After that, in Section 4 , we compare the

computational performance of the three models and provide some

discussion and insights. Finally, conclusions are drawn in Section 5 .

2. Literature review 

Outpatient scheduling problems have been an active area of re-

search since the seminal work of Welch and Bailey (1952) . Compre-

hensive surveys of results obtained since then include Cayirli and

Veral (2003) , Gupta and Denton (2008) , and Ahmadi-Javid et al.

(2017) . Within this literature, there are two primary approaches

to stochastic appointment scheduling. The first is to develop and

evaluate scheduling heuristics, often through the use of simula-

tion (see, for example, Ahmadi-Javid et al., 2017; Ho & Lau, 1992;

Klassen & Rohleder, 1996; Rohleder & Klassen, 20 0 0; Vissers & Wi-

jngaard, 1979 ). The second is to construct models and design al-

gorithms to find optimal schedules through the use of queueing

theory (see, for example, Bosch & Dietz, 20 0 0; Jansson, 1966; Mer-

cer, 1960; Sabria & Daganzo, 1989; Soriano, 1966; Vanden Bosch &

Dietz, 2001 , and references therein), stochastic programming (see,

for example, Berg et al., 2014; Denton & Gupta, 2003; Mancilla &

Storer, 2012; Robinson & Chen, 2003 , and references therein), and,

more recently, robust and distributionally robust optimization (RO

and DRO, respectively; see, for example, Jiang, Shen, & Zhang, 2017;

Mak, Rong, & Zhang, 2014 , and references therein). 

Herein, we present studies that are most relevant to us: papers

that use SMILP models to address offline single-resource stochas-

tic appointment sequencing and scheduling (SASS) problems that

are similar to the SOPSP (“offline” in the sense that sequencing

and scheduling decisions are all made ahead of time). We are in-

terested in generating optimal solutions to the SOPSP assuming

knowledge of the distributions of appointment durations (a clas-

sic SASS assumption, Ahmadi-Javid et al., 2017; Berg et al., 2014;

Deceuninck, Fiems, & De Vuyst, 2018 ), which rules out both the
euristic approach (due to sub-optimality and lack of performance

uarantees, Ahmadi-Javid et al., 2017; Ho & Lau, 1992; Klassen &

ohleder, 1996; Rohleder & Klassen, 20 0 0; Vissers & Wijngaard,

979 ) and the RO and DRO-based approaches (which assume dis-

ributional ambiguity). Finally, as pointed out by Robinson and

hen (2003) , queueing theory-based results and algorithms are

ot appropriate for the SOPSP and other OPC scheduling problems

hich involve serving a finite number of patients within fixed ser-

ice hours (i.e., the queue never reaches a steady state). 

Papers that present models and algorithms for optimizing SASS

ecisions using SMILP fall into two groups: those that focus on de-

ermining the optimal start times (or, equivalently, the inter-arrival

imes) assuming that the sequence of patients (customers) is al-

eady fixed (e.g., through the use of a heuristic, see, for example,

osch & Dietz, 20 0 0; Denton & Gupta, 2003; Erdogan & Denton,

013; Ge, Wan, Wang, & Zhang, 2013; Robinson & Chen, 2003;

anden Bosch & Dietz, 2001 , and references therein), and those

hat focus on optimizing the sequencing and scheduling decisions

imultaneously. Since we consider both sets of decisions, we fur-

her limit the scope of this review to the latter category. We refer

he reader to the following studies: Ahmadi-Javid et al. (2017) , Berg

t al. (2014) , Cayirli, Veral, and Rosen (2006) , Cayirli, Veral, and

osen (2008) , Creemers, Beliën, and Lambrecht (2012a) , Creemers,

olen, and Lambrecht (2012b) , Gupta and Denton (2008) , Rohleder

nd Klassen (20 0 0) , Salzarulo, Mahar, and Modi (2016) , and refer-

nces therein, which demonstrate the benefit of sequencing het-

rogeneous patient appointments based on their characteristics

or improving clinic performance and reducing costs compared to

xed sequence approaches. To the best of our knowledge, and ac-

ording to the recent review of outpatient appointment systems

y Ahmadi-Javid et al. (2017) , papers by Denton et al. (2007) , Berg

t al. (2014) , and Mancilla and Storer (2012) are the ones most

losely related to our work, addressing similar SASS problems with

aiting, idling, and overtime costs using SMILP. 

Denton et al. (2007) formulated the stochastic surgery schedul-

ng problem in an operating room (OR) as a two-stage SMILP with

inary precedence variables and continuous time allowance vari-

bles in the first stage, and continuous waiting, idling, and over-

ime variables in the second stage. They used the sample-average

pproximation approach (i.e., a scenario-based approach) to re-

lace the continuous distributions of surgery durations with ap-

roximate discrete distributions by considering a sample of N ran-

omly generated scenarios. Since it was difficult to solve instances

ith more than 4 surgeries, they proposed several sequencing

euristics and then obtained the optimal surgery start times, for

 fixed sequence, via the L-shaped algorithm ( Birge & Louveaux,

011 ) described in Denton and Gupta (2003) . Their results showed

ubstantial potential reductions in surgeon waiting, OR idling, and

vertime costs by sequencing surgeries based on variances of their

urations compared to the schedule of the OR that the study con-

idered. 

In a slightly different setting, Berg et al. (2014) considered

he problem of optimizing the booking (number of patients to

chedule) and appointment time decisions for outpatient proce-

ures under no-show and procedure durations uncertainties. The

oal was to maximize profit, i.e., the difference between the ex-

ected revenue and the expected variable cost of patient waiting

ime, provider idle time, and overtime associated with schedul-

ng patients. Since the revenue was straightforward to compute,

he paper focused on minimizing the expected variable cost de-

ermined by sequencing and scheduling decisions (a SASS prob-

em which is, to some extent, similar to the SOPSP). To that end,

he paper extended and enhanced the SMILP model of Denton

t al. (2007) by including heterogeneous no-show probabilities

nd using both precedence and assignment variables to strengthen

he earlier model, and employed three exact solution methods:
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-shaped, hybrid multi-cut L-shaped with scenario aggregation and

anking (to overcome the computational burden of the original

ulti-cut method, see Birge & Louveaux, 1988 ), and branch-and-

ound with progressive hedging as a primal heuristic ( Rockafellar

 Wets, 1991 ). While these methods were computationally com-

etitive (relative to each other) in solving small instances ( ≤5

atients), it was challenging to solve larger instances (10 pa-

ients), primarily due to the stochastic and combinatorial ele-

ents of the problem. Therefore, they proposed six sequencing

euristics based on standard deviations of procedure durations

nd no-show probabilities, and illustrated the conditions under

hich some of these provided a near-optimal solution to the

roblem. 

Mancilla and Storer (2012) formulated the surgery sequenc-

ng and scheduling problem in a single operating room at a lo-

al hospital as a stochastic mixed-integer program with sample

verage approximation. The model differs from that of Denton

t al. (2007) in the following two ways. First, they replaced bi-

ary precedence variables with binary sequence position assign-

ent variables (previously proposed in Wagner, 1959 ). Second,

hey replaced continuous job time allowance variables with con-

inuous appointment (start) time variables. Additionally, using con-

epts from Garey, Johnson, and Sethi (1976) , they proved that for

wo scenarios and equal idling costs but different waiting costs for

ach job, the finite scenario SAA problem is NP-complete. There-

ore, to overcome the computational burden of the sequencing de-

isions, they developed an algorithm to generate a near-optimal se-

uence, with the resulting linear subproblem of determining ap-

ointment times solved within their algorithm using the CPLEX

arrier method. Given that the SMILP studied in Mancilla and

torer (2012) is a variation of the one in Denton et al. (2007) , and

he one in Berg et al. (2014) is stronger than Denton et al. (2007) ,

n this paper, we focus our analysis on the models of Mancilla and

torer (2012) and Berg et al. (2014) . 

Finally, we point out the similarities and differences between

ingle provider stochastic appointment sequencing and scheduling

nd single machine scheduling (SMS). At the outset, they look sim-

lar: the provider can be thought of as a single machine, and pro-

edures and their durations as jobs and their processing times, re-

pectively (see Forst, 1993; Lawler, Lenstra, Kan, & Shmoys, 1993;

inedo, 2016 for machine scheduling literature). Nevertheless, SASS

s materially different from SMS. In SMS problems, each job release

ime (the time at which the job becomes available for processing)

s typically exogenous (i.e., a parameter). In contrast, the appoint-

ent time in SASS, which can be thought of as a release time at

hich the scheduled patient is presumably available for the proce-

ure, is a decision variable. Furthermore, in the classic SMS prob-

em, one scheduling criterion that has received the most attention

ver the years is minimizing makespan (i.e., completing the last

ob at the earliest possible time), which trivially minimizes over-

ime but does not consider patient waiting time nor provider idle

ime. Our SMILP model, as well as those of Mancilla and Storer

2012) and Berg et al. (2014) , however, improve on some ideas

rom the seminal work of Wagner (1959) and Pinto and Grossmann

1998) in the domain of deterministic single-machine jobs/tasks

equencing and scheduling. 

. Stochastic mixed-integer linear programming models of the 

OPSP 

In this section, we present and analyze three SMILP formula-

ions for the SOPSP. First, we define the problem formally. Then,

e present our SMILP formulation and the conditions under which

t is equivalent to two closely-related stochastic appointment se-

uencing and scheduling SMILPs in the literature, those of Mancilla
nd Storer (2012) and Berg et al. (2014) , which are also presented

or completeness. 

.1. Formal statement of the problem 

We consider the problem of sequencing a set of procedures for

 single provider (where each procedure has a known type and a

andom, non-negative, duration that follows a known probability

istribution associated with the procedure type) and determining

he associated scheduled start time for each procedure. The per-

ormance metric is the weighted sum of three components, total

atient waiting time (the time from the scheduled start of a pro-

edure to its actual start), total provider idle time (the time from

he end of one procedure to the start of the next), and overtime

the time from the scheduled closing time of the clinic to the end

f the last procedure of the day). Given a set of procedures, their

equence, their scheduled start times, and the distributions of their

urations, the expected value of this weighted sum can be esti-

ated by averaging over finitely many realizations (a sample) of

rocedure durations. This sample average is the objective function

f the forthcoming optimization problems. We make the following

ssumptions: 

A1. A procedure is not permitted to start before its scheduled

start time nor the completion time of the previous proce-

dure. 

A2. Although patients may fail to show up to their appoint-

ments, we assume that those who do show up are punc-

tual, i.e., available at the scheduled start times of their pro-

cedures. 

A3. The provider is always available at the start of the day, and

immediately after each procedure. 

A4. There is no opportunity to modify the schedule on the day

of service, i.e., rescheduling during the day or adding proce-

dures (to accommodate walk-ins or emergencies) is not per-

mitted. 

The problem can be formulated as a two-stage SMILP with

inary (for sequencing ) and continuous (for scheduling , i.e., start

imes) first-stage variables and continuous second-stage variables

epresenting what happens for each realization of procedure dura-

ions (waiting time, idle time, and overtime), given the sequence

f appointment times decided in the first stage. To incorporate

rocedure duration uncertainty into the model, we use a Sample

verage Approximation (SAA) approach as in Robinson and Chen

2003) , Denton et al. (2010) , and Mancilla and Storer (2012) . That

s, we generate a sample of N scenarios (each scenario consists of

 vector of realizations of procedure durations which are drawn

ndependently from the distributions corresponding to each pa-

ient’s type; a no-show patient can be represented by a realized

rocedure duration of 0), and then optimize the sample average of

he weighted sum of the three metrics using the stored sample.

The technical details of sample average approximation approach

re out of the scope of this paper, and we refer the reader to Kim,

asupathy, & Henderson, 2015; Kleywegt, Shapiro, & Homem-de

ello, 2002; Mak, Morton, & Wood, 1999; Molina-Pariente, Hans, &

raminan, 2016; Shapiro & Homem-de Mello, 20 0 0 , and references

herein, for a thorough discussion.) 

.2. Formulations of the problem 

Table 1 summarizes notation and some terminology used in our

ample-average SMILP formulation of the SOPSP. Note, in particu-

ar, that we use the term “appointment” to refer to a position in

he sequence, and use the terms “patient” and “procedure” inter-

hangeably. Using this notation, the problem can be formulated as
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Table 1 

Notation. 

Indices 

p index of patients, or procedures, to be scheduled, p = 1 , . . . , P

i index of positions in the sequence, or appointments, i = 1 , . . . , P

n index of scenarios to be considered, n = 1 , . . . , N

Parameters 

λw 
i 

waiting time penalty for appointment i 

λg 
i 

penalty for idle time between appointments i and i + 1 

λo overtime penalty 

L planned length of clinic day 

d n p duration of procedure p in scenario n 

Scenario-independent (first-stage) variables 

x i , p binary assignment variable indicating whether procedure p is assigned to appointment i 

t i scheduled start time of appointment i 

Scenario-dependent (second-stage) variables 

s n 
i 

actual start time of appointment i in scenario n 

g n 
i 

idle time after appointment i in scenario n 

o n overtime in scenario n 

Table 2 

Additional notation ( Mancilla & Storer, 2012 ). 

Parameters 

λw 
p waiting time penalty for procedure p 

λg 
p idle time penalty for procedure p 

Scenario-dependent (second-stage) variables 

w 

n 
i,p 

waiting time of procedure p in scenario n , if it is assigned to appointment i (0 otherwise) 

g n 
i,p 

idle time after procedure p in scenario n , if it is assigned to appointment i (0 otherwise) 

e n slack variable measuring early completion of the schedule in scenario n 
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follows: 

(S) minimize 
1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

λw 

i · (s n i − t i ) + 

P ∑ 

i =1 

λg 
i 
· g n i + λo · o n 

] 

(1a)

subject to 

P ∑ 

i =1 

x i,p = 1 ∀ p (1b)

P ∑ 

p=1 

x i,p = 1 ∀ i (1c)

s n i ≥ t i ∀ i, n (1d)

s n i ≥ s n i −1 + 

P ∑ 

p=1 

d n p · x i −1 ,p ∀ (i ≥ 2 , n ) (1e)

g n i = s n i +1 −
( 

s n i + 

P ∑ 

p=1 

d n p · x i,p 

) 

∀ (i < P, n ) (1f)

o n ≥
( 

s n P + 

P ∑ 

p=1 

d n p · x P,p 

) 

− L ∀ n (1g)

(g n i , s 
n 
i ) ≥ 0 ∀ (i, n ) (1h)

o n ≥ 0 ∀ n (1i)

t i ≥ 0 ∀ i (1j)

x i,p ∈ { 0 , 1 } ∀ (i, p) (1k)

In the above formulation, the objective function in (1a) is the

sample average of the weighted linear combination of the to-

tal waiting time, total idle time, and overtime cost. Constraints

(1b) and (1c) ensure that each procedure is assigned to one ap-

pointment and each appointment is assigned one procedure. For
very scenario n , constraints (1d) and (1e) require the actual start

ime, s n 
i 
, of the i th appointment to be no smaller than the sched-

led start time, t i , and than the completion time of the pre-

eding appointment, i.e., the (i − 1) st appointment’s actual start

ime, s n 
i −1 

, plus the duration of the procedure assigned to it,
 P 
p=1 d 

n 
p · x i −1 ,p . The i th appointment waiting time is the difference

etween its actual and scheduled start time (i.e., s n 
i 

− t i ), which

e include in the objective function directly. Constraints (1f) de-

ne the idle time between two consecutive appointments as the

ap between the actual start time of an appointment and the com-

letion time of the preceding one. Constraints (1g) and (1i) define

vertime (if any) as the positive difference between the completion

ime of the last appointment and the clinic scheduled closing time,

 . Finally, the remaining constraints specify feasible ranges of the

ecision variables. 

The formulation of Mancilla and Storer (2012) uses additional

otation presented in Table 2 . Note that components of g are in-

exed differently in this model than in our formulation (1a) –(1k) ,

ut this slight abuse of notation allows us to emphasize the rela-

ionship between two sets of variables representing idling times in

he two models. The formulation of Mancilla and Storer (2012) is

s follows: 

M) minimize 
1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

P ∑ 

p=1 

λw 

p · w 

n 
i,p + 

P ∑ 

i =1 

P ∑ 

p=1 

λg 
p · g n i,p + λo · o n 

] 

(2a)

ubject to 

P ∑ 

i =1 

x i,p = 1 ∀ p (2b)

P ∑ 

p=1 

x i,p = 1 ∀ i (2c)
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Table 3 

Additional notation ( Berg et al., 2014 ). 

Indices 

p , p ′ indices for procedures, p, p ′ = 1 , . . . , P + 1 

i index for appointments, i = 1 , . . . , P + 1 

Parameters 

λw 
p,p ′ sequence-dependent waiting cost for procedure p ′ following procedure p 

λg 
p,p ′ sequence-dependent cost of idling between procedures p and p ′ 

A n p binary attendance indicator for patient p in scenario n ( A n p = 0 if and only if p is a no-show) 

Scenario-independent (first-stage) variables 

r p,p ′ binary precedence variable; equals 1 if and only if procedure p is followed by procedure p ′ 
y p time allotted to procedure p 

Scenario-dependent (second-stage) variables 

w 

n 
p,p ′ sequence-dependent waiting time for procedure p ′ when preceded by procedure p in scenario n 

g n 
p,p ′ sequence-dependent idle time between procedures p and p ′ in scenario n 

e n slack variable measuring early completion of the schedule in scenario n 
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M

M

w

n

M

W  

S

 

d

(

s

t i − t i +1 −
P ∑ 

p=1 

w 

n 
i +1 ,p + 

P ∑ 

p=1 

g n i,p + 

P ∑ 

p=1 

w 

n 
i,p = −

P ∑ 

p=1 

d n p · x i,p

∀ (i < P, n ) (2d) 

t P + 

P ∑ 

p=1 

w 

n 
P,p − o n + e n = −

P ∑ 

p=1 

d n p · x P,p + L 

∀ n (2e) 

w 

n 
i,p ≤ M 

i 
1 · x i,p ∀ (i, p, n ) (2f)

g n i,p ≤ M 2 · x i,p ∀ (i, p, n ) (2g)

(w 

n 
i,p , g 

n 
i,p , o 

n , e n ) ≥ 0 ∀ (i, p, n ) (2h)

t i ≥ 0 ∀ i (2i) 

x i,p ∈ { 0 , 1 } ∀ (i, p) (2j)

As described in Mancilla and Storer (2012) , the objective func-

ion in (2a) is the sample average of the weighted linear combina-

ion of the total waiting cost, total idling cost, and overtime cost.

onstraints (2b) and (2c) ensure that each procedure is assigned

o one appointment, and each appointment is assigned one pro-

edure. Constraints (2d) define, for each scenario, the waiting and

dle time for every appointment. Constraints (2e) define overtime

n scenario n . Constraints (2f) and (2g) are logical constraints that

nforce the relationship between variables w 

n 
i,p 

, g n 
i,p 

, and x i , p (here,

 

i 
1 
, i = 1 , . . . , P, and M 2 are sufficiently large constants). Finally,

he remaining constraints specify feasible ranges of the decision

ariables. 

It is well known that, in order to strengthen the formulation,

he values of “Big- M ” constants in constrains such as (2f) and

2g) should be as small as possible without loss of optimality.

ancilla and Storer (2012) recommend setting 

 

i 
1 = 

i −1 ∑ 

j=1 

δ j , i = 1 , . . . , P, 

here δj corresponds to the j th largest value of max 
n =1 , ... ,N 

d n r −
min 

 =1 , ... ,N 
d n r over r = 1 , . . . , P, and 

 2 = max 
p=1 , ... ,P 

{ 

max 
n =1 , ... ,N 

d n p − min 

n =1 , ... ,N 
d n p 

} 

. 

e followed this suggestion in our computational experiments in

ection 4 . 
The formulation of Berg et al. (2014) uses additional notation

efined in Table 3 , and is as follows: 

B) minimize 
1 

N 

N ∑ 

n =1 

[ 

P+1 ∑ 

p=1 

P ∑ 

p ′ =1 

λw 

p,p ′ · A 

n 
p ′ w 

n 
p,p ′ 

+ 

P+1 ∑ 

p=1 

P+1 ∑ 

p ′ =1 

λg 
p,p ′ · g n p,p ′ + λo · o n 

] 

(3a) 

ubject to 

P+1 ∑ 

p ′ =1 

r p,p ′ ≤ 1 ∀ p (3b) 

P+1 ∑ 

p=1 

P+1 ∑ 

p ′ =1 

r p,p ′ = P (3c) 

x i,p + x i +1 ,p ′ − 1 ≤ r p,p ′ ∀ (p, p ′ , i ≤ P ) (3d) 

P+1 ∑ 

i =1 

x i,p = 1 ∀ p (3e) 

P+1 ∑ 

p=1 

x i,p = 1 ∀ i (3f) 

P+1 ∑ 

p=1 

r p,P+1 = 1 (3g) 

P+1 ∑ 

p=1 

r P+1 ,p = 0 (3h) 

x P +1 ,P +1 = 1 (3i) 

w 

n 
p,p ′ ≤ M 

n 
1 r p,p ′ ∀ (p, p ′ , n ) (3j) 

g n p,p ′ ≤ M 2 r p,p ′ ∀ (p, p ′ , n ) (3k) 

−
P+1 ∑ 

p ′ =1 

w 

n 
p ′ ,p 

+ 

P+1 ∑ 

p ′ =1 

w 

n 
p,p ′ −

P+1 ∑ 

p ′ =1 

g n 
p,p ′ 

= A 

n 
p d 

n 
p − y p ∀ (p : p ≤ P, n ) (3l) 



726 K.S. Shehadeh, A.E.M. Cohn and M.A. Epelman / European Journal of Operational Research 279 (2019) 721–731 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

e  

c  

S  

s  

g  

e  

p  

f

4

 

i  

t  

p  

p  

1  

s  

o  

d  

i  

T

 

a  

t  

p  

v  

t  

s  
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D  

t  

t  

s  

w  

q  
P+1 ∑ 

p=1 

P ∑ 

p ′ =1 

g n 
p,p ′ − o n + e n 

= L −
P+1 ∑ 

p=1 

A 

n 
p d 

n 
p ∀ n (3m)

r p,p ′ , x i,p ∈ { 0 , 1 } , y p ≥ 0 ∀ (p, p ′ , i ) (3n)

(w 

n 
p,p ′ , g 

n 
p,p ′ , o 

n , e n ≥ 0) ∀ (p, p ′ , n ) (3o)

As described in Berg et al. (2014) , this formulation uses a

dummy procedure P + 1 that has zero duration and is always as-

signed to the appointment slot P + 1 . The objective function in

(3a) is the sample average of the weighted linear combination of

the total waiting cost, total idling cost, and overtime cost. Con-

straints (3b) ensure that each procedure precedes at most one

other procedure. Constraints (3c) ensure that every procedure, ex-

cept for the dummy procedure and the first procedure, is included

in exactly two precedence relationships. Constraints (3d) state that

a precedence relationship can only exist if that same relationship

is defined by the appointment assignment decisions. Constraints

(3e) and (3f) require that each procedure is assigned to one ap-

pointment, and each appointment is assigned one procedure. Con-

straints (3g) –(3i) ensure that the dummy procedure will be the

last procedure as defined by the binary precedence variables and

the appointment slot assignment variables. If procedure p does not

precede procedure p ′ , the associated sequence-dependent waiting

and idle times will be 0 by constraints (3j) and (3k) , where M 

n 
1 

and M 2 are sufficiently large constants. Constraints (3l) calculate

the waiting and idle times associated with each procedure based

on the waiting time for the preceding procedure. The clinic’s over-

time is defined by (3m) . Finally, the remaining constraints spec-

ify feasible ranges of the decision variables. Berg et al. (2014) set

M 

n 
1 

= 

∑ P 
p=1 d 

n 
p , n = 1 , . . . , N, and M 2 = L , which we also used in

our computation experiments in Section 4 . 

In the following discussion, we will refer to formulation (1) pro-

posed in this paper as (S) (for Shehadeh et al.), and to formulations

(2) of Mancilla and Storer (2012) and (3) of Berg et al. (2014) as

(M) and (B), respectively. 

Note that each of the three models has different capabilities

in handling various waiting and idling cost structures. Our model

(S) can handle situations where the costs are appointment-specific,

model (M) can handle situations where the costs are patient-

specific, and model (B) can handle situations where the costs de-

pend on the sequence of patients in the schedule. 

We also note that the models take different approaches to cal-

culating waiting times and costs in the presence of no-shows: both

in model (M) and our model (S), waiting cost is incurred if an ap-

pointment runs late, even if the patient assigned to the following

appointment does not show (indeed, a no-show patient is treated

as a procedure with duration 0), while in model (B) no waiting

cost is incurred in this situation. 

In the remainder of the paper, we will consider the SOPSP un-

der the following additional assumptions: (i) zero no-show rate

(i.e., A 

n 
p = 1 ∀ (p, n ) ); (ii) identical waiting costs across appoint-

ments and procedures, i.e., λw 

i 
= λw ∀ i, λw 

p = λw ∀ p, and λw 

p,p ′ =
λw ∀ (p, p ′ ) ; and (iii) identical idling costs across appointments and

procedures, i.e., λg 
i 

= λg ∀ i, λg 
p = λg ∀ p, and λg 

p,p ′ = λg ∀ (p, p ′ ) .
Under these assumptions, models (S), (M), and (B) are SMILP for-

mulations of the same SOPSP and are, therefore, equivalent. Table 4

presents the respective sizes, in terms of number of variables and

constraints, of the three formulations under these assumptions. 
. Computational experiments 

In this section, we present computational experiments that

xplore the size and characteristics of the SOPSP instances that

an be solved with the three SMILP formulations presented in

ection 3.2 . In Section 4.1 , we describe the set of the SOPSP in-

tances that we constructed for our experiments, explain how we

enerated a testbed of sample average approximations (SAAs) for

ach instance, and discuss other experimental settings. We then

resent results in Section 4.2 , comparing the computational per-

ormance of the three formulations. 

.1. Description of experiments 

Due to data privacy policies at the collaborating OPC prevent-

ng us from using real patient data directly, and in order to study

he impact of a variety of problem characteristics on computational

erformance, we developed a set of diverse SOPSP instances, in

art based on prior literature, summarized in Table 5 . Each of the

4 instances is characterized by the number of procedures to be

cheduled, the types of procedures, and the number of procedures

f each type (for example, Instance 1 involves scheduling 4 proce-

ures: two of type A, one of type C, and one of type J). Probabil-

ty distributions of procedure durations by type are contained in

able 6 . 

Instances 1–8, 10, and 11 were based on the data set provided

s part of the AIMMS-MOPTA 5th Optimization Modeling Compe-

ition ( http://coral.ise.lehigh.edu/mopta2013/competition ). For each

rocedure type, we used all procedure duration realizations pro-

ided in the data set to fit all valid parametric distributions using

he open source Matlab function allfitdist ( Sheppard, 2012 ),

electing the distribution with the best combination of the re-

orted Goodness of Fit metrics (e.g., Akaike Information Criterion,

ayesian Information Criterion, Negative of the Log Likelihood). In-

tance 9 was based on the problem studied by Berg et al. (2014) ,

hich includes procedures of two types: colonoscopies (CL) and

pper endoscopies (U). Instances 12–14 were based on the prob-

em studied in Deceuninck et al. (2018) , where 75% of the patients

re newly referred (N) and the remaining 25% are follow-up return

R) patients. Accordingly, we constructed instances with up to 20

rocedures, since this is by far the maximum number of patients a

ingle provider can see in a clinic session. In each instance, we set

 equal to the expected total duration of the P procedures, as is

one in Mancilla and Storer (2012) , Berg et al. (2014) , and others. 

We considered three different sets of weights for the multi-

riteria objective function: (i) λw = λg = λo ; (ii) λw = 1 , λg =
 , λo = 10 ; and (iii) λw = 1 , λg = 5 , λo = 7 . 5 . For the first set of

eights, each of the three objectives is equally important. The sec-

nd set comes from Berg et al. (2014) , where it was motivated by

he argument that instances with λg � = 0 proved to be computa-

ionally easier. The third set comes from Deceuninck et al. (2018) ,

here the authors assumed that the overtime cost is 50% higher

han the regular idling cost based on the OPC literature and prac-

ice ( Cayirli et al., 2006; Deceuninck et al., 2018 ). Note that, with

hese sets of weights, and assuming zero no-show rate, formula-

ions (S), (M), and (B) are equivalent. 

We added symmetry-breaking constraints (see Berg et al., 2014;

enton et al., 2010; Ostrowski, Linderoth, Rossi, & Smriglio, 2011 )

o all three models, recognizing that the durations of procedures of

he same type are identically distributed. In particular, let P q be the

et of procedures of type q , q = 1 , . . . , Q . Without loss of generality,

e can assume that procedures within each P q are numbered se-

uentially. We added the following symmetry-breaking constraints

http://coral.ise.lehigh.edu/mopta2013/competition
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Table 4 

Sizes of formulations of the SOPSP with P procedures and N scenarios. 

(B) (M) (S) 

# Binary variables 2 P 2 + 4 P + 2 P 2 P 2 

# Continuous variables P + 1 + N(2 P 2 + 4 P + 4) P + N(2 P 2 + 2) P + N(2 P + 1) 

# First-stage constraints P 3 + 5 P 2 + 11 P + 10 P 2 + 3 P P 2 + 3 P

# Second-stage constraints N(4 P 2 + 9 P + 5) N(4 P 2 + P + 2) 5 NP 

Table 5 

Characteristics of SOPSP instances. 

Instance # of Procedures # of Types Procedures to be scheduled 

(by type) 

1 4 procedures 3 types (2A, 1C, 1J) 

2 5 procedures 4 types (2A, 1G, 1H, 1J) 

3 5 procedures 4 types (1A, 1D, 2G, 1J) 

4 6 procedures 5 types (1A, 1B, 1F, 2G, 1H) 

5 7 procedures 5 types (1C, 1D, 1F, 1H, 3J) 

6 7 procedures 6 types (1A, 1B, 1D, 1E, 2G, 1J) 

7 10 procedures 6 types (3A, 1C, 1D, 1G, 1I, 3J) 

8 10 procedures 6 types (2A, 1B, 1D, 2G, 2I, 2J) 

9 10 procedures 2 types (6CL, 4U) 

10 11 procedures 8 types (2A, 1C, 2E, 1F, 1G, 1H, 2I, 1J) 

11 11 procedures 6 types (2A, 2F, 1G, 2H, 2I, 2J) 

12 12 procedures 2 types (9R, 3N) 

13 16 procedures 2 types (12R, 4N) 

14 20 procedures 2 types (15R, 5N) 

Table 6 

Distribution information for procedure duration, by type. 

Procedure type Mean Variance Distribution 

A 9.83 12.08 Lognormal 

B 81.46 804.56 Normal 

C 59.75 652.69 Lognormal 

D 34.53 303.94 Lognormal 

E 120.84 2.38e +3 Lognormal 

F 47.76 232.06 Lognormal 

G 43.94 469.86 Gamma 

H 39.90 129.28 Lognormal 

I 95.13 2.430e +3 Lognormal 

J 19.51 99.36 Lognormal 

U 12.05 188.57 Weibull 

CL 30.96 58.75 Weibull 

R 20.00 256.00 Lognormal 

N 30.00 576.00 Lognormal 
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o all three models: 

 i,p −
P ∑ 

j>i 

x j,p+1 ≤ 0 ∀ i = 1 , . . . , P, ∀ p : p, p + 1 ∈ P q , q = 1 , . . . , Q,

(4) 

ndicating that, if procedures p and p + 1 are of the same type, p

s scheduled before p + 1 . 

For each of the 14 SOPSP instances and 3 sets of objective

unction weights, we generated 10 SAAs, for a total of 420 SAA

nstances, each with N = 10 0 0 scenarios. Our choice of the sam-

le size N was motivated by the trade-off between the compu-

ational effort required to solve the resulting mixed-integer lin-

ar programs (MILPs) and the quality of approximation of the ex-

ected value objective of SOPSP by its sample average. On the

ne hand, the sizes of MILP instances of (S), (M), and (B) increase

ith N (see Table 4 ), and their solution times increase as well. As

emonstrated in Section 4.2 , using formulation (S), we were able to

olve all the SAAs associated with the SOPSP instances described in

able 5 with N = 10 0 0 in a reasonable time. 

On the other hand, optimal solutions of SAA instances with

arger values of N are likely to be closer to optimality with respect

o the expected value objective of SOPSP. The research literature

n sample average approximation methods in stochastic optimiza-
ion provides theoretical insights as well as guidance for select-

ng a sample size from this perspective. In particular, the so-called

onte Carlo Optimization procedure can be used to calculate sta-

istical lower and upper bounds on the optimal value of SOPSP

ased on an optimal solution to its SAA approximation, which in

urn provide a statistical estimate of the relative approximation

ap between the optimal value of SOPSP and its SAA approxi-

ation (see Homem-de Mello & Bayraksan, 2014 and Kleywegt

t al., 2002 and references therein for the description of the MCO

ethodology and other technical details.) Applying the MCO pro-

edure to the formulation (S) with N = 10 0 0, we estimated the

elative approximation gaps for the SOPSP instances described in

able 5 to range between 0.004% and 0.9%, whereas larger sam-

le sizes resulted in longer solution times without consistent and

ignificant improvements in the relative approximation gaps. Based

n the above considerations, we selected N = 10 0 0 for our compu-

ational experiments. 

We represented and solved the 420 SAA instances using the

MPL modeling language and IBM ILOG CPLEX Optimization Studio

version 12.6.2). We used the default settings of the solver since

ur experiments showed no consistent benefits of any parameter

r settings tuning. We imposed a solver time limit of 7200 seconds

2 hours) for each SAA instance. We performed all experiments on

n HP workstation running Windows Server 2012 with two 2.10 gi-

ahertz Intel E5-2620-v4 processors, each with 8 cores (16 total)

nd 128 gigabyte shared RAM. 

.2. Discussion of results 

Recall that formulation (1) proposed in this paper is designated

y (S), and formulations (2) of Mancilla and Storer (2012) and

3) of Berg et al. (2014) are designated by (M) and (B), respec- 

ively. Henceforth, we will assume that constraints (4) are included

n each of the models. 

Using our proposed model (S), we were able to solve all 420 in-

tances of the SAAs associated with the SOPSP instances described

n Table 5 within the imposed time limit of two hours. In fact, so-

ution times of the SAAs that correspond to Instances 1–9, 10 and

1 under the second and third weight sets, and 12–13 were less

han 10 minutes (see Table 7 for details). Moreover, solution times

f the SAAs that correspond to the largest (in terms of the num-

er of procedures) and the most complex SOPSP instance (which

s somewhat less commonly encountered in practice), Instance 14,

ere less than 25 minutes. These solution times are sufficient for

eal-world implementation of model (S). Below, we compare the

omputational performance of model (S) with models (M) and (B).

.2.1. Comparison with model (B) of Berg et al. (2014) 

Using model (B), we were able to solve 160 of the 420 SAA

nstances to optimality within two hours, namely, all 60 SAAs

hat correspond to SOPSP Instances 1–6 and the first weight set,

nd all 100 SAAs that correspond to Instances 1–5 with the sec-

nd and third weight sets. We present a comparison of solution

imes of these 160 SAAs by models (S) and (B) in Table 8 . Ob-

erve that model (B) takes from 6 to 138 times longer than model

S). We attribute the difference in solution times to two primary

easons. First, as shown in Table 4 , model (B) has significantly

ore variables and constraints. As argued by Artigues, Koné, Lopez,
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Table 7 

Solution times (in seconds) using model (S). 

SOPSP λw = λg = λo λw = 1 , λg = 0 , λo = 10 λw = 1 , λg = 5 , λo = 7 . 5 

Instance Min Avg ± stdv Max Min Avg ± stdv Max Min Avg ± stdv Max 

1 2 3 ± 0.34 3 3 3 ± 1 7 3 3 ± 0.2 7 

2 10 13 ± 2 17 8 11 ± 3 17 4 5 ± 0.9 7 

3 8 9 ± 0.9 11 5 5 ± 0.4 6 5 6 ± 0.6 7 

4 33 41 ± 6 55 21 23 ± 2 26 23 25 ± 2 28 

5 53 65 ± 9 77 44 51 ± 6 60 41 49 ± 5 57 

6 99 111 ± 7 122 52 58 ± 8 80 57 70 ± 8 79 

7 215 276 ± 46 334 153 176 ± 36 276 168 197 ± 28 248 

8 237 284 ± 24 310 140 170 ± 29 242 205 226 ± 18 269 

9 57 70 ± 8 85 44 55 ± 6 61 46 53 ± 4 58 

10 588 769 ± 105 937 178 226 ± 37 293 233 270 ± 33 342 

11 660 770 ± 37 987 254 357 ± 61 460 251 326 ± 43 375 

12 83 107 ± 12 123 70 78 ± 5 86 100 116 ± 11 130 

13 363 466 ± 59 551 242 297 ± 35 349 455 512 ± 55 602 

14 862 1218 ± 164 1464 930 1189 ± 193 1500 461 549 ± 76 703 

Table 8 

Ratios of solution times of models (B) and (S) on SAAs solved by both. 

λw = λg = λo (a) λw = 1 , λg = 0 , λo = 10 (b) λw = 1 , λg = 5 , λo = 7 . 5 (b) 

Min Avg ± stdv Max Min Avg ± stdv Max Min Avg ± stdv Max 

6 31 ± 29 116 4 33 ± 27 107 8 51 ± 35 138 

[ a ] SOPSP Instances 1–6, 10 SAA instances each. 

[ b ] SOPSP Instances 1–5, 10 SAA instances each. 

Table 9 

Ratios of optimal objective values of LP relaxations of (S) and (B). 

λw = λg = λo λw = 1 , λg = 0 , λo = 10 λw = 1 , λg = 5 , λo = 7 . 5 

Min Avg ± stdv Max Min Avg ± stdv Max Min Avg ± stdv Max 

1.95 2.62 ± 0.41 3.48 1.11 1.38 ± 0.26 2.08 1.27 1.64 ± 0.33 2.49 

Table 10 

Relative MIP gap at termination for SAAs not solved by (B) in two hours. 

λw = λg = λo (a) λw = 1 , λg = 0 , λo = 10 (b) λw = 1 , λg = 5 , λo = 7 . 5 (b) 

Min Avg ± stdv Max Min Avg ± stdv Max Min Avg ± stdv Max 

41% 54 ± 0.08% 70% 19% 34 ± 0.09% 53% 16% 40 ± 0.09% 52% 

[ a ] SOPSP Instances 7–12, 10 SAA instances each. 

[ b ] SOPSP Instances 6–11, 10 SAA instances each. 
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the maximum of 25%. 
and Mongeau (2015) , Catanzaro, Gouveia, and Labbé (2015) , Fortz,

Oliveira, and Requejo (2017) , Jünger et al. (2009) , Keha, Khowala,

and Fowler (2009) , Klotz and Newman (2013) , Morales-España,

Correa-Posada, and Ramos (2016) , Pochet and Wolsey (2006) , this

increase in model size often suggests an increase in solution time

for the linear programming (LP) relaxations. Second, as shown in

Table 9 , for all 420 SAAs, the LP relaxations obtained using model

(S) were strictly tighter than using model (B), by a factor of 1.11 to

3.48. 

Finally, for the 260 SAAs that were not solved by model (B)

in two hours, we report the relative MIP (relMIP) gap, calculated

as relMIP gap = 

UB - LB 
UB 

× 100% , where UB is the best upper bound

and LB is the linear programming relaxation-based lower bound

obtained at termination after 2 hours. Of the 260 SAAs in ques-

tion, 180 terminated with a relMIP gap between 16 and 70% (see

Table 10 for details), while the remaining 80 SAAs terminated

without any feasible MIP solutions (and thus no upper bound). 

4.2.2. Comparison with model (M) of Mancilla and Storer (2012) 

Using model (M), we solved 340 of the 420 SAAs to optimality

within the two hour time limit. We present performance compar-

isons for these instances in Table 11 . Table 12 identifies the SOPSP

instances that gave rise to the remaining 80 SAAs. 

In exploring the difference in solution times between the two

models, we first observe that they have the same first-stage for-
ulation. Furthermore, as we prove in Theorem 1 in Appendix A ,

he LP relaxations of the two models have the same optimal objec-

ive values. In fact, using the same proof techniques, we can show

hat, given any set of values of variables x i , p ∀ ( i , p ) that satisfy con-

traints (1b) and (1c) (which are identical to constraints (2b) and

2c) ) and 0 ≤ x i , p ≤ 1 ∀ ( i , p ), the optimal objective value obtained by

ptimizing the remaining (continuous) variables will be the same

or either model. This suggests that a branch-and-bound algorithm

ould perform similarly on both models in terms of the number

f nodes explored (recognizing that there will be variability due

o CPLEX preprocessing and implementation of branch-and-cut in-

tead of a traditional branch-and-bound). The ratios between the

umber of nodes explored by CPLEX for the two models for the

40 SAAs solved by both are, indeed, on average equal to 1 for

ach of the weight sets, as reported in Table 11 . 

Clearly, then, the difference in solution times between models

S) and (M) is primarily due to differences in time spent explor-

ng each node. This is supported further by Table 11 which reports

he ratios in the numbers of simplex iterations required to solve

ach instance using the two models. The number of iterations is

ypically much larger for model (M), presumably as a result of the

ignificantly larger second-stage formulation (see Table 4 ). 

Finally, for the 80 SAAs that were not solved by model (M) in

 hours, the relMIP gap at termination was 15% on average, with
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Table 11 

Comparison of performance of models (M) and (S) on SAAs solved by both: solution time, number of 

nodes, simplex iterations. 

λw = λg = λo λw = 1 , λg = 0 , λo = 10 λw = 1 , λg = 5 , λo = 7 . 5 

Ratio Min Avg ± stdv Max Min Avg ± stdv Max Min Avg ± stdv Max 

(M) sol. time 
(S) sol. time 

1.2 7 ± 4 21 2 13 ± 9 43 1.1 7 ± 5 27 

(M) nodes 
(S) nodes 

0.5 1 ± 0.2 1.4 0.2 1 ± 0.3 1.9 0.4 1 ± 0.2 1.4 

(M) iterations 
(S) iterations 

1 11 ± 15 119 1 12 ± 19 133 1 16 ± 22 113 

Table 12 

Number of SAA instances that were not solved to optimality in the 

two hours by model (M). 

SOPSP 

Instance # 

λw = 

λg = λo 

λw = 1 , λg = 

0 , λo = 10 

λw = 1 , λg = 

5 , λo = 7 . 5 

10 10 5 4 

11 10 10 0 

13 6 2 3 

14 10 10 10 
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. Conclusion 

In this paper, we presented a new stochastic mixed-integer lin-

ar programming model for the Stochastic Outpatient Procedure

cheduling Problem (SOPSP) using a sample-average approxima-

ion. This problem considers the perspective of an OPC manager

ho must schedule the start times for a day’s worth of procedures

patients) for a single provider, where each procedure has a known

ype and a random (non-negative) duration that follows a known

robability distribution associated with the procedure type. Given

he uncertainty in procedure duration, the goal is to minimize the

xpectation of a weighted sum of patient waiting time, provider

dle time, and clinic overtime. Our model allows for appointment-

ependent waiting and idling costs, and treats patient no-shows as

rocedures with duration 0. 

The SOPSP is a basic (yet still challenging) offline single-

esource stochastic sequencing and scheduling problem that has

een studied in various forms by several previous authors. There-

ore, we compared our model with two closely-related models by

ancilla and Storer (2012) and Berg et al. (2014) under assump-

ions that ensure their equivalence, and analyzed them both empir-

cally and theoretically. Computational results demonstrated where

ignificant improvements in performance could be gained with our

roposed model. 

In addition to empirical tractability, our modeling approach has

he advantage of implementability. Indeed, our proposed model

erformed well in the computational experiments that were per-

ormed using commonly available computer resources, a standard

ptimization modeling tool, and a commercial MILP solver with

efault settings — in other words, it did not require development

f any specialized algorithms or a time-consuming search for bene-

cial software parameter settings. This is in contrast to previously-

tudied models of Mancilla and Storer (2012) and Berg et al. (2014) ,

hich were used in conjunction with specially-developed algo-

ithms or heuristics in the original papers, but did not perform

s well as our model with straightforward implementation. Imple-

entability in the above sense is necessary for an optimization-

ased decision support tool to gain wide adoption in OPCs and

ther healthcare systems that do not have ongoing access to sup-

ort staff with optimization expertise, and thus is a valuable fea-

ure of our proposed model. 

We suggest three areas for future research. First, we would like

o extend our approach to include additional sources of uncer-

ainty, particularly variability in patient arrival time. In addition,

e are interested in studying trade-offs between “day-of” metrics
uch as provider idling and patient delay and access delays, i.e.,

he length of time a patient has to wait before a scheduled ap-

ointment is available to them. Finally, our model assumes static

cheduling, i.e., scheduling of a fixed number of patients whose

rocedure types are known in advance. We seek to use the re-

ults of this research to develop templates and policies for schedul-

ng patients dynamically as they randomly request future appoint-

ents. 
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ppendix A. Comparison of linear programming relaxations of 

odels (S) of (1) and (M) of (2) 

In this section, we compare the LP relaxations of models (S) of

1) and (M) of (2) under the assumption that waiting and idling

osts are identical across appointments and procedures, i.e., that
w 

i 
= λw and λg 

i 
= λg ∀ i , and λw 

p = λw and λg 
p = λg ∀ p . Since these

wo models take the same approach to waiting time and cost cal-

ulations in case of patient no-shows (see discussion in Section 3 ),

e allow for no-shows, which would be represented as procedures

ith duration 0. 

heorem 1. Suppose λw > 0 , and λg > 0 and/or λo > 0 . The linear

rogramming relaxations of models (S) of (1) and (M) of (2) are

quivalent. In particular, given an optimal solution to the LP relax-

tion of (S), we can construct a feasible solution to the LP relaxation

f (M) with the same objective function value, and vice versa. 

roof. Suppose ( ̂  x , ̂  t , ̂  s , ̂  g , ̂  o ) (with appropriately indexed compo-

ents) is an optimal solution to the LP relaxation of (S), which is

btained by replacing constraint (1k) with 0 ≤ ˆ x i,p ≤ 1 ∀ (i, p) . Be-

ow, we construct a feasible solution ( ̄x , ̄t , w̄ , ̄g , ̄o , ̄e ) to the LP re-

axation of (M) with the same objective value. (Recall that compo-

ents of ˆ g are indexed differently than those of ḡ .) 

• Let x̄ = ˆ x and t̄ = ̂

 t . Since ˆ x satisfies constraints (1b) and (1c) ,

and 0 ≤ ˆ x i,p ≤ 1 ∀ (i, p) , x̄ satisfies (2b) and (2c) , and 0 ≤ x̄ i,p ≤
1 ∀ (i, p) . Similarly, since ˆ t satisfies (1j) then t̄ satisfies (2i) .

Moreover, if symmetry-breaking constraints (4) are included in

both models, they will be satisfied by both ˆ x and x̄ . 
• Let w̄ 

n 
i,p 

= ( ̂ s n 
i 

− ˆ t i ) · ˆ x i,p ∀ (i, p, n ) . Due to constraints (1d) , and

since ˆ x i,p ≥ 0 , w̄ i,p ≥ 0 and thus satisfies constraints (2h) . By

construction, w̄ i,p = 0 whenever ˆ x i,p = 0 . Moreover, in an opti-

mal solution of the LP relaxation of (S), ˆ t and ˆ s will be cho-

sen to ensure that the values of ˆ s n 
i 

− ˆ t i will not be excessive
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for any n as long as λw > 0 (otherwise, one would be able

to reduce the waiting component of the cost of the solution).

Therefore, constraints (2f) will be satisfied for sufficiently large

M 

i 
1 
, i = 1 , . . . , P . 

• Let ḡ n 
i,p 

= ˆ g n 
i 

· ˆ x i,p ∀ (i, p, n ) , which clearly satisfies (2h) . By con-

struction, ḡ n 
i,p 

= 0 whenever ˆ x i,p = 0 . Moreover, in an optimal

solution of the LP relaxation of (S), ˆ t and ˆ s will be chosen to

ensure that the values of ˆ g n 
i 

will not be excessive for any n as

long as λw > 0 , or λg > 0 or λo > 0 (otherwise, one will be able

to reduce the waiting or idling/overtime component of the cost

of the solution). Therefore, constraints (2g) will be satisfied for

sufficiently large M 2 . 
• Let ō n = ˆ o n ∀ n (which satisfies (2h) ), and define ē n to satisfy Eq.

(2e) ∀ n . 

It remains to verify that the vector ( ̄x , ̄t , w̄ , ̄g , ̄o , ̄e ) defined above

satisfies constraints (2d) , and ē n ≥ 0 ∀ n . 

First, we derive several helpful algebraic expressions. Given the

formulae defining w̄ 

n 
i,p 

and ḡ n 
i,p 

, we have: 

P ∑ 

p=1 

w̄ 

n 
i,p = 

P ∑ 

p=1 

( ̂  s n i − ˆ t i ) · ˆ x i,p = ( ̂  s n i − ˆ t i ) ·
P ∑ 

p=1 

ˆ x i,p = 

ˆ s n i − ˆ t i ∀ (i, n ) 

(A.1)

and 

P ∑ 

p=1 

ḡ n i,p = 

P ∑ 

p=1 

ˆ g n i · ˆ x i,p = 

ˆ g n i ·
P ∑ 

p=1 

ˆ x i,p = 

ˆ g n i ∀ (i, p) , (A.2)

where the last equality, in both cases, is due to (1c) . Using

(A.1) and (A.2) and the definition of t̄ , the left-hand side of

(2d) can be re-written as 

ˆ t i − ˆ t i +1 − ( ̂  s n i +1 − ˆ t i +1 ) + 

ˆ g n i + ( ̂  s n i − ˆ t i ) = − ˆ s n i +1 + 

ˆ g n i + 

ˆ s n i 

= −
P ∑ 

p=1 

d n p ̂  x i,p = −
P ∑ 

p=1 

d n p ̄x i,p , (A.3)

where the second equality follows from (1f) , and the third one —

from the definition of x̄ . This verifies constraints (2d) . 

Finally, using the definition of ˆ e n via (2e) and expression (A.1) ,

we derive: 

ē n = ō n + L −
P ∑ 

p=1 

d n p ̄x P,p − t̄ P −
P ∑ 

p=1 

w̄ 

n 
P,P 

= 

ˆ o n + L −
P ∑ 

p=1 

d n p ̂  x P,p − ˆ s n P ≥ 0 

by (1g) . 

We conclude that ( ̄x , ̄t , w̄ , ̄g , ̄o , ̄e ) defined above is a feasible so-

lution to the LP relaxation of (M), with objective function value 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

P ∑ 

p=1 

λw w̄ 

n 
i,p + 

P ∑ 

i =1 

P ∑ 

p=1 

λg ḡ n i,p + λo ō n 

] 

= 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

P ∑ 

p=1 

λw ( ̂  s n i − ˆ t i ) · ˆ x i,p + 

P ∑ 

i =1 

P ∑ 

p=1 

λg ˆ g n i · ˆ x i,p + λo ˆ o n 

] 

= 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

λw ( ̂  s n i − ˆ t i ) ·
P ∑ 

p=1 

ˆ x i,p + 

P ∑ 

i =1 

λg ˆ g n i ·
P ∑ 

p=1 

ˆ x i,p + λo ˆ o n 

] 

= 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

λw ( ̂  s n i − ˆ t i ) + 

P ∑ 

i =1 

λg ˆ g n i + λo ˆ o n 

] 

, 

i.e., equal to the optimal value of the LP relaxation of (S). 
Conversely, suppose ( ̄x , ̄t , w̄ , ̄g , ̄o , ̄e ) is an optimal solution to the

P relaxation of model (M) of (2) . We will construct a feasible solu-

ion ( ̂  x , ̂  t , ̂  s , ̂  g , ̂  o ) to the LP relaxation of (S) with the same objective

alue. 

• Let ˆ x = x̄ , ˆ t = t̄ , and ˆ o = ō , which satisfy constraints (1b),

(1c), (1i), (1j) , and 0 ≤ ˆ x i,p ≤ 1 ∀ (i, p) . Moreover, if symmetry-

breaking constraints (4) are included in both models, they will

be satisfied by both x̄ and ˆ x . 
• Let ˆ s n 

i 
= 

∑ P 
p=1 w̄ 

n 
i,p 

+ ̄t i and ˆ g n 
i 

= 

∑ P 
p=1 ḡ 

n 
i,p 

∀ (i, n ) . Due to (2h) , ŝ

and ˆ g satisfy (1h) , and ˆ s satisfies (1d) . 

With the above definitions, (1f) and (1e) readily follow from

2d) and (2h) , and (1g) follows from (2e) and nonnegativity of ē .

herefore, ( ̂  x , ̂  t , ̂  s , ̂  g , ̂  o ) is a feasible solution to the LP relaxation of

odel (S), with objective function value 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

λw ( ̂  s n i − ˆ t i ) + 

P ∑ 

i =1 

λg ˆ g n i + λo ˆ o n 

] 

= 

1 

N 

N ∑ 

n =1 

[ 

P ∑ 

i =1 

P ∑ 

p=1 

λw w̄ 

n 
i,p + 

P ∑ 

i =1 

P ∑ 

p=1 

λg ḡ n i,p + λo ō n 

] 

, 

.e., equal to the optimal value of the LP relaxation of (M). This

omplete the proof. �

Similar analysis techniques can be used to show that the lin-

ar programming relaxation of model (S) of (1) (and therefore (M)

f (2) ) is at least as tight as the linear programming relaxation of

odel (B) of (3) under the additional assumption that the are no

atient no-shows, which needs to be made to account for differ-

nt approaches to waiting time and cost calculations in these mod-

ls. Moreover, as illustrated in Table 9 , linear relaxations of model

S) had larger optimal values, i.e., were tighter, than linear relax-

tions of model (B) on all test instances in our computational ex-

eriments. 
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