
Please cite the Published Version

Ghafir, I, Prenosil, V, Svoboda, J and Hammoudeh, M (2016) A survey on network security mon-
itoring systems. In: IEEE 4th International Conference on Future Internet of Things and Cloud
Workshops (FiCloudW 2016), 22 August 2016 - 24 August 2016, Vienna, Austria.

DOI: https://doi.org/10.1109/W-FiCloud.2016.30

Publisher: IEEE

Downloaded from: https://e-space.mmu.ac.uk/620080/

Usage rights: In Copyright

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1109/W-FiCloud.2016.30
https://e-space.mmu.ac.uk/620080/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


A Survey on Network Security Monitoring Systems

Ibrahim Ghafir
FI, Masaryk University

School of Computing

Manchester Metropolitan University

ghafir@mail.muni.cz

Vaclav Prenosil
Faculty of Informatics

Masaryk University

Brno, Czech Republic

prenosil@fi.muni.cz

Jakub Svoboda
Faculty of Informatics

Masaryk University

Brno, Czech Republic

svob.jak@gmail.com

Mohammad Hammoudeh
School of Computing

Manchester Metropolitan University

Manchester, UK

M.Hammoudeh@mmu.ac.uk

Abstract—Network monitoring is a difficult and demanding
task that is a vital part of a network administrator’s job. Net-
work administrators are constantly striving to maintain smooth
operation of their networks. If a network were to be down even
for a small period of time, productivity within a company would
decline; and in the case of public service departments the ability
to provide essential services would be compromised. There are
several approaches to network security monitoring. This paper
provides the readers with a critical review of the prominent
implementations of the current network monitoring approaches.

Keywords—Network security monitoring, packet capture, deep
packet inspection, flow observation.

I. INTRODUCTION

A network monitoring system monitors an internal network
to identify slow or failing system components. It can find,
report and resolve problems. Whether it is a small business
or a large enterprise, continuous monitoring network helps
to maintain high performance networks with little downtime.
Monitoring reports cater to different levels of audiences, i.e.,
the network and systems administrators, as well as to manage-
ment. Therefor, a monitoring system should not be too complex
to understand and use, nor should it lack basic reporting and
drill down functionalities.

An effective network monitoring system covers every as-
pect of a networked system, including response time, avail-
ability, uptime and security. This makes network monitoring
a difficult and demanding task. Network administrators are
constantly striving to maintain smooth operation of their net-
works. If a network were to be down even for a small period
of time, productivity within a company will decline; and in
the case of public service departments the ability to provide
essential services would be compromised. To offer proactive
services, administrators need to optimize data flow and access
in a complex and changing environment. Thus, these systems
can help to identify specific activities and performance metrics,
generating results that enable a business to address a variety
of needs, including meeting compliance requirements, elimi-
nating internal security threats and providing more operational
visibility [1].

Network monitoring for security management aims to
protect sensitive information on devices connected to a data
network by controlling access points to that information.
Securing sensitive information from both internal and external
sources protects the network functionality from different forms
of malicious attacks. There are many network monitoring
approaches to ensure network security [2]. This paper provides
the readers with a critical review of such approaches.

The remainder of this paper is organized as follows. Section
2 classifies the current network security monitoring imple-
mentations into three main classes. A comparison between
presented implementations is provided in Section 3. Section
4 concludes the paper.

II. NETWORK SECURITY MONITORING

IMPLEMENTATIONS

This section classifies the current network security monitor-
ing implementations into packet capture representatives, deep
packet inspection representatives and flow-based observation
representatives. It also provides information about the suitabil-
ity of particular tools for development of new network traffic
analysis methods.

Packet capture is to intercept a data packet that is crossing
or moving over a specific computer network. Once a packet is
captured, it is stored temporarily so that it can be analyzed [3].
Deep packet inspection (DPI) is an advanced method of packet
filtering that functions at the application layer of the OSI (Open
Systems Interconnection) reference model. The use of DPI
makes it possible to find, identify, classify, reroute or block
packets with specific data or code payloads that conventional
packet filtering, which examines only packet headers, cannot
detect [4]. Traffic flow is a sequence of packets sent from a
particular source to a particular unicast, anycast, or multicast
destination that the source desires to label as a flow. A flow
could consist of all packets in a specific transport connection
or a media stream [5].

A. Packet Capture Representatives

1) Tcpdump:

Tcpdump is a command line tool for packet capture anal-
ysis. Tcpdump can analyze both live traffic using the libpcap
library and captured packet traces in PCAP format. Packets
may be filtered both before and after the capture. Filtering
before the capture can be done using BPF (Berkeley Packet
Filter). Filtering after capture can be achieved using tcpdump’s
filters [6].

Data is printed out in text format. The output displays
individual packets with information that include source and
destination addresses, L4 protocol used, and L4 protocol flags.
Figure 1 shows output listing two packets.

Packets to be displayed can be filtered using expressions.
Filters can be imposed on source and destination addresses,
ports, L3 and L4 protocols, and L4 protocol flags. Addresses

2016 4th International Conference on Future Internet of Things and Cloud Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/W-FiCloud.2016.30

77

2016 4th International Conference on Future Internet of Things and Cloud Workshops

978-1-5090-3946-3/16 $31.00 © 2016 IEEE

DOI 10.1109/W-FiCloud.2016.30

77



$ tcpdump -r pcap -n \
"src host 10.0.2.15 and dst port 22 and tcp[13] = 2"
reading from file pcapfile, link-type EN10MB (Ethernet)
20:20:40.512613 IP 10.0.2.15.54346 > 192.168.1.42.22: Flags [S],
seq 3123841387, win 29200, options [mss 1460,sackOK,TS val 509640
ecr 0,nop,wscale 7], length 0
20:20:41.356843 IP 10.0.2.15.45749 > 192.168.1.41.22: Flags [S],
seq 1764864395, win 29200, options [mss 1460,sackOK,TS val 509851
ecr 0,nop,wscale 7], length 0

Fig. 1. Example of a tcpdump filter and tcpdump’s output.

can be expressed in format of individual addresses or in CIDR
notation. Multiple rules in the expression can be composed
using boolean operators. The example on Figure 1 uses three
filters. src host 10.0.2.15 selects only packets originating in the
IP address 10.0.2.15. dst port 22 selects only packets destined
for the port 22. Finally, tcp[13] = 2 selects packets in which the
decimal value of the 14th byte is 2. The filters are composed
using the and word, which means only packets that meet all
the criteria pass through the filter.

Tcpdump needs root privileges to open the network
interface. Operation without full root is possible using
SUID or Linux capabilities. Granting the tcpdump executable
cap net raw and cap net admin capabilities allows tcpdump
to be run as a regular user.

2) Wireshark:

Wireshark is a graphical tool for packet capture analysis.
While Wireshark and tcpdump are implementations of the
same architectural approach, their underlying ideas differ. Tcp-
dump is as close to the raw data as possible, while Wireshark
strives to provide higher-level representation of the same data
[7].

Wireshark can analyze both live traffic using the libpcap
library and captured packet traces in PCAP format. Captured
packets can be filtered both during and after the capture.
Filtering after capture can be achieved using filter expressions.
Filtering during capture can be done using BPF.

Data are displayed as text arranged in a scrollable colored
list and expandable boxes. Wireshark’s main window has two
frames. The upper frame displays list of captured packets with
their basic attributes displayed. A line may be colored, based
on the protocol the individual packet belongs to. When the
user selects packet in the upper frame, this particular packet is
displayed in the lower frame. The lower frame’s representation
includes several boxes that can be expanded and collapsed.
The boxes contain various attributes of the packet as well as
representations of the packet’s data in ISO OSI layers’ data the
packet is part of. Also, related data from other packets may
be displayed there, HTTP TCP stream for instance.

Packets displayed in the upper frame can be filtered using
expressions entered in the text box on the top of the window.
The expression vocabulary is richer that the one of tcpdump.
Figure 2 shows the architecture of Wireshark.

Wireshark uses a separate program to capture the traffic,
dumpcap. The reason is to allow separation of privileges [8].
Wireshark can be run as a regular user and only dumpcap has
to be given special permissions. Dumpcap needs root privileges
to open the network interface. Operation without the user

NIC PCAP

wireshark
(GUI)

tshark
(CLI)

userdumpcap 

root user

Fig. 2. Wireshark architecture showing privilege separation.

having root access is possible using either SUID or Linux
capabilities. Granting the dumpcap executable cap net raw
and cap net admin capabilities allows dumpcap to be run as
a regular user without SUID.

B. Deep Packet Inspection (DPI) Representatives

1) Snort:

Snort is an intrusion detection system performing deep
packet inspection using pattern matching. The pattern matching
is implemented in the form of rules [9]. Rules are structured
text files describing network traffic data of interest. Typically,
rules are used to generate alerts when a security-related
incident occurs, such as malware activity, attack, or breach
of security policies. A rule contains information specifying
when the rule should be triggered. An important part of these
information is one or more patterns that are searched in the
network traffic. The pattern can be a sequence of characters
or bytes or a regular expression. Figure 3 shows Snort rule
structure.

rule header     alert tcp any any -> 192.168.1.0/24 111 
rule options     (content:"|00 01 86 a5|"; msg:"mountd access";)

Fig. 3. Snort rule structure

Snort rules have a specific structure [10]. The beginning
of the rule before the parentheses describes which network
flows the rule refers to. This is called the rule header. The
rule header specifies the action the rule should perform (alert
for instance), L3 protocol and source/destination IP addresses
and ports on which to match. Variables may be used in place
of IP addresses. The rest of the rule inside the parentheses is
called the rule options. Rule options specify content on which
the rule matches and other properties of the rule, its name,
classification type, etc. The most important part of the rule is
the content keyword, which specifies a pattern to be found in
the packet’s payload. The content keyword’s function can be
further changed using modifiers. For instance, modifiers offset,
distance, depth, and within control in which areas of the packet
the rules are matched [11].

Snort has three special keywords, byte test, byte jump, and
byte extract, that allow to adjust the pattern matching based
on data in an individual packet [12]. The first two keywords
behave as patterns that match when their conditions are true.
byte test performs arithmetic (<, ≤, =, >, ≥) and bitwise
(AND, OR) comparisons on sequences of bytes. byte jump
puts a space before the next pattern with size inferred from
payload’s byte value. If the jump is possible, byte jump also
behaves as a match. This behavior can be used to match
packets with a specific length based on specific data in the
payload. byte extract converts specified bytes into a numerical

7878



variable that can be used later in the rule. These keywords do
not allow more complicated decoding or processing.

The Snort’s architecture allows the implementation of so-
called preprocessors [13]. Preprocessors read the packet before
rule evaluation, serially in the order specified by Snort’s
configuration. This allows implementation of additional rule
keywords. Moreover, preprocessors allow implementation of
functionality more complicated than just pattern matching,
such as data decoding and anomaly detection. For instance,
the Normalizer preprocessor converts equivalent values to a
unified format with the goal of making IDS evasion harder.
Snort’s architecture including the preprocessors is depicted in
Figure 4.

Packet Capture

Packet Decoding

Preprocessors

Detection

Output

Preprocessor 1

Preprocessor 2

Preprocessor 3Rules

Fig. 4. Snort architecture.

There are several preprocessors for anomaly detection
available. Frag3 and stream5 preprocessors are integrated in
the official Snort distribution and detect protocol anomalies.
SPADE [14], PHAD [15], and snortad [16] are 3rd party
preprocessors detecting traffic anomalies. Snort preprocessors
are usually implemented in C. They allow implementation of
similar concepts to those that can be implemented in the event-
based architecture.

Snort needs root privileges to open the network interface.
It is possible to configure Snort to drop its privileges to a
non-root user once it opens the network interface.

Snort is a single-threaded application. Multithreaded Snort
setups work in the following way: The monitored traffic is
divided by flows into multiple parts; each part of the traffic is
fed to a single Snort instance

2) Suricata:

Suricata is an intrusion detection system performing deep
packet inspection using pattern matching [17]. Figure 5 shows
Suricata rule structure, the rule header and rule options are as
same as the Snort rule structure.

rule header     alert tcp any any -> 192.168.1.0/24 111 
rule options     (content:"|00 01 86 a5|"; msg:"mountd access";)

Fig. 5. Suricata rule structure.

Suricata uses similar rules to Snort and is compatible
with Snort rules. The rule structure is the same for both
Snort and Suricata. The difference between the two is in

the keywords and protocols that can be specified. Suricata
allows specification of several L7 protocols on top of the L3
protocols supported by Snort, http, ftp, tls, smb and dns [18].
Some keywords behave differently than in Snort, for instance,
the fast pattern:only keyword does not make a difference in
processing, unlike in Snort. Some keywords are supported
only by Suricata, such as the iprep keyword for matching IP
reputation data and the dns query keyword for analyzing only
the DNS response body.

Suricata’s architecture is similar to Snort’s one with a
difference. What corresponds to the preprocessor part in the
Snort’s architecture is divided in two in Suricata, decoding and
detection. Decoding modules add information to the internal
representation of packets in Suricata. Detection modules rely
on this internal representation and provide keywords for use
in rules. Overview of the Suricata’s architecture is shown in
Figure 6.

Packet Capture

Output

Decoder 1

Decoder 2

Rules

Packet Decoding

Detection 1

Detection

Detection 2

Fig. 6. Suricata architecture.

Each packet is first processed in decoding functions and
then in detection modules. Decoding functions read the packet
and save the decoded data into an internal representation of
the packet. The decoding functions are called one at a time on
the packet. Extending the decoding functionality is possible by
implementing a new decoding function and placing it into the
decoding pipeline. The decoding pipeline starts with the source
of captured packets, then L2 is decoded, and then protocols
on higher layers are decoded.

Upon decoding, the packets pass detection. The detection
is governed by rules and depends on the decoding step. The
rules are matched with the internal packet representation. The
matching process is broken into several detection modules
in all of which the matching takes place. Unlike decoding,
detection is parallelized and one packet can be processed in
multiple detection modules at the same time. Extending the
detection functionality is possible by implementing a new
detection module and registering it in the table of detection
methods.

Suricata is written in C and the modules for Suricata
have to be written in C. There are no plans supporting
C++. C requires greater programming expertise than the Bro
language. Therefore, this property makes Suricata not the best
prototyping tool available.

Suricata is multithreaded out of the box. Even though it
is not as fast as Snort on a single-CPU computer, Suricata is

7979



designed to scale on computers with tens of CPUs [19]. The
multithreading approach is different from Snort. Multithreaded
Snort setups divide the monitored traffic by flows into multiple
parts, each processed by an individual Snort instance. Suricata,
on the other hand, does not require the traffic balancing since
it manages multithreading itself. This approach makes it more
user-friendly.

3) Bro:

Bro [20] is a network security monitor performing deep
packet inspection using event-based analysis. In contrast to
Snort and Suricata, Bro is not rule-driven. Instead, it imple-
ments a Turing-complete scripting environment [21]. Rule-
based detection and arbitrary detection algorithms can be
implemented in this environment. Bro detection rules are
described by scripts. Figure 7 shows Bro architecture.

NIC
Packet

decoder
Event

generator

logs
Scripting

enginePCAP

execute

files

Fig. 7. Bro architecture.

The Bro’s programming environment uses the Bro lan-
guage, which is an interpreted, typed language. What makes
the Bro language special is the domain-specific types. For
example, the addr type holds an IP address [22]. Variables
of structured types are reference type variables. This makes
processing of large sets or tables efficient, since only the
references are copied, not the data itself. There are two types
of collections, sets and tables. Loops are available in the
form of iteration through collections. The Bro programming
language lacks other forms of loop control, presumably serving
as a deterrent against overly complex algorithms. This is a
reasonable requirement for network traffic monitoring when
the processing is done in real time. And that exactly is the
most significant goal of Bro, to allow real-time network traffic
analysis and save already processed results to log files.

The default installation of Bro contains many scripts im-
plementing various sorts of traffic analysis. Some of the items
the default Bro setup monitors are: Bidirectional flows, DHCP
leases, DNS queries and responses, MD5 and SHA1 hashes of
files transmitted over unencrypted protocols, HTTP requests
and user agents, port scans, email headers from SMTP traffic,
successful and unsuccessful SSH connections, SSL certificates,
SYSLOG messages, traffic tunnels. Since the preinstalled
scripts usually expose an API in the form of events, they can
be used by user scripts, extending the default functionality.

The core of Bro, implemented in C, processes network
traffic, performs DPI and generates events about what is
happening in the traffic. Events generated by the core are listed
in the bif files [23]. Many events are generated, spanning L2
through L7. Examples are a new ARP packet, closed TCP
connection, HTTP request, etc. In other words, this type of
DPI performs semantic matching of network events instead of

simple pattern matching, as opposed to Snort and Suricata.
Majority of the events provide context, typically in the form
of information about the relevant connection. The events are
then processed by the Bro scripts.

Bro scripts use so-called event handlers to listen to the
events. The usual reactions to events vary. On the one hand,
the simplest possible processing saves the event information
to a log file. On the other hand, some scripts implement fairly
complex processing and generate additional types of events.
This further extends DPI abilities of Bro. Scripts can handle
events generated both by the core and by other scripts. Figure 8
shows a very short module that just writes ”Hello world!” to
the standard output when Bro starts.

module helloworld;
event bro_init() {
 print "Hello world!";
}

Fig. 8. A simple Hello world! script.

The scripting engine hosts the scripts and dispatches events
generated both by the scripts and the core to the scripts
listening to these events. It also allows operations like file
access and execution of applications native to the operating
system. This functionality can be used by advanced scripts.
File access may be used to fetch information from external
sources, e.g., a blacklist. Execution facility may be used for
many purposes. One example is reporting issues to a ticket
managing software via email. The sendmail executable can be
used by such a script. Another example is automatic triggering
of a remotely triggered black hole by executing a program that
does the blackholing.

Bro scripts are organized in so-called modules. A mod-
ule can be implemented wholly in one file or can be
broken into several files. Two identifiers with the same
name in two different modules do not collide with each
other. Cross-module references can be made using the name
name of module::name of identifier. A module can define
types, variables, functions, and event handlers. These entities
can be either local to the module or globally accessible from
other modules.

It is possible to define custom types using enum, set,
table, vector, and record. Enum in Bro is similar to enum
in other languages. Set is similar to HashSet¡T¿ in C# in its
functionality [24], albeit the syntax is different. Table is similar
to Dictionary¡TKey,TValue¿ in C# [25] with the difference
that C# allows only one key while Bro allows multiple keys.
Vector is a table indexed by count. Count is the name for int
in Bro. Record is similar to C# class [26] that contains only
fields [27]. Both Bro record and C# class are reference types,
meaning assignment of its instance copies only the reference
(pointer), not the whole instance. This can be compared to
C# struct which is a value type, meaning assignment of its
instance copies the whole instance.

Bro can be run both as a single-threaded application and
as a multithreaded distributed application. The single-threaded
mode is called standalone while the multithreaded one is
called cluster. If Bro is used as a platform for development
of proof-of-concept methods, the standalone mode is usually

8080



more appropriate than the cluster mode. Development for the
cluster mode is more difficult than for the standalone mode
because additional functionality has to be used by scripts [28].

C. Flow-based Observation Representatives

Flow-based observation architecture contains two main
components; a flow exporter and a flow collector. This section
covers representative implementations of both flow exporters
and flow collectors.

1) Flow Exporters:

nProbe [29] is a commercial open-source flow exporter.
Data can be exported in NetFlow v5, NetFlow v9, and IPFIX
formats. nProbe has an application visibility (nDPI) ability,
which is used for detection of application-specific protocols.
This information is saved in a custom column in NetFlow v9
or IPFIX format. It is difficult to obtain nProbe source code
for free.

YAF [30] is an open-source flow exporter. Data are exported
in the IPFIX format. A passive OS fingerprinting functionality
based on the p0f software can be compiled into YAF. YAF
supports modules that implement DPI. However, YAF does
not provide DPI in default setup.

QoF [31] is a fork of YAF. It removes all payload in-
spection abilities and instead focuses on passive performance
measurements.

ipt-netflow [32] is a plugin for iptables for flow export.
Data can be exported in NetFlow v5, NetFlow v9, and IPFIX
formats. There is no special functionality besides standard
network flows. There is also no apparent focus towards high-
throughput networks. ipt-netflow is open-source.

pmacct [33] is an open-source flow exporter and flow
collector. Data can be exported in NetFlow v5, NetFlow
v9, sFlow v5, and IPFIX formats. Supports high-throughput
networks using PF RING. No DPI-related functionality is
available in pmacct.

softflowd [34] is an open-source flow exporter performing
export to NetFlow v1, v5, and v9 formats. There is no apparent
effort to provide anything on top of regular NetFlow data
export.

2) Flow Collectors:

nProbe is not only a flow exporter, it is also a flow collector.
Available storage backends are MySQL, SQLite, text files, and
binary files. The nProbe flow collector was created because its
author deemed other collectors available at the time to be too
cumbersome to use.

IPFIXcol [35] is an IPFIX collector designed for high-
throughput networks. IPFIXcol claims to be flexible. Storage
backend can be customized using output plugins. IPFIXcol also
allows implementation of so-called IPFIX mediators, used for
processing of the collected data before it hits the collector.

flowd [36] is a NetFlow v1, v5, v7, and v9 collector. It
is created under the UNIX philosophy to do just one thing.
The collected data are saved in a binary format. flowd is
provided with Perl and Python interfaces for reading the binary

data. flowd strives for security using privilege separation of
components. flowd is open-source and freely available.

nfdump [37] consists of several tools. The nfcapd tool
listens to NetFlow v5, v7, v9 streams and saves them to nfcap
files. The nfdump tool can be used for analysis of nfcap files.
nfdump uses similar filter syntax to tcpdump. nfdump is open-
source and freely available.

pmacct [38] as a collector has several storage backends
available. It can use MySQL, PostgreSQL, SQLite, MongoDB,
BerkeleyDB, and flat files. Among other formats, it can collect
NetFlow v1-v9 and IPFIX.

SiLK [39] is a collector for NetFlow v5, v9, and IPFIX
data. It is designed for high-throughput networks. SiLK con-
sists of multiple tools and plugins for filtering, analysis, and
processing of flow data.

III. COMPARISON

With respect to the selection of network traffic monitor
suitable for DPI, the following criteria have been evaluated
for each mentioned traffic monitor:

• Prototyping: Is the network traffic monitor suitable for
creation of method prototypes?

• Developer-friendliness: Does the network traffic mon-
itor allow development of new traffic analysis methods
in an easy to use way?

• Extensibility: Is it possible to extend the existing func-
tionality of the network traffic monitor in a reasonable
way? What programming language does the API use?

The descriptions of individual network traffic monitors in
this paper indicate answers to these criteria. Table 1 shows the
summary.

TABLE I. BRO IS THE SUITABLE TOOL FOR CREATION OF PROTOTYPES

Monitor Prototyping
Developer

friendliness
Extensibility

Tcpdump No No No API
Wireshark No No No API
Snort No No C language
Suricata No No C language
Bro Yes Yes Bro language

IV. CONCLUSION

There are several approaches to network security monitor-
ing. There is no best approach, each approach performs best in
a certain environment and fit different purposes. Wireshark is
an effective tool for manual analysis, predominantly of small
capture files. Tcpdump is packet-oriented approach that works
well in scenarios where filtering individual packets by L3/L4
attributes, like IP address, TCP flags and payload bytes, is
sufficient. It does not work well for stream reassembly or
L7 protocol analysis. Snort and Suricata work well when the
objective is to match patterns in network data. Bro allows
development of advanced detection methods. Bro offers the
best software/environment for the development of novel de-
tection or processing techniques. It can be used for continuous
monitoring of high-throughput networks. The scripting envi-
ronment is extensible in a memory-safe language specialized in

8181



network data processing. It is not constrained by belonging to
a single paradigm for network monitoring like the other tools.
Unfamiliarity is a disadvantage, compared to more known tools
like wireshark, tshark, snort and suricata.

REFERENCES

[1] O. B. Kodical, S. Srinivasan, and N. Srinath, “Tool tracker: A toolkit
ensembling useful online networking tools for efficient management and
operation of a network,” World Academy of Science, Engineering and
Technology, International Journal of Computer, Electrical, Automation,
Control and Information Engineering, vol. 2, no. 6, pp. 2013–2018,
2008.

[2] J. Svoboda, I. Ghafir, and V. Prenosil, “Network monitoring approaches:
An overview,” in Proceedings of International Conference on Advances
in Computing, Communication and Information Technology, birming-
ham, UK, 2015. ISBN: 978-1-63248-061-3.

[3] V. Moreno, J. Ramos, P. M. Santiago del Rio, J. L. Garcia-Dorado,
F. J. Gomez-Arribas, and J. Aracil, “Commodity packet capture en-
gines: tutorial, cookbook and applicability,” Communications Surveys
& Tutorials, IEEE, vol. 17, no. 3, pp. 1364–1390, 2015.

[4] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies.
ACM, 2014, pp. 271–282.

[5] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” Communications Surveys & Tutorials,
IEEE, vol. 16, no. 4, pp. 2037–2064, 2014.

[6] F. Fuentes and D. C. Kar, “Ethereal vs. tcpdump: a comparative study
on packet sniffing tools for educational purpose,” Journal of Computing
Sciences in Colleges, vol. 20, no. 4, pp. 169–176, 2005.

[7] V. Ndatinya, Z. Xiao, V. R. Manepalli, K. Meng, and Y. Xiao, “Network
forensics analysis using wireshark,” International Journal of Security
and Networks, vol. 10, no. 2, pp. 91–106, 2015.

[8] J. Keuter, “Privilege separation,” http://wiki.wireshark.org/
Development/PrivilegeSeparation, accessed: 12-01-2016.

[9] H. Li, G. Liu, W. Jiang, and Y. Dai, “Designing snort rules to detect
abnormal dnp3 network data,” in Control, Automation and Information
Sciences (ICCAIS), 2015 International Conference on. IEEE, 2015,
pp. 343–348.

[10] “Snort syntax and simple rulewriting,” http:
//www.anotherchancecomputers.com/uncategorized/
snort-syntax-and-simple-rule-writing/, accessed: 12-01-2016.

[11] J. Esler, “Offset, depth, distance, and within,” http://blog.joelesler.net/
2010/03/offset-depthdistance-and-within.html, accessed: 12-01-2016.

[12] “Writing good rules,” http://manual.snort.org/node36.html#testing
numerical values, accessed: 12-01-2016.

[13] J. Esler, “Preprocessors,” http://manual.snort.org/node59.html, accessed:
12-01-2016.

[14] S. Biles, “Detecting the unknown with snort and the statistical packet
anomaly detection engine (spade),” http://webpages.cs.luc.edu/∼pld/
courses/447/sum08/class6/biles.spade.pdf, accessed: 12-01-2016.

[15] M. Mahoney, “Network anomaly intrusion detection research at florida
tech,” http://cs.fit.edu/∼mmahoney/dist/, accessed: 12-01-2016.

[16] “Anomalydetection: Home - snort.ad,” http://www.anomalydetection.
info/?home,1, accessed: 12-01-2016.

[17] J. S. White, T. Fitzsimmons, and J. N. Matthews, “Quantitative analysis
of intrusion detection systems: Snort and suricata,” in SPIE Defense,
Security, and Sensing. International Society for Optics and Photonics,
2013, pp. 875 704–875 704.

[18] “Suricata rules,” https://redmine.openinfosecfoundation.org/projects/
suricata/wiki/Suricata Rules, accessed: 12-01-2016.

[19] V. Julien, “On suricata performance,” http://blog.inliniac.net/2010/07/
22/on-suricataperformance/, accessed: 12-01-2016.

[20] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[21] “The bro network security monitor,” http://www.bro.org/documentation/
overview.html, accessed: 12-01-2016.

[22] “Types and attributes - bro 2.2 documentation,” http://bro.org/sphinx/
scripts/builtins.html, accessed: 12-01-2016.

[23] “All bro scripts,” http://bro.icir.org/sphinx/scripts/scripts.html, accessed:
12-01-2016.

[24] “Microsoft: Hashset¡t¿ class,” http://msdn.microsoft.com/en-us/library/
bb359438.aspx, accessed: 12-01-2016.

[25] “Microsoft: Dictionary¡tkey, tvalue¿ class,” http://msdn.microsoft.
com/en-us/library/xfhwa508\%28v=vs.110\%29.aspx, accessed: 12-
01-2016.

[26] “Microsoft: Classes and structs (c# programming guide),” http://msdn.
microsoft.com/en-us/library/ms173109.aspx, accessed: 12-01-2016.

[27] “Microsoft: Classes and structs (c# programming guide),” http://msdn.
microsoft.com/en-us/library/ms173118.aspx, accessed: 12-01-2016.

[28] “base/frameworks/cluster/main.bro,” https://www.bro.org/sphinx/
scripts/base/frameworks/cluster/main.html, accessed: 12-01-2016.

[29] L. Deri and N. SpA, “nprobe: an open source netflow probe for gigabit
networks,” in TERENA Networking Conference, 2003.

[30] B. T. Christopher Inacio, “Yaf: Yet another flowmeter,”
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.3172&
rep=rep1&type=pdf, accessed: 12-01-2016.

[31] B. Trammell, “Yaf-derived flow meter for passive performance mea-
surement,” https://github.com/britram/qof, accessed: 12-01-2016.

[32] “Netflow iptables module,” http://sourceforge.net/projects/ipt-netflow/,
accessed: 12-01-2016.

[33] P. Lucente, “pmacct: steps forward interface counters,” http://www.
pmacct.net/pmacct-stepsforward.pdf, accessed: 12-01-2016.

[34] “softflowd - a software netflow probe,” https://code.google.com/p/
softflowd/, accessed: 12-01-2016.

[35] P. Velan and R. Krejčı́, “Flow information storage assessment using
ipfixcol,” in Dependable Networks and Services. Springer, 2012, pp.
155–158.

[36] “flowd - small, fast and secure netflow collector,” http://code.google.
com/p/flowd/, accessed: 12-01-2016.

[37] “Nfdump,” http://nfdump.sourceforge.net/, accessed: 12-01-2016.

[38] P. Lucente, “pmacct project: Ip accounting iconoclasm,” http://www.
pmacct.net/, accessed: 12-01-2016.

[39] C. Gates, M. P. Collins, M. Duggan, A. Kompanek, and M. Thomas,
“More netflow tools for performance and security.” in LISA, vol. 4,
2004, pp. 121–132.

8282


