Copper-To-Zinc Ratio as an Inflammatory Marker in Patients with Sickle Cell Disease
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Consideration
2.2. Sample Collection and Preparation
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asanga, E.E.; Eseyin, O.A.; Ekanem, A.N.; Amaechi, D. Changes in serum zinc, magnesium and copper in sickle cell patients: A case study in Jos, Nigeria. World J. Pharm. Sci. 2016, 4, 195–199. [Google Scholar]
- Emokpae, M.A.; Ehioghae, I. Increased levels of pancreatic enzymes in sickle cell anemia and the effect of proteinuria. J. Med. Investig. Pract. 2015, 10, 13–15. [Google Scholar]
- Emokpae, M.A.; Uadia, P.O.; Kuliya-Gwarzo, A. Antioxidant Enzymes and Acute phase Proteins correlate with markers of Lipid peroxide in adult Nigerian Sickle Cell Disease Patients. Iran. J. Basic Med. Sci. 2010, 13, 177–182. [Google Scholar]
- Emokpae, M.A.; Uadia, P.O.; Gadzama, A.A. Correlation of Oxidative Stress and Inflammatory markers with the Severity of Sickle Cell Nephropathy. Ann. Afr. Med. 2010, 9, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Emokpae, M.A.; Musa, M.O. Impact of fetal hemoglobin on micronutrients in sickle cell anemia. J. Appl. Hematol. 2015, 6, 74–78. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Tijani, A.D. The impact of proteinuria on serum levels of trace elements in sickle cell disease patients. J. Med. Biomed. Sci. 2014, 3, 16–20. [Google Scholar]
- Bot, Y.S.; Benjamin, A.; Nyango, D.Y.; Ventmack, D.T.; Eunice, C.B.; Etukudu, N.S.; Obeta, M.U. Analysis of copper and Zinc in serum of sickle cell disease patients in Jos. Int. J. Med. Sci. 2015, 3, 207–209. [Google Scholar]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef]
- Classen, H.G.; Gröber, U.; Löw, D.; Schmidt, J.; Stracke, H. Zinc deficiency: Symptoms, causes, diagnosis and therapy. Med. Monatsschr. Pharm. 2011, 34, 87–95. [Google Scholar]
- Krishnan, S.; Setty, Y.; Betal, S.G.; Vijender, V.; Rao, K.; Dampier, C. Increased levels of the inflammatory biomarker C-reactive protein at baseline are associated with childhood sickle cell vaso-occlusive crises. Br. J. Haematol. 2010, 148, 797–804. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Aruomaren, A.; Osime, E. Relationship between neutrophil-to-lymphocyte ratio and inflammatory markers in Sickle cell anaemia patients with proteinuria. Med. Sci. 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osredkar, J.; Sustar, N.J. Copper and zinc, Biological role and significance of copper/zinc imbalance. J. Clin. Toxicol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.Q.; Stein, A.D.; Digirolamo, A.M.; Ramakrishnan, U.; Flores-Ayala, R.C.; Ramirez-Zea, M.; Grant, F.K.; Villalpando, S.; Martoreu, R. Associations between serum C-reactive protein and serum zinc, ferritin and copper in Guatemalan School children. Biol. Trace Elem. Res. 2012, 148, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galloway, P.; McMillan, D.C.; Sattar, N. Effect of the inflammatory response on trace element and vitamin status. Ann. Clin. Biochem. 2000, 37, 289–297. [Google Scholar] [CrossRef] [PubMed]
- DiGirolamo, A.M.; Ramirez-Zea, M.; Wang, M.; Flores-Ayala, R.; Martorell, R.; Neufeld, L.M.; Ramakrishnan, U.; Sellen, D.; Black, M.M.; Stein, A.D. Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala. Am. J. Clin. Nutr. 2010, 92, 1241–1250. [Google Scholar] [CrossRef]
- Wisniewska, M.; Cremer, M.; Wiehe, L.; Beckerm, N.P.; Rijntjes, E.; Martitz, J.; Renko, K.; Bührer, C.; Schomburg, L. Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections. Nutrients 2017, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- De Romana, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol. 2011, 25, 3–13. [Google Scholar] [CrossRef]
- Krebs, N.F.; Miller, L.V.; Hambidge, K.M. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr. Int. Child Health 2014, 34, 279–288. [Google Scholar] [CrossRef]
- RibeiroI, S.M.F.; Moya, A.M.T.M.; Braga, C.B.M.; Domenici, F.A.; Feitosa, M.R.; Feres, O.; da Rocha, J.R.; da Cunha, S.F.C. Copper-Zinc ratio and nutritional status in colorectal cancer patients during the perioperative period. Acta Cir. Bras. 2016, 31, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.H.; Liu, P.J.; Hsia, S.; Chuang, C.J.; Chen, P.C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Chen, P.C.; Yeh, M.S.; Hsiung, D.Y.; Wang, C.L. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin. Biochem. 2011, 44, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Adaramoye, O.A.; Akinloye, O.; Olatunji, I.K. Trace elements and Vitamin E status in Nigerian patients with prostate cancer. Afr. Health Sci. 2010, 10, 2–8. [Google Scholar] [PubMed]
- Malavolta, M.; Giacconi, R.; Piacenza, F.; Santarelli, L.; Cipriano, C.; Costarelli, L.; Tesei, S.; Pierpaoli, S.; Basso, A.; Galeazzi, R.; et al. Plasma copper/zincratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 2010, 11, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Okocha, C.E.; Manafa, P.O.; Ozomba, J.O.; Ulasi, T.O.; Chukwuma, G.O.; Aneke, J.C. C-reative protein and Disease outcome in Nigerian Sickle cell disease patients. Ann. Med. Health Sci. Res. 2014, 4, 701–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kebir, D.; Zhang, Y.; Potempa, L.A.; Wu, Y.; Fournier, A.; Filep, J.G. C-reactive protein-derived peptide 201-206 inhibits neutrophil adhesion to endothelial cells and platelets through CD32. J. Leukoc. Biol. 2011, 90, 1167–1175. [Google Scholar] [CrossRef]
- Lu, J.; Marjon, K.D.; Marnell, L.L.; Wang, R.; Mold, C.; Du Clos, T.W.; Sun, P. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proc. Natl. Acad. Sci. USA 2011, 108, 4974–4979. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.V.; Jiang, B.; McNeill, K.; Wong, M.; Oakley, S.P.; Kirkham, B.; Chowienczyk, P.J. Paradoxical association of C-reactive protein with endothelial function in rheumatoid arthritis. PLoS ONE 2010, 5, e10242. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef] [Green Version]
Parameters | Sickle Cell Disease Patients (n = 100) |
Controls (n = 100) | p-Value |
---|---|---|---|
Gender | |||
Number of males | 55 | 58 | |
Number of females | 45 | 42 | |
Age (years) | 18.8 ± 0.9 | 19.2 ± 0.9 | 0.80 |
Serum copper (µmol/L) | 28.92 ± 0.55 | 16.8 ± 0.5 | 0.001 |
Serum Zinc (µmol/L) | 9.06 ± 0.38 | 13.54 ± 0.22 | 0.001 |
Copper-to-zinc ratio | 3.16 ± 0.1 | 1.23 ± 0.09 | 0.001 |
Serum CRP (µg/mL) | 1.14 ± 0.02 | 0.83 ± 0.82 | 0.001 |
Plasma fibrinogen (mg/dL) | 295 ± 14.8 | 290 ± 16.1 | 0.001 |
Correlation | R-Value | p-Value |
---|---|---|
Copper/c-reactive protein | 0.210 | 0.02 |
Zinc/c-reactive protein | −0.199 | 0.05 |
Copper-to-zinc ratio/c-reactive protein | 0.312 | 0.002 |
Copper-to-zinc ratio/fibrinogen | 0.048 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpae, M.A.; Fatimehin, E.B. Copper-To-Zinc Ratio as an Inflammatory Marker in Patients with Sickle Cell Disease. Sci 2020, 2, 89. https://doi.org/10.3390/sci2040089
Emokpae MA, Fatimehin EB. Copper-To-Zinc Ratio as an Inflammatory Marker in Patients with Sickle Cell Disease. Sci. 2020; 2(4):89. https://doi.org/10.3390/sci2040089
Chicago/Turabian StyleEmokpae, Mathias Abiodun, and Emmanuel Bamidele Fatimehin. 2020. "Copper-To-Zinc Ratio as an Inflammatory Marker in Patients with Sickle Cell Disease" Sci 2, no. 4: 89. https://doi.org/10.3390/sci2040089