Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Anthropometric Characteristics
2.3. Biochemical Parameters and Hemogram
2.4. Circulating Inflammatory Parameters
2.5. mRNA Gene Expression
2.6. Western Blot Analysis in PBMCs
2.7. Statistical Analysis
3. Results
4. Discussion
Author contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanaka, H.; Seals, D.R. Endurance exercise performance in Masters athletes: Age-associated changes and underlying physiological mechanisms. J. Physiol. 2008, 586, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin. Interv. Aging 2007, 2, 401–412. [Google Scholar] [PubMed]
- Boirie, Y. Physiopathological mechanism of sarcopenia. J. Nutr. Health Aging 2009, 13, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Gremeaux, V.; Gayda, M.; Lepers, R.; Sosner, P.; Juneau, M.; Nigam, A. Exercise and longevity. Maturitas 2012, 73, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.H.; de Laet, C.; Peeters, A.; Jonker, J.; Mackenbach, J.; Nusselder, W. Effects of physical activity on life expectancy with cardiovascular disease. Arch. Intern. Med. 2005, 165, 2355–2360. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Shephard, R.J.; Park, H.; Park, S.; Aoyagi, Y. Objectively measured physical activity and progressive loss of lean tissue in older Japanese adults: Longitudinal data from the Nakanojo study. J. Am. Geriatr. Soc. 2013, 61, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, K.L.; Flynn, M.G.; Coen, P.M.; Markofski, M.M.; Pence, B.D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: A role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 2008, 84, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.A.; Wilund, K.R.; Martin, S.A.; Kistler, B.M. Exercise, inflammation and aging. Aging Dis. 2012, 3, 130–140. [Google Scholar] [PubMed]
- Olesen, J.; Gliemann, L.; Bienso, R.; Schmidt, J.; Hellsten, Y.; Pilegaard, H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J. Physiol. 2014, 592, 1873–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Gordon, P.L.; Parker, R.C.; Uhlin, K.L.; Roubenoff, R.; Levey, A.S. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am. J. Kidney Dis. 2004, 43, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulos, S.; Parissis, J.; Karatzas, D.; Kroupis, C.; Georgiadis, M.; Karavolias, G.; Paraskevaidis, J.; Koniavitou, K.; Coats, A.J.; Kremastinos, D.T. Physical training modulates proinflammatory cytokines and the soluble Fas/soluble Fas ligand system in patients with chronic heart failure. J. Am. Coll. Cardiol. 2002, 39, 653–663. [Google Scholar] [CrossRef]
- Kohut, M.L.; McCann, D.A.; Russell, D.W.; Konopka, D.N.; Cunnick, J.E.; Franke, W.D.; Castillo, M.C.; Reighard, A.E.; Vanderah, E. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav. Immun. 2006, 20, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Dillon, C.B.; Perry, I.J. Does replacing sedentary behaviour with light or moderate to vigorous physical activity modulate inflammatory status in adults? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Pararasa, C.; Ikwuobe, J.; Shigdar, S.; Boukouvalas, A.; Nabney, I.T.; Brown, J.E.; Devitt, A.; Bailey, C.J.; Bennett, S.J.; Griffiths, H.R. Age-associated changes in long-chain fatty acid profile during healthy aging promote pro-inflammatory monocyte polarization via PPARgamma. Aging Cell 2016, 15, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Pararasa, C.; Bailey, C.J.; Griffiths, H.R. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 2015, 16, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota leisure time physical activity questionnaire in Spanish women. Investigators of the MARATDON group. Med. Sci. Sports. Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Irwin, M.L.; Ainsworth, B.E. Estimating energy expenditure from the Minnesota leisure time physical activity and Tecumseh occupational activity questionnaires—A doubly labeled water validation. J. Clin. Epidemiol. 2002, 55, 392–399. [Google Scholar] [CrossRef]
- Bibiloni, M.D.M.; Julibert, A.; Argelich, E.; Aparicio-Ugarriza, R.; Palacios, G.; Pons, A.; Gonzalez-Gross, M.; Tur, J.A. Western and Mediterranean dietary patterns and physical activity and fitness among Spanish older adults. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Sureda, A.; Batle, J.M.; Tauler, P.; Tur, J.A.; Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils. Free Radic. Res. 2007, 41, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Batle, J.M.; Tauler, P.; Aguilo, A.; Cases, N.; Tur, J.A.; Pons, A. Hypoxia/reoxygenation and vitamin C intake influence NO synthesis and antioxidant defenses of neutrophils. Free Radic. Biol. Med. 2004, 37, 1744–1755. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Franceschi, C.; Olivieri, F.; Marchegiani, F.; Cardelli, M.; Cavallone, L.; Capri, M.; Salvioli, S.; Valensin, S.; De Benedictis, G.; Di Iorio, A.; et al. Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 2005, 126, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.; Petrella, R.J. Prescribing physical activity for healthy aging: Longitudinal follow-up and mixed method analysis of a primary care intervention. Phys. Sportsmed. 2014, 42, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Mendham, A.E.; Duffield, R.; Marino, F.; Coutts, A.J. Small-sided games training reduces CRP, IL-6 and leptin in sedentary, middle-aged men. Eur. J. Appl. Physiol. 2014, 114, 2289–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markofski, M.M.; Flynn, M.G.; Carrillo, A.E.; Armstrong, C.L.; Campbell, W.W.; Sedlock, D.A. Resistance exercise training-induced decrease in circulating inflammatory CD14+CD16+ monocyte percentage without weight loss in older adults. Eur. J. Appl. Physiol. 2014, 114, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Pagonas, N.; Dimeo, F.; Bauer, F.; Seibert, F.; Kiziler, F.; Zidek, W.; Westhoff, T.H. The impact of aerobic exercise on blood pressure variability. J. Hum. Hypertens. 2014, 28, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Balducci, S.; Zanuso, S.; Nicolucci, A.; Fernando, F.; Cavallo, S.; Cardelli, P.; Fallucca, S.; Alessi, E.; Letizia, C.; Jimenez, A.; et al. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.; Iliadis, F.; Angelopoulou, N.; Perrea, D.; Ampatzidis, G.; Liapis, C.D.; Alevizos, M. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Pastor-Ferrer, M.C.; Castell, C.; Ribas-Barba, L.; Roman-Vinas, B.; Ribera, L.F.; Plasencia, A.; Salleras, L. Trends in blood lipids and fat soluble vitamins in Catalonia, Spain (1992–2003). Public Health Nutr. 2007, 10, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Maldonado, A.; Aparicio, V.A.; Felix-Redondo, F.J.; Fernandez-Berges, D. Severity of obesity and cardiometabolic risk factors in adults: Sex differences and role of physical activity. The HERMEX study. Int. J. Cardiol. 2016, 223, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Tauler, P.; Aguilo, A.; Cases, N.; Fuentespina, E.; Cordova, A.; Tur, J.A.; Pons, A. Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic. Res. 2005, 39, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Tauler, P.; Aguilo, A.; Gimeno, I.; Fuentespina, E.; Tur, J.A.; Pons, A. Response of blood cell antioxidant enzyme defences to antioxidant diet supplementation and to intense exercise. Eur. J. Nutr. 2006, 45, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Tauler, P.; Aguilo, A.; Guix, P.; Jimenez, F.; Villa, G.; Tur, J.A.; Cordova, A.; Pons, A. Pre-exercise antioxidant enzyme activities determine the antioxidant enzyme erythrocyte response to exercise. J. Sports Sci. 2005, 23, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Moro-García, A.; Fernández-García, B.; Alonso-Arias, R.; Rodriguez-Alonso, M.; Suárez, M.; López-Larrea, C. Effects of maintained intense exercise throughout the life on the adaptive immune response in elderly and young athletes. Br. J. Sports Med. 2013, 47, e3. [Google Scholar] [CrossRef]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Moller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Kavouras, S.; Stefanadis, C. The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: The ATTICA Study. Prev. Med. 2005, 40, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: The Health ABC Study. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M326–332. [Google Scholar] [CrossRef] [PubMed]
- Nikseresht, M. Comparison of Serum Cytokine Levels in Men Who are Obese or Men Who are Lean: Effects of Nonlinear Periodized Resistance Training and Obesity. J. Strength Cond. Res. 2018, 32, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 1998, 83, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Mendes, K.L.; Lelis, D.F.; Santos, S.H.S. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev. 2017, 38, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Gomez-Cabrera, M.C.; Vina, J. Role of nuclear factor κB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl. Physiol. Nutr. Metab. 2007, 32, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Flynn, M.G.; McFarlin, B.K.; Phillips, M.D.; Stewart, L.K.; Timmerman, K.L. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J. Appl. Physiol. 2003, 95, 1833–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, L.K.; Flynn, M.G.; Campbell, W.W.; Craig, B.A.; Robinson, J.P.; McFarlin, B.K.; Timmerman, K.L.; Coen, P.M.; Felker, J.; Talbert, E. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun. 2005, 19, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, P.A.M.; Gregnani, M.F.; Henrique, J.S.; Ornellas, F.H.; Araujo, R.C. Aerobic but not Resistance Exercise Can Induce Inflammatory Pathways via Toll-Like 2 and 4: A Systematic Review. Sports Med. Open 2017, 3, 42. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer | Conditions | ||
---|---|---|---|---|
18S | Fw: | 5′-ATG TGA AGT CAC TGT GCC AG-3′ | 95 °C 60 °C 72 °C | 10 s 10 s 12 s |
Rv: | 5′-GTG TAA TCC GTC TCC ACA GA-3′ | |||
IL-1ra | Fw: | 5′-GAA GAT GTG CCT GTC CTG TGT-3′ | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-CGC TCA GGT CAG TGA TGT TAA-3′ | |||
IL10 | Fw: | 5′-AGA ACC TGA AGA CCC TCA GGC-3′ | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-CCA CGG CCT TGC TCT TGT T-3′ | |||
IL1β | Fw: | 5′-GGA CAG GAT ATG GAG CAA CA-3′ | 95 °C 58 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-GGC AGA CTC AAA TTC CAG CT-3′ | |||
NFκB | Fw: | 5′-AAA CAC TGT GAG GAT GGG ATC TG-3′ | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-CGA AGC CGA CCA CCA TGT-3′ | |||
TLR4 | Fw: | 5′-GGT CAC CTT TTC TTG ATT CCA-3′ | 95 °C 60 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-TCA GAG GTC CAT CAA ACA TCA C-3′ | |||
TNFα | Fw: | 5′-CCC AGG CAG TCA GAT CAT CTT CTC GGA A-3′ | 94 °C 63 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-CTG GTT ATC TCT CAG CTC CAC GCC ATT-3′ | |||
IL6 | Fw: | 5′-ACC TGA ACC TTC CAA AGA TGG C-3′ | 95 °C 63 °C 72 °C | 10 s 10 s 15 s |
Rv: | 5′-TCA CCA GGC AAG TCT CCT CAT TG-3′ |
Sedentary | Active | ANOVA | ||||
---|---|---|---|---|---|---|
Sex | Exercise | SxE | ||||
Age (years) | Male | 64.6 ± 1.1 | 62.5 ± 0.9 | 0.000 | 0.339 | 0.281 |
Female | 67.3 ± 1.1 | 67.4 ± 1.0 * | ||||
Physical activity (MET-hours/week) | Male | 40.4 ± 4.4 | 141 ± 9 # | 0.602 | 0.000 | 0.071 |
Female | 48.4 ± 3.3 | 126 ± 6 # | ||||
Weight (kg) | Male | 86.1 ± 1.9 | 78.2 ± 2.0 # | 0.000 | 0.000 | 0.875 |
Female | 69.3 ± 2.2 * | 62.0 ± 1.7 * | ||||
Height (cm) | Male | 170 ± 1 | 171 ± 1 | 0.000 | 0.808 | 0.624 |
Female | 157 ± 1 * | 156 ± 1 * | ||||
Fat-free mass (kg) | Male | 61.1 ± 1.1 | 58.8 ± 1.4 | 0.000 | 0.142 | 0.531 |
Female | 41.8 ± 0.9 * | 40.9 ± 0.6 * | ||||
Fat mass (kg) | Male | 25.0 ± 1.1 | 19.4 ± 0.9 # | 0.090 | 0.000 | 0.765 |
Female | 27.5 ± 1.6 | 21.2 ± 1.2 # | ||||
Body Mass Index (kg/m2) | Male | 29.6 ± 0.6 | 26.8 ± 0.5 # | 0.038 | 0.000 | 0.874 |
Female | 28.1 ± 0.8 | 25.5 ± 0.7 # | ||||
Systolic blood pressure (mm Hg) | Male | 141 ± 3 | 138 ± 4 | 0.312 | 0.312 | 0.796 |
Female | 138 ± 4 | 133 ± 3 | ||||
Diastolic blood pressure (mm Hg) | Male | 84.8 ± 1.4 | 81.2 ± 1.8 | 0.099 | 0.039 | 0.883 |
Female | 82.0 ± 2.2 | 77.8 ± 1.8 |
Sedentary | Active | ANOVA | ||||
---|---|---|---|---|---|---|
Sex | Exercise | SxE | ||||
Glucose (mg/dL) | Male | 100 ± 2 | 98.8 ± 2.8 | 0.636 | 0.153 | 0.217 |
Female | 105 ± 12 | 87.8 ± 1.8 | ||||
Triglycerides (mg/dL) | Male | 111 ± 7 | 100 ± 6 | 0.360 | 0.564 | 0.289 |
Female | 97.2 ± 6.3 | 100 ± 6 | ||||
Total cholesterol (mg/dL) | Male | 197 ± 5 | 199 + 5 | 0.016 | 0.919 | 0.732 |
Female | 214 ± 7 | 211 ± 6 | ||||
HDL (mg/dL) | Male | 44.7 ± 1.6 | 51.6 ± 2.2 | 0.000 | 0.011 | 0.520 |
Female | 57.2 ± 2.0 * | 61.3 ± 2.5 * | ||||
LDL (mg/dL) | Male | 130 ± 5 | 127 ± 5 | 0.360 | 0.317 | 0.676 |
Female | 137 ± 6 | 130 ± 5 | ||||
VLDL (mg/dL) | Male | 22.3 ± 1.4 | 19.9 ± 1.3 | 0.364 | 0.532 | 0.285 |
Female | 19.5 ± 1.3 | 20.1 ± 1.8 | ||||
Urea (mg/dL) | Male | 36.3 ± 1.5 | 36.2 ± 1.7 | 0.754 | 0.883 | 0.909 |
Female | 36.0 ± 1.5 | 35.6 ± 1.2 | ||||
Uric acid (mg/dL) | Male | 6.25 ± 0.21 | 6.03 ± 0.18 | 0.000 | 0.087 | 0.515 |
Female | 5.04 ± 0.22 * | 4.56 ± 0.20 * | ||||
Creatinine (mg/dL) | Male | 0.829 ± 0.018 | 0.841 ± 0.016 | 0.000 | 0.978 | 0.460 |
Female | 0.728 ± 0.013 * | 0.716 ± 0.018 * | ||||
Red blood cells (106/mm3) | Male | 5.03 ± 0.08 | 4.90 ± 0.07 | 0.000 | 0.103 | 0.860 |
Female | 4.62 ± 0.06 * | 4.52 ± 0.08 * | ||||
Haemoglobin (g/dL) | Male | 15.5 ± 0.2 | 15.3 ± 0.2 | 0.000 | 0.056 | 0.798 |
Female | 14.2 ± 0.2 * | 13.8 ± 0.1 * | ||||
Haematocrit (%) | Male | 46.0 ± 0.5 | 45.0 ± 0.6 | 0.000 | 0.048 | 0.971 |
Female | 42.1 ± 0.5 * | 41.1 ± 0.4 * | ||||
Mean corpuscular volume (fL) | Male | 91.7 ± 0.9 | 91.9 ± 0.6 | 0.480 | 0.916 | 0.857 |
Female | 91.3 ± 0.7 | 91.2 ± 0.9 | ||||
Platelets (103/mm3) | Male | 222 ± 10 | 214 ± 8 | 0.018 | 0.195 | 0.743 |
Female | 246 ± 9 | 232 ± 8 | ||||
Leucocytes (103/mm3) | Male | 6.39 ± 0.29 | 5.85 ± 0.21 | 0.423 | 0.002 | 0.244 |
Female | 6.49 ± 0.32 | 5.33 ± 0.21 # | ||||
Neutrophils (103/mm3) | Male | 3.43 ± 0.21 | 3.15 ± 0.18 | 0.074 | 0.006 | 0.185 |
Female | 3.35 ± 0.22 | 2.56 ± 0.13 # | ||||
Lymphocytes (103/mm3) | Male | 2.20 ± 0.13 | 1.94 ± 0.09 | 0.084 | 0.039 | 0.997 |
Female | 2.41 ± 0.14 | 2.15 ± 0.12 | ||||
Monocytes (103/mm3) | Male | 0.512 ± 0.025 | 0.526 ± 0.027 | 0.114 | 0.306 | 0.116 |
Female | 0.511 ± 0.024 | 0.446 ± 0.022 | ||||
Eosinophils (103/mm3) | Male | 0.220 ± 0.025 | 0.196 ± 0.020 | 0.037 | 0.088 | 0.586 |
Female | 0.187 ± 0.023 | 0.140 ± 0.013 | ||||
Basophils (103/mm3) | Male | 0.035 ± 0.004 | 0.037 ± 0.004 | 0.721 | 0.855 | 0.775 |
Female | 0.034 ± 0.004 | 0.034 ± 0.003 |
Sedentary | Active | ANOVA | ||||
---|---|---|---|---|---|---|
Sex | Exercise | SxE | ||||
IL6 (pg/mL) | Male | 3.33 ± 0.27 | 2.55 ± 0.18 | 0.599 | 0.001 | 0.478 |
Female | 3.39 ± 0.31 | 2.19 ± 0.35 # | ||||
TNFα (pg/mL) | Male | 26.6 ± 3.0 | 21.5 ± 1.8 | 0.480 | 0.148 | 0.997 |
Female | 29.1 ± 3.2 | 23.9 ± 5.6 | ||||
sCD62L (ng/mL) | Male | 1507 ± 61 | 1298 ± 77 | 0.584 | 0.132 | 0.825 |
Female | 1631 ± 239 | 1351 ± 110 | ||||
sICAM3 (ng/mL) | Male | 523 ± 24 | 496 ± 18 | 0.549 | 0.318 | 0.832 |
Female | 531 ± 20 | 514 ± 25 | ||||
Myeloperoxidase (µkat/mL) | Male | 139 ± 43 | 179 ± 45 | 0.155 | 0.799 | 0.514 |
Female | 105 ± 36 | 87 ± 29 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, M.D.; Capó, X.; Martorell, M.; Busquets-Cortés, C.; Bouzas, C.; Carreres, S.; Mateos, D.; Sureda, A.; Tur, J.A.; Pons, A. Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients 2018, 10, 1780. https://doi.org/10.3390/nu10111780
Ferrer MD, Capó X, Martorell M, Busquets-Cortés C, Bouzas C, Carreres S, Mateos D, Sureda A, Tur JA, Pons A. Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients. 2018; 10(11):1780. https://doi.org/10.3390/nu10111780
Chicago/Turabian StyleFerrer, Miguel D., Xavier Capó, Miquel Martorell, Carla Busquets-Cortés, Cristina Bouzas, Sandra Carreres, David Mateos, Antoni Sureda, Josep A. Tur, and Antoni Pons. 2018. "Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status" Nutrients 10, no. 11: 1780. https://doi.org/10.3390/nu10111780
APA StyleFerrer, M. D., Capó, X., Martorell, M., Busquets-Cortés, C., Bouzas, C., Carreres, S., Mateos, D., Sureda, A., Tur, J. A., & Pons, A. (2018). Regular Practice of Moderate Physical Activity by Older Adults Ameliorates Their Anti-Inflammatory Status. Nutrients, 10(11), 1780. https://doi.org/10.3390/nu10111780